CBSE Class 12 Mathematics Vector Algebra VBQs Set C

Read and download the CBSE Class 12 Mathematics Vector Algebra VBQs Set C. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.

VBQ for Class 12 Mathematics Chapter 10 Vector Algebra

For Class 12 students, Value Based Questions for Chapter 10 Vector Algebra help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.

Chapter 10 Vector Algebra Class 12 Mathematics VBQ Questions with Answers

Short Answer Questions–I:

Question. Find a vector of magnitude 5 units and parallel to resultant of the vectors \( \vec{a} = 2\hat{i} + 3\hat{j} - \hat{k} \) and \( \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \).
Answer: Resultant \( \vec{R} = \vec{a} + \vec{b} = 3\hat{i} + \hat{j} \). Unit vector \( \hat{R} = \frac{3\hat{i} + \hat{j}}{\sqrt{10}} \). Required vector \( = \frac{5}{\sqrt{10}}(3\hat{i} + \hat{j}) = \frac{\sqrt{10}}{2}(3\hat{i} + \hat{j}) \)

Question. For any three vectors \( \vec{a}, \vec{b} \) and \( \vec{c} \), find the value of \( \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) \). 
Answer: \( \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} = \vec{a} \times \vec{b} - \vec{c} \times \vec{a} + \vec{b} \times \vec{c} - \vec{a} \times \vec{b} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c} = \vec{0} \)

Question. Find \( |\vec{x}| \), if for a unit vector \( \vec{a} \), \( (\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15 \).
Answer: \( |\vec{x}|^2 - |\vec{a}|^2 = 15 \Rightarrow |\vec{x}|^2 - 1 = 15 \Rightarrow |\vec{x}|^2 = 16 \Rightarrow |\vec{x}| = 4 \)

Question. If \( \vec{a} \) and \( \vec{b} \) are two unit vectors such that \( \vec{a} + \vec{b} \) is also a unit vector, then find the angle between \( \vec{a} \) and \( \vec{b} \). 
Answer: \( |\vec{a} + \vec{b}|^2 = 1^2 \Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 1 \Rightarrow 1 + 1 + 2 \cos \theta = 1 \Rightarrow \cos \theta = -1/2 \Rightarrow \theta = \frac{2\pi}{3} \text{ or } 120^\circ \)

Question. Find the value of \( a + b \), if the points (2, a, 3)(3, –5, b) and (–1, 11, 9) are collinear. 
Answer: Direction ratios are proportional: \( \frac{3-2}{-1-3} = \frac{-5-a}{11-(-5)} = \frac{b-3}{9-b} \Rightarrow \frac{1}{-4} = \frac{-5-a}{16} = \frac{b-3}{9-b} \). Solving, \( a = -1, b = 1 \). So \( a+b = 0 \)

Question. Find a vector \( \vec{r} \) equally inclined to the three axes and whose magnitude is \( 3\sqrt{3} \) units. 
Answer: \( l=m=n \Rightarrow 3l^2 = 1 \Rightarrow l = \pm 1/\sqrt{3} \). Required vector \( \vec{r} = 3\sqrt{3} \left[ \pm \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \right] = \pm 3(\hat{i} + \hat{j} + \hat{k}) \)

Question. Find the angle between unit vectors \( \vec{a} \) and \( \vec{b} \) so that \( \sqrt{3}\vec{a} - \vec{b} \) is also a unit vector. 
Answer: \( |\sqrt{3}\vec{a} - \vec{b}|^2 = 1 \Rightarrow 3|\vec{a}|^2 + |\vec{b}|^2 - 2\sqrt{3}\vec{a} \cdot \vec{b} = 1 \Rightarrow 3 + 1 - 2\sqrt{3} \cos \theta = 1 \Rightarrow \cos \theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = 30^\circ \text{ or } \frac{\pi}{6} \)

Question. Find \( |\vec{a}| \) and \( |\vec{b}| \), if \( |\vec{a}| = 2|\vec{b}| \) and \( (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 12 \). 
Answer: \( |\vec{a}|^2 - |\vec{b}|^2 = 12 \Rightarrow 4|\vec{b}|^2 - |\vec{b}|^2 = 12 \Rightarrow 3|\vec{b}|^2 = 12 \Rightarrow |\vec{b}| = 2 \text{ and } |\vec{a}| = 4 \)

Question. Find the unit vector perpendicular to each of the vectors \( \vec{a} = 4\hat{i} + 3\hat{j} + \hat{k} \) and \( \vec{b} = 2\hat{i} - \hat{j} + 2\hat{k} \). 
Answer: \( \vec{a} \times \vec{b} = 7\hat{i} - 6\hat{j} - 10\hat{k} \). Unit vector \( = \frac{7\hat{i} - 6\hat{j} - 10\hat{k}}{\sqrt{185}} \)

Short Answer Questions–II:

Question. Find a unit vector perpendicular to both of the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) where \( \vec{a} = \hat{i} + \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \). 
Answer: \( \vec{a}+\vec{b} = 2\hat{i}+3\hat{j}+4\hat{k} \), \( \vec{a}-\vec{b} = -\hat{j}-2\hat{k} \). Cross product \( = -2\hat{i} + 4\hat{j} - 2\hat{k} \). Unit vector \( = \frac{-\hat{i} + 2\hat{j} - \hat{k}}{\sqrt{6}} \)

Question. If \( \vec{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k} \) and \( \vec{q} = \hat{i} + 3\hat{j} - 5\hat{k} \) then find the value of \( \lambda \), so that \( \vec{p} + \vec{q} \) and \( \vec{p} - \vec{q} \) are perpendicular vectors. 
Answer: \( (\vec{p}+\vec{q}) \cdot (\vec{p}-\vec{q}) = 0 \Rightarrow |\vec{p}|^2 - |\vec{q}|^2 = 0 \Rightarrow (25 + \lambda^2 + 9) - (1 + 9 + 25) = 0 \Rightarrow \lambda^2 - 1 = 0 \Rightarrow \lambda = \pm 1 \)

Question. Let \( \vec{a} = \hat{i} + 4\hat{j} + 2\hat{k} \), \( \vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k} \) and \( \vec{c} = 2\hat{i} - \hat{j} + 4\hat{k} \). Find a vector \( \vec{d} \) which is perpendicular to both \( \vec{a} \) and \( \vec{b} \) and \( \vec{c} \cdot \vec{d} = 27 \). 
Answer: \( \vec{d} = k(\vec{a} \times \vec{b}) = k(32\hat{i} - \hat{j} - 14\hat{k}) \). Given \( \vec{c} \cdot \vec{d} = 27 \Rightarrow k(64 + 1 - 56) = 27 \Rightarrow 9k = 27 \Rightarrow k=3 \). So \( \vec{d} = 96\hat{i} - 3\hat{j} - 42\hat{k} \)

Question. Show that the four points with position vectors \( 4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k} \) and \( 5\hat{i} + 8\hat{j} + 5\hat{k} \) are coplanar. 
Answer: Let points be A, B, C, D. \( \vec{AB} = -2\hat{i}-4\hat{j}-6\hat{k} \), \( \vec{AC} = -\hat{i}-3\hat{j}-8\hat{k} \), \( \vec{AD} = \hat{i}-7\hat{k} \). Scalar triple product \( [\vec{AB} \quad \vec{AC} \quad \vec{AD}] = 0 \), hence coplanar.

Question. Find \( x \) such that four points A(4, 1, 2), B(5, x, 6), C(5, 1, –1) and D(7, 4, 0) are coplanar. 
Answer: \( \vec{AB}=(1, x-1, 4) \), \( \vec{AC}=(1, 0, -3) \), \( \vec{AD}=(3, 3, -2) \). For coplanarity, determinant \( = 0 \Rightarrow 1(9) - (x-1)(7) + 4(3) = 0 \Rightarrow 9 - 7x + 7 + 12 = 0 \Rightarrow 7x = 28 \Rightarrow x=4 \)

Question. For three vectors \( \vec{a}, \vec{b} \) and \( \vec{c} \) if \( \vec{a} \times \vec{b} = \vec{c} \) and \( \vec{a} \times \vec{c} = \vec{b} \), then prove that \( \vec{a}, \vec{b} \) and \( \vec{c} \) are mutually perpendicular vectors, \( |\vec{b}| = |\vec{c}| \) and \( |\vec{a}| = 1 \). 
Answer: \( \vec{a} \times \vec{b} = \vec{c} \Rightarrow \vec{c} \perp \vec{a}, \vec{c} \perp \vec{b} \). \( \vec{a} \times \vec{c} = \vec{b} \Rightarrow \vec{b} \perp \vec{a}, \vec{b} \perp \vec{c} \). Since \( \vec{a} \perp \vec{b} \) and \( \vec{a} \perp \vec{c} \), vectors are mutually perpendicular. Also \( |\vec{c}| = |\vec{a}||\vec{b}| \sin 90^\circ \) and \( |\vec{b}| = |\vec{a}||\vec{c}| \sin 90^\circ \). Solving, \( |\vec{a}|=1 \) and \( |\vec{b}|=|\vec{c}| \).

Question. If \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors such that \( \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0 \) and the angle between \( \vec{b} \) and \( \vec{c} \) is \( \frac{\pi}{6} \), then prove that (i) \( \vec{a} = \pm 2(\vec{b} \times \vec{c}) \) (ii) \( [\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}] = \pm 1 \).
Answer: \( \vec{a} \) is perpendicular to both \( \vec{b} \) and \( \vec{c} \), so \( \vec{a} \parallel \vec{b} \times \vec{c} \). \( |\vec{b} \times \vec{c}| = 1 \cdot 1 \cdot \sin(\pi/6) = 1/2 \). Thus \( \vec{a} = \pm \frac{\vec{b} \times \vec{c}}{1/2} = \pm 2(\vec{b} \times \vec{c}) \). STP part results from \( 2[\vec{a} \quad \vec{b} \quad \vec{c}] = 2(\vec{a} \cdot (1/2 \hat{a})) = \pm 1 \).

Question. The two adjacent sides of a parallelogram are \( 2\hat{i} - 4\hat{j} - 5\hat{k} \) and \( 2\hat{i} + 2\hat{j} + 3\hat{k} \). Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram. 
Answer: Diagonals \( \vec{d_1} = 4\hat{i}-2\hat{j}-2\hat{k} \), \( \vec{d_2} = -6\hat{j}-8\hat{k} \). Unit vectors \( = \frac{2\hat{i}-\hat{j}-\hat{k}}{\sqrt{6}} \), \( \frac{-3\hat{j}-4\hat{k}}{5} \). Area \( = \frac{1}{2} |\vec{d_1} \times \vec{d_2}| = \sqrt{404} \) sq units.

Question. Find the angle between the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) if \( \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k} \) and \( \vec{b} = 3\hat{i} + \hat{j} - 2\hat{k} \), and hence find a vector perpendicular to both \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \). 
Answer: \( \vec{a}+\vec{b}=5\hat{i}+\hat{k} \), \( \vec{a}-\vec{b}=-\hat{i}-2\hat{j}+5\hat{k} \). \( (\vec{a}+\vec{b}) \cdot (\vec{a}-\vec{b}) = -5 + 0 + 5 = 0 \), so angle is \( 90^\circ \). Perpendicular vector \( = 2\hat{i} - 26\hat{j} - 10\hat{k} \).

Question. If \( \vec{a} = 2\hat{i} + \hat{j} - \hat{k} \), \( \vec{b} = 4\hat{i} - 7\hat{j} + \hat{k} \), find a vector \( \vec{c} \) such that \( \vec{a} \times \vec{c} = \vec{b} \) and \( \vec{a} \cdot \vec{c} = 6 \). 
Answer: \( \vec{c} = (3, 1, 1) \) or \( 3\hat{i} + \hat{j} + \hat{k} \)

Question. Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, –1, 4) and C(4, 5, –1). 
Answer: \( \vec{AB} = \hat{i}-3\hat{j}+\hat{k} \), \( \vec{AC} = 3\hat{i}+3\hat{j}-4\hat{k} \). Area \( = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} \sqrt{81+49+144} = \frac{\sqrt{274}}{2} \) sq. units.

Question. Find the value of \( x \) such that the four points with position vectors, \( A(3\hat{i} + 2\hat{j} + \hat{k}), B(4\hat{i} + x\hat{j} + 5\hat{k}), C(4\hat{i} + 2\hat{j} - 2\hat{k}) \) and \( D(6\hat{i} + 5\hat{j} - \hat{k}) \) are coplanar. 
Answer: \( x = 5 \)

Question. If \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \) and \( \vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram. 
Answer: Diagonals \( \vec{d_1} = 3\hat{i}+6\hat{j}-2\hat{k} \), \( \vec{d_2} = \hat{i}+2\hat{j}-8\hat{k} \). Unit vectors \( = \frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k}) \), \( \frac{1}{\sqrt{69}}(\hat{i}+2\hat{j}-8\hat{k}) \)

Question. Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, –1, 4) and C(4, 5, –1). 
Answer: Area \( = \frac{\sqrt{274}}{2} \) sq. units.

VBQs for Chapter 10 Vector Algebra Class 12 Mathematics

Students can now access the Value-Based Questions (VBQs) for Chapter 10 Vector Algebra as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.

Expert-Approved Chapter 10 Vector Algebra Value-Based Questions & Answers

Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.

Improve your Mathematics Scores

Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 10 Vector Algebra on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.

Where can I find 2025-26 CBSE Value Based Questions (VBQs) for Class 12 Mathematics Chapter Chapter 10 Vector Algebra?

The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 10 Vector Algebra is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.

Are answers provided for Class 12 Mathematics Chapter Chapter 10 Vector Algebra VBQs?

Yes, all our Mathematics VBQs for Chapter Chapter 10 Vector Algebra come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.

What is the importance of solving VBQs for Class 12 Chapter Chapter 10 Vector Algebra Mathematics?

VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 10 Vector Algebra these questions are as per the latest competency-based education goals.

How many marks are usually allocated to VBQs in the CBSE Mathematics paper?

In the current CBSE pattern for Class 12 Mathematics, Chapter 10 Vector Algebra Value Based or Case-Based questions typically carry 3 to 5 marks.

Can I download Mathematics Chapter Chapter 10 Vector Algebra VBQs in PDF for free?

Yes, you can download Class 12 Mathematics Chapter Chapter 10 Vector Algebra VBQs in a mobile-friendly PDF format for free.