CBSE Class 12 Mathematics Vector Algebra VBQs Set B

Read and download the CBSE Class 12 Mathematics Vector Algebra VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.

VBQ for Class 12 Mathematics Chapter 10 Vector Algebra

For Class 12 students, Value Based Questions for Chapter 10 Vector Algebra help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.

Chapter 10 Vector Algebra Class 12 Mathematics VBQ Questions with Answers

Very Short Answer Questions 

Question. Find a vector in the direction of vector \( \vec{a} = \hat{i} - 2\hat{j} \) that has magnitude 7 units. 
Answer: The unit vector in the direction of the given vector \( \vec{a} \) is
\( \hat{a} = \frac{1}{|\vec{a}|} \vec{a} = \frac{1}{\sqrt{5}} (\hat{i} - 2\hat{j}) = \frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j} \)
Therefore, the vector having magnitude equal to 7 and in the direction of \( \vec{a} \) is
\( 7\hat{a} = 7 \left( \frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j} \right) = \frac{7}{\sqrt{5}}\hat{i} - \frac{14}{\sqrt{5}}\hat{j} \)

Question. Write the number of vectors of unit length perpendicular to both the vectors \( \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \) and \( \vec{b} = \hat{j} + \hat{k} \). 
Answer: Number of vectors of unit length perpendicular to both vectors = 2

Question. Write the value of \( p \) for which \( \vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k} \) and \( \vec{b} = \hat{i} + p\hat{j} + 3\hat{k} \) are parallel vector. 
Answer: Since \( \vec{a} \parallel \vec{b} \), therefore \( \vec{a} = \lambda\vec{b} \Rightarrow 3\hat{i} + 2\hat{j} + 9\hat{k} = \lambda(\hat{i} + p\hat{j} + 3\hat{k}) \)
\( \Rightarrow \lambda = 3, 2 = \lambda p, 9 = 3\lambda \text{ or } \lambda = 3, p = \frac{2}{3} \) [By comparing the coefficients]

Question. Write a vector of magnitude 15 units in the direction of vector \( \hat{i} - 2\hat{j} + 2\hat{k} \).
Answer: Let \( \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \)
Unit vector in the direction of \( \vec{a} \) is \( \hat{a} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}} = \frac{1}{3}(\hat{i} - 2\hat{j} + 2\hat{k}) \)
Vector of magnitude 15 units in the direction of \( \vec{a} = 15 \hat{a} = 15 \frac{(\hat{i} - 2\hat{j} + 2\hat{k})}{3} = 5\hat{i} - 10\hat{j} + 10\hat{k} \)

Question. What is the cosine of the angle, which the vector \( \sqrt{2}\hat{i} + \hat{j} + \hat{k} \) makes with y-axis?
Answer: We will consider \( \vec{a} = \sqrt{2}\hat{i} + \hat{j} + \hat{k} \)
Unit vector in the direction of \( \vec{a} \) is \( \hat{a} = \frac{\sqrt{2}\hat{i} + \hat{j} + \hat{k}}{\sqrt{(\sqrt{2})^2 + (1)^2 + (1)^2}} = \frac{\sqrt{2}\hat{i} + \hat{j} + \hat{k}}{\sqrt{4}} = \frac{\sqrt{2}\hat{i} + \hat{j} + \hat{k}}{2} \)
\( = \frac{\sqrt{2}}{2}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k} \)
The cosine of the angle which the vector \( \sqrt{2}\hat{i} + \hat{j} + \hat{k} \) makes with y-axis is \( \left( \frac{1}{2} \right) \).

Question. If \( |\vec{a}| = 4, |\vec{b}| = 3 \) and \( \vec{a} \cdot \vec{b} = 6\sqrt{3} \), then the value of \( |\vec{a} \times \vec{b}| \). 
Answer: We have, \( \vec{a} \cdot \vec{b} = 6\sqrt{3} \Rightarrow |\vec{a}| |\vec{b}| \cos \theta = 6\sqrt{3} \)
\( \Rightarrow 4 \times 3 \cos \theta = 6\sqrt{3} \Rightarrow \cos \theta = \frac{6\sqrt{3}}{4 \times 3} = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6} \)
Now, \( |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta = 4 \times 3 \sin \frac{\pi}{6} = 4 \times 3 \times \frac{1}{2} = 6 \)

Question. Write the value of the area of the parallelogram determined by the vectors \( 2\hat{i} \) and \( 3\hat{j} \). 
Answer: Required area of parallelogram \( = |2\hat{i} \times 3\hat{j}| = 6 |\hat{i} \times \hat{j}| = 6 |\hat{k}| = 6 \) sq units.
[Note: Area of parallelogram whose sides are represented by \( \vec{a} \) and \( \vec{b} \) is \( |\vec{a} \times \vec{b}| \)]

Question. Write the value of \( (\hat{i} \times \hat{j}) \cdot \hat{k} + (\hat{j} \times \hat{k}) \cdot \hat{i} \). 
Answer: \( (\hat{i} \times \hat{j}) \cdot \hat{k} + (\hat{j} \times \hat{k}) \cdot \hat{i} = \hat{k} \cdot \hat{k} + \hat{i} \cdot \hat{i} = 1 + 1 = 2 \)
[Note: \( \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \). Also \( |\hat{i}| = |\hat{j}| = |\hat{k}| = 1 \)]

Question. For what value of ‘a’ the vectors \( 2\hat{i} - 3\hat{j} + 4\hat{k} \) and \( a\hat{i} + 6\hat{j} - 8\hat{k} \) are collinear? 
Answer: \( \because 2\hat{i} - 3\hat{j} + 4\hat{k} \) and \( a\hat{i} + 6\hat{j} - 8\hat{k} \) are collinear
\( \therefore \frac{2}{a} = \frac{-3}{6} = \frac{4}{-8} \Rightarrow a = \frac{2 \times 6}{-3} \text{ or } a = \frac{2 \times (-8)}{4} \Rightarrow a = -4 \)
[Note: If \( \vec{a} \) and \( \vec{b} \) are collinear vectors then the respective components of \( \vec{a} \) and \( \vec{b} \) are proportional.]

Question. Write the direction cosines of the vector \( -2\hat{i} + \hat{j} - 5\hat{k} \). 
Answer: Direction cosines of vector \( -2\hat{i} + \hat{j} - 5\hat{k} \) are
\( \frac{-2}{\sqrt{(-2)^2 + 1^2 + (-5)^2}}, \frac{1}{\sqrt{(-2)^2 + 1^2 + (-5)^2}}, \frac{-5}{\sqrt{(-2)^2 + 1^2 + (-5)^2}} = \frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}} \)
Note: If \( l, m, n \) are direction cosine of \( a\hat{i} + b\hat{j} + c\hat{k} \) then
\( l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \frac{c}{\sqrt{a^2 + b^2 + c^2}} \)

Question. If vectors \( \vec{a} \) and \( \vec{b} \) are such that \( |\vec{a}| = \frac{1}{2}, |\vec{b}| = \frac{4}{\sqrt{3}} \) and \( |\vec{a} \times \vec{b}| = \frac{1}{\sqrt{3}} \), then find \( |\vec{a} \cdot \vec{b}| \).
Answer: We have, \( |\vec{a} \times \vec{b}| = \frac{1}{\sqrt{3}} \Rightarrow |\vec{a}| |\vec{b}| \sin \theta = \frac{1}{\sqrt{3}} \)
\( \Rightarrow \frac{1}{2} \times \frac{4}{\sqrt{3}} \sin \theta = \frac{1}{\sqrt{3}} \Rightarrow \sin \theta = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2} = \frac{1}{2} \Rightarrow \theta = 30^\circ \)
Now, \( \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = \frac{1}{2} \times \frac{4}{\sqrt{3}} \cos 30^\circ = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 1 \)

Question. Let \( \vec{a} \) and \( \vec{b} \) be two vectors such that \( |\vec{a}| = 3 \) and \( |\vec{b}| = \frac{\sqrt{2}}{3} \) and \( \vec{a} \times \vec{b} \) is a unit vector. What is the angle between \( \vec{a} \) and \( \vec{b} \)?
Answer: We have, \( |\vec{a}| = 3, |\vec{b}| = \frac{\sqrt{2}}{3} \)
Now, \( |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \Rightarrow 1 = 3 \times \frac{\sqrt{2}}{3} \sin \theta \Rightarrow \sin \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^\circ \)

Question. Give an example of vectors \( \vec{a} \) and \( \vec{b} \) such that \( |\vec{a}| = |\vec{b}| \) but \( \vec{a} \neq \vec{b} \). 
Answer: Let \( \vec{a} = x\hat{i} + y\hat{j}; \vec{b} = y\hat{i} + x\hat{j} \)
\( |\vec{a}| = \sqrt{x^2 + y^2}, |\vec{b}| = \sqrt{y^2 + x^2} \). Hence, \( \vec{a} \neq \vec{b} \) but \( |\vec{a}| = |\vec{b}| \)

Question. Find the unit vector in the direction of sum of vectors \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \) and \( \vec{b} = 2\hat{j} + \hat{k} \). 
Answer: Let \( \vec{c} \) denote the sum of \( \vec{a} \) and \( \vec{b} \)
We have, \( \vec{c} = \vec{a} + \vec{b} = 2\hat{i} - \hat{j} + \hat{k} + 2\hat{j} + \hat{k} = 2\hat{i} + \hat{j} + 2\hat{k} \)
\( \therefore \) Unit vector in the direction of \( \vec{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{9}} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{3} \)

Short Answer Questions-

Question. Show that for any two non-zero vectors \( \vec{a} \) and \( \vec{b}, |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \) iff \( \vec{a} \) and \( \vec{b} \) are perpendicular vectors.
Answer: We have, \( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \)
\( \Leftrightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \) (Squaring both sides)
\( \Leftrightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| |\vec{b}| \cos \theta = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}| |\vec{b}| \cos \theta \)
(Where \( \theta \) is the angle between vectors \( \vec{a} \) and \( \vec{b} \))
\( \Leftrightarrow 4|\vec{a}| |\vec{b}| \cos \theta = 0 \Rightarrow \cos \theta = 0 = \cos \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{2} \)
\( \Leftrightarrow \vec{a} \) and \( \vec{b} \) are perpendicular vectors.

Question. The x-coordinate of a point on the line joining the point P(2, 2, 1) and Q(5, 1, –2) is 4. Find its z-coordinate. 
Answer: Let required point be R(4, \( y_1, z_1 \)) which divides PQ in ratio \( k : 1 \).
By section formula, \( 4 = \frac{5k + 2}{k + 1} \Rightarrow 4k + 4 = 5k + 2 \Rightarrow k = 2 \)
\( \therefore z_1 = \frac{2 \times (-2) + 1 \times 1}{2 + 1} = \frac{-4 + 1}{3} = \frac{-3}{3} = -1 \)

Question. Find ‘\( \lambda \)’ when the projection of \( \vec{a} = \lambda\hat{i} + \hat{j} + 4\hat{k} \) on \( \vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k} \) is 4 units. 
Answer: We know that projection of \( \vec{a} \) on \( \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \Rightarrow 4 = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \)...(i)
Now, \( \vec{a} \cdot \vec{b} = 2\lambda + 6 + 12 = 2\lambda + 18 \) also \( |\vec{b}| = \sqrt{2^2 + 6^2 + 3^2} = \sqrt{4 + 36 + 9} = 7 \)
Putting in (i), we get \( 4 = \frac{2\lambda + 18}{7} \Rightarrow 2\lambda = 28 - 18 \Rightarrow \lambda = \frac{10}{2} = 5 \)

Question. What are the direction cosines of a line, which makes equal angles with the co-ordinate axes? 
Answer: Let \( \alpha \) be the angle made by line with coordinate axes.
\( \Rightarrow \) Direction cosines of line are \( \cos \alpha, \cos \alpha, \cos \alpha \).
\( \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1 \Rightarrow 3 \cos^2 \alpha = 1 \Rightarrow \cos^2 \alpha = \frac{1}{3} \Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}} \)
Hence, the direction cosines of the line equally inclined to the coordinate axes are \( \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} \)
[Note: If \( l, m, n \) are direction cosines of line then \( l^2 + m^2 + n^2 = 1 \)]

Question. For what value of \( p \), is \( (\hat{i} + \hat{j} + \hat{k})p \) a unit vector? 
Answer: Let, \( \vec{a} = p(\hat{i} + \hat{j} + \hat{k}) \)
Magnitude of \( \vec{a} = |\vec{a}| = \sqrt{(p)^2 + (p)^2 + (p)^2} = \pm \sqrt{3}p \)
As \( \vec{a} \) is a unit vector, \( |\vec{a}| = 1 \Rightarrow \pm \sqrt{3}p = 1 \Rightarrow p = \pm \frac{1}{\sqrt{3}} \)

Question. X and Y are two points with position vectors \( 3\vec{a} + \vec{b} \) and \( \vec{a} - 3\vec{b} \) respectively. Write the position vector of a point Z which divides the line segment XY in the ratio 2 : 1 externally. [CBSE 2019 (65/4/1)]
Answer: We have \( \vec{OX} = 3\vec{a} + \vec{b}, \vec{OY} = \vec{a} - 3\vec{b}, \vec{OZ} = ? \)
\( \vec{OZ} = \frac{2(\vec{a} - 3\vec{b}) - 1(3\vec{a} + \vec{b})}{2 - 1} = \frac{-\vec{a} - 7\vec{b}}{1} = -\vec{a} - 7\vec{b} \)
\( \therefore \vec{OZ} = -\vec{a} - 7\vec{b} \)

Question. Write the position vector of the mid-point of the vector joining the points P(2, 3, 4) and Q(4, 1, –2). 
Answer: Let \( \vec{a}, \vec{b} \) be position vector of points P(2, 3, 4) and Q(4, 1, –2) respectively.
\( \therefore \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \) and \( \vec{b} = 4\hat{i} + \hat{j} - 2\hat{k} \)
\( \therefore \) Position vector of mid point of P and Q \( = \frac{\vec{a} + \vec{b}}{2} = \frac{6\hat{i} + 4\hat{j} + 2\hat{k}}{2} = 3\hat{i} + 2\hat{j} + \hat{k} \)

Question. If \( |\vec{a}| = a \), then find the value of the following : \( |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \). 
Answer: Let \( \vec{a} \) makes angle \( \alpha, \beta, \gamma \) with x, y and z axis.
\( \therefore |\vec{a} \times \hat{i}| = |\vec{a}| \cdot 1 \cdot \sin \alpha = a \sin \alpha \). Similarly \( |\vec{a} \times \hat{j}| = a \sin \beta \) and \( |\vec{a} \times \hat{k}| = a \sin \gamma \)
\( \therefore |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = a^2 \sin^2 \alpha + a^2 \sin^2 \beta + a^2 \sin^2 \gamma = a^2 [\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma] \)
\( = a^2 [1 - \cos^2 \alpha + 1 - \cos^2 \beta + 1 - \cos^2 \gamma] = a^2 [3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)] \)
\( = a^2 (3 - 1) = 2a^2 \quad [\because l^2 + m^2 + n^2 = 1 \Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1] \)

Question. The vectors \( \vec{a} = 3\hat{i} + x\hat{j} \) and \( \vec{b} = 2\hat{i} + \hat{j} + y\hat{k} \) are mutually perpendicular. If \( |\vec{a}| = |\vec{b}| \), then find the value of y. 
Answer: \( \because \vec{a} \) and \( \vec{b} \) are mutually perpendicular.
\( \therefore \vec{a} \cdot \vec{b} = 0 \Rightarrow (3\hat{i} + x\hat{j}) \cdot (2\hat{i} + \hat{j} + y\hat{k}) = 0 \Rightarrow 6 + x + 0 \cdot y = 0 \Rightarrow 6 + x = 0 \Rightarrow x = -6 \)
Again, \( |\vec{a}| = |\vec{b}| \Rightarrow \sqrt{3^2 + x^2} = \sqrt{2^2 + 1^2 + y^2} \Rightarrow \sqrt{9 + 36} = \sqrt{5 + y^2} \quad [\because x = -6] \)
\( \Rightarrow 45 = 5 + y^2 \Rightarrow y^2 = 40 \Rightarrow y = \pm \sqrt{40} = \pm 2\sqrt{10} \)

Question. Find the value of \( \vec{a} \cdot \vec{b} \) if \( |\vec{a}| = 10, |\vec{b}| = 2 \) and \( |\vec{a} \times \vec{b}| = 16 \). 
Answer: \( \because |\vec{a} \times \vec{b}| = 16 \Rightarrow |\vec{a}| |\vec{b}| \sin \theta = 16 \Rightarrow 10 \times 2 \sin \theta = 16 \Rightarrow \sin \theta = \frac{16}{20} = \frac{4}{5} \)
\( \Rightarrow \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{16}{25}} = \pm \frac{3}{5} \)
\( \therefore \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 10 \times 2 \times \left( \pm \frac{3}{5} \right) = \pm 12 \)

Question. Find the vector of magnitude 6, which is perpendicular to both the vectors \( 2\hat{i} - \hat{j} + 2\hat{k} \) and \( 4\hat{i} - \hat{j} + 3\hat{k} \). 
Answer: Let \( \vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \) and \( \vec{b} = 4\hat{i} - \hat{j} + 3\hat{k} \)
So, any vector perpendicular to both the vectors \( \vec{a} \) and \( \vec{b} \) is given by
\( \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ 4 & -1 & 3 \end{vmatrix} = \hat{i}(-3 + 2) - \hat{j}(6 - 8) + \hat{k}(-2 + 4) = -\hat{i} + 2\hat{j} + 2\hat{k} = \vec{r} \text{ [say]} \)
A vector of magnitude 6 in the direction of \( \vec{r} \) is \( 6 \cdot \frac{\vec{r}}{|\vec{r}|} = 6 \cdot \frac{-\hat{i} + 2\hat{j} + 2\hat{k}}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{6}{3}(-\hat{i} + 2\hat{j} + 2\hat{k}) = -2\hat{i} + 4\hat{j} + 4\hat{k} \)

Question. Let \( \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \) and \( \vec{b} = 3\hat{i} - \hat{j} + 2\hat{k} \) be two vectors. Show that the vectors \( (\vec{a} + \vec{b}) \) and \( (\vec{a} - \vec{b}) \) are perpendicular to each other. 
Answer: We have \( \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \) and \( \vec{b} = 3\hat{i} - \hat{j} + 2\hat{k} \).
Then, \( \vec{a} + \vec{b} = 4\hat{i} + \hat{j} - \hat{k} \) and \( \vec{a} - \vec{b} = -2\hat{i} + 3\hat{j} - 5\hat{k} \)
\( \because (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = -8 + 3 + 5 = 0 \Rightarrow (\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b}) \)

Short Answer Questions-

Question. For any two vectors \( \vec{a} \) and \( \vec{b} \), prove that \( (\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2 \). 
Answer: \( \because (\vec{a} \times \vec{b}) = |\vec{a}| |\vec{b}| \sin \theta \hat{n} \text{ and } \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \)
RHS \( = \vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = |\vec{a}|^2 |\vec{b}|^2 (1 - \cos^2 \theta) = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta = (\vec{a} \times \vec{b})^2 = \text{LHS} \)

Question. The scalar product of the vector \( \vec{a} = \hat{i} + \hat{j} + \hat{k} \) with a unit vector along the sum of the vectors \( \vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k} \) is equal to 1. Find the value of \( \lambda \) and hence find the unit vector along \( \vec{b} + \vec{c} \). 
Answer: We have, \( \vec{b} + \vec{c} = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\lambda\hat{i} + 2\hat{j} + 3\hat{k}) \Rightarrow \vec{b} + \vec{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k} \)
\( \therefore \) Unit vector of \( \vec{b} + \vec{c} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + \lambda)^2 + 36 + 4}} \)
Now, \( \vec{a} \cdot \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = 1 \Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{((2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k})}{\sqrt{(2 + \lambda)^2 + 40}} = 1 \)
\( \Rightarrow 2 + \lambda + 6 - 2 = \sqrt{(2 + \lambda)^2 + 40} \Rightarrow \lambda + 6 = \sqrt{(2 + \lambda)^2 + 40} \)
Squaring both sides, we have \( \lambda^2 + 12\lambda + 36 = (2 + \lambda)^2 + 40 = 4 + \lambda^2 + 4\lambda + 40 \)
\( \Rightarrow 8\lambda = 44 - 36 = 8 \Rightarrow \lambda = 1 \)
By putting the value of \( \lambda = 1 \), unit vector of \( \vec{b} + \vec{c} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k} \)

Question. Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be three vectors such that \( |\vec{a}| = 1, |\vec{b}| = 2 \) and \( |\vec{c}| = 3 \). If the projection of \( \vec{b} \) along \( \vec{a} \) is equal to the projection of \( \vec{c} \) along \( \vec{a} \); and \( \vec{b}, \vec{c} \) are perpendicular to each other, then find \( |3\vec{a} - 2\vec{b} + 2\vec{c}| \). 
Answer: Given projection of \( \vec{b} \) along \( \vec{a} \) is equal to the projection of \( \vec{c} \) along \( \vec{a} \).
\( \Rightarrow \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} \Rightarrow \vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} \)...(i)
Also given \( \vec{b} \perp \vec{c} \Rightarrow \vec{b} \cdot \vec{c} = 0 \)...(ii)
Now, \( |3\vec{a} - 2\vec{b} + 2\vec{c}|^2 = 9|\vec{a}|^2 + 4|\vec{b}|^2 + 4|\vec{c}|^2 - 12\vec{a} \cdot \vec{b} - 8\vec{b} \cdot \vec{c} + 12\vec{a} \cdot \vec{c} \)
\( = 9(1)^2 + 4(2)^2 + 4(3)^2 - 12\vec{a} \cdot \vec{b} - 8(0) + 12\vec{a} \cdot \vec{b} = 9 + 16 + 36 = 61 \)
\( \Rightarrow |3\vec{a} - 2\vec{b} + 2\vec{c}| = \sqrt{61} \)

Question. Prove that, for any three vectors \( \vec{a}, \vec{b}, \vec{c}, [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}] \). 
Answer: LHS \( = (\vec{a} + \vec{b}) \cdot [(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})] \)
\( = (\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a}] \)
\( = (\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}] \quad [\because \vec{c} \times \vec{c} = 0] \)
\( = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) \)
\( = [\vec{a}, \vec{b}, \vec{c}] + 0 + 0 + 0 + 0 + [\vec{b}, \vec{c}, \vec{a}] = [\vec{a}, \vec{b}, \vec{c}] + [\vec{a}, \vec{b}, \vec{c}] = 2[\vec{a}, \vec{b}, \vec{c}] = \text{RHS} \)

Question. Find the value of \( x \) such that the points A(3, 2, 1), B(4, \( x \), 5), C(4, 2, –2) and D(6, 5, –1) are coplanar. 
Answer: We have A(3, 2, 1), B(4, \( x \), 5), C(4, 2, –2) and D(6, 5, –1) points.
\( \vec{AB} = \hat{i} + (x - 2)\hat{j} + 4\hat{k}; \vec{AC} = \hat{i} + 0\hat{j} - 3\hat{k}; \vec{AD} = 3\hat{i} + 3\hat{j} - 2\hat{k} \)
\( \because \) Points A, B, C and D are coplanar \( \Rightarrow [\vec{AB}, \vec{AC}, \vec{AD}] = 0 \)
\( \Rightarrow \begin{vmatrix} 1 & x-2 & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0 \Rightarrow 1(0 + 9) - (x - 2)(-2 + 9) + 4(3 - 0) = 0 \Rightarrow 9 - 7x + 14 + 12 = 0 \)
\( \Rightarrow 7x = 35 \Rightarrow x = 5 \)

Question. Show that the vectors \( \vec{a}, \vec{b}, \vec{c} \) are coplanar, iff \( \vec{a} + \vec{b}, \vec{b} + \vec{c} \) and \( \vec{c} + \vec{a} \) are coplanar. 
Answer: If part: Let \( \vec{a}, \vec{b}, \vec{c} \) are coplanar \( \Rightarrow [\vec{a}, \vec{b}, \vec{c}] = 0 \). Now, \( [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}] = 2 \times 0 = 0 \). Hence, \( \vec{a} + \vec{b}, \vec{b} + \vec{c} \text{ and } \vec{c} + \vec{a} \) are coplanar.
Only if part: Let \( \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} \) are coplanar \( \Rightarrow [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 0 \Rightarrow 2[\vec{a}, \vec{b}, \vec{c}] = 0 \Rightarrow [\vec{a}, \vec{b}, \vec{c}] = 0 \). Hence, \( \vec{a}, \vec{b}, \vec{c} \) are coplanar.

Question. Let \( \vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} \) and \( \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \) then (a) Let \( c_1 = 1 \) and \( c_2 = 2 \), find \( c_3 \) which makes \( \vec{a}, \vec{b} \) and \( \vec{c} \) coplanar. (b) If \( c_2 = -1 \) and \( c_3 = 1 \), show that no value of \( c_1 \) can make \( \vec{a}, \vec{b} \) and \( \vec{c} \) coplanar.
Answer: (a) Since \( \vec{a}, \vec{b} \) and \( \vec{c} \) vectors are coplanar \( \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_3 \end{vmatrix} = 0 \Rightarrow 1(0 - 0) - 1(c_3 - 0) + 1(2 - 0) = 0 \Rightarrow -c_3 + 2 = 0 \Rightarrow c_3 = 2 \).
(b) To make \( \vec{a}, \vec{b} \) and \( \vec{c} \) coplanar \( \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & -1 & 1 \end{vmatrix} = 0 \Rightarrow 1(0 - 0) - 1(1 - 0) + 1(-1 - 0) = 0 \Rightarrow -1 - 1 = 0 \Rightarrow -2 = 0 \), which is never possible. Hence, if \( c_2 = -1 \) and \( c_3 = 1 \), there is no value of \( c_1 \) which can make \( \vec{a}, \vec{b} \) and \( \vec{c} \) coplanar.

Question. If \( \vec{a}, \vec{b}, \vec{c} \) are mutually perpendicular vectors of equal magnitudes, show that the vector \( \vec{a} + \vec{b} + \vec{c} \) is equally inclined to \( \vec{a}, \vec{b} \) and \( \vec{c} \). Also, find the angle which \( \vec{a} + \vec{b} + \vec{c} \) makes with \( \vec{a}, \vec{b} \) or \( \vec{c} \). 
Answer: Let \( |\vec{a}| = |\vec{b}| = |\vec{c}| = x \). Since \( \vec{a}, \vec{b}, \vec{c} \) are mutually perpendicular, \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0 \).
Now, \( |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(0) = 3x^2 \Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}x \).
Let \( \theta_1, \theta_2, \theta_3 \) be the angles. \( \cos \theta_1 = \frac{\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c})}{|\vec{a}| |\vec{a} + \vec{b} + \vec{c}|} = \frac{x^2}{x \cdot \sqrt{3}x} = \frac{1}{\sqrt{3}} \).
\( \theta_1 = \cos^{-1} \left( \frac{1}{\sqrt{3}} \right) \), similarly \( \theta_2 = \theta_3 = \cos^{-1} \left( \frac{1}{\sqrt{3}} \right) \).

Question. If \( \vec{a} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{b} = \hat{j} - \hat{k} \), then find a vector \( \vec{c} \) such that \( \vec{a} \times \vec{c} = \vec{b} \) and \( \vec{a} \cdot \vec{c} = 3 \). 
Answer: Let \( \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \). \( \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ c_1 & c_2 & c_3 \end{vmatrix} = (c_3 - c_2)\hat{i} + (c_1 - c_3)\hat{j} + (c_2 - c_1)\hat{k} \).
Given \( \vec{a} \times \vec{c} = \vec{b} \Rightarrow (c_3 - c_2)\hat{i} + (c_1 - c_3)\hat{j} + (c_2 - c_1)\hat{k} = 0\hat{i} + \hat{j} - \hat{k} \).
\( c_3 - c_2 = 0, c_1 - c_3 = 1, c_2 - c_1 = -1 \)...(i).
Also, \( \vec{a} \cdot \vec{c} = 3 \Rightarrow c_1 + c_2 + c_3 = 3 \)...(ii).
Solving, \( c_1 = \frac{5}{3}, c_2 = \frac{2}{3}, c_3 = \frac{2}{3} \). Hence, \( \vec{c} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \).

Question. If \( \vec{a} + \vec{b} + \vec{c} = 0 \) and \( |\vec{a}| = 3, |\vec{b}| = 5 \) and \( |\vec{c}| = 7 \), then show that the angle between \( \vec{a} \) and \( \vec{b} \) is \( 60^\circ \).  
Answer: \( \vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow (\vec{a} + \vec{b})^2 = (-\vec{c})^2 \Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2 \)
\( \Rightarrow 9 + 25 + 2|\vec{a}| |\vec{b}| \cos \theta = 49 \Rightarrow 34 + 30 \cos \theta = 49 \Rightarrow 30 \cos \theta = 15 \Rightarrow \cos \theta = \frac{1}{2} = \cos 60^\circ \Rightarrow \theta = 60^\circ \).

Question. If \( \vec{a}, \vec{b}, \vec{c} \) are three vectors such that \( \vec{a} + \vec{b} + \vec{c} = 0 \), then prove that \( \vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \), and hence show that \( [\vec{a} \vec{b} \vec{c}] = 0 \). 
Answer: \( \vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow \vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times 0 \Rightarrow 0 + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0 \Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a} \). Similarly, \( \vec{b} \times \vec{c} = \vec{a} \times \vec{b} \). Hence, \( \vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \). Also \( [\vec{a} \vec{b} \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \).

Question. Let \( \vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k} \) and \( \vec{c} = 2\hat{i} - \hat{j} + 4\hat{k} \). Find a vector \( \vec{p} \) which is perpendicular to both \( \vec{a} \) and \( \vec{b} \) and \( \vec{p} \cdot \vec{c} = 18 \). 
Answer: Vector \( \vec{p} \) is parallel to \( \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7 \end{vmatrix} = 32\hat{i} - \hat{j} - 14\hat{k} \).
Let \( \vec{p} = \mu(32\hat{i} - \hat{j} - 14\hat{k}) \). Given \( \vec{p} \cdot \vec{c} = 18 \Rightarrow \mu(32\hat{i} - \hat{j} - 14\hat{k}) \cdot (2\hat{i} - \hat{j} + 4\hat{k}) = 18 \)
\( \Rightarrow \mu(64 + 1 - 56) = 18 \Rightarrow 9\mu = 18 \Rightarrow \mu = 2 \).
Hence, \( \vec{p} = 2(32\hat{i} - \hat{j} - 14\hat{k}) = 64\hat{i} - 2\hat{j} - 28\hat{k} \).

Question. The magnitude of the vector product of the vector \( \hat{i} + \hat{j} + \hat{k} \) with a unit vector along the sum of vectors \( 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \lambda\hat{i} + 2\hat{j} + 3\hat{k} \) is equal to \( \sqrt{2} \). Find the value of \( \lambda \). 
Answer: \( \left| \vec{a} \times \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} \right| = \sqrt{2} \). \( \vec{b} + \vec{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k} \).
\( |\vec{b} + \vec{c}| = \sqrt{(2 + \lambda)^2 + 40} \). \( \vec{a} \times (\vec{b} + \vec{c}) = -8\hat{i} + (4 + \lambda)\hat{j} + (4 - \lambda)\hat{k} \).
Putting in equation: \( \frac{\sqrt{(-8)^2 + (4 + \lambda)^2 + (4 - \lambda)^2}}{\sqrt{\lambda^2 + 4\lambda + 44}} = \sqrt{2} \).
Squaring: \( \frac{64 + 16 + \lambda^2 + 8\lambda + 16 + \lambda^2 - 8\lambda}{\lambda^2 + 4\lambda + 44} = 2 \Rightarrow \frac{96 + 2\lambda^2}{\lambda^2 + 4\lambda + 44} = 2 \Rightarrow 8\lambda = 8 \Rightarrow \lambda = 1 \).

VBQs for Chapter 10 Vector Algebra Class 12 Mathematics

Students can now access the Value-Based Questions (VBQs) for Chapter 10 Vector Algebra as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.

Expert-Approved Chapter 10 Vector Algebra Value-Based Questions & Answers

Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.

Improve your Mathematics Scores

Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 10 Vector Algebra on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.

Where can I find 2025-26 CBSE Value Based Questions (VBQs) for Class 12 Mathematics Chapter Chapter 10 Vector Algebra?

The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 10 Vector Algebra is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.

Are answers provided for Class 12 Mathematics Chapter Chapter 10 Vector Algebra VBQs?

Yes, all our Mathematics VBQs for Chapter Chapter 10 Vector Algebra come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.

What is the importance of solving VBQs for Class 12 Chapter Chapter 10 Vector Algebra Mathematics?

VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 10 Vector Algebra these questions are as per the latest competency-based education goals.

How many marks are usually allocated to VBQs in the CBSE Mathematics paper?

In the current CBSE pattern for Class 12 Mathematics, Chapter 10 Vector Algebra Value Based or Case-Based questions typically carry 3 to 5 marks.

Can I download Mathematics Chapter Chapter 10 Vector Algebra VBQs in PDF for free?

Yes, you can download Class 12 Mathematics Chapter Chapter 10 Vector Algebra VBQs in a mobile-friendly PDF format for free.