Practice Class 11 Mathematics Trigonometric Functions MCQs Set G provided below. The MCQ Questions for Class 11 Chapter 3 Trigonometric Functions Mathematics with answers and follow the latest CBSE/ NCERT and KVS patterns. Refer to more Chapter-wise MCQs for CBSE Class 11 Mathematics and also download more latest study material for all subjects
MCQ for Class 11 Mathematics Chapter 3 Trigonometric Functions
Class 11 Mathematics students should review the 50 questions and answers to strengthen understanding of core concepts in Chapter 3 Trigonometric Functions
Chapter 3 Trigonometric Functions MCQ Questions Class 11 Mathematics with Answers
Question. Which of the following relation is correct
(a) \( \sin 1^\circ > \sin 1 \)
(b) \( \sin 1 > \sin 1^\circ \)
(c) \( \sin 1 = \sin 1^\circ \)
(d) \( \frac{\pi}{180} \sin 1 = \sin 1^\circ \)
Answer: (b)
Question. The radius of the circle whose arc of length 15 cm makes an angle of 3/4 radian at the centre is
(a) 10 cm
(b) 20 cm
(c) \( 11\frac{1}{4} \) cm
(d) \( 22\frac{1}{2} \) cm
Answer: (b)
Question. If \( \tan \theta = \frac{-4}{3} \), then \( \sin \theta = \)
(a) \( \frac{-4}{5} \) but not \( \frac{4}{5} \)
(b) \( \frac{-4}{5} \) or \( \frac{4}{5} \)
(c) \( \frac{4}{5} \) but not \( \frac{-4}{5} \)
(d) None of these
Answer: (b)
Question. If \( f(x) = \cos^2 x + \sec^2 x \), then
(a) \( f(x) < 1 \)
(b) \( f(x) = 1 \)
(c) \( 1 < f(x) < 2 \)
(d) \( f(x) \geq 2 \)
Answer: (d)
Question. If \( x = \sec \theta + \tan \theta \), then \( x + \frac{1}{x} = \)
(a) 1
(b) \( 2 \sec \theta \)
(c) 2
(d) \( 2 \tan \theta \)
Answer: (b)
Question. If A lies in the second quadrant and \( 3 \tan A + 4 = 0 \) then the value of \( 2 \cot A - 5 \cos A + \sin A \) is equal to
(a) \( \frac{-53}{10} \)
(b) \( \frac{-7}{10} \)
(c) \( \frac{7}{10} \)
(d) \( \frac{23}{10} \)
Answer: (d)
Question. \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ \dots \tan 89^\circ = \)
(a) 1
(b) 0
(c) \( \infty \)
(d) 1/2
Answer: (a)
Question. The incorrect statement is
(a) \( \sin \theta = -\frac{1}{5} \)
(b) \( \cos \theta = 1 \)
(c) \( \sec \theta = \frac{1}{2} \)
(d) \( \tan \theta = 20 \)
Answer: (c)
Question. If \( \cos \theta - \sin \theta = \sqrt{2} \sin \theta \), then \( \cos \theta + \sin \theta \) is equal to
(a) \( \sqrt{2} \cos \theta \)
(b) \( \sqrt{2} \sin \theta \)
(c) \( 2 \cos \theta \)
(d) \( -\sqrt{2} \cos \theta \)
Answer: (a)
Question. If \( \sec \theta + \tan \theta = p \), then \( \tan \theta \) is equal to
(a) \( \frac{2p}{p^2 - 1} \)
(b) \( \frac{p^2 - 1}{2p} \)
(c) \( \frac{p^2 + 1}{2p} \)
(d) \( \frac{2p}{p^2 + 1} \)
Answer: (b)
Question. If \( \sin \theta - \cos \theta = 1 \), then \( \sin \theta \cos \theta = \)
(a) 0
(b) 1
(c) 2
(d) 1/2
Answer: (a)
Question. The value of \( \cos 1^\circ \cos 2^\circ \cos 3^\circ \dots \cos 179^\circ \) is
(a) \( \frac{1}{\sqrt{2}} \)
(b) 0
(c) 1
(d) None of these
Answer: (b)
Question. If \( \tan \theta = + \frac{1}{\sqrt{5}} \) and \( \theta \) lies in the 1st quadrant, then \( \cos \theta \) is
(a) \( \frac{1}{\sqrt{6}} \)
(b) \( -\frac{1}{\sqrt{6}} \)
(c) \( \sqrt{\frac{5}{6}} \)
(d) \( -\sqrt{\frac{5}{6}} \)
Answer: (c)
Question. If A lies in the third quadrant and \( 3 \tan A - 4 = 0 \), then \( 5 \sin 2A + 3 \sin A + 4 \cos A = \)
(a) 0
(b) \( -\frac{24}{5} \)
(c) \( \frac{24}{5} \)
(d) \( \frac{48}{5} \)
Answer: (a)
Question. \( (\sec^2 \theta - 1)(\csc^2 \theta - 1) = \)
(a) 0
(b) 1
(c) \( \sec \theta \cdot \csc \theta \)
(d) \( \sin^2 \theta - \cos^2 \theta \)
Answer: (b)
Question. If \( \tan \theta = \frac{20}{21} \), then \( \cos \theta \) will be
(a) \( \pm \frac{20}{41} \)
(b) \( \pm \frac{1}{21} \)
(c) \( \pm \frac{21}{29} \)
(d) \( \pm \frac{20}{21} \)
Answer: (c)
Question. If \( \csc A + \cot A = \frac{11}{2} \), then \( \tan A \) equal to
(a) \( \frac{21}{22} \)
(b) \( \frac{15}{16} \)
(c) \( \frac{44}{117} \)
(d) \( \frac{117}{43} \)
Answer: (c)
Question. If \( \sin \theta = \frac{24}{25} \) and \( \theta \) lies in the second quadrant, then \( \sec \theta + \tan \theta \) equal to
(a) -3
(b) -5
(c) -7
(d) -9
Answer: (c)
Question. If \( 5 \tan \theta = 4 \), then \( \frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 2 \cos \theta} \) equal to
(a) 0
(b) 1
(c) 1/6
(d) 6
Answer: (c)
Question. \( \frac{1 + \cos \theta}{\sin^2 \theta} \) equal to
(a) 0
(b) 1
(c) \( \frac{1}{1 - \cos \theta} \)
(d) \( \frac{1}{1 + \cos \theta} \)
Answer: (c)
Question. The expression \( \frac{1}{\tan A + \cot A} \) simplifies to
(a) \( \sec A \csc A \)
(b) \( \sin A \cos A \)
(c) \( \tan 2A \)
(d) \( \sin 2A \)
Answer: (b)
Question. If for real values of \( x \), \( \cos \theta = x + \frac{1}{x} \), then
(a) \( \theta \) is an acute angle
(b) \( \theta \) is a right angle
(c) \( \theta \) is an obtuse angle
(d) No value of \( \theta \) is possible
Answer: (d)
Question. If \( \sin x + \csc x = 2 \), then \( \sin^n x + \csc^n x \) is equal to
(a) 2
(b) \( 2^n \)
(c) \( 2^{n-1} \)
(d) \( 2^{n-2} \)
Answer: (a)
Question. One root of the equation \( \cos x - x + \frac{1}{2} = 0 \) lies in the interval
(a) \( [0, \frac{\pi}{2}] \)
(b) \( [-\frac{\pi}{2}, 0] \)
(c) \( [\frac{\pi}{2}, \pi] \)
(d) \( [\pi, \frac{3\pi}{2}] \)
Answer: (a)
Advance Level
Question. If \( \frac{2 \sin \alpha}{\{1 + \cos \alpha + \sin \alpha\}} = y \), then \( \frac{\{1 - \cos \alpha + \sin \alpha\}}{1 + \sin \alpha} = \)
(a) \( \frac{1}{y} \)
(b) \( y \)
(c) \( 1 - y \)
(d) \( 1 + y \)
Answer: (b)
Question. If \( \sin \theta + \sin^2 \theta + \sin^3 \theta = 1 \), then \( \cos^6 \theta - 4 \cos^4 \theta + 8 \cos^2 \theta = \)
(a) 4
(b) 2
(c) 1
(d) None of these
Answer: (a)
Question. If \( \theta \) and \( \phi \) are angles in the 1st quadrant such that \( \tan \theta = 1/7 \) and \( \sin \phi = 1/\sqrt{10} \). Then
(a) \( \theta + 2\phi = 90^\circ \)
(b) \( \theta + 2\phi = 60^\circ \)
(c) \( \theta + 2\phi = 30^\circ \)
(d) \( \theta + 2\phi = 45^\circ \)
Answer: (d)
Question. The value of \( \theta \) lying between 0 and \( \pi/2 \) and satisfying the equation \( \begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{vmatrix} = 0 \)
(a) \( \frac{7\pi}{24} \) or \( \frac{11\pi}{24} \)
(b) \( \frac{5\pi}{24} \)
(c) \( \frac{\pi}{24} \)
(d) None of these
Answer: (a)
Question. If \( \frac{3\pi}{4} < \alpha < \pi \), then \( \sqrt{\csc^2 \alpha + 2 \cot \alpha} \) is equal to
(a) \( 1 + \cot \alpha \)
(b) \( 1 - \cot \alpha \)
(c) \( -1 - \cot \alpha \)
(d) \( -1 + \cot \alpha \)
Answer: (c)
Question. If for all real values of \( x \), \( \frac{4x^2 + 1}{64x^2 - 96x \sin \alpha + 5} < \frac{1}{32} \), then \( \alpha \) lies in the interval
(a) \( (0, \frac{\pi}{3}) \)
(b) \( (\frac{\pi}{3}, \frac{2\pi}{3}) \)
(c) \( (\frac{2\pi}{3}, \pi) \)
(d) \( (\frac{4\pi}{3}, \frac{5\pi}{3}) \)
Answer: (c)
Question. If \( \tan \theta = \sqrt{\frac{3}{2}} \), then the sum of the infinite series \( 1 + 2(1 - \cos \theta) + 3(1 - \cos \theta)^2 + 4(1 - \cos \theta)^3 + \dots \infty \) is
(a) \( \frac{2}{3} \)
(b) \( \frac{3}{4} \)
(c) \( \frac{5}{2\sqrt{2}} \)
(d) \( \frac{5}{2} \)
Answer: (d)
Question. Let \( A_0 A_1 A_2 A_3 A_4 A_5 \) be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments \( A_0 A_1 \), \( A_0 A_2 \) and \( A_0 A_4 \) is
(a) \( \frac{3}{4} \)
(b) \( 3\sqrt{3} \)
(c) 3
(d) \( \frac{3\sqrt{3}}{2} \)
Answer: (c)
Trigonometrical Ratios of Allied Angles
Question. If \( x = \frac{\sin 45^\circ \cos 60^\circ \tan^2 60^\circ \csc 30^\circ}{\sec 45^\circ \cot^2 30^\circ} \), then \( x = \)
(a) 2
(b) 4
(c) 8
(d) 16
Answer: (c)
Question. \( \cos A + \sin(270^\circ - A) - \sin(270^\circ + A) + \cos(180^\circ + A) = \)
(a) -1
(b) 0
(c) 1
(d) None of these
Answer: (b)
Question. \( \sin(\pi + \theta) \sin(\pi - \theta) \csc^2 \theta = \)
(a) 1
(b) -1
(c) \( \sin \theta \)
(d) \( -\sin \theta \)
Answer: (b)
Question. The value of \( \sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ \) is
(a) -1
(b) 1
(c) \( \frac{1}{\sqrt{2}} \)
(d) \( \frac{\sqrt{3}}{2} \)
Answer: (a)
Question. If \( A = 130^\circ \) and \( x = \sin A + \cos A \), then
(a) \( x > 0 \)
(b) \( x < 0 \)
(c) \( x = 0 \)
(d) \( x \leq 0 \)
Answer: (a)
Question. \( \tan \theta \sin(\frac{\pi}{2} + \theta) \cos(\frac{\pi}{2} - \theta) = \)
(a) 1
(b) 0
(c) \( \frac{1}{\sqrt{2}} \)
(d) None of these
Answer: (d)
Question. \( \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 85^\circ + \sin^2 90^\circ = \)
(a) 7
(b) 8
(c) 9
(d) \( 9\frac{1}{2} \)
Answer: (d)
Question. Values of \( \theta \) \( (0 < \theta < 360^\circ) \) satisfying \( \csc \theta + 2 = 0 \) are
(a) \( 210^\circ, 300^\circ \)
(b) \( 240^\circ, 300^\circ \)
(c) \( 210^\circ, 240^\circ \)
(d) \( 210^\circ, 330^\circ \)
Answer: (d)
Question. The value of \( \tan(-945^\circ) \) is
(a) -1
(b) -2
(c) -3
(d) -4
Answer: (a)
Question. The value of \( \frac{\cot 54^\circ}{\tan 36^\circ} + \frac{\tan 20^\circ}{\cot 70^\circ} \) is
(a) 2
(b) 3
(c) 1
(d) 0
Answer: (a)
Question. \( \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = \)
(a) 1/2
(b) 2
(c) 4
(d) 8
Answer: (c)
Question. \( \cos 1^\circ + \cos 2^\circ + \cos 3^\circ + \dots + \cos 180^\circ = \)
(a) 0
(b) 1
(c) -1
(d) 2
Answer: (c)
Question. If \( \tan(A - B) = 1 \), \( \sec(A + B) = \frac{2}{\sqrt{3}} \), then the smallest positive value of B is
(a) \( \frac{25\pi}{24} \)
(b) \( \frac{19\pi}{24} \)
(c) \( \frac{13\pi}{24} \)
(d) \( \frac{11\pi}{24} \)
Answer: (b)
Question. If \( x = \sin 130^\circ \cos 80^\circ \), \( y = \sin 80^\circ \cos 130^\circ \), \( z = 1 + xy \), which one of the following is true
(a) \( x > 0, y > 0, z > 0 \)
(b) \( x > 0, y < 0, 0 < z < 1 \)
(c) \( x > 0, y < 0, z > 1 \)
(d) \( x < 0, y < 0, 0 < z < 1 \)
Answer: (b)
Question. If \( \alpha = 22^\circ 30' \), then \( (1 + \cos \alpha)(1 + \cos 3\alpha)(1 + \cos 5\alpha)(1 + \cos 7\alpha) \) equals
(a) 1/8
(b) 1/4
(c) \( \frac{1 + \sqrt{2}}{2\sqrt{2}} \)
(d) \( \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \)
Answer: (a)
| Class 11 Mathematics Set MCQs Set A |
| Class 11 Mathematics Set Theory MCQs Set A |
| Class 11 Mathematics Set Theory MCQs Set B |
| Class 11 Mathematics Probability MCQs Set A |
| Class 11 Mathematics Probability MCQs Set B |
| Class 11 Mathematics Probability MCQs Set C |
| Class 11 Mathematics Probability MCQs Set D |
Important Practice Resources for Class 11 Mathematics
MCQs for Chapter 3 Trigonometric Functions Mathematics Class 11
Students can use these MCQs for Chapter 3 Trigonometric Functions to quickly test their knowledge of the chapter. These multiple-choice questions have been designed as per the latest syllabus for Class 11 Mathematics released by CBSE. Our expert teachers suggest that you should practice daily and solving these objective questions of Chapter 3 Trigonometric Functions to understand the important concepts and better marks in your school tests.
Chapter 3 Trigonometric Functions NCERT Based Objective Questions
Our expert teachers have designed these Mathematics MCQs based on the official NCERT book for Class 11. We have identified all questions from the most important topics that are always asked in exams. After solving these, please compare your choices with our provided answers. For better understanding of Chapter 3 Trigonometric Functions, you should also refer to our NCERT solutions for Class 11 Mathematics created by our team.
Online Practice and Revision for Chapter 3 Trigonometric Functions Mathematics
To prepare for your exams you should also take the Class 11 Mathematics MCQ Test for this chapter on our website. This will help you improve your speed and accuracy and its also free for you. Regular revision of these Mathematics topics will make you an expert in all important chapters of your course.
You can get most exhaustive Class 11 Mathematics Trigonometric Functions MCQs Set G for free on StudiesToday.com. These MCQs for Class 11 Mathematics are updated for the 2025-26 academic session as per CBSE examination standards.
Yes, our Class 11 Mathematics Trigonometric Functions MCQs Set G include the latest type of questions, such as Assertion-Reasoning and Case-based MCQs. 50% of the CBSE paper is now competency-based.
By solving our Class 11 Mathematics Trigonometric Functions MCQs Set G, Class 11 students can improve their accuracy and speed which is important as objective questions provide a chance to secure 100% marks in the Mathematics.
Yes, Mathematics MCQs for Class 11 have answer key and brief explanations to help students understand logic behind the correct option as its important for 2026 competency-focused CBSE exams.
Yes, you can also access online interactive tests for Class 11 Mathematics Trigonometric Functions MCQs Set G on StudiesToday.com as they provide instant answers and score to help you track your progress in Mathematics.