Practice CBSE Class 12 Mathematics Relations and Functions MCQs Set C provided below. The MCQ Questions for Class 12 Chapter 1 Relations and Functions Mathematics with answers and follow the latest CBSE/ NCERT and KVS patterns. Refer to more Chapter-wise MCQs for CBSE Class 12 Mathematics and also download more latest study material for all subjects
MCQ for Class 12 Mathematics Chapter 1 Relations and Functions
Class 12 Mathematics students should review the 50 questions and answers to strengthen understanding of core concepts in Chapter 1 Relations and Functions
Chapter 1 Relations and Functions MCQ Questions Class 12 Mathematics with Answers
Question. The function f : R → R defined by f (x) = (x – 1) (x – 2) (x – 3) is
(a) one-one but not onto
(b) onto but not one-one
(c) both one-one and onto
(d) neither one-one nor onto
Answer : B
Question. Let f : (2, 3) → (0, 1) be defined by f(x) = x – [x]. Then, f–1(x) equals to
(a) x – 2
(b) x + 1
(c) x – 1
(d) x + 2
Answer : D
Question. Let f : N → R be the function defined by f(x) = 2x-1/2 and g : Q → R be another function defined by g(x) = x + 2. Then (gof) 3/2 is
(a) 1
(b) 0
(c) 7/2
(d) 3
Answer : D
Question. Consider the following statements on a set A = {1, 2, 3} I. R = {(1, 1), (2, 2)} is reflexive relation on A
II. R = {(3, 3)} is symmetric and transitive but not a reflexive relation on A
Which of the statements given above is/are correct ?
(a) Only I
(b) Only II
(c) Both I and II
(d) Neither I nor II
Answer : A
Question. Consider the following statements
Statement – I : An onto function f : {1, 2, 3} → {1, 2, 3} is always one-one.
Statement – II : A one-one function f :{1, 2, 3} → {1, 2, 3} must be onto.
(a) Only I is true
(b) Only II is true
(c) Both I and II are true
(d) Neither I nor II is true
Answer : C
Question. Let f : N → R be the function defined by f (x) = 2x – 1/2 and g : Q → R be another function defined by g (x) = x + 2. Then (gof) 3/2 is
(a) 1
(b) – 1
(c) 7/2
(d) 3
Answer : D
Question. The function f : R → R defined by f(x) = x2 + x is.
(a) one-one
(b) onto
(c) many-one
(d) None of the above
Answer : C
Question. Range of the function f(x) = x2+x+2/x2+x+1
(a) (1, ∞ )
(b) (1,11/7]
(c) (1, 7/3]
(d) (1, 7/5]
Answer : C
Question. The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is
(a) commutative only
(b) associative only
(c) both commutative and associative
(d) None of these
Answer : C
Question. In the set N of natural numbers, define the binary operation * by m * n = GCD (m, n), m, n ∈ N. Then, which of the following is true?
I. * is not a binary operation
II. * is a binary operation
III. Inverse of each element of N exist
IV. Inverse of each element of N does not exist
(a) I and IV are true
(b) II and III are true
(c) Only I is true
(d) II and IV are true
Answer : D
Question. The maximum number of equivalence relations on the set A = {2, 3, 4} are
(a) 1
(b) 27
(c) 3
(d) 5
Answer : D
Question. If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is
(a) reflexive
(b) transitive
(c) symmetric
(d) none of these
Answer : B
Question. If f : A → B and g : B → C be the bijective functions, then (gof)–1 is
(a) f–1og–1
(b) fog
(c) g–1of–1
(d) gof
Answer : A
Question. If f : R – {3/5} → R be defined by f (x) = 3x + 2 / 3x – 3 then
(a) f–1(x) = f (x)
(b) f–1(x) = – f (x)
(c) fof (x) = – x
(d) f–1(x) = 1/19 f (x)
Answer : A
Question. Consider the following statements I. For an arbitrary binary operation x on a set N, a x a = a ∀ a ∈ N.
II. If * is a commutative binary operation on N, then a x (b x c) = (c x b) x a.
(a) Only I is true
(b) Only II is true
(c) Both I and II are true
(d) Neither I nor II is true
Answer : B
Question. Let S be a finite set containing n elements. Then the total number of binary operations on S is:
(a) n2n
(b) nn
(c) 2n2
(d) n2
Answer : A
Question. The function f : R → R defined by f (x) = sin x is :
(a) into
(b) onto
(c) one-one
(d) many one
Answer : D
Assertion Reason Type Questions :
(a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.
(b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion
(c) Assertion is correct, reason is incorrect
(d) Assertion is incorrect, reason is correct.
Question. Assertion : If f is even function, g is odd function, then f/g , (g ≠ 0) is an odd function .
Reason : If f(–x) = –f(x) for every x of its domain, then f(x) is called an odd function and if f(–x) = f(x) for every x of its domain, then f(x) is called an even function.
Answer : A
Question. Assertion : The binary operation * : R × R → R given by a * b → a + 2b is associative.
Reason : A binary operation*: A × A → A is said to be associative, if (a * b) * c = a * (b * c) for all a, b, c ∈ A.
Answer : D
Question. Assertion : If the relation R defined in A = {1, 2, 3} by aRb, if |a2 – b2| ≤ 5, then R– 1 = R
Reason : For above relation, domain of R–1 = Range of R.
Answer : B
Question. Assertion : Let A = {–1, 1, 2, 3} and B = {1, 4, 9}, where f : A → B given by f(x) = x2, then f is a many-one function.
Reason : If x1 ≠ x2 ⇒ f(x1) ≠ f(x2), for every x1, x2 ∈ domain, then f is one-one or else many-one.
Answer : A
Question. Assertion : f : R → R is a function defined by f(x) = 2x+1/3 . Then f–1(x) = 3x-1/2 .
Reason : f(x) is not a bijection.
Answer : C
Case Based Questions
A relation R on a set A is said to be an equivalence relation on A if it is
• Reflexive i.e., (a, a) ∈ R V a ∈ A.
• Symmetric i.e., (a, b) ∈ R ⇒ (b, a) ∈ R V a, b ∈ A.
• Transitive i.e., (a, b) ∈ R and (b, c) ∈ R
⇒ (a, c) ∈ R ∀ a, b, c ∈A.
Based on the above information, answer the following questions:
Question. If the relation R = {(1, 1), (1, 2), (1, 3), (2, 2),
(2, 3), (3, 1), (3, 2), (3, 3)} defined on the set A = {1, 2, 3}, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
Answer : A
Question. If the relation R = {(1, 2), (2, 1), (1, 3), (3, 1)}
defined on the set A = {1, 2, 3}, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
Answer : B
Question. If the relation R on the set N of all natural numbers defined as R = {(x, y) : y = x + 5 and (x < 4), then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
Answer : C
Question. If the relation R on the set A = {1, 2, 3, … 13, 14} defined as R = {(x, y) : 3x – y = 0}, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
Answer : D
Question. If the relation R on the set A = {1, 2, 3} defined as R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, then R is
(a) reflexive only
(b) symmetric only
(c) transitive only
(d) equivalence
Answer : D
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1, 2, 3, 4, 5, 6}. Let A be the set of players while B be set of all possible outcomes.
A = {S, D}, B = {1, 2, 3, 4, 5, 6
Based on the above information answer the following:
Question. Let R : B → B be defined by R = {(x, y) : y is divisible by x} is
(a) Reflexive and transitive but not symmetric
(b) Reflexive and symmetric but not transitive
(c) Not reflexive but symmetric and transitive
(d) Equivalence
Answer : A
Question. Raji wants to know the number of functions from A to B. How many number of functions are possible?
(a) 62
(b) 26
(c) 6!
(d) 212
Answer : A
Question. Let R be a relation on B defined by R = {(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)}. Then R is
(a) Symmetric
(b) Reflexive
(c) Transitive
(d) None of these three
Answer : D
Question. Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
(a) 62
(b) 26
(c) 6!
(d) 212
Answer : D
Question. Let R : B → B be defined by R = {(1, 1), (1, 2), (2, 2)(3, 3), (4, 4), (5, 5), (6, 6)}, then R is
(a) Symmetric
(b) Reflexive and Transitive
(c) Transitive and symmetric
(d) Equivalence
Answer : B
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x – 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information:
Question. Let relation R be defined by R = {(L1, L2) : L1 || L2 where L1, L2 ∈ L}, then R is ____ relation.
(a) Equivalence
(b) Only reflexive
(c) Not reflexive
(d) Symmetric but not transitive
Answer : A
Question. Let R = {(L1, L2) : L1 ⊥ L2 where L1, L2 ∈ L} which of the following is true?
(a) R is Symmetric but neither reflexive nor transitive.
(b) R is Reflexive and transitive but not symmetric
(c) R is Reflexive but neither symmetric nor transitive.
(d) R is an Equivalence relation.
Answer : A
Question. The function f : R → R defined by f(x) = x – 4 is _______ .
(a) Bijective
(b) Surjective but not injective
(c) Injective but not Surjective
(d) Neither Surjective nor Injective
Answer : A
Question. Let f : R → R be defined by f(x) = x – 4. Then the range of f(x) is ______ .
(a) R
(b) Z
(c) W
(d) Q
Answer : A
Question. Let R = {(L1, L2) : L1 is parallel to L2 and L1 : y = x – 4} then which of the following can be taken as L2?
(a) 2x – 2y + 5 = 0
(b) 2x + y = 5
(c) 2x + 2y + 7 = 0
(d) x + y = 7
Answer : A
| CBSE Class 12 Mathematics Determinants MCQs Set A |
| CBSE Class 12 Mathematics Application of Integrals MCQs Set A |
| CBSE Class 12 Mathematics Application of Integrals MCQs Set B |
| CBSE Class 12 Mathematics Linear Programming MCQs Set A |
| CBSE Class 12 Mathematics Linear Programming MCQs Set B |
| CBSE Class 12 Mathematics Case Study Problems MCQs |
Important Practice Resources for Class 12 Mathematics
MCQs for Chapter 1 Relations and Functions Mathematics Class 12
Students can use these MCQs for Chapter 1 Relations and Functions to quickly test their knowledge of the chapter. These multiple-choice questions have been designed as per the latest syllabus for Class 12 Mathematics released by CBSE. Our expert teachers suggest that you should practice daily and solving these objective questions of Chapter 1 Relations and Functions to understand the important concepts and better marks in your school tests.
Chapter 1 Relations and Functions NCERT Based Objective Questions
Our expert teachers have designed these Mathematics MCQs based on the official NCERT book for Class 12. We have identified all questions from the most important topics that are always asked in exams. After solving these, please compare your choices with our provided answers. For better understanding of Chapter 1 Relations and Functions, you should also refer to our NCERT solutions for Class 12 Mathematics created by our team.
Online Practice and Revision for Chapter 1 Relations and Functions Mathematics
To prepare for your exams you should also take the Class 12 Mathematics MCQ Test for this chapter on our website. This will help you improve your speed and accuracy and its also free for you. Regular revision of these Mathematics topics will make you an expert in all important chapters of your course.
You can get most exhaustive CBSE Class 12 Mathematics Relations and Functions MCQs Set C for free on StudiesToday.com. These MCQs for Class 12 Mathematics are updated for the 2025-26 academic session as per CBSE examination standards.
Yes, our CBSE Class 12 Mathematics Relations and Functions MCQs Set C include the latest type of questions, such as Assertion-Reasoning and Case-based MCQs. 50% of the CBSE paper is now competency-based.
By solving our CBSE Class 12 Mathematics Relations and Functions MCQs Set C, Class 12 students can improve their accuracy and speed which is important as objective questions provide a chance to secure 100% marks in the Mathematics.
Yes, Mathematics MCQs for Class 12 have answer key and brief explanations to help students understand logic behind the correct option as its important for 2026 competency-focused CBSE exams.
Yes, you can also access online interactive tests for CBSE Class 12 Mathematics Relations and Functions MCQs Set C on StudiesToday.com as they provide instant answers and score to help you track your progress in Mathematics.