Read and download the CBSE Class 12 Mathematics Determinants VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 4 Determinants
For Class 12 students, Value Based Questions for Chapter 4 Determinants help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 4 Determinants Class 12 Mathematics VBQ Questions with Answers
Question. Using properties of determinants, prove the following: \[ \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2 \]
OR
\[ \begin{vmatrix} x+\lambda & 2x & 2x \\ 2x & x+\lambda & 2x \\ 2x & 2x & x+\lambda \end{vmatrix} = (5x+\lambda)(\lambda-x)^2 \]
Answer: LHS \( = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} \)
\( = \begin{vmatrix} 5x+4 & 5x+4 & 5x+4 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
\( = (5x+4) \begin{vmatrix} 1 & 1 & 1 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} \) [Taking \( (5x+4) \) common from \( R_1 \)]
\( = (5x+4) \begin{vmatrix} 1 & 0 & 0 \\ 2x & 4-x & 0 \\ 2x & 0 & 4-x \end{vmatrix} \) [Applying \( C_2 \rightarrow C_2 - C_1; C_3 \rightarrow C_3 - C_1 \)]
\( = (5x+4) [1 \{(4-x)^2 - 0\} + 0 + 0] \) [Expanding along \( R_1 \)]
\( = (5x+4) (4-x)^2 = \text{RHS} \)
OR
Solve as above by putting \( \lambda \) instead of 4.
Question. Using properties of determinants, prove that \[ \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} \]
OR
\[ \begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} \]
Answer: LHS \( = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} \)
\( = \begin{vmatrix} a+b & p+q & x+y \\ b+c & q+r & y+z \\ c+a & r+p & z+x \end{vmatrix} \) [Applying \( R_1 \leftrightarrow R_3 \) and \( R_3 \leftrightarrow R_2 \)]
Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \), we get
\( = \begin{vmatrix} 2(a+b+c) & 2(p+q+r) & 2(x+y+z) \\ b+c & q+r & y+z \\ c+a & r+p & z+x \end{vmatrix} = 2 \begin{vmatrix} a+b+c & p+q+r & x+y+z \\ b+c & q+r & y+z \\ c+a & r+p & z+x \end{vmatrix} \)
\( = 2 \begin{vmatrix} a & p & x \\ b+c & q+r & y+z \\ c+a & r+p & z+x \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 - R_2 \)]
\( = 2 \begin{vmatrix} a & p & x \\ b+c & q+r & y+z \\ c & r & z \end{vmatrix} \) [Applying \( R_3 \rightarrow R_3 - R_1 \)]
Again applying \( R_2 \rightarrow R_2 - R_3 \), we get
\( = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = \text{RHS} \)
Question. Using properties of determinant, prove the following: \[ \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = ab+bc+ca+abc \]
OR
If \( a, b \) and \( c \) are all non-zero and \( \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0 \), then prove that \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0 \).
Answer: LHS \( = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} \)
\( = abc \begin{vmatrix} \frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1 \end{vmatrix} \) [Taking out \( a, b, c \) common from \( R_1, R_2 \) and \( R_3 \)]
\( = abc \begin{vmatrix} \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 & \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 & \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1 \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
\( = abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \right) \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1 \end{vmatrix} \)
Applying \( C_2 \rightarrow C_2 - C_1; C_3 \rightarrow C_3 - C_1 \), we get
\( = abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \right) \begin{vmatrix} 1 & 0 & 0 \\ \frac{1}{b} & 1 & 0 \\ \frac{1}{c} & 0 & 1 \end{vmatrix} = abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \right) \times \{1(1-0) - 0 + 0\} \)
\( = abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 \right) = ab+bc+ca+abc = \text{RHS} \)
OR
\( \because \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0 \Rightarrow abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 \right) = 0 \Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0 \) [\( a, b, c \) are non-zero]
Question. Using properties of determinants, show the following: \[ \begin{vmatrix} (b+c)^2 & ab & ca \\ ab & (a+c)^2 & bc \\ ac & bc & (a+b)^2 \end{vmatrix} = 2abc(a+b+c)^3 \]
Answer: LHS \( = \begin{vmatrix} (b+c)^2 & ab & ca \\ ab & (a+c)^2 & bc \\ ac & bc & (a+b)^2 \end{vmatrix} \)
Multiplying \( R_1, R_2 \) and \( R_3 \) by \( a, b \) and \( c \) respectively, we get
\( = \frac{1}{abc} \begin{vmatrix} a(b+c)^2 & ba^2 & a^2c \\ ab^2 & b(a+c)^2 & b^2c \\ ac^2 & bc^2 & c(a+b)^2 \end{vmatrix} \)
\( = \frac{1}{abc} abc \begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (a+c)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} \) [Taking common \( a, b \) and \( c \) from \( C_1, C_2 \) and \( C_3 \) respectively]
Applying \( C_1 \rightarrow C_1 - C_3 \) and \( C_2 \rightarrow C_2 - C_3 \), we get
\( = \begin{vmatrix} (b+c)^2-a^2 & 0 & a^2 \\ 0 & (a+c)^2-b^2 & b^2 \\ c^2-(a+b)^2 & c^2-(a+b)^2 & (a+b)^2 \end{vmatrix} \)
\( = \begin{vmatrix} (b+c+a)(b+c-a) & 0 & a^2 \\ 0 & (a+c+b)(a+c-b) & b^2 \\ (c+a+b)(c-a-b) & (c+a+b)(c-a-b) & (a+b)^2 \end{vmatrix} \)
\( = (a+b+c)^2 \begin{vmatrix} b+c-a & 0 & a^2 \\ 0 & a+c-b & b^2 \\ c-a-b & c-a-b & (a+b)^2 \end{vmatrix} \) [Taking common \( (a+b+c) \) from \( C_1 \) and \( C_2 \)]
\( = (a+b+c)^2 \begin{vmatrix} b+c-a & 0 & a^2 \\ 0 & a+c-b & b^2 \\ -2b & -2a & 2ab \end{vmatrix} \) [\( R_3 \rightarrow R_3 - (R_1 + R_2) \)]
\( = \frac{(a+b+c)^2}{ab} \begin{vmatrix} ab+ac-a^2 & 0 & a^2 \\ 0 & bc+ba-b^2 & b^2 \\ -2ab & -2ab & 2ab \end{vmatrix} \) [Multiplying \( a \) in \( C_1 \) and \( b \) in \( C_2 \)]
\( = \frac{(a+b+c)^2}{ab} \begin{vmatrix} ab+ac & a^2 & a^2 \\ b^2 & bc+ba & b^2 \\ 0 & 0 & 2ab \end{vmatrix} \) [\( C_1 \rightarrow C_1 + C_3 \) and \( C_2 \rightarrow C_2 + C_3 \)]
\( = \frac{(a+b+c)^2}{ab} . ab . 2ab \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ 0 & 0 & 1 \end{vmatrix} \) [Taking \( a, b \) and \( 2ab \) common from \( R_1, R_2 \) and \( R_3 \) respectively]
\( = 2ab(a+b+c)^2 \begin{vmatrix} b+c & a \\ b & c+a \end{vmatrix} \)
\( = 2ab(a+b+c)^2 \{(b+c)(c+a) - ab\} \)
\( = 2abc(a+b+c)^3 = \text{RHS} \)
Question. Using properties of determinant, show that: \[ \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc \]
Answer: LHS \( = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \)
\( = \begin{vmatrix} 2(b+c) & 2(c+a) & 2(a+b) \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
\( = 2 \begin{vmatrix} b+c & c+a & a+b \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \) [Taking 2 common from \( R_1 \)]
\( = 2 \begin{vmatrix} c & 0 & a \\ -c & 0 & -a \\ a+b & b+c & c+a \end{vmatrix} \) [Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \)]
\( = 2 \begin{vmatrix} 0 & c & b \\ -c & 0 & -a \\ -b & -a & 0 \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
Expanding along \( R_1 \), we get
\( = 2 [0 - c(0-ab) + b(ac-0)] = 2 [abc + abc] = 4abc = \text{RHS} \)
Question. Using properties of determinants, prove that \[ \begin{vmatrix} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{vmatrix} = 2(a-b)(b-c)(c-a)(a+b+c). \]
Answer: LHS \( = \begin{vmatrix} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{vmatrix} \)
\( = \begin{vmatrix} a^3 & 2 & a \\ b^3-a^3 & 0 & b-a \\ c^3-a^3 & 0 & c-a \end{vmatrix} \) [Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \)]
\( = (b-a)(c-a) \begin{vmatrix} a^3 & 2 & a \\ b^2+a^2+ab & 0 & 1 \\ c^2+a^2+ac & 0 & 1 \end{vmatrix} \) [Taking common \( (b-a) \) from \( R_2 \) and \( (c-a) \) from \( R_3 \)]
\( = (b-a)(c-a) \begin{vmatrix} a^3 & 2 & a \\ a^2+b^2+ab & 0 & 1 \\ c^2-b^2+ac-ab & 0 & 0 \end{vmatrix} \) [Applying \( R_3 \rightarrow R_3 - R_2 \)]
Expanding along \( R_3 \), we get
\( = (b-a)(c-a)(c^2-b^2+ac-ab) \times 2 = 2 (b-a)(c-a)(c-b)(c+b+a) \)
\( = 2 (a-b)(b-c)(c-a)(a+b+c) = \text{RHS} \)
Question. Using properties of determinant, prove that: \[ \begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3 \]
Answer: LHS \( = \begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} \)
Applying \( R_2 \rightarrow R_2 - 2R_1 \) and \( R_3 \rightarrow R_3 - 3R_1 \), we get
\( = \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 3a & 7a+3b \end{vmatrix} \)
Expanding along \( C_1 \), we get
\( = a[7a^2 + 3ab - 6a^2 - 3ab] = a \times a^2 = a^3 = \text{RHS} \)
Question. Using properties of determinant, prove the following: \[ \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} = (1-a^3)^2 \]
Answer: LHS \( = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} \)
\( = \begin{vmatrix} 1+a+a^2 & a+1+a^2 & a^2+a+1 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
\( = (1+a+a^2) \begin{vmatrix} 1 & 1 & 1 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix} \) [Taking out \( (1+a+a^2) \) from first row]
\( = (1+a+a^2) \begin{vmatrix} 0 & 1 & 1 \\ a^2-1 & 1 & a \\ a-a^2 & a^2 & 1 \end{vmatrix} \) [Applying \( C_1 \rightarrow C_1 - C_2 \)]
\( = (1+a+a^2) \begin{vmatrix} 0 & 0 & 1 \\ a^2-1 & 1-a & a \\ a-a^2 & a^2-1 & 1 \end{vmatrix} \) [Applying \( C_2 \rightarrow C_2 - C_3 \)]
Expanding along \( R_1 \), we have
\( = (1+a+a^2) [(a^2-1)^2 - a(1-a)^2] = (1+a+a^2) [(a+1)^2(a-1)^2 - a(a-1)^2] \)
\( = (1+a+a^2)(a-1)^2 [a^2+1+a] = (1+a+a^2)(a-1)^2 [a^2+1+a] \)
\( = (a-1)^2 (1+a+a^2)^2 = (1-a)^2 (1+a+a^2)^2 \)
\( = [(1-a)(1+a+a^2)]^2 = (1-a^3)^2 = \text{RHS} \)
Question. Prove that \[ \begin{vmatrix} yz-x^2 & zx-y^2 & xy-z^2 \\ zx-y^2 & xy-z^2 & yz-x^2 \\ xy-z^2 & yz-x^2 & zx-y^2 \end{vmatrix} \] is divisible by \( (x+y+z) \), and hence find the quotient.
Answer: We have \( \Delta = \begin{vmatrix} yz-x^2 & zx-y^2 & xy-z^2 \\ zx-y^2 & xy-z^2 & yz-x^2 \\ xy-z^2 & yz-x^2 & zx-y^2 \end{vmatrix} \)
Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get
\( \begin{vmatrix} xy+yz+zx-x^2-y^2-z^2 & zx-y^2 & xy-z^2 \\ xy+yz+zx-x^2-y^2-z^2 & xy-z^2 & yz-x^2 \\ xy+yz+zx-x^2-y^2-z^2 & yz-x^2 & zx-y^2 \end{vmatrix} \)
Taking \( (xy+yz+zx-x^2-y^2-z^2) \) common from \( C_1 \), we get
\( = (xy+yz+zx-x^2-y^2-z^2) \begin{vmatrix} 1 & zx-y^2 & xy-z^2 \\ 1 & xy-z^2 & yz-x^2 \\ 1 & yz-x^2 & zx-y^2 \end{vmatrix} \)
Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \), we get
\( = (xy+yz+zx-x^2-y^2-z^2) \begin{vmatrix} 1 & zx-y^2 & xy-z^2 \\ 0 & xy-z^2-zx+y^2 & yz-x^2-xy+z^2 \\ 0 & yz-x^2-zx+y^2 & zx-y^2-xy+z^2 \end{vmatrix} \)
\( = (xy+yz+zx-x^2-y^2-z^2) \begin{vmatrix} 1 & zx-y^2 & xy-z^2 \\ 0 & x(y-z)+(y^2-z^2) & y(z-x)+(z^2-x^2) \\ 0 & z(y-x)+(y^2-x^2) & x(z-y)+(z^2-y^2) \end{vmatrix} \)
\( = (xy+yz+zx-x^2-y^2-z^2) \begin{vmatrix} 1 & zx-y^2 & xy-z^2 \\ 0 & (y-z)\cdot(x+y+z) & (z-x)\cdot(x+y+z) \\ 0 & (y-x)\cdot(x+y+z) & (z-y)\cdot(x+y+z) \end{vmatrix} \)
Taking \( (x+y+z) \) common from \( R_2 \) and \( R_3 \), we get
\( = (xy+yz+zx-x^2-y^2-z^2)(x+y+z)^2 \begin{vmatrix} 1 & zx-y^2 & xy-z^2 \\ 0 & y-z & z-x \\ 0 & y-x & z-y \end{vmatrix} \)
\( = (xy+yz+zx-x^2-y^2-z^2)(x+y+z)^2 \{1 . (yz-y^2-z^2+zy-yz+xy+xz-x^2)\} \)
\( = (xy+yz+zx-x^2-y^2-z^2)^2 (x+y+z)^2 \)
Hence, \( \begin{vmatrix} yz-x^2 & zx-y^2 & xy-z^2 \\ zx-y^2 & xy-z^2 & yz-x^2 \\ xy-z^2 & yz-x^2 & zx-y^2 \end{vmatrix} \) is divisible by \( (x+y+z) \)
and quotient is \( (xy+yz+zx-x^2-y^2-z^2)^2 (x+y+z) \).
Question. If \( a, b, c \) are real numbers, then prove that \[ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = -(a+b+c)(a+b\omega+c\omega^2)(a+b\omega^2+c\omega) \] where \( \omega \) is a complex number and cube root of unity.
Answer: LHS \( = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \)
\( = \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} \) [Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \)]
\( = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} \) [Taking out \( (a+b+c) \) from \( C_1 \)]
\( = (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix} \) [Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \)]
\( = (a+b+c) \begin{vmatrix} c-b & a-c \\ a-b & b-c \end{vmatrix} \) [Expanding along \( C_1 \)]
\( = (a+b+c) \{-(b-c)^2 - (a-c)(a-b)\} \)
\( = -(a+b+c)(a^2+b^2+c^2-ab-bc-ca) \) and
RHS \( = -(a+b+c)(a+b\omega+c\omega^2)(a+b\omega^2+c\omega) \)
\( = -(a+b+c)(a^2+ab\omega^2+ac\omega+ab\omega+b^2\omega^3+bc\omega^2+ac\omega^2+bc\omega^4+c^2\omega^3) \)
\( = -(a+b+c)[a^2+b^2+c^2+ab(\omega^2+\omega)+bc(\omega^2+\omega^4)+ca(\omega+\omega^2)] \) [\( \because \omega^3=1 \)]
\( = -(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = \text{LHS} \) [\( \because \omega^2+\omega+1=0 \) and \( \omega^4=\omega^3.\omega=\omega \)]
Question. Let \( f(t) = \begin{vmatrix} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{vmatrix} \), then find \( \lim_{t \to 0} \frac{f(t)}{t^2} \).
Answer: Given, \( f(t) = \begin{vmatrix} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{vmatrix} = \begin{vmatrix} \cos t & t & 1 \\ 0 & -t & 0 \\ \sin t & t & t \end{vmatrix} \) [Applying \( R_2 \rightarrow R_2 - 2R_3 \)]
\( = -t \begin{vmatrix} \cos t & 1 \\ \sin t & t \end{vmatrix} \)
Expanding along \( R_2 \), we get
\( t [(-1) (t \cos t - \sin t)] = -t^2 \cos t + t \sin t \)
\( \therefore \lim_{t \to 0} \frac{f(t)}{t^2} = \lim_{t \to 0} \frac{-t^2 \cos t + t \sin t}{t^2} = \lim_{t \to 0} \left( \frac{-t^2 \cos t}{t^2} + \frac{t \sin t}{t^2} \right) \)
\( = \lim_{t \to 0} \left( -\cos t + \frac{\sin t}{t} \right) = -1 + \lim_{t \to 0} \frac{\sin t}{t} = -1 + 1 = 0 \)
Question. Prove that \( \begin{vmatrix} bc - a^2 & ca - b^2 & ab - c^2 \\ ca - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ca - b^2 \end{vmatrix} \) is divisible by \( (a + b + c) \) and find the quotient.
Answer: \( (3abc - a^3 - b^3 - c^3) \)
Question. If \( a \neq b \neq c \) and \( \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \), then using properties of determinants, prove that \( a + b + c = 0 \).
Answer: By applying \( C_1 \to C_1 + C_2 + C_3 \), we get \( (a + b + c) \) as a common factor in the first column. The remaining determinant is \( (a^2 + b^2 + c^2 - ab - bc - ca) \), which cannot be zero as \( a \neq b \neq c \). Thus, \( a + b + c = 0 \).
Question. Find the equation of the line joining \( A(1, 3) \) and \( B(0, 0) \) using determinants and find \( k \) if \( D(k, 0) \) is a point such that the area of \( \triangle ABD \) is 3 sq units.
Answer: \( 3x - y = 0 \); \( k = \pm 2 \)
Question. Using properties of determinants, prove the following: \( \begin{vmatrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{vmatrix} = xyz + xy + yz + zx \)
Answer: Divide \( R_1, R_2, R_3 \) by \( x, y, z \) respectively and take \( xyz \) common. The determinant then simplifies to \( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \), which equals \( xyz + xy + yz + zx \).
Question. Show that: \( \begin{vmatrix} 3x & -x + y & -x + z \\ x - y & 3y & z - y \\ x - z & y - z & 3z \end{vmatrix} = 3(x + y + z)(xy + yz + xz) \)
Answer: Use property \( C_1 \to C_1 + C_2 + C_3 \). Taking \( (x + y + z) \) common from \( C_1 \) and applying row operations leads to \( 3(x + y + z)(xy + yz + xz) \).
Question. Using properties of determinants, prove that : \( \begin{vmatrix} 1 & 1 & 1 + 3x \\ 1 + 3y & 1 & 1 \\ 1 & 1 + 3z & 1 \end{vmatrix} = 9(3xyz + xy + yz + zx) \)
Answer: Applying \( C_1 \to C_1 - C_2 \) and \( C_3 \to C_3 - C_2 \), then expanding the determinant results in \( 9(3xyz + xy + yz + zx) \).
Question. Using properties of determinant, prove that: \( \begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3 \)
Answer: Applying \( R_1 \to R_1 - R_2 \) and \( R_2 \to R_2 - R_3 \) creates \( (a - 1) \) factors in the rows, leading to \( (a - 1)^3 \).
Question. If \( f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix} \), using properties of determinants, find the value of \( f(2x) - f(x) \).
Answer: \( ax(2a + 3x) \)
Question. Using the properties of determinants, solve the following for \( x \) : \( \begin{vmatrix} x + 2 & x + 6 & x - 1 \\ x + 6 & x - 1 & x + 2 \\ x - 1 & x + 2 & x + 6 \end{vmatrix} = 0 \)
Answer: \( x = -\frac{7}{3} \)
Question. Using the properties of determinants, prove the following: \( \begin{vmatrix} 1 & x & x + 1 \\ 2x & x(x - 1) & x(x + 1) \\ 3x(x - 1) & x(x - 1)(x - 2) & x(x + 1)(x - 1) \end{vmatrix} = 6x^2(1 - x^2) \)
Answer: Taking common factors from columns and rows and applying property \( R_2 \to R_2 - 2xR_1 \) helps in evaluating to \( 6x^2(1 - x^2) \).
Question. If \( x, y, z \) are in GP, then using properties of determinants, show that \( \begin{vmatrix} px + y & x & y \\ py + z & y & z \\ 0 & px + y & py + z \end{vmatrix} = 0 \), where \( x \neq y \neq z \) and \( p \) is any real number.
Answer: Since \( x, y, z \) are in GP, \( y^2 = xz \). Applying \( C_1 \to C_1 - (pC_2 + C_3) \), the first column becomes zero due to the GP property, making the determinant 0.
Question. Using properties of determinants, prove that \( \begin{vmatrix} 1 & 1 + p & 1 + p + q \\ 3 & 4 + 3p & 2 + 4p + 3q \\ 4 & 7 + 4p & 2 + 7p + 4q \end{vmatrix} = 1 \)
Answer: Applying \( R_2 \to R_2 - 3R_1 \) and \( R_3 \to R_3 - 4R_1 \), then simplifying row 3, evaluates the determinant to 1.
Question. Without expanding the determinant at any stage, prove that \( \begin{vmatrix} 0 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & 0 \end{vmatrix} = 0 \).
Answer: The determinant is of a skew-symmetric matrix of odd order (3), hence its value is 0.
Question. Using properties of determinants, prove that: \( \begin{vmatrix} (b + c)^2 & a^2 & bc \\ (c + a)^2 & b^2 & ca \\ (a + b)^2 & c^2 & ab \end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c)(a^2 + b^2 + c^2) \)
Answer: Expanding \( (b+c)^2 = b^2 + c^2 + 2bc \) and applying properties like \( C_1 \to C_1 - C_2 - 2C_3 \) and row subtractions proves the identity.
Question. Using properties of determinants, prove the following: \( \begin{vmatrix} x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x \end{vmatrix} = 9y^2(x + y) \)
Answer: Applying \( R_1 \to R_1 + R_2 + R_3 \) makes the first row \( 3(x + y) \). Then taking \( 3(x + y) \) common and applying row operations results in \( 9y^2(x + y) \).
Question. Using properties of determinants, prove that \( \begin{vmatrix} b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{vmatrix} = 4abc \)
Answer: Applying \( R_1 \to R_1 - (R_2 + R_3) \) results in a row with zeros and then expanding leads to \( 4abc \).
Choose and write the correct option in the following questions.
Question. If \( x, y \in R \), then the determinant \( \Delta = \begin{vmatrix} \cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ \cos (x + y) & -\sin (x + y) & 0 \end{vmatrix} \) lies in the interval
(a) \( [-\sqrt{2}, \sqrt{2}] \)
(b) \( [-1, 1] \)
(c) \( [-\sqrt{2}, 1] \)
(d) \( [-1, -\sqrt{2}] \)
Answer: (a)
Question. The value of \( \begin{vmatrix} \sin 10^\circ & -\cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ \end{vmatrix} \) is
(a) 0
(b) 1
(c) -1
(d) \( \frac{1}{2} \)
Answer: (b)
Question. The value(s) of \( k \) if area of triangle with vertices \( (-2, 0), (0, 4) \) and \( (0, k) \) is 4 sq. units is
(a) 0, 4
(b) -8
(c) 0, 8
(d) 0 only
Answer: (c)
Question. The value of \( x \) for which the matrix \( \begin{bmatrix} 5 - x & x + 1 \\ 2 & 4 \end{bmatrix} \) is singular, is
(a) 0
(b) 1
(c) 2
(d) 3
Answer: (d)
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 4 Determinants Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 4 Determinants as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 4 Determinants Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 4 Determinants on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 4 Determinants is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 4 Determinants come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 4 Determinants these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 4 Determinants Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 4 Determinants VBQs in a mobile-friendly PDF format for free.