Read and download the CBSE Class 12 Mathematics Inverse Trigonometric Functions VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 2 Inverse Trigonometric Functions
For Class 12 students, Value Based Questions for Chapter 2 Inverse Trigonometric Functions help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 2 Inverse Trigonometric Functions Class 12 Mathematics VBQ Questions with Answers
Question. Prove that if \( \frac{1}{2} \le x \le 1 \) then \( \cos^{-1} x + \cos^{-1} \left[ \frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right] = \frac{\pi}{3} \).
Answer: Let \( \cos^{-1} x = \theta \Rightarrow x = \cos \theta \).
Now, \( \cos^{-1} x + \cos^{-1} \left[ \frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right] = \theta + \cos^{-1} \left[ \frac{1}{2} \cdot \cos \theta + \frac{\sqrt{3}}{2} \sqrt{1 - \cos^2 \theta} \right] \)
\( = \theta + \cos^{-1} \left[ \cos \frac{\pi}{3} \cdot \cos \theta + \sin \frac{\pi}{3} \cdot \sin \theta \right] \)
\( = \theta + \cos^{-1} \left\{ \cos \left( \frac{\pi}{3} - \theta \right) \right\} \)
Since \( \frac{1}{2} \le x \le 1 \Rightarrow \cos \frac{\pi}{3} \le \cos \theta \le \cos 0 \Rightarrow 0 \le \theta \le \frac{\pi}{3} \)
\( \Rightarrow -\frac{\pi}{3} \le -\theta \le 0 \Rightarrow 0 \le \frac{\pi}{3} - \theta \le \frac{\pi}{3} \)
\( \therefore \theta + \frac{\pi}{3} - \theta = \frac{\pi}{3} \).
Question. If \( \tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}, xy < 1 \), then write the value of \( x + y + xy \).
Answer: Given \( \tan^{-1} x + \tan^{-1} y = \frac{\pi}{4} \Rightarrow \tan^{-1} \left[ \frac{x + y}{1 - xy} \right] = \frac{\pi}{4} \)
\( \Rightarrow \frac{x + y}{1 - xy} = \tan \frac{\pi}{4} = 1 \)
\( \Rightarrow x + y = 1 - xy \)
\( \Rightarrow x + y + xy = 1 \).
Short Answer Questions
Question. Show that: \( \tan \left( \frac{1}{2} \sin^{-1} \frac{3}{4} \right) = \frac{4 - \sqrt{7}}{3} \).
Answer: Let \( \sin^{-1} \frac{3}{4} = \theta \Rightarrow \sin \theta = \frac{3}{4} \) where \( \theta \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)
Using \( \sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} \)
\( \Rightarrow \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{3}{4} \)
\( \Rightarrow 8 \tan \frac{\theta}{2} = 3 + 3 \tan^2 \frac{\theta}{2} \Rightarrow 3 \tan^2 \frac{\theta}{2} - 8 \tan \frac{\theta}{2} + 3 = 0 \)
Using quadratic formula for \( \tan \frac{\theta}{2} \):
\( \tan \frac{\theta}{2} = \frac{8 \pm \sqrt{64 - 36}}{6} = \frac{8 \pm \sqrt{28}}{6} = \frac{8 \pm 2\sqrt{7}}{6} = \frac{4 \pm \sqrt{7}}{3} \)
As \( \sin \theta = \frac{3}{4} \), \( \theta \) is in the first quadrant, so \( \tan \frac{\theta}{2} = \frac{4 - \sqrt{7}}{3} \).
\( \therefore \tan \left( \frac{1}{2} \sin^{-1} \frac{3}{4} \right) = \frac{4 - \sqrt{7}}{3} \).
Question. Evaluate: \( \tan \left\{ 2 \tan^{-1} \left( \frac{1}{5} \right) + \frac{\pi}{4} \right\} \).
Answer: \( \tan \left\{ 2 \tan^{-1} \left( \frac{1}{5} \right) + \frac{\pi}{4} \right\} = \tan \left\{ \tan^{-1} \left[ \frac{2 \times \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right] + \tan^{-1} 1 \right\} \)
\( = \tan \left\{ \tan^{-1} \left( \frac{2/5}{24/25} \right) + \tan^{-1} 1 \right\} = \tan \left\{ \tan^{-1} \frac{5}{12} + \tan^{-1} 1 \right\} \)
\( = \tan \left\{ \tan^{-1} \left[ \frac{\frac{5}{12} + 1}{1 - \frac{5}{12} \times 1} \right] \right\} = \frac{17/12}{7/12} = \frac{17}{7} \).
Question. Prove that: \( \cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3 \).
Answer: LHS \( = \cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 \)
\( = \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8} + \tan^{-1} \frac{1}{18} \)
\( = \tan^{-1} \left[ \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{8}} \right] + \tan^{-1} \frac{1}{18} \)
\( = \tan^{-1} \frac{15}{55} + \tan^{-1} \frac{1}{18} = \tan^{-1} \frac{3}{11} + \tan^{-1} \frac{1}{18} \)
\( = \tan^{-1} \left[ \frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \cdot \frac{1}{18}} \right] = \tan^{-1} \left[ \frac{\frac{54 + 11}{198}}{\frac{198 - 3}{198}} \right] = \tan^{-1} \frac{65}{195} \)
\( = \tan^{-1} \frac{1}{3} = \cot^{-1} 3 = \text{RHS} \).
Question. Prove that: \( \sin^{-1} \left( \frac{63}{65} \right) = \sin^{-1} \left( \frac{5}{13} \right) + \cos^{-1} \left( \frac{3}{5} \right) \).
Answer: Let \( \sin^{-1} \frac{5}{13} = \alpha \Rightarrow \sin \alpha = \frac{5}{13}, \cos \alpha = \frac{12}{13} \)
Let \( \cos^{-1} \frac{3}{5} = \beta \Rightarrow \cos \beta = \frac{3}{5}, \sin \beta = \frac{4}{5} \)
Now, \( \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \)
\( = \frac{5}{13} \cdot \frac{3}{5} + \frac{12}{13} \cdot \frac{4}{5} = \frac{15}{65} + \frac{48}{65} = \frac{63}{65} \)
\( \Rightarrow \alpha + \beta = \sin^{-1} \frac{63}{65} \)
\( \Rightarrow \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} = \sin^{-1} \frac{63}{65} \).
Question. Prove the following: \( \cos[\tan^{-1}\{\sin(\cot^{-1} x)\}] = \sqrt{\frac{1 + x^2}{2 + x^2}} \).
Answer: Let \( \cot^{-1} x = \theta \Rightarrow x = \cot \theta \Rightarrow \sin \theta = \frac{1}{\csc \theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}} = \frac{1}{\sqrt{1 + x^2}} \)
The expression becomes \( \cos[\tan^{-1} \{ \frac{1}{\sqrt{1 + x^2}} \} ] \)
Let \( \tan^{-1} \frac{1}{\sqrt{1 + x^2}} = \phi \Rightarrow \tan \phi = \frac{1}{\sqrt{1 + x^2}} \)
We know \( \cos \phi = \frac{1}{\sec \phi} = \frac{1}{\sqrt{1 + \tan^2 \phi}} \)
\( = \frac{1}{\sqrt{1 + \left( \frac{1}{\sqrt{1 + x^2}} \right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{1 + x^2}}} = \frac{1}{\sqrt{\frac{1 + x^2 + 1}{1 + x^2}}} = \sqrt{\frac{1 + x^2}{2 + x^2}} = \text{RHS} \).
Question. Solve for \( x \): \( \sin^{-1}(1 - x) - 2 \sin^{-1} x = \frac{\pi}{2} \).
Answer: \( \sin^{-1}(1 - x) = \frac{\pi}{2} + 2 \sin^{-1} x \)
\( \Rightarrow (1 - x) = \sin \left( \frac{\pi}{2} + 2 \sin^{-1} x \right) = \cos(2 \sin^{-1} x) \)
\( \Rightarrow 1 - x = 1 - 2 \sin^2 (\sin^{-1} x) \)
\( \Rightarrow 1 - x = 1 - 2x^2 \Rightarrow 2x^2 - x = 0 \)
\( \Rightarrow x(2x - 1) = 0 \Rightarrow x = 0 \) or \( x = \frac{1}{2} \)
But \( x = \frac{1}{2} \) does not satisfy the given equation.
\( \therefore x = 0 \) is the required solution.
Question. Prove that: \( 2 \tan^{-1} \left( \frac{1}{5} \right) + \sec^{-1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{-1} \left( \frac{1}{8} \right) = \frac{\pi}{4} \).
Answer: LHS \( = 2 \{ \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{8} \} + \sec^{-1} \frac{5\sqrt{2}}{7} \)
\( = 2 \tan^{-1} \left[ \frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} \cdot \frac{1}{8}} \right] + \tan^{-1} \sqrt{ \left( \frac{5\sqrt{2}}{7} \right)^2 - 1} \)
\( = 2 \tan^{-1} \frac{13/40}{39/40} + \tan^{-1} \sqrt{\frac{50}{49} - 1} \)
\( = 2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} \)
\( = \tan^{-1} \left[ \frac{2 \times \frac{1}{3}}{1 - (1/3)^2} \right] + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{2/3}{8/9} + \tan^{-1} \frac{1}{7} \)
\( = \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{1}{7} = \tan^{-1} \left[ \frac{3/4 + 1/7}{1 - \frac{3}{4} \cdot \frac{1}{7}} \right] = \tan^{-1} \frac{25/28}{25/28} = \tan^{-1} 1 = \frac{\pi}{4} = \text{RHS} \).
Question. If \( y = \cot^{-1}(\sqrt{\cos x}) - \tan^{-1}(\sqrt{\cos x}) \), then prove that \( \sin y = \tan^2 \left( \frac{x}{2} \right) \).
Answer: Given \( y = \cot^{-1}(\sqrt{\cos x}) - \tan^{-1}(\sqrt{\cos x}) \)
\( \because \tan^{-1} A + \cot^{-1} A = \frac{\pi}{2} \Rightarrow \cot^{-1} A = \frac{\pi}{2} - \tan^{-1} A \)
\( \therefore y = \frac{\pi}{2} - 2 \tan^{-1} (\sqrt{\cos x}) \)
\( \Rightarrow 2 \tan^{-1} (\sqrt{\cos x}) = \frac{\pi}{2} - y \)
\( \Rightarrow \cos^{-1} \left[ \frac{1 - (\sqrt{\cos x})^2}{1 + (\sqrt{\cos x})^2} \right] = \frac{\pi}{2} - y \)
\( \Rightarrow \frac{1 - \cos x}{1 + \cos x} = \cos \left( \frac{\pi}{2} - y \right) = \sin y \)
\( \Rightarrow \sin y = \frac{2 \sin^2(x/2)}{2 \cos^2(x/2)} = \tan^2 \frac{x}{2} \).
Question. Prove that: \( \sin^{-1} \left( \frac{8}{17} \right) + \cos^{-1} \left( \frac{4}{5} \right) = \cot^{-1} \left( \frac{36}{77} \right) \).
Answer: Let \( \sin^{-1} \frac{8}{17} = \alpha \Rightarrow \sin \alpha = \frac{8}{17}, \cos \alpha = \frac{15}{17}, \cot \alpha = \frac{15}{8} \)
Let \( \cos^{-1} \frac{4}{5} = \beta \Rightarrow \cos \beta = \frac{4}{5}, \sin \beta = \frac{3}{5}, \cot \beta = \frac{4}{3} \)
Now \( \cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta} = \frac{\frac{15}{8} \cdot \frac{4}{3} - 1}{\frac{15}{8} + \frac{4}{3}} = \frac{\frac{60 - 24}{24}}{\frac{45 + 32}{24}} = \frac{36}{77} \)
\( \Rightarrow \alpha + \beta = \cot^{-1} \frac{36}{77} \)
\( \Rightarrow \sin^{-1} \frac{8}{17} + \cos^{-1} \frac{4}{5} = \cot^{-1} \frac{36}{77} \).
Question. Prove that: \( \cos^{-1} \left( \frac{4}{5} \right) + \cos^{-1} \left( \frac{12}{13} \right) = \cos^{-1} \left( \frac{33}{65} \right) \).
Answer: Let \( \cos^{-1} \frac{4}{5} = x, \cos^{-1} \frac{12}{13} = y \)
\( \Rightarrow \cos x = 4/5, \cos y = 12/13, \sin x = 3/5, \sin y = 5/13 \)
Now, \( \cos(x + y) = \cos x \cos y - \sin x \sin y \)
\( = \frac{4}{5} \cdot \frac{12}{13} - \frac{3}{5} \cdot \frac{5}{13} = \frac{48 - 15}{65} = \frac{33}{65} \)
\( \Rightarrow x + y = \cos^{-1} \frac{33}{65} \).
Putting the values of \( x \) and \( y \), we get
\( \cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65} \).
Question. Prove that: \( \tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{a}{b} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \cos^{-1} \frac{a}{b} \right) = \frac{2b}{a} \).
Answer: Let \( \frac{1}{2} \cos^{-1} \frac{a}{b} = x \Rightarrow \cos 2x = \frac{a}{b} \).
LHS \( = \tan \left( \frac{\pi}{4} + x \right) + \tan \left( \frac{\pi}{4} - x \right) = \frac{1 + \tan x}{1 - \tan x} + \frac{1 - \tan x}{1 + \tan x} \)
\( = \frac{(1 + \tan x)^2 + (1 - \tan x)^2}{1 - \tan^2 x} = \frac{1 + \tan^2 x + 2 \tan x + 1 + \tan^2 x - 2 \tan x}{1 - \tan^2 x} \)
\( = \frac{2(1 + \tan^2 x)}{1 - \tan^2 x} = \frac{2}{\frac{1 - \tan^2 x}{1 + \tan^2 x}} = \frac{2}{\cos 2x} \)
\( = \frac{2}{a/b} = \frac{2b}{a} = \text{RHS} \).
Question. Find the value of \( \sin\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \).
Answer: Let \( \cos^{-1} \frac{4}{5} = \alpha \Rightarrow \cos \alpha = 4/5, \sin \alpha = 3/5 \)
and \( \tan^{-1} \frac{2}{3} = \beta \Rightarrow \tan \beta = 2/3 \Rightarrow \sin \beta = \frac{2}{\sqrt{13}}, \cos \beta = \frac{3}{\sqrt{13}} \)
\( \therefore \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \)
\( = \frac{3}{5} \cdot \frac{3}{\sqrt{13}} + \frac{4}{5} \cdot \frac{2}{\sqrt{13}} = \frac{9}{5\sqrt{13}} + \frac{8}{5\sqrt{13}} = \frac{17}{5\sqrt{13}} \).
Question. If \( \cos^{-1} \frac{x}{a} + \cos^{-1} \frac{y}{b} = \alpha \) prove that \( \frac{x^2}{a^2} - 2\frac{xy}{ab} \cos \alpha + \frac{y^2}{b^2} = \sin^2 \alpha \). [
Answer: Given, \( \cos^{-1} \frac{x}{a} + \cos^{-1} \frac{y}{b} = \alpha \)
\( \Rightarrow \cos^{-1} \left[ \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}} \sqrt{1 - \frac{y^2}{b^2}} \right] = \alpha \) [\( \because \cos^{-1} x + \cos^{-1} y = \cos^{-1} \{xy - \sqrt{1-x^2}\sqrt{1-y^2}\} \)]
\( \Rightarrow \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}} \sqrt{1 - \frac{y^2}{b^2}} = \cos \alpha \)
\( \Rightarrow \frac{xy}{ab} - \cos \alpha = \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2 y^2}{a^2 b^2}} \)
Squaring both sides,
\( \Rightarrow \left( \frac{xy}{ab} - \cos \alpha \right)^2 = 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2 y^2}{a^2 b^2} \)
\( \Rightarrow \frac{x^2 y^2}{a^2 b^2} + \cos^2 \alpha - 2 \frac{xy}{ab} \cos \alpha = 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2 y^2}{a^2 b^2} \)
\( \Rightarrow \frac{x^2}{a^2} - 2 \frac{xy}{ab} \cos \alpha + \frac{y^2}{b^2} = 1 - \cos^2 \alpha \)
\( \Rightarrow \frac{x^2}{a^2} - 2 \frac{xy}{ab} \cos \alpha + \frac{y^2}{b^2} = \sin^2 \alpha \). Hence proved.
Question. Prove that: \( \tan^{-1} \left( \frac{\cos x}{1 + \sin x} \right) = \frac{\pi}{4} - \frac{x}{2}, x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)
Answer: \( \tan^{-1} \left( \frac{\cos x}{1 + \sin x} \right) = \tan^{-1} \left[ \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2 \cos \frac{x}{2} \sin \frac{x}{2}} \right] \)
\( = \tan^{-1} \left[ \frac{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right) \left( \cos \frac{x}{2} + \sin \frac{x}{2} \right)}{\left( \cos \frac{x}{2} + \sin \frac{x}{2} \right)^2} \right] \)
\( = \tan^{-1} \left[ \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right] \)
\( = \tan^{-1} \left[ \frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right] \) [Divide each term by \( \cos \frac{x}{2} \)]
\( = \tan^{-1} \left[ \frac{\tan \frac{\pi}{4} - \tan \frac{x}{2}}{1 + \tan \frac{\pi}{4} \tan \frac{x}{2}} \right] \)
\( = \tan^{-1} \left[ \tan \left( \frac{\pi}{4} - \frac{x}{2} \right) \right] = \frac{\pi}{4} - \frac{x}{2} \)
[\( \because x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \Rightarrow -\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{4} \Rightarrow \frac{\pi}{4} - \frac{x}{2} \in (0, \pi/2) \subseteq (-\pi/2, \pi/2) \)]
Question. Solve: \( \tan^{-1} (x - 1) + \tan^{-1} x + \tan^{-1} (x + 1) = \tan^{-1} 3x \)
Answer: Given: \( \tan^{-1} (x - 1) + \tan^{-1} x + \tan^{-1} (x + 1) = \tan^{-1} 3x \)
\( \Rightarrow \tan^{-1} (x - 1) + \tan^{-1} (x + 1) = \tan^{-1} 3x - \tan^{-1} x \)
\( \Rightarrow \tan^{-1} \left[ \frac{(x - 1) + (x + 1)}{1 - (x - 1)(x + 1)} \right] = \tan^{-1} \left[ \frac{3x - x}{1 + 3x^2} \right] \)
\( \Rightarrow \tan^{-1} \left( \frac{2x}{1 - (x^2 - 1)} \right) = \tan^{-1} \left( \frac{2x}{1 + 3x^2} \right) \)
\( \Rightarrow \frac{2x}{2 - x^2} = \frac{2x}{1 + 3x^2} \)
Either \( x = 0 \) or \( 2 - x^2 = 1 + 3x^2 \Rightarrow 4x^2 = 1 \)
\( \Rightarrow x^2 = \frac{1}{4} \therefore x = \pm \frac{1}{2} \)
\( \therefore x = 0, \pm \frac{1}{2} \)
Question. If \( 0 < x < 1 \), then solve the following for \( x \): \( \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1} \left( \frac{8}{31} \right) \)
Answer: Given \( \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1} \left( \frac{8}{31} \right) \) [\( \because 0 < x < 1 \Rightarrow (x + 1)(x - 1) < 1 \)]
\( \Rightarrow \tan^{-1} \left[ \frac{x + 1 + x - 1}{1 - (x + 1)(x - 1)} \right] = \tan^{-1} \frac{8}{31} \)
\( \Rightarrow \tan^{-1} \left( \frac{2x}{1 - (x^2 - 1)} \right) = \tan^{-1} \frac{8}{31} \Rightarrow \frac{2x}{2 - x^2} = \frac{8}{31} \)
\( \Rightarrow 62x = 16 - 8x^2 \Rightarrow 8x^2 + 62x - 16 = 0 \)
\( \Rightarrow 4x^2 + 31x - 8 = 0 \Rightarrow 4x^2 + 32x - x - 8 = 0 \)
\( \Rightarrow 4x(x + 8) - 1(x + 8) = 0 \Rightarrow (x + 8)(4x - 1) = 0 \)
\( \Rightarrow x = -8 \) or \( x = \frac{1}{4} \)
[\( x = -8 \) is not acceptable as \( 0 < x < 1 \)]
\( \therefore x = \frac{1}{4} \)
Question. Solve: \( \cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4}) \)
Answer: Given \( \cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4}) \)
\( \Rightarrow \cos(\tan^{-1} x) = \cos \left( \frac{\pi}{2} - \cot^{-1} \frac{3}{4} \right) \)
\( \Rightarrow \tan^{-1} x = \frac{\pi}{2} - \cot^{-1} \frac{3}{4} \)
[\( \because \sin \theta = \cos(\pi/2 - \theta) \) and \( \tan^{-1} x + \cot^{-1} x = \pi/2 \)]
\( \Rightarrow \tan^{-1} x = \tan^{-1} \frac{3}{4} \)
\( \Rightarrow x = \frac{3}{4} \)
Question. Prove that: \( \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{5} \right) + \tan^{-1} \left( \frac{1}{8} \right) = \frac{\pi}{4} \)
Answer: LHS \( = \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{5} \right) + \tan^{-1} \left( \frac{1}{8} \right) \)
\( = \tan^{-1} \left[ \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2} \cdot \frac{1}{5}} \right] + \tan^{-1} \frac{1}{8} \) [\( \because \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{10} < 1 \)]
\( = \tan^{-1} \left( \frac{7/10}{9/10} \right) + \tan^{-1} \frac{1}{8} = \tan^{-1} \frac{7}{9} + \tan^{-1} \frac{1}{8} \)
\( = \tan^{-1} \left[ \frac{\frac{7}{9} + \frac{1}{8}}{1 - \frac{7}{9} \cdot \frac{1}{8}} \right] = \tan^{-1} \left[ \frac{\frac{56 + 9}{72}}{\frac{72 - 7}{72}} \right] \)
\( = \tan^{-1} \left( \frac{65}{65} \right) = \tan^{-1} (1) = \frac{\pi}{4} = \text{RHS} \)
Question. Prove that \( \sin^{-1} \left( \frac{4}{5} \right) + \tan^{-1} \left( \frac{5}{12} \right) + \cos^{-1} \left( \frac{63}{65} \right) = \frac{\pi}{2} \)
Answer: We have to prove that \( \sin^{-1} \left( \frac{4}{5} \right) + \tan^{-1} \left( \frac{5}{12} \right) + \cos^{-1} \left( \frac{63}{65} \right) = \frac{\pi}{2} \)
i.e. \( \sin^{-1} \left( \frac{4}{5} \right) + \tan^{-1} \left( \frac{5}{12} \right) = \frac{\pi}{2} - \cos^{-1} \left( \frac{63}{65} \right) = \sin^{-1} \left( \frac{63}{65} \right) \)
LHS \( = \sin^{-1} \left( \frac{4}{5} \right) + \tan^{-1} \left( \frac{5}{12} \right) \)
\( = \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{\frac{5}{12}}{\sqrt{1 + \left( \frac{5}{12} \right)^2}} \right) \) [\( \because \tan^{-1} x = \sin^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right) \)]
\( = \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5/12}{13/12} \right) = \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) \)
\( = \sin^{-1} \left[ \frac{4}{5} \sqrt{1 - \left( \frac{5}{13} \right)^2} + \frac{5}{13} \sqrt{1 - \left( \frac{4}{5} \right)^2} \right] \)
\( = \sin^{-1} \left[ \frac{4}{5} \cdot \frac{12}{13} + \frac{5}{13} \cdot \frac{3}{5} \right] = \sin^{-1} \left( \frac{48}{65} + \frac{15}{65} \right) = \sin^{-1} \left( \frac{63}{65} \right) = \text{RHS} \). Hence proved.
Question. Solve the following for \( x \): \( \tan^{-1} \left( \frac{x - 2}{x - 3} \right) + \tan^{-1} \left( \frac{x + 2}{x + 3} \right) = \frac{\pi}{4}, |x| < 1 \).
Answer: Given: \( \tan^{-1} \left( \frac{x - 2}{x - 3} \right) + \tan^{-1} \left( \frac{x + 2}{x + 3} \right) = \frac{\pi}{4} \)
\( \Rightarrow \tan^{-1} \left[ \frac{\frac{x - 2}{x - 3} + \frac{x + 2}{x + 3}}{1 - \left( \frac{x - 2}{x - 3} \right) \left( \frac{x + 2}{x + 3} \right)} \right] = \frac{\pi}{4} \) [\( \because \frac{x - 2}{x - 3} \cdot \frac{x + 2}{x + 3} = \frac{x^2 - 4}{x^2 - 9} < 1 \text{ for } |x| < 1 \)]
\( \Rightarrow \tan^{-1} \left[ \frac{(x - 2)(x + 3) + (x + 2)(x - 3)}{(x - 3)(x + 3) - (x - 2)(x + 2)} \right] = \frac{\pi}{4} \)
\( \Rightarrow \tan^{-1} \left[ \frac{x^2 + 3x - 2x - 6 + x^2 - 3x + 2x - 6}{x^2 - 9 - x^2 + 4} \right] = \frac{\pi}{4} \)
\( \Rightarrow \tan^{-1} \left[ \frac{2x^2 - 12}{-5} \right] = \frac{\pi}{4} \Rightarrow \frac{2x^2 - 12}{-5} = \tan \frac{\pi}{4} = 1 \)
\( \Rightarrow 2x^2 - 12 = -5 \Rightarrow 2x^2 = 7 \Rightarrow x^2 = \frac{7}{2} \)
\( \Rightarrow x = \pm \sqrt{\frac{7}{2}} \), not acceptable as \( |x| < 1 \).
Hence, there is no solution.
Question. If \( (\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8} \), then find \( x \).
Answer: Here, \( (\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8} \)
\( \Rightarrow (\tan^{-1} x)^2 + \left( \frac{\pi}{2} - \tan^{-1} x \right)^2 = \frac{5\pi^2}{8} \)
\( \Rightarrow (\tan^{-1} x)^2 + (\tan^{-1} x)^2 + \frac{\pi^2}{4} - \pi \tan^{-1} x = \frac{5\pi^2}{8} \)
\( \Rightarrow 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \frac{\pi^2}{4} - \frac{5\pi^2}{8} = 0 \)
\( \Rightarrow 2(\tan^{-1} x)^2 - \pi \tan^{-1} x - \frac{3\pi^2}{8} = 0 \) ...(i)
Let \( \tan^{-1} x = y \), then (i) becomes
\( 2y^2 - \pi y - \frac{3\pi^2}{8} = 0 \Rightarrow 16y^2 - 8\pi y - 3\pi^2 = 0 \)
\( \Rightarrow 16y^2 - 12\pi y + 4\pi y - 3\pi^2 = 0 \Rightarrow 4y(4y - 3\pi) + \pi(4y - 3\pi) = 0 \)
\( \Rightarrow (4y - 3\pi)(4y + \pi) = 0 \Rightarrow y = \frac{3\pi}{4} \text{ or } y = -\frac{\pi}{4} \)
\( \tan^{-1} x = \frac{3\pi}{4} \) does not belong to domain of \( \tan^{-1} x \) i.e., \( (-\pi/2, \pi/2) \)
\( \therefore \tan^{-1} x = -\frac{\pi}{4} \Rightarrow x = \tan \left( -\frac{\pi}{4} \right) = -1 \)
Question. If \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \), \( x, y, z > 0 \), then find the value of \( xy + yz + zx \).
Answer: Given \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \Rightarrow \tan^{-1} x + \tan^{-1} y = \frac{\pi}{2} - \tan^{-1} z \)
\( \Rightarrow \tan^{-1} \left( \frac{x + y}{1 - xy} \right) = \cot^{-1} z = \tan^{-1} \frac{1}{z} \)
\( \Rightarrow \frac{x + y}{1 - xy} = \frac{1}{z} \Rightarrow xz + yz = 1 - xy \Rightarrow xy + yz + zx = 1 \)
Question. Solve the equation for \( x \): \( \sin^{-1} x + \sin^{-1} (1 - x) = \cos^{-1} x \)
Answer: \( \sin^{-1} x + \sin^{-1} (1 - x) = \cos^{-1} x \)
\( \Rightarrow \sin^{-1} \left[ x\sqrt{1 - (1 - x)^2} + (1 - x)\sqrt{1 - x^2} \right] = \sin^{-1} \sqrt{1 - x^2} \)
[\( \because \sin^{-1} x + \sin^{-1} y = \sin^{-1} \{x\sqrt{1-y^2} + y\sqrt{1-x^2}\} \) and \( \cos^{-1} x = \sin^{-1} \sqrt{1-x^2} \)]
\( \Rightarrow x\sqrt{1 - (1 + x^2 - 2x)} + (1 - x)\sqrt{1 - x^2} = \sqrt{1 - x^2} \)
\( \Rightarrow x\sqrt{2x - x^2} + \sqrt{1 - x^2} - x\sqrt{1 - x^2} = \sqrt{1 - x^2} \)
\( \Rightarrow x\sqrt{2x - x^2} - x\sqrt{1 - x^2} = 0 \Rightarrow x \{ \sqrt{2x - x^2} - \sqrt{1 - x^2} \} = 0 \)
\( \Rightarrow x = 0 \) or \( \sqrt{2x - x^2} - \sqrt{1 - x^2} = 0 \Rightarrow \sqrt{2x - x^2} = \sqrt{1 - x^2} \)
Now, \( 2x - x^2 = 1 - x^2 \)
Squaring both sides, we get
\( 2x - x^2 = 1 - x^2 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2} \)
\( \therefore 2x - 1 = 0 \Rightarrow x = \frac{1}{2} \)
Hence, \( x = 0 \) and \( x = \frac{1}{2} \).
Question. Find the value of \( \cot \left\{ \frac{1}{2} \left[ \cos^{-1} \frac{2x}{1+x^2} + \sin^{-1} \frac{1-y^2}{1+y^2} \right] \right\} \), \( |x| < 1, y > 0 \text{ and } xy < 1 \).
Answer: \( \cot \left\{ \frac{1}{2} \left[ \cos^{-1} \frac{2x}{1+x^2} + \sin^{-1} \frac{1-y^2}{1+y^2} \right] \right\} \)
\( = \cot \left\{ \frac{1}{2} \left[ \frac{\pi}{2} - \sin^{-1} \frac{2x}{1+x^2} + \frac{\pi}{2} - \cos^{-1} \frac{1-y^2}{1+y^2} \right] \right\} \)
\( = \cot \left\{ \frac{1}{2} \left[ \pi - 2\tan^{-1} x - 2\tan^{-1} y \right] \right\} \)
\( = \cot \left[ \frac{\pi}{2} - (\tan^{-1} x + \tan^{-1} y) \right] \)
\( = \tan(\tan^{-1} x + \tan^{-1} y) = \tan \left[ \tan^{-1} \left( \frac{x+y}{1-xy} \right) \right] \)
\( = \frac{x+y}{1-xy} \) [\( \because xy < 1 \)]
Question. Does the following trigonometric equation have any solutions? If yes, obtain the solution(s):
\( \tan^{-1} \left( \frac{x+1}{x-1} \right) + \tan^{-1} \left( \frac{x-1}{x} \right) = -\tan^{-1} 7 \).
Answer: \( \tan^{-1} \left( \frac{x+1}{x-1} \right) + \tan^{-1} \left( \frac{x-1}{x} \right) = -\tan^{-1} 7 \)
\( \Rightarrow \tan^{-1} \left[ \frac{\left( \frac{x+1}{x-1} \right) + \left( \frac{x-1}{x} \right)}{1 - \left( \frac{x+1}{x-1} \right) \left( \frac{x-1}{x} \right)} \right] = -\tan^{-1} 7 \), if \( \left( \frac{x+1}{x-1} \right) \left( \frac{x-1}{x} \right) < 1 \)
\( \Rightarrow \tan^{-1} \left[ \frac{x(x+1) + (x-1)^2}{x(x-1) - (x+1)(x-1)} \right] = -\tan^{-1} 7 \)
\( \Rightarrow \frac{(x^2 + x) + (x^2 + 1 - 2x)}{(x^2 - x) - (x^2 - 1)} = \tan(\tan^{-1}(-7)) = -7 \)
\( \Rightarrow \frac{2x^2 - x + 1}{-x + 1} = -7 \Rightarrow 2x^2 - x + 1 = 7x - 7 \Rightarrow 2x^2 - 8x + 8 = 0 \)
\( \Rightarrow 2(x^2 - 4x + 4) = 0 \Rightarrow (x-2)^2 = 0 \Rightarrow x = 2 \)
Let us now verify whether \( x = 2 \) satisfies the condition \( \left( \frac{x+1}{x-1} \right) \left( \frac{x-1}{x} \right) < 1 \).
For \( x = 2 \), \( \left( \frac{2+1}{2-1} \right) \left( \frac{2-1}{2} \right) = 3 \times \frac{1}{2} = \frac{3}{2} \), which is not less than 1.
Hence, this value does not satisfy the condition.
i.e., there is no solution of the given trigonometric equation.
Question. Find the real solution of \( \tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2+x+1} = \frac{\pi}{2} \).
Answer: We have, \( \tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2+x+1} = \frac{\pi}{2} \) ...(i)
Let \( \sin^{-1} \sqrt{x^2+x+1} = \theta \)
\( \Rightarrow \sin \theta = \sqrt{x^2+x+1} \Rightarrow \tan \theta = \frac{\sqrt{x^2+x+1}}{\sqrt{1 - (x^2+x+1)}} = \frac{\sqrt{x^2+x+1}}{\sqrt{-x^2-x}} \)
\( \therefore \theta = \tan^{-1} \frac{\sqrt{x^2+x+1}}{\sqrt{-x(x+1)}} \)
On putting the value of \( \theta \) in equation (i), we get
\( \tan^{-1} \sqrt{x(x+1)} + \tan^{-1} \frac{\sqrt{x^2+x+1}}{\sqrt{-x(x+1)}} = \frac{\pi}{2} \)
\( \tan^{-1} \left[ \frac{\sqrt{x(x+1)} + \frac{\sqrt{x^2+x+1}}{\sqrt{-x(x+1)}}}{1 - \sqrt{x(x+1)} \cdot \frac{\sqrt{x^2+x+1}}{\sqrt{-x(x+1)}}} \right] = \frac{\pi}{2} \)
\( \Rightarrow \frac{x(x+1) + \sqrt{-(x^2+x+1)x(x+1)}}{ \sqrt{-x(x+1)} - \sqrt{x(x+1)} \sqrt{x^2+x+1} } = \tan \frac{\pi}{2} = \frac{1}{0} \)
\( \Rightarrow 1 - \sqrt{x(x+1)} \cdot \frac{\sqrt{x^2+x+1}}{i\sqrt{x(x+1)}} = 0 \) is complex.
Alternatively, for the expressions to be real:
\( x(x+1) \ge 0 \) and \( x^2+x+1 \le 1 \)
\( \Rightarrow x^2+x \ge 0 \) and \( x^2+x \le 0 \)
The only possibility is \( x^2+x = 0 \)
\( \Rightarrow x(x+1) = 0 \Rightarrow x = 0 \) or \( x = -1 \).
Both values satisfy the original equation.
For real solution, we have \( x = 0, -1 \).
Question. If \( \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi \), then prove that: \( x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz \).
Answer: Let \( \sin^{-1} x = A \Rightarrow \sin A = x \)
\( \sin^{-1} y = B \Rightarrow \sin B = y \)
\( \sin^{-1} z = C \Rightarrow \sin C = z \)
Given, \( A + B + C = \pi \Rightarrow 2A + 2B + 2C = 2\pi \)
\( \therefore \sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C \) [Using trigonometric property]
\( \Rightarrow 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C = 4 \sin A \sin B \sin C \)
\( \Rightarrow 2 \sin A \sqrt{1 - \sin^2 A} + 2 \sin B \sqrt{1 - \sin^2 B} + 2 \sin C \sqrt{1 - \sin^2 C} = 4 \sin A \sin B \sin C \)
\( \Rightarrow 2x\sqrt{1-x^2} + 2y\sqrt{1-y^2} + 2z\sqrt{1-z^2} = 4xyz \)
\( \Rightarrow x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz \). Hence proved.
Question. If \( \tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi \), then prove that \( a+b+c = abc \).
Answer: Let \( \tan^{-1} a = \alpha \Rightarrow \tan \alpha = a \)
\( \tan^{-1} b = \beta \Rightarrow \tan \beta = b \)
\( \tan^{-1} c = \gamma \Rightarrow \tan \gamma = c \)
Now, given \( \alpha + \beta + \gamma = \pi \Rightarrow \alpha + \beta = \pi - \gamma \)
Taking tangent on both sides,
\( \tan(\alpha + \beta) = \tan(\pi - \gamma) \)
\( \Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -\tan \gamma \)
\( \Rightarrow \tan \alpha + \tan \beta = -\tan \gamma (1 - \tan \alpha \tan \beta) \)
\( \Rightarrow \tan \alpha + \tan \beta = -\tan \gamma + \tan \alpha \tan \beta \tan \gamma \)
\( \Rightarrow \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma \)
Thus, \( a + b + c = abc \). Hence proved.
Question. Show that: \( 2\tan^{-1} \left\{ \tan \frac{\alpha}{2} \tan \left( \frac{\pi}{4} - \frac{\beta}{2} \right) \right\} = \tan^{-1} \frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta} \).
Answer: LHS \( = 2\tan^{-1} \left\{ \tan \frac{\alpha}{2} \tan \left( \frac{\pi}{4} - \frac{\beta}{2} \right) \right\} \)
\( = \tan^{-1} \left[ \frac{2 \tan \frac{\alpha}{2} \tan \left( \frac{\pi}{4} - \frac{\beta}{2} \right)}{1 - \tan^2 \frac{\alpha}{2} \tan^2 \left( \frac{\pi}{4} - \frac{\beta}{2} \right)} \right] \)
\( = \tan^{-1} \left[ \frac{2 \tan \frac{\alpha}{2} \cdot \left( \frac{1 - \tan \frac{\beta}{2}}{1 + \tan \frac{\beta}{2}} \right)}{1 - \tan^2 \frac{\alpha}{2} \cdot \left( \frac{1 - \tan \frac{\beta}{2}}{1 + \tan \frac{\beta}{2}} \right)^2} \right] \)
\( = \tan^{-1} \left[ \frac{2 \tan \frac{\alpha}{2} (1 - \tan \frac{\beta}{2})(1 + \tan \frac{\beta}{2})}{(1 + \tan \frac{\beta}{2})^2 - \tan^2 \frac{\alpha}{2} (1 - \tan \frac{\beta}{2})^2} \right] \)
\( = \tan^{-1} \left[ \frac{2 \tan \frac{\alpha}{2} (1 - \tan^2 \frac{\beta}{2})}{(1 + \tan^2 \frac{\beta}{2} + 2 \tan \frac{\beta}{2}) - \tan^2 \frac{\alpha}{2} (1 + \tan^2 \frac{\beta}{2} - 2 \tan \frac{\beta}{2})} \right] \)
\( = \tan^{-1} \left[ \frac{2 \tan \frac{\alpha}{2} (1 - \tan^2 \frac{\beta}{2})}{(1 + \tan^2 \frac{\beta}{2})(1 - \tan^2 \frac{\alpha}{2}) + 2 \tan \frac{\beta}{2}(1 + \tan^2 \frac{\alpha}{2})} \right] \)
Dividing \( N^r \) and \( D^r \) by \( (1 + \tan^2 \frac{\alpha}{2})(1 + \tan^2 \frac{\beta}{2}) \):
\( = \tan^{-1} \left[ \frac{ \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} \cdot \frac{1 - \tan^2 \frac{\beta}{2}}{1 + \tan^2 \frac{\beta}{2}} }{ \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} + \frac{2 \tan \frac{\beta}{2}}{1 + \tan^2 \frac{\beta}{2}} } \right] \)
\( = \tan^{-1} \left( \frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta} \right) = \text{RHS} \)
Question. If \( a_1, a_2, a_3, \dots, a_n \) is an arithmetic progression with common difference \( d \), then evaluate the following expression.
\( \tan \left[ \tan^{-1} \left( \frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left( \frac{d}{1 + a_2 a_3} \right) + \tan^{-1} \left( \frac{d}{1 + a_3 a_4} \right) + \dots + \tan^{-1} \left( \frac{d}{1 + a_{n-1} a_n} \right) \right] \).
Answer: We have, \( d = a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} \)
Given expression is \( \tan \left[ \tan^{-1} \left( \frac{a_2 - a_1}{1 + a_1 a_2} \right) + \tan^{-1} \left( \frac{a_3 - a_2}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left( \frac{a_n - a_{n-1}}{1 + a_{n-1} a_n} \right) \right] \)
\( = \tan [ (\tan^{-1} a_2 - \tan^{-1} a_1) + (\tan^{-1} a_3 - \tan^{-1} a_2) + \dots + (\tan^{-1} a_n - \tan^{-1} a_{n-1}) ] \)
\( = \tan [\tan^{-1} a_n - \tan^{-1} a_1] \)
\( = \tan \left[ \tan^{-1} \left( \frac{a_n - a_1}{1 + a_n a_1} \right) \right] \)
\( = \frac{a_n - a_1}{1 + a_n a_1} \)
PROFICIENCY EXERCISE
Objective Type Questions:
Question. Which of the following corresponds to the principal value branch of \( \tan^{-1} x \)?
(a) \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)
(b) \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)
(c) \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) - \{0\} \)
(d) \( (0, \pi) \)
Answer: (a)
Question. The value of \( \tan^{-1} (1) + \cos^{-1} \left( -\frac{1}{2} \right) + \sin^{-1} \left( -\frac{1}{2} \right) \) corresponding to principal branches is:
(a) \( \frac{3\pi}{4} \)
(b) \( \frac{\pi}{4} \)
(c) \( -\frac{\pi}{4} \)
(d) \( -\frac{3\pi}{4} \)
Answer: (a)
Question. The principal value of \( \sin^{-1} \left( \frac{-\sqrt{3}}{2} \right) \) is:
(a) \( -\frac{2\pi}{3} \)
(b) \( -\frac{\pi}{3} \)
(c) \( \frac{4\pi}{3} \)
(d) \( \frac{5\pi}{3} \)
Answer: (b)
Question. The value of \( \tan(\sin^{-1} x) \) is
(a) \( \frac{x}{\sqrt{1 + x^2}} \)
(b) \( \frac{x}{\sqrt{1 - x^2}} \)
(c) \( \frac{\sqrt{1 - x^2}}{x} \)
(d) \( \frac{\sqrt{1 + x^2}}{x} \)
Answer: (b)
Question. If \( \tan^{-1} x = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} \), then \( x \) is equal to
(a) \( \frac{\pi}{4} \)
(b) \( \frac{\pi}{3} \)
(c) \( \frac{\pi}{2} \)
(d) \( \pi \)
Answer: (a)
Question. If \( \tan^{-1} x + 2 \cot^{-1} x = \pi \), then \( x \) equals
(a) 0
(b) 1
(c) -1
(d) \( \frac{1}{2} \)
Answer: (a)
Question. Which of the following is the principal value branch of \( \csc^{-1} x \)?
(a) \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)
(b) \( [0, \pi] - \left\{ \frac{\pi}{2} \right\} \)
(c) \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)
(d) \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \)
Answer: (d)
Question. If \( \cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} \), then the value of \( \sin^{-1} x + \sin^{-1} y \) is
(a) 0
(b) \( \frac{\pi}{2} \)
(c) \( \pi \)
(d) \( \frac{2\pi}{3} \)
Answer: (b)
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 2 Inverse Trigonometric Functions Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 2 Inverse Trigonometric Functions as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 2 Inverse Trigonometric Functions Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 2 Inverse Trigonometric Functions on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 2 Inverse Trigonometric Functions is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 2 Inverse Trigonometric Functions come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 2 Inverse Trigonometric Functions these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 2 Inverse Trigonometric Functions Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 2 Inverse Trigonometric Functions VBQs in a mobile-friendly PDF format for free.