Class 11 Mathematics Trigonometric Functions MCQs Set I

Practice Class 11 Mathematics Trigonometric Functions MCQs Set I provided below. The MCQ Questions for Class 11 Chapter 3 Trigonometric Functions Mathematics with answers and follow the latest CBSE/ NCERT and KVS patterns. Refer to more Chapter-wise MCQs for CBSE Class 11 Mathematics and also download more latest study material for all subjects

MCQ for Class 11 Mathematics Chapter 3 Trigonometric Functions

Class 11 Mathematics students should review the 50 questions and answers to strengthen understanding of core concepts in Chapter 3 Trigonometric Functions

Chapter 3 Trigonometric Functions MCQ Questions Class 11 Mathematics with Answers

Question. Which of the following relation is correct
(a) \( \sin 1^{\circ} > \sin 1 \)
(b) \( \sin 1 > \sin 1^{\circ} \)
(c) \( \sin 1 = \sin 1^{\circ} \)
(d) \( \frac{\pi}{180} \sin 1 = \sin 1^{\circ} \)
Answer: B

Question. The radius of the circle whose arc of length 15 cm makes an angle of 3/4 radian at the centre is
(a) 10 cm
(b) 20 cm
(c) \( 11 \frac{1}{4} \text{ cm} \)
(d) \( 22 \frac{1}{2} \text{ cm} \)
Answer: B

Question. If A lies in the second quadrant and \( 3 \tan A + 4 = 0 \) then the value of \( 2 \cot A - 5 \cos A + \sin A \) is equal to
(a) \( \frac{-53}{10} \)
(b) \( \frac{-7}{10} \)
(c) \( \frac{7}{10} \)
(d) \( \frac{23}{10} \)
Answer: D

Question. \( \tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \tan 4^{\circ} \dots \dots \dots \dots \tan 89^{\circ} = \)
(a) 1
(b) 0
(c) \( \infty \)
(d) 1/2
Answer: A

Question. If \( \sec \theta + \tan \theta = p \), then \( \tan \theta \) is equal to
(a) \( \frac{2p}{p^2 - 1} \)
(b) \( \frac{p^2 - 1}{2p} \)
(c) \( \frac{p^2 + 1}{2p} \)
(d) \( \frac{2p}{p^2 + 1} \)
Answer: B

Question. If \( \sin \theta - \cos \theta = 1 \), then \( \sin \theta \cos \theta = \)
(a) 0
(b) 1
(c) 2
(d) 1/2
Answer: A

Question. If \( 5 \tan \theta = 4 \), then \( \frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 2 \cos \theta} \) equal to
(a) 0
(b) 1
(c) 1/6
(d) 6
Answer: C

Question. If \( \sin x + \sin^2 x = 1 \), then the value of \( \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2 \) is equal to
(a) 0
(b) 1
(c) \( - 1 \)
(d) 2
Answer: C

Question. If \( x \sin 45^{\circ} \cos^2 60^{\circ} = \frac{\tan^2 60^{\circ} \csc 30^{\circ}}{\sec 45^{\circ} \cot^2 30^{\circ}} \), then \( x = \)
(a) 2
(b) 4
(c) 8
(d) 16
Answer: C

Question. If \( A = 130^{\circ} \) and \( x = \sin A + \cos A \), then
(a) \( x > 0 \)
(b) \( x < 0 \)
(c) \( x = 0 \)
(d) \( x \le 0 \)
Answer: A

Question. \( \frac{\cos 17^{\circ} + \sin 17^{\circ}}{\cos 17^{\circ} - \sin 17^{\circ}} \)
(a) \( \tan 62^{\circ} \)
(b) \( \tan 56^{\circ} \)
(c) \( \tan 54^{\circ} \)
(d) \( \tan 73^{\circ} \)
Answer: A

Question. \( \tan 75^{\circ} - \cot 75^{\circ} = \)
(a) \( 2\sqrt{3} \)
(b) \( 2 + \sqrt{3} \)
(c) \( 2 - \sqrt{3} \)
(d) None of these
Answer: A

Question. \( \sqrt{3} \csc 20^{\circ} - \sec 20^{\circ} = \)
(a) 2
(b) \( \frac{2 \sin 20^{\circ}}{\sin 40^{\circ}} \)
(c) 4
(d) \( \frac{4 \sin 20^{\circ}}{\sin 40^{\circ}} \)
Answer: C

Question. \( \cos^2 \alpha + \cos^2 (\alpha + 120^{\circ}) + \cos^2 (\alpha - 120^{\circ}) \) is equal to
(a) 3/2
(b) 1
(c) 1/2
(d) 0
Answer: A

Question. \( \sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \)
(a) -3/16
(b) 5/16
(c) 3/16
(d) -5/16
Answer: C

Question. \( \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \)
(a) 1/2
(b) 1/4
(c) 1/6
(d) 1/8
Answer: D

Question. \( 1 - 2 \sin^2 \left( \frac{\pi}{4} + \theta \right) = \)
(a) \( \cos 2\theta \)
(b) \( - \cos 2\theta \)
(c) \( \sin 2\theta \)
(d) \( - \sin 2\theta \)
Answer: D

Question. If \( \cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta \), then \( \cos 2\alpha + \cos 2\beta = \)
(a) \( -2 \sin(\alpha + \beta) \)
(b) \( -2 \cos(\alpha + \beta) \)
(c) \( 2 \sin(\alpha + \beta) \)
(d) \( 2 \cos(\alpha + \beta) \)
Answer: B

Question. If \( \tan A = - \frac{1}{2} \) and \( \tan B = - \frac{1}{3} \), then A+B =
(a) \( \pi/4 \)
(b) \( 3\pi/4 \)
(c) \( 5\pi/4 \)
(d) None of these
Answer: B

Question. \( \frac{\sin 3\theta - \cos 3\theta}{\sin \theta + \cos \theta} + 1 = \)
(a) \( 2 \sin 2\theta \)
(b) \( 2 \cos 2\theta \)
(c) \( \tan 2\theta \)
(d) \( \cot 2\theta \)
Answer: A

Question. \( \tan 3A - \tan 2A - \tan A = \)
(a) \( \tan 3A \tan 2A \tan A \)
(b) \( - \tan 3A \tan 2A \tan A \)
(c) \( \tan A \tan 2A - \tan 2A \tan 3A - \tan 3A \tan A \)
(d) None of these
Answer: A

Question. If \( \cos A = m \cos B \), then
(a) \( \cot \frac{A+B}{2} = \frac{m+1}{m-1} \tan \frac{B-A}{2} \)
(b) \( \tan \frac{A+B}{2} = \frac{m+1}{m-1} \cot \frac{B-A}{2} \)
(c) \( \cot \frac{A+B}{2} = \frac{m+1}{m-1} \tan \frac{A-B}{2} \)
(d) None of these
Answer: A

Question. \( \tan 100^{\circ} + \tan 125^{\circ} + \tan 100^{\circ} \tan 125^{\circ} = \)
(a) 0
(b) 1/2
(c) -1
(d) 1
Answer: D

Question. If \( \sin A = \frac{1}{\sqrt{10}} \) and \( \sin B = \frac{1}{\sqrt{5}} \), where A and B are positive acute angles, then A + B =
(a) \( \pi \)
(b) \( \pi/2 \)
(c) \( \pi/3 \)
(d) \( \pi/4 \)
Answer: D

Question. \( \sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ} = \)
(a) 1
(b) 0
(c) 1/2
(d) 2
Answer: B

Question. \( \sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} = \)
(a) 1/16
(b) 1/32
(c) 1/8
(d) 1/4
Answer: C

Question. \( \frac{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta} = \)
(a) \( \tan 3\theta \)
(b) \( \cot 3\theta \)
(c) \( \tan 6\theta \)
(d) \( \cot 6\theta \)
Answer: C

Question. \( \frac{\sin(B + A) + \cos(B - A)}{\sin(B - A) + \cos(B + A)} = \)
(a) \( \frac{\cos B + \sin B}{\cos B - \sin B} \)
(b) \( \frac{\cos A + \sin A}{\cos A - \sin A} \)
(c) \( \frac{\cos A - \sin A}{\cos A + \sin A} \)
(d) None of these
Answer: B

Question. If \( \sin 2x = n \sin 2y \), then the value of \( \frac{\tan(x + y)}{\tan(x - y)} \) is
(a) \( \frac{n+1}{n-1} \)
(b) \( \frac{n-1}{n+1} \)
(c) \( \frac{1-n}{n+1} \)
(d) \( \frac{1+n}{1-n} \)
Answer: A

Question. \( 2 \cos^2 \theta - 2 \sin^2 \theta = 1 \), then \( \theta = \)
(a) \( 15^{\circ} \)
(b) \( 30^{\circ} \)
(c) \( 45^{\circ} \)
(d) \( 60^{\circ} \)
Answer: B

Question. \( \cos^2 A(3 - 4 \cos^2 A)^2 + \sin^2 A(3 - 4 \sin^2 A)^2 = \)
(a) \( \cos 4A \)
(b) \( \sin 4A \)
(c) 1
(d) None of these
Answer: C

Question. \( \frac{3 \cos \theta + \cos 3\theta}{3 \sin \theta - \sin 3\theta} \) is equal to
(a) \( 1 + \cot^2 \theta \)
(b) \( \cot^4 \theta \)
(c) \( \cot^3 \theta \)
(d) \( 2 \cot \theta \)
Answer: C

Question. \( 2 \sin A \cos^3 A - 2 \sin^3 A \cos A = \)
(a) \( \sin 4A \)
(b) \( \frac{1}{2} \sin 4A \)
(c) \( \frac{1}{4} \sin 4A \)
(d) None of these
Answer: B

Question. If \( \cos A = \frac{3}{4} \), then \( 32 \sin \left( \frac{A}{2} \right) \sin \left( \frac{5A}{2} \right) = \)
(a) 7
(b) 8
(c) 11
(d) None of these
Answer: C

Question. If \( x = y \cos \frac{2\pi}{3} = z \cos \frac{4\pi}{3} \), then xy + yz + zx =
(a) \( - 1 \)
(b) 0
(c) 1
(d) 2
Answer: B

Question. If \( \sin \theta = - \frac{1}{\sqrt{2}} \) and \( \tan \theta = 1 \), then \( \theta \) lies in which quadrant-
(a) First
(b) Second
(c) Third
(d) Fourth
Answer: C

Question. \( \cos 24^{\circ} + \cos 5^{\circ} + \cos 175^{\circ} + \cos 204^{\circ} + \cos 300^{\circ} = \)
(a) 1/2
(b) \( - 1/2 \)
(c) \( \sqrt{3}/2 \)
(d) 1
Answer: A

Question. \( \cos^2 48^{\circ} - \sin^2 12^{\circ} = \)
(a) \( \frac{\sqrt{5} - 1}{4} \)
(b) \( \frac{\sqrt{5} + 1}{8} \)
(c) \( \frac{\sqrt{3} - 1}{4} \)
(d) \( \frac{\sqrt{3} + 1}{2\sqrt{2}} \)
Answer: B

Question. If \( \sin \alpha + \sin \beta = a \) and \( \cos \alpha - \cos \beta = b \), then \( \tan \left( \frac{\alpha - \beta}{2} \right) \) is equal to-
(a) \( - a/b \)
(b) \( - b/a \)
(c) \( \sqrt{a^2 + b^2} \)
(d) None of these
Answer: B

Question. If \( \tan \left( \frac{\alpha}{2} \right) \) and \( \tan \left( \frac{\beta}{2} \right) \) are the roots of the equation \( 8x^2 - 26x + 15 = 0 \) then \( \cos (\alpha + \beta) \) is equal to-
(a) \( - \frac{627}{725} \)
(b) \( \frac{627}{725} \)
(c) \( - \frac{725}{627} \)
(d) \( - 1 \)
Answer: A

 

 

MCQs for Chapter 3 Trigonometric Functions Mathematics Class 11

Students can use these MCQs for Chapter 3 Trigonometric Functions to quickly test their knowledge of the chapter. These multiple-choice questions have been designed as per the latest syllabus for Class 11 Mathematics released by CBSE. Our expert teachers suggest that you should practice daily and solving these objective questions of Chapter 3 Trigonometric Functions to understand the important concepts and better marks in your school tests.

Chapter 3 Trigonometric Functions NCERT Based Objective Questions

Our expert teachers have designed these Mathematics MCQs based on the official NCERT book for Class 11. We have identified all questions from the most important topics that are always asked in exams. After solving these, please compare your choices with our provided answers. For better understanding of Chapter 3 Trigonometric Functions, you should also refer to our NCERT solutions for Class 11 Mathematics created by our team.

Online Practice and Revision for Chapter 3 Trigonometric Functions Mathematics

To prepare for your exams you should also take the Class 11 Mathematics MCQ Test for this chapter on our website. This will help you improve your speed and accuracy and its also free for you. Regular revision of these Mathematics topics will make you an expert in all important chapters of your course.

Where can I access latest Class 11 Mathematics Trigonometric Functions MCQs Set I?

You can get most exhaustive Class 11 Mathematics Trigonometric Functions MCQs Set I for free on StudiesToday.com. These MCQs for Class 11 Mathematics are updated for the 2025-26 academic session as per CBSE examination standards.

Are Assertion-Reasoning and Case-Study MCQs included in the Mathematics Class 11 material?

Yes, our Class 11 Mathematics Trigonometric Functions MCQs Set I include the latest type of questions, such as Assertion-Reasoning and Case-based MCQs. 50% of the CBSE paper is now competency-based.

How do practicing Mathematics MCQs help in scoring full marks in Class 11 exams?

By solving our Class 11 Mathematics Trigonometric Functions MCQs Set I, Class 11 students can improve their accuracy and speed which is important as objective questions provide a chance to secure 100% marks in the Mathematics.

Do you provide answers and explanations for Class 11 Mathematics Trigonometric Functions MCQs Set I?

Yes, Mathematics MCQs for Class 11 have answer key and brief explanations to help students understand logic behind the correct option as its important for 2026 competency-focused CBSE exams.

Can I practice these Mathematics Class 11 MCQs online?

Yes, you can also access online interactive tests for Class 11 Mathematics Trigonometric Functions MCQs Set I on StudiesToday.com as they provide instant answers and score to help you track your progress in Mathematics.