Practice Class 11 Mathematics Trigonometric Functions MCQs Set H provided below. The MCQ Questions for Class 11 Chapter 3 Trigonometric Functions Mathematics with answers and follow the latest CBSE/ NCERT and KVS patterns. Refer to more Chapter-wise MCQs for CBSE Class 11 Mathematics and also download more latest study material for all subjects
MCQ for Class 11 Mathematics Chapter 3 Trigonometric Functions
Class 11 Mathematics students should review the 50 questions and answers to strengthen understanding of core concepts in Chapter 3 Trigonometric Functions
Chapter 3 Trigonometric Functions MCQ Questions Class 11 Mathematics with Answers
Trigonometrical Ratios of Sum & Difference of Two Angles, Transformation of Product into Sum & Difference, Transformation of Sum & Difference into Product
Question. If A, B, C, D are the angles of a cyclic quadrilateral then \( \cos A + \cos B + \cos C + \cos D = \)
(a) \( 2(\cos A + \cos C) \)
(b) \( 2(\cos A + \cos B) \)
(c) \( 2(\cos A + \cos D) \)
(d) 0
Answer: (d)
Question. \( \frac{\cos 17^\circ + \sin 17^\circ}{\cos 17^\circ - \sin 17^\circ} = \)
(a) \( \tan 62^\circ \)
(b) \( \tan 56^\circ \)
(c) \( \tan 54^\circ \)
(d) \( \tan 73^\circ \)
Answer: (a)
Question. \( \cot(45^\circ + \theta) \cot(45^\circ - \theta) = \)
(a) -1
(b) 0
(c) 1
(d) \( \infty \)
Answer: (c)
Question. \( \tan 75^\circ - \cot 75^\circ = \)
(a) \( 2\sqrt{3} \)
(b) \( 2 + \sqrt{3} \)
(c) \( 2 - \sqrt{3} \)
(d) None of these
Answer: (a)
Question. \( \sqrt{3} \csc 20^\circ - \sec 20^\circ = \)
(a) 2
(b) \( \frac{2 \sin 20^\circ}{\sin 40^\circ} \)
(c) 4
(d) \( \frac{4 \sin 20^\circ}{\sin 40^\circ} \)
Answer: (c)
Question. \( \sin 15^\circ + \cos 105^\circ = \)
(a) 0
(b) \( 2 \sin 15^\circ \)
(c) \( \cos 15^\circ + \sin 15^\circ \)
(d) \( \sin 15^\circ - \cos 15^\circ \)
Answer: (a)
Question. If \( \cos(A + B) = \alpha \cos A \cos B + \beta \sin A \sin B \), then \( (\alpha, \beta) = \)
(a) \( (-1, -1) \)
(b) \( (-1, 1) \)
(c) \( (1, -1) \)
(d) \( (1, 1) \)
Answer: (c)
Question. \( \cos^2 \alpha + \cos^2(\alpha + 120^\circ) + \cos^2(\alpha - 120^\circ) \) is equal to
(a) 3/2
(b) 1
(c) 1/2
(d) 0
Answer: (a)
Question. The value of \( \cos 105^\circ + \sin 105^\circ \) is
(a) 1/2
(b) 1
(c) \( \sqrt{2} \)
(d) \( \frac{1}{\sqrt{2}} \)
Answer: (d)
Question. \( \cos^2 48^\circ - \sin^2 12^\circ = \)
(a) \( \frac{\sqrt{5} - 1}{4} \)
(b) \( \frac{\sqrt{5} + 1}{8} \)
(c) \( \frac{\sqrt{3} - 1}{4} \)
(d) \( \frac{\sqrt{3} + 1}{2\sqrt{2}} \)
Answer: (b)
Question. \( \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \)
(a) -3/16
(b) 5/16
(c) 3/16
(d) -5/16
Answer: (c)
Question. \( \cos 20^\circ \cos 40^\circ \cos 80^\circ = \)
(a) 1/2
(b) 1/4
(c) 1/6
(d) 1/8
Answer: (d)
Question. \( \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \)
(a) 1/2
(b) 1/4
(c) 1/8
(d) 1/16
Answer: (d)
Question. If \( x = \cos 10^\circ \cos 20^\circ \cos 40^\circ \), then the value of x is
(a) \( \frac{1}{4} \tan 10^\circ \)
(b) \( \frac{1}{8} \cot 10^\circ \)
(c) \( \frac{1}{8} \csc 10^\circ \)
(d) \( \frac{1}{8} \sec 10^\circ \)
Answer: (b)
Question. The value of \( \cos 52^\circ + \cos 68^\circ + \cos 172^\circ \) is
(a) 0
(b) 1
(c) 2
(d) 3/2
Answer: (a)
Question. \( \cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ = \)
(a) 0
(b) 1
(c) 1/2
(d) -1/2
Answer: (d)
Question. \( 1 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ = \)
(a) \( 2 \cos 28^\circ \cos 29^\circ \cos 33^\circ \)
(b) \( 4 \cos 28^\circ \cos 29^\circ \cos 33^\circ \)
(c) \( 4 \cos 28^\circ \cos 29^\circ \sin 33^\circ \)
(d) \( 2 \cos 28^\circ \cos 29^\circ \sin 33^\circ \)
Answer: (b)
Question. \( \tan 5x \tan 3x \tan 2x = \)
(a) \( \tan 5x - \tan 3x - \tan 2x \)
(b) \( \frac{\sin 5x - \sin 3x - \sin 2x}{\cos 5x - \cos 3x - \cos 2x} \)
(c) 0
(d) None of these
Answer: (a)
Question. If \( \cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta \), then \( \cos 2\alpha + \cos 2\beta = \)
(a) \( -2 \sin(\alpha + \beta) \)
(b) \( -2 \cos(\alpha + \beta) \)
(c) \( 2 \sin(\alpha + \beta) \)
(d) \( 2 \cos(\alpha + \beta) \)
Answer: (b)
Question. If \( \tan A = -\frac{1}{2} \) and \( \tan B = -\frac{1}{3} \), then \( A + B = \)
(a) \( \frac{\pi}{4} \)
(b) \( \frac{3\pi}{4} \)
(c) \( \frac{5\pi}{4} \)
(d) None of these
Answer: (b)
Question. If \( \cos(A - B) = \frac{3}{5} \) and \( \tan A \tan B = 2 \), then
(a) \( \cos A \cos B = \frac{1}{5} \)
(b) \( \sin A \sin B = -\frac{2}{5} \)
(c) \( \cos A \cos B = -\frac{1}{5} \)
(d) \( \sin A \sin B = -\frac{1}{5} \)
Answer: (a)
Question. \( \frac{\sin 3\theta - \cos 3\theta}{\sin \theta + \cos \theta} + 1 = \)
(a) \( 2 \sin 2\theta \)
(b) \( 2 \cos 2\theta \)
(c) \( \tan 2\theta \)
(d) \( \cot 2\theta \)
Answer: (a)
Question. \( \tan 3A - \tan 2A - \tan A = \)
(a) \( \tan 3A \tan 2A \tan A \)
(b) \( -\tan 3A \tan 2A \tan A \)
(c) \( \tan A \tan 2A - \tan 2A \tan 3A - \tan 3A \tan A \)
(d) None of these
Answer: (a)
Question. If \( \cos A = m \cos B \), then
(a) \( \cot \frac{A+B}{2} = \frac{m+1}{m-1} \tan \frac{B-A}{2} \)
(b) \( \tan \frac{A+B}{2} = \frac{m+1}{m-1} \cot \frac{B-A}{2} \)
(c) \( \cot \frac{A+B}{2} = \frac{m+1}{m-1} \tan \frac{A-B}{2} \)
(d) None of these
Answer: (a)
Question. The value of \( \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ \) is
(a) 1/2
(b) 1
(c) -1/2
(d) 1/8
Answer: (c)
Question. \( \tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ = \)
(a) 0
(b) \( \frac{1}{2} \)
(c) -1
(d) 1
Answer: (d)
Question. If \( \cos P = \frac{1}{7} \) and \( \cos Q = \frac{13}{14} \) where P and Q both are acute angles. Then the value of \( P - Q \) is
(a) \( 30^\circ \)
(b) \( 60^\circ \)
(c) \( 45^\circ \)
(d) \( 75^\circ \)
Answer: (b)
Question. If \( \sin A = \frac{1}{\sqrt{10}} \) and \( \sin B = \frac{1}{\sqrt{5}} \), where A and B are positive acute angles, then \( A + B = \)
(a) \( \pi \)
(b) \( \frac{\pi}{2} \)
(c) \( \frac{\pi}{3} \)
(d) \( \frac{\pi}{4} \)
Answer: (d)
Question. \( \sin \left(\frac{\pi}{10}\right) \sin \left(\frac{3\pi}{10}\right) = \)
(a) 1/2
(b) -1/2
(c) 1/4
(d) 1
Answer: (c)
Question. \( \sin 50^\circ - \sin 70^\circ + \sin 10^\circ = \)
(a) 1
(b) 0
(c) 1/2
(d) 2
Answer: (b)
Question. If \( \sin A = \sin B \) and \( \cos A = \cos B \), then
(a) \( \sin \frac{A-B}{2} = 0 \)
(b) \( \sin \frac{A+B}{2} = 0 \)
(c) \( \cos \frac{A-B}{2} = 0 \)
(d) \( \cos(A+B) = 0 \)
Answer: (a)
Question. \( \sin 12^\circ \sin 48^\circ \sin 54^\circ = \)
(a) 1/16
(b) 1/32
(c) 1/8
(d) 1/4
Answer: (c)
Question. If \( (1 + \tan \theta)(1 + \tan \phi) = 2 \), then \( \theta + \phi = \)
(a) \( 30^\circ \)
(b) \( 45^\circ \)
(c) \( 60^\circ \)
(d) \( 75^\circ \)
Answer: (b)
Question. \( \cos^2\left(\frac{\pi}{6}+\theta\right) - \sin^2\left(\frac{\pi}{6}-\theta\right) = \)
(a) \( \frac{1}{2} \cos 2\theta \)
(b) 0
(c) \( -\frac{1}{2} \cos 2\theta \)
(d) \( \frac{1}{2} \)
Answer: (a)
Question. If \( \sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \) and \( \cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \), then \( \theta \) is equal to
(a) \( \alpha/2 \)
(b) \( \alpha \)
(c) \( 2\alpha \)
(d) \( \alpha/6 \)
Answer: (a)
Question. \( \cos \alpha \sin(\beta - \gamma) + \cos \beta \sin(\gamma - \alpha) + \cos \gamma \sin(\alpha - \beta) = \)
(a) 0
(b) 1/2
(c) 1
(d) \( 4 \cos \alpha \cos \beta \cos \gamma \)
Answer: (a)
Question. Given that \( \cos \left(\frac{\alpha-\beta}{2}\right) = 2 \cos \left(\frac{\alpha+\beta}{2}\right) \), then \( \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \) is equal to
(a) \( \frac{1}{2} \)
(b) \( \frac{1}{3} \)
(c) \( \frac{1}{4} \)
(d) \( \frac{1}{8} \)
Answer: (b)
Question. If \( \sin A + \sin B = C, \cos A + \cos B = D \), then the value of \( \sin(A+B) = \)
(a) \( CD \)
(b) \( \frac{CD}{C^2 + D^2} \)
(c) \( \frac{C^2 + D^2}{2CD} \)
(d) \( \frac{2CD}{C^2 + D^2} \)
Answer: (d)
Question. If \( A + B = 225^\circ \), then \( \frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B} = \)
(a) 1
(b) -1
(c) 0
(d) \( \frac{1}{2} \)
Answer: (d)
Question. \( \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} \)
(a) 0
(b) 1
(c) 2
(d) 4
Answer: (d)
Question. \( \frac{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta} = \)
(a) \( \tan 3\theta \)
(b) \( \cot 3\theta \)
(c) \( \tan 6\theta \)
(d) \( \cot 6\theta \)
Answer: (c)
Question. If \( \cos(\theta - \alpha), \cos \theta \) and \( \cos(\theta + \alpha) \) are in H.P., then \( \cos \theta \sec \frac{\alpha}{2} \) is equal to
(a) \( \pm \sqrt{2} \)
(b) \( \pm \sqrt{3} \)
(c) \( \pm 1/\sqrt{2} \)
(d) None of these
Answer: (a)
Question. \( \frac{\sin(B + A) + \cos(B - A)}{\sin(B - A) + \cos(B + A)} = \)
(a) \( \frac{\cos B + \sin B}{\cos B - \sin B} \)
(b) \( \frac{\cos A + \sin A}{\cos A - \sin A} \)
(c) \( \frac{\cos A - \sin A}{\cos A + \sin A} \)
(d) None of these
Answer: (b)
Question. If \( \sin 2x = n \sin 2y \), then the value of \( \frac{\tan(x+y)}{\tan(x-y)} \) is
(a) \( \frac{n+1}{n-1} \)
(b) \( \frac{n-1}{n+1} \)
(c) \( \frac{1-n}{n+1} \)
(d) \( \frac{1+n}{1-n} \)
Answer: (a)
Question. If \( 3 \sin \alpha = 5 \sin \beta \), then \( \frac{\tan \frac{\alpha + \beta}{2}}{\tan \frac{\alpha - \beta}{2}} = \)
(a) 1
(b) 2
(c) 3
(d) 4
Answer: (d)
Question. If \( \frac{\pi}{2} < \alpha < \pi, \pi < \beta < \frac{3\pi}{2}, \sin \alpha = \frac{15}{17} \) and \( \tan \beta = \frac{12}{5} \), the value of \( \sin(\beta - \alpha) \) is
(a) \( \frac{-171}{221} \)
(b) \( \frac{-21}{221} \)
(c) \( \frac{21}{221} \)
(d) \( \frac{17}{221} \)
Answer: (a)
Question. \( \cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ = \)
(a) \( -\frac{1}{4} \)
(b) \( \frac{1}{2} \)
(c) 0
(d) \( \frac{3}{4} \)
Answer: (d)
Question. The value of \( \cos^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{4} + \cos^2 \frac{5\pi}{12} \) is
(a) \( \frac{3}{2} \)
(b) \( \frac{2}{3} \)
(c) \( \frac{3 + \sqrt{3}}{2} \)
(d) \( \frac{2}{3 + \sqrt{3}} \)
Answer: (a)
Question. If angle \( \theta \) be divided into two parts such that the tangents of one part is K times the tangent of the other and \( \phi \) is their difference, then \( \sin \theta = \)
(a) \( \frac{K+1}{K-1} \sin \phi \)
(b) \( \frac{K-1}{K+1} \sin \phi \)
(c) \( \frac{2K-1}{2K+1} \sin \phi \)
(d) None of these
Answer: (a)
Question. If \( \tan \alpha, \tan \beta \) are the roots of the equation \( x^2 + px + q = 0 (p \neq 0) \), then
(a) \( \sin^2(\alpha + \beta) + p \sin(\alpha + \beta) \cos(\alpha + \beta) + q \cos^2(\alpha + \beta) = q \)
(b) \( \tan(\alpha + \beta) = \frac{p}{q-1} \)
(c) \( \cos(\alpha + \beta) = 1 - q \)
(d) \( \sin(\alpha + \beta) = -p \)
Answer: (b)
Question. If \( \tan \alpha \) equals the integral solution of the inequality \( 4x^2 - 16x + 15 < 0 \) and \( \cos \beta \) equals to the slope of the bisector of first quadrant, then \( \sin(\alpha + \beta) \sin(\alpha - \beta) \) is equal to
(a) \( \frac{3}{5} \)
(b) \( -\frac{3}{5} \)
(c) \( \frac{2}{\sqrt{5}} \)
(d) \( \frac{4}{5} \)
Answer: (d)
| Class 11 Mathematics Set MCQs Set A |
| Class 11 Mathematics Set Theory MCQs Set A |
| Class 11 Mathematics Set Theory MCQs Set B |
| Class 11 Mathematics Probability MCQs Set A |
| Class 11 Mathematics Probability MCQs Set B |
| Class 11 Mathematics Probability MCQs Set C |
| Class 11 Mathematics Probability MCQs Set D |
Important Practice Resources for Class 11 Mathematics
MCQs for Chapter 3 Trigonometric Functions Mathematics Class 11
Students can use these MCQs for Chapter 3 Trigonometric Functions to quickly test their knowledge of the chapter. These multiple-choice questions have been designed as per the latest syllabus for Class 11 Mathematics released by CBSE. Our expert teachers suggest that you should practice daily and solving these objective questions of Chapter 3 Trigonometric Functions to understand the important concepts and better marks in your school tests.
Chapter 3 Trigonometric Functions NCERT Based Objective Questions
Our expert teachers have designed these Mathematics MCQs based on the official NCERT book for Class 11. We have identified all questions from the most important topics that are always asked in exams. After solving these, please compare your choices with our provided answers. For better understanding of Chapter 3 Trigonometric Functions, you should also refer to our NCERT solutions for Class 11 Mathematics created by our team.
Online Practice and Revision for Chapter 3 Trigonometric Functions Mathematics
To prepare for your exams you should also take the Class 11 Mathematics MCQ Test for this chapter on our website. This will help you improve your speed and accuracy and its also free for you. Regular revision of these Mathematics topics will make you an expert in all important chapters of your course.
You can get most exhaustive Class 11 Mathematics Trigonometric Functions MCQs Set H for free on StudiesToday.com. These MCQs for Class 11 Mathematics are updated for the 2025-26 academic session as per CBSE examination standards.
Yes, our Class 11 Mathematics Trigonometric Functions MCQs Set H include the latest type of questions, such as Assertion-Reasoning and Case-based MCQs. 50% of the CBSE paper is now competency-based.
By solving our Class 11 Mathematics Trigonometric Functions MCQs Set H, Class 11 students can improve their accuracy and speed which is important as objective questions provide a chance to secure 100% marks in the Mathematics.
Yes, Mathematics MCQs for Class 11 have answer key and brief explanations to help students understand logic behind the correct option as its important for 2026 competency-focused CBSE exams.
Yes, you can also access online interactive tests for Class 11 Mathematics Trigonometric Functions MCQs Set H on StudiesToday.com as they provide instant answers and score to help you track your progress in Mathematics.