Read and download the CBSE Class 12 Mathematics Vector Algebra VBQs Set A. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 10 Vector Algebra
For Class 12 students, Value Based Questions for Chapter 10 Vector Algebra help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 10 Vector Algebra Class 12 Mathematics VBQ Questions with Answers
Questions
Question. Find the scalar components of the vector \(\vec{AB}\) with initial point \(A(2, 1)\) and terminal point \(B(-5, 7)\).
Answer: Let \(\vec{AB} = (-5 - 2)\hat{i} + (7 - 1)\hat{j} = -7\hat{i} + 6\hat{j}\)
Hence, scalar components are \(-7, 6\).
[Note: If \(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}\) then \(x, y, z\) are called scalar components and \(x\hat{i}, y\hat{j}, z\hat{k}\) are called vector components.]
Question. Find a vector in the direction of vector \(5\hat{i} - \hat{j} + 2\hat{k}\) which has a magnitude of 8 units.
Answer: \(|\vec{a}| = \sqrt{(5)^2 + (-1)^2 + (2)^2} = \sqrt{25 + 1 + 4} = \sqrt{30}\)
The unit vector in the direction of vector \(\vec{a}\) is
\(\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{\sqrt{30}}(5\hat{i} - \hat{j} + 2\hat{k})\)
Now, vector in the direction of \(\vec{a}\) having magnitude 8 units is
\(8\hat{a} = \frac{8}{\sqrt{30}}(5\hat{i} - \hat{j} + 2\hat{k}) = \frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}\)
Question. Find the position vector of a point \(R\) which divides the line joining two points \(P\) and \(Q\) whose position vectors are \(\hat{i} + 2\hat{j} - \hat{k}\) and \(-\hat{i} + \hat{j} + \hat{k}\) respectively, in the ratio 2 : 1
(i) internally (ii) externally
Answer: (i) Let \(R\) be the point which divides the line joining the point \(P\) and \(Q\) internally in the ratio 2 : 1.
The position vector of point \(R = \frac{2(-\hat{i} + \hat{j} + \hat{k}) + 1(\hat{i} + 2\hat{j} - \hat{k})}{2 + 1} = -\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} + \frac{1}{3}\hat{k}\).
(ii) Let \(R\) be the point which divides the line joining the points \(P\) and \(Q\) externally in the ratio 2 : 1.
\(R = \frac{2(-\hat{i} + \hat{j} + \hat{k}) - 1(\hat{i} + 2\hat{j} - \hat{k})}{2 - 1} = \frac{-2\hat{i} + 2\hat{j} + 2\hat{k} - \hat{i} - 2\hat{j} + \hat{k}}{1} = -3\hat{i} + 3\hat{k}\)
Question. Find \(|\vec{x}|\), if for a unit vector \(\vec{a}, (\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12\).
Answer: Here \(|\vec{a}| = 1\) and \((\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12\)
Now, \((\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12 \Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12\)
\(\Rightarrow |\vec{x}|^2 + \vec{x} \cdot \vec{a} - \vec{x} \cdot \vec{a} - |\vec{a}|^2 = 12\)
\(\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 12 \Rightarrow |\vec{x}|^2 - (1)^2 = 12\)
\(\Rightarrow |\vec{x}|^2 = 12 + 1 \Rightarrow |\vec{x}|^2 = 13 \Rightarrow |\vec{x}| = \sqrt{13}\)
Question. Using vectors, prove that the points (2, -1, 3), (3, -5, 1) and (-1, 11, 9) are collinear.
Answer: Let \(A (2, -1, 3)\), \(B (3, -5, 1)\) and \(C (-1, 11, 9)\) are three points.
To show that \(A, B, C\) are collinear.
∴ \(\vec{AB} = (3 - 2)\hat{i} + (-5 + 1)\hat{j} + (1 - 3)\hat{k} = \hat{i} - 4\hat{j} - 2\hat{k} = \sqrt{1^2 + (-4)^2 + (-2)^2} = \sqrt{21}\)
\(\vec{BC} = (-1 - 3)\hat{i} + (11 + 5)\hat{j} + (9 - 1)\hat{k} = -4\hat{i} + 16\hat{j} + 8\hat{k} = \sqrt{(-4)^2 + (16)^2 + (8)^2} = 4\sqrt{21}\)
\(\vec{AC} = (-1 - 2)\hat{i} + (11 + 1)\hat{j} + (9 - 3)\hat{k} = -3\hat{i} + 12\hat{j} + 6\hat{k} = \sqrt{(-3)^2 + (12)^2 + (6)^2} = 3\sqrt{21}\)
∵ \(|\vec{AC}| + |\vec{AB}| = |\vec{BC}|\)
\(\Rightarrow A, B, C\) are collinear.
Question. Find \(\lambda\) and \(\mu\) if \((2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}\).
Answer: Here \((2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}\)
∴ \(\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = \vec{0}\)
\(\Rightarrow (6\mu - 27\lambda)\hat{i} - (2\mu - 27)\hat{j} + (2\lambda - 6)\hat{k} = \vec{0}\)
\(\Rightarrow 6\mu - 27\lambda = 0, \quad 2\mu - 27 = 0 \text{ and } 2\lambda - 6 = 0\)
\(\Rightarrow \mu = \frac{27}{2} \text{ and } \lambda = 3\)
Question. Find a unit vector perpendicular to each of the vectors \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\), where \(\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}\) and \(\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}\).
Answer: Given, \(\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}\) and \(\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}\)
∴ \(\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j} + 0\hat{k}\) and \(\vec{a} - \vec{b} = 2\hat{i} + 0\hat{j} + 4\hat{k}\)
Now, vector perpendicular to \((\vec{a} + \vec{b})\) and \((\vec{a} - \vec{b})\) is
\((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = (16 - 0)\hat{i} - (16 - 0)\hat{j} + (0 - 8)\hat{k} = 16\hat{i} - 16\hat{j} - 8\hat{k}\)
∴ Unit vector perpendicular to \((\vec{a} + \vec{b})\) and \((\vec{a} - \vec{b})\) is given by
\(\pm \frac{(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})}{|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})|} = \pm \frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{\sqrt{16^2 + (-16)^2 + (-8)^2}} = \pm \frac{8(2\hat{i} - 2\hat{j} - \hat{k})}{8\sqrt{2^2 + 2^2 + 1^2}}\)
\(= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{\sqrt{9}} = \pm \left( \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k} \right) = \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}\)
Question. The two adjacent sides of a parallelogram are \(2\hat{i} - 4\hat{j} + 5\hat{k}\) and \(\hat{i} - 2\hat{j} - 3\hat{k}\). Find the unit vector parallel to one of its diagonals. Also, find its area.
Answer: Let two adjacent sides \(\vec{AB}\) and \(\vec{AC}\) of a parallelogram \(ABDC\) be represented by \(2\hat{i} - 4\hat{j} + 5\hat{k}\) and \(\hat{i} - 2\hat{j} - 3\hat{k}\) in magnitude and direction respectively.
i.e., \(\vec{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k}\) and \(\vec{AC} = \hat{i} - 2\hat{j} - 3\hat{k}\)
By parallelogram law of addition
\(\vec{AD} = \vec{AB} + \vec{BD} \Rightarrow \vec{AD} = \vec{AB} + \vec{AC}\) [\(\because \vec{BD} = \vec{AC}\)]
\(\vec{AD} = (2\hat{i} - 4\hat{j} + 5\hat{k}) + (\hat{i} - 2\hat{j} - 3\hat{k}) = 3\hat{i} - 6\hat{j} + 2\hat{k}\)
\(|\vec{AD}| = |3\hat{i} - 6\hat{j} + 2\hat{k}| = \sqrt{3^2 + (-6)^2 + 2^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7\)
Therefore, unit vector parallel to diagonal \(\vec{AD} = \frac{1}{|\vec{AD}|}\vec{AD} = \frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k}) = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}\)
Again, \(\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix} = (12 + 10)\hat{i} - (-6 - 5)\hat{j} + (-4 + 4)\hat{k} = 22\hat{i} + 11\hat{j}\)
\(|\vec{AB} \times \vec{AC}| = |22\hat{i} + 11\hat{j}| = \sqrt{22^2 + 11^2} = \sqrt{484 + 121} = \sqrt{605} = 11\sqrt{5}\)
Now the area of parallelogram \(ABDC\) whose adjacent sides are \(\vec{AB}\) and \(\vec{AC}\) is \(= |\vec{AB} \times \vec{AC}| = 11\sqrt{5}\) sq units.
Question. Let \(\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}\) and \(\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}\). Find a vector \(\vec{d}\) which is perpendicular to both \(\vec{a}\) and \(\vec{b}\) and \(\vec{c} \cdot \vec{d} = 15\).
Answer: The vector \(\vec{d}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), so we have \(\vec{d} = \lambda(\vec{a} \times \vec{b})\).
Now \(\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7 \end{vmatrix} = (28 + 4)\hat{i} - (7 - 6)\hat{j} + (-2 - 12)\hat{k} = 32\hat{i} - \hat{j} - 14\hat{k}\)
So, \(\vec{d} = 32\lambda\hat{i} - \lambda\hat{j} - 14\lambda\hat{k}\)
We have \(\vec{c} \cdot \vec{d} = 15 \Rightarrow (2\hat{i} - \hat{j} + 4\hat{k}) \cdot (32\lambda\hat{i} - \lambda\hat{j} - 14\lambda\hat{k}) = 15\)
\(\Rightarrow 64\lambda + \lambda - 56\lambda = 15 \Rightarrow 9\lambda = 15 \Rightarrow \lambda = \frac{15}{9} = \frac{5}{3}\)
∴ Required vector \(\vec{d} = \frac{5}{3}(32\hat{i} - \hat{j} - 14\hat{k}) = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k}\).
Question. The scalar product of the vector \(\hat{i} + \hat{j} + \hat{k}\) with the unit vector along the sum of vectors \(2\hat{i} + 4\hat{j} - 5\hat{k}\) and \(\lambda\hat{i} + 2\hat{j} + 3\hat{k}\) is equal to one. Find the value of \(\lambda\).
Answer: Let sum of vectors \(2\hat{i} + 4\hat{j} - 5\hat{k}\) and \(\lambda\hat{i} + 2\hat{j} + 3\hat{k}\) equal to \(\vec{a}\) then \(\vec{a} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}\)
The unit vector in the direction of \(\vec{a} = \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + \lambda)^2 + 36 + 4}}\)
Here, \((\hat{i} + \hat{j} + \hat{k}) \cdot \hat{a} = 1 \Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + \lambda)^2 + 40}} = 1\)
\(\Rightarrow \frac{(2 + \lambda) + 6 - 2}{\sqrt{(2 + \lambda)^2 + 40}} = 1 \Rightarrow (\lambda + 6)^2 = (2 + \lambda)^2 + 40\)
\(\Rightarrow \lambda^2 + 36 + 12\lambda = 4 + \lambda^2 + 4\lambda + 40 \Rightarrow 8\lambda = 8 \Rightarrow \lambda = 1\).
Question. If with reference to the right handed system of mutually perpendicular unit vectors \(\hat{i}, \hat{j}\) and \(\hat{k}\), \(\vec{\alpha} = 3\hat{i} - \hat{j}\), \(\vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}\), then express \(\vec{\beta}\) in the form \(\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2\), where \(\vec{\beta}_1\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) is perpendicular to \(\vec{\alpha}\).
Answer: Let \(\vec{\beta}_1 = \lambda\vec{\alpha}\), \(\lambda\) is a scalar, i.e., \(\vec{\beta}_1 = 3\lambda\hat{i} - \lambda\hat{j}\)
and \(\vec{\beta}_2 = \vec{\beta} - \vec{\beta}_1 = (2 - 3\lambda)\hat{i} + (1 + \lambda)\hat{j} - 3\hat{k}\)
Now, since \(\vec{\beta}_2\) is to be perpendicular to \(\vec{\alpha}\), we should have \(\vec{\alpha} \cdot \vec{\beta}_2 = 0\) i.e.,
\(3(2 - 3\lambda) - (1 + \lambda) = 0 \Rightarrow 6 - 9\lambda - 1 - \lambda = 0 \Rightarrow 10\lambda = 5 \Rightarrow \lambda = \frac{1}{2}\)
Therefore, \(\vec{\beta}_1 = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\) and \(\vec{\beta}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}\)
Multiple Choice Questions
Question. Choose and write the correct option in the following questions.
Question. The vectors \(3\hat{i} - \hat{j} + 2\hat{k}, 2\hat{i} + \hat{j} + 3\hat{k}\) and \(\hat{i} + \lambda\hat{j} - \hat{k}\) are coplanar if
(a) -2
(b) 0
(c) 2
(d) Any real number
Answer: (a)
Question. The area of a triangle formed by vertices \(O, A, B\) where \(\vec{OA} = \hat{i} + 2\hat{j} + 3\hat{k}\) and \(\vec{OB} = -3\hat{i} - 2\hat{j} + \hat{k}\) is
(a) \(3\sqrt{5}\) sq. units
(b) \(5\sqrt{5}\) sq. units
(c) \(6\sqrt{5}\) sq. units
(d) 4 sq. units
Answer: (a)
Question. The value of \(\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})\) is
(a) 0
(b) -1
(c) 1
(d) 3
Answer: (c)
Question. If \(\theta\) is the angle between any two vectors \(\vec{a}\) and \(\vec{b}\) then \(|\vec{a} - \vec{b}| = |\vec{a} + \vec{b}|\), where \(\theta\) is equal to
(a) 0
(b) \(\frac{\pi}{4}\)
(c) \(\frac{\pi}{2}\)
(d) \(\pi\)
Answer: (c)
Question. The vector of the direction of the vector \(\hat{i} - 2\hat{j} + 2\hat{k}\) that has magnitude 9 is
(a) \(\hat{i} - 2\hat{j} + 2\hat{k}\)
(b) \(\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}\)
(c) \(3(\hat{i} - 2\hat{j} + 2\hat{k})\)
(d) \(9(\hat{i} - 2\hat{j} + 2\hat{k})\)
Answer: (c)
Question. The position vector of the point which divides the join of point \( 2\vec{a}-3\vec{b} \) and \( \vec{a}+\vec{b} \) in the ratio 3 : 1 is
(a) \( \frac{3\vec{a}-2\vec{b}}{2} \)
(b) \( \frac{7\vec{a}-8\vec{b}}{4} \)
(c) \( \frac{3\vec{a}}{4} \)
(d) \( \frac{5\vec{a}}{4} \)
Answer: (d)
Question. The vector having initial and terminal points as (2, 5, 0) and (–3, 7, 4) respectively is
(a) \( -\hat{i} + 12\hat{j} + 4\hat{k} \)
(b) \( 5\hat{i} + 2\hat{j} - 4\hat{k} \)
(c) \( -5\hat{i} + 2\hat{j} + 4\hat{k} \)
(d) \( \hat{i} + \hat{j} + \hat{k} \)
Answer: (c)
Question. The angle between two vectors \( \vec{a} \) and \( \vec{b} \) with magnitudes \( \sqrt{3} \) and 4 respectively and \( \vec{a} \cdot \vec{b} = 2\sqrt{3} \) is
(a) \( \frac{\pi}{6} \)
(b) \( \frac{\pi}{3} \)
(c) \( \frac{\pi}{2} \)
(d) \( \frac{5\pi}{2} \)
Answer: (b)
Question. Find the value of \( \lambda \) such that the vectors \( \vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k} \) and \( \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \) are orthogonal
(a) 0
(b) 1
(c) \( \frac{3}{2} \)
(d) \( -\frac{5}{2} \)
Answer: (d)
Question. The value of \( \lambda \) for which the vectors \( 3\hat{i} - 6\hat{j} + \hat{k} \) and \( 2\hat{i} - 4\hat{j} + \lambda\hat{k} \) are parallel is
(a) \( \frac{2}{3} \)
(b) \( \frac{3}{2} \)
(c) \( \frac{5}{2} \)
(d) \( \frac{2}{5} \)
Answer: (a)
Question. The vector from origin to the points A and B are \( \vec{a} = 2\hat{i} - 3\hat{j} + 2\hat{k} \) and \( \vec{b} = 2\hat{i} + 3\hat{j} + \hat{k} \), respectively then the area of triangle OAB is [NCERT Exemplar]
(a) 340
(b) \( \sqrt{25} \)
(c) \( \sqrt{229} \)
(d) \( \frac{1}{2}\sqrt{229} \)
Answer: (d)
Question. For any vector \( \vec{a} \), the value of \( (\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2 \) is equal to
(a) \( \vec{a}^2 \)
(b) \( 3\vec{a}^2 \)
(c) \( 4\vec{a}^2 \)
(d) \( 2\vec{a}^2 \)
Answer: (d)
Question. If \( |\vec{a}| = 10, |\vec{b}| = 2 \) and \( \vec{a} \cdot \vec{b} = 12 \), then value of \( |\vec{a} \times \vec{b}| \) is
(a) 5
(b) 10
(c) 14
(d) 16
Answer: (d)
Question. The vector \( \lambda\hat{i} + \hat{j} + 2\hat{k} \), \( \hat{i} + \lambda\hat{j} - \hat{k} \) and \( 2\hat{i} - \hat{j} + \lambda\hat{k} \) are coplanar if
(a) \( \lambda = -2 \)
(b) \( \lambda = 0 \)
(c) \( \lambda = 1 \)
(d) \( \lambda = -1 \)
Answer: (a)
Question. If \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors such that \( \vec{a} + \vec{b} + \vec{c} = 0 \), then the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is
(a) 1
(b) 3
(c) \( -\frac{3}{2} \)
(d) None of these
Answer: (c)
Question. Projection vector of \( \vec{a} \) on \( \vec{b} \) is
(a) \( \left( \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b} \)
(b) \( \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \)
(c) \( \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \)
(d) \( \left( \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \hat{b} \)
Answer: (a)
Question. If \( \vec{a}, \vec{b} \) and \( \vec{c} \) are three vectors such that \( \vec{a} + \vec{b} + \vec{c} = 0 \) and \( |\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5 \), then value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is
(a) 0
(b) 1
(c) – 19
(d) 38
Answer: (c)
Question. If \( |\vec{a}| = 4 \) and \( -3 \le \lambda \le 2 \), then the range of \( |\lambda \vec{a}| \) is
(a) [0, 8]
(b) [– 12, 8]
(c) [0, 12]
(d) [8, 12]
Answer: (c)
Question. The number of vectors of unit length perpendicular to the vectors \( \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \) and \( \vec{b} = \hat{j} + \hat{k} \) is
(a) one
(b) two
(c) three
(d) infinite
Answer: (b)
Question. The position vector of the point which divides the join of points with position vectors \( \vec{a} + \vec{b} \) and \( 2\vec{a} - \vec{b} \) in the ratio 1 : 2 is
(a) \( \frac{3\vec{a} + 2\vec{b}}{3} \)
(b) \( \vec{a} \)
(c) \( \frac{5\vec{a} - \vec{b}}{3} \)
(d) \( \frac{4\vec{a} + \vec{b}}{3} \)
Answer: (d)
Fill in the Blanks
Question. The projection of the vector \( \hat{i} - \hat{j} \) on the vector \( \hat{i} + \hat{j} \) is _____________ .
Answer: 0
Solution: Let \( \vec{a} = \hat{i} - \hat{j} \) and \( \vec{b} = \hat{i} + \hat{j} \)
\( \therefore \) Projection of \( \vec{a} \) on \( \vec{b} = \vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} = (\hat{i} - \hat{j}) \cdot \frac{(\hat{i} + \hat{j})}{\sqrt{(1)^2 + (1)^2}} = \frac{1 - 1}{\sqrt{2}} = \frac{0}{\sqrt{2}} = 0 \)
Question. If \( |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144 \) and \( |\vec{a}| = 4 \), then \( |\vec{b}| \) is equal to _____________ .
Answer: 3
Solution: We have, \( |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144 \)
\( \Rightarrow (|\vec{a}| |\vec{b}| \sin \theta)^2 + (|\vec{a}| |\vec{b}| \cos \theta)^2 = 144 \)
\( \Rightarrow (4 |\vec{b}| \sin \theta)^2 + (4 |\vec{b}| \cos \theta)^2 = 144 \)
\( \Rightarrow 16 |\vec{b}|^2 (\sin^2 \theta + \cos^2 \theta) = 144 \)
\( \Rightarrow 16 |\vec{b}|^2 = 144 \Rightarrow |\vec{b}|^2 = 9 \Rightarrow |\vec{b}| = 3 \)
Question. If \( \vec{a} \) is a non-zero vector, then \( (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k} \) equals _____________ .
Answer: \( \vec{a} \)
Question. If \( |\vec{a}| = 1, \text{ and } \vec{a} \times \hat{i} = \hat{j} \), then angle between \( \vec{a} \) and \( \hat{i} \) is _____________ .
Answer: \( \frac{\pi}{2} \)
Question. The area of the triangle whose adjacent sides are \( \vec{a} = \hat{i} + 4\hat{j} - \hat{k} \) and \( \vec{b} = \hat{i} + \hat{j} + 2\hat{k} \) is _____________ sq. units.
Answer: \( \frac{3}{2}\sqrt{11} \) Sq. units.
Solution: We have, \( \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & -1 \\ 1 & 1 & 2 \end{vmatrix} = 9\hat{i} - 3\hat{j} - 3\hat{k} \)
\( \therefore |\vec{a} \times \vec{b}| = \sqrt{(9)^2 + (-3)^2 + (-3)^2} = \sqrt{81 + 9 + 9} = \sqrt{99} = 3\sqrt{11} \)
\( \therefore \) Area of triangle \( = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{3}{2}\sqrt{11} \) Sq. units.
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 10 Vector Algebra Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 10 Vector Algebra as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 10 Vector Algebra Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 10 Vector Algebra on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 10 Vector Algebra is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 10 Vector Algebra come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 10 Vector Algebra these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 10 Vector Algebra Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 10 Vector Algebra VBQs in a mobile-friendly PDF format for free.