Read and download the CBSE Class 12 Mathematics Determinants VBQs Set A. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 4 Determinants
For Class 12 students, Value Based Questions for Chapter 4 Determinants help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 4 Determinants Class 12 Mathematics VBQ Questions with Answers
BASIC CONCEPTS
1. Determinant: Every square matrix can be associated to an expression or a number which is known as its determinant.
Determinant of square matrix \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \) is given by
\( |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \)
and determinant of a matrix \( A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \) is given by
\( |A| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \)
This is known as the expansion of \( |A| \) along first row.
In fact, \( |A| \) can be expanded along any of its rows or columns.
2. Singular and Non-singular Matrix: A square matrix is a singular matrix if its determinant is zero. Otherwise, it is a non-singular matrix.
3. (i) Minor: Let \( A = [a_{ij}] \) be a square matrix of order \( n \). Then the minor \( M_{ij} \) of \( a_{ij} \) in \( A \) is the determinant of the sub-matrix of order \( (n - 1) \) obtained by leaving \( i^{th} \) row and \( j^{th} \) column of \( A \).
For example, if \( A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & -1 \\ 2 & -4 & 3 \end{bmatrix} \), then
\( M_{11} = \begin{vmatrix} 2 & -1 \\ -4 & 3 \end{vmatrix} = 2, M_{12} = \begin{vmatrix} -3 & -1 \\ 2 & 3 \end{vmatrix} = -7 \) and so on.
(ii) Cofactor: The cofactor \( C_{ij} \) of \( a_{ij} \) in \( A = [a_{ij}]_{n \times n} \) is equal to \( (-1)^{i+j} \) times \( M_{ij} \).
For example, if \( A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & -1 \\ 2 & -4 & 3 \end{bmatrix} \), then
\( C_{11} = (-1)^{1+1} M_{11} = M_{11} = 2 \) and \( C_{12} = (-1)^{1+2} M_{12} = -M_{12} = 7 \) and so on.
Some Important Properties of Determinants:
(i) Let \( A = [a_{ij}] \) be a square matrix of order \( n \), then the sum of the product of elements of any row (column) with their cofactors is always equal to \( |A| \) or, \( \text{det}(A) \), i.e.,
\( \sum_{j=1}^n a_{ij}C_{ij} = |A| \) and \( \sum_{i=1}^n a_{ij}C_{ij} = |A| \)
(ii) Let \( A = [a_{ij}] \) be a square matrix of order \( n \), then the sum of the product of elements of any row (column) with cofactors of the corresponding elements of some other row (column) is zero, i.e.,
\( \sum_{j=1}^n a_{ij}C_{kj} = 0 \) and \( \sum_{i=1}^n a_{ij}C_{ik} = 0 \), \( i \neq k \) or \( j \neq k \)
(iii) Let \( A = [a_{ij}] \) be a square matrix of order \( n \), then \( |A| = |A^T| \).
In other words, we say that the value of a determinant remains unchanged, if its rows and columns are interchanged.
(iv) Let \( A = [a_{ij}] \) be a square matrix of order \( n(n \geq 2) \) and \( B \) be a matrix obtained from \( A \) by interchanging any two rows (columns) of \( A \), then \( |B| = -|A| \).
(v) If any two rows (columns) of a square matrix \( A = [a_{ij}] \) of order \( n(n \geq 2) \) are identical, then value of its determinant is zero i.e., \( |A| = 0 \).
(vi) Let \( A = [a_{ij}] \) be a square matrix of order \( n \), and let \( B \) be the matrix obtained from \( A \) by multiplying each element of a row (column) of \( A \) by a scalar \( k \), then \( |B| = k|A| \).
(vii) Let \( A \) be a square matrix such that each element of a row (column) of \( A \) is expressed as the sum of two or more terms. Then the determinant of \( A \) can be expressed as the sum of the determinants of two or more matrices of the same order.
(viii) Let \( A \) be a square matrix and \( B \) be a matrix obtained from \( A \) by adding to a row (column) of \( A \) a scalar multiple of another row (column) of \( A \), then \( |B| = |A| \).
(ix) Let \( A \) be a square matrix of order \( n(n \geq 2) \) such that each element in a row (column) of \( A \) is zero, then \( |A| = 0 \).
(x) If \( A = [a_{ij}] \) is a diagonal matrix of order \( n(n \geq 2) \), then
\( |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn} \) i.e., \( |A| \) is the product of its diagonal elements.
(xi) If \( A \) and \( B \) are square matrices of the same order, then
\( |AB| = |A||B| \)
(xii) If \( A = [a_{ij}] \) is a triangular matrix of order \( n \), then
\( |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn} \) i.e., \( |A| \) is the product of its diagonal elements.
(xiii) If \( A = [a_{ij}] \) is a square matrix of order \( n \), then \( |kA| = k^n|A| \), because \( k \) is common from each row (or column) of \( kA \).
(xiv) We can take out any common factor from any one row or any one column of a given determinant.
5. Area of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \) and \( (x_3, y_3) \) is given by
\( \Delta = \text{Numerical value of } \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \)
Note: Since area is positive quantity therefore we take absolute value of \( \Delta \).
6. (i) If \( A \) is a skew-symmetric matrix of odd order, then \( |A| = 0 \).
(ii) The determinant of a skew-symmetric matrix of even order is a perfect square.
7. Some Important Facts:
(i) Only square matrices have determinants.
(ii) We cannot equate the corresponding elements of equal determinants like matrices
i.e., \( \begin{vmatrix} x & y \\ z & w \end{vmatrix} = \begin{vmatrix} l & m \\ n & p \end{vmatrix} \not\Rightarrow x = l, y = m, z = n, w = p \)
(iii) In the case of matrices, we take out any common factor from each elements of matrix, while in the case of determinants we can take out common factor from any one row or any one column of the determinant.
(iv) If the value of determinant '\( \Delta \)' becomes zero by substituting \( x = a \) then \( (x - a) \) is factor of the determinant '\( \Delta \)'.
(v) If area is given then both positive and negative values of the determinant is taken for calculation.
(vi) To prove three points collinear, we show area of the triangle formed by these three points is zero.
Selected NCERT Questions
Question. If \( A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} \), then show that \( |2A| = 4|A| \).
Answer: We have,
\( A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix} \)
\( \therefore \text{LHS} = |2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 8 - 32 = -24 \)
\( \text{RHS} = 4|A| = 4 \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 4(2 - 8) = 4 \times (-6) = -24 \)
\( \therefore \text{LHS} = \text{RHS} \)
Hence Proved
Question. By using properties of determinant in problems 2 to 5 prove that:
\( \begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2 \).
Answer: \( \text{LHS} = \Delta = \begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} \)
Taking \( a, b \) and \( c \) common from \( R_1, R_2 \) and \( R_3 \) respectively, we get
\( \Delta = abc \begin{vmatrix} -a & b & c \\ a & -b & c \\ a & b & -c \end{vmatrix} \)
Taking \( a, b \) and \( c \) common from \( C_1, C_2 \) and \( C_3 \) respectively, we get
\( \Delta = a^2b^2c^2 \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \)
Operating \( R_2 \rightarrow R_2 + R_1 \) and \( R_3 \rightarrow R_3 + R_1 \), we get
\( \Delta = a^2b^2c^2 \begin{vmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{vmatrix} \)
Interchanging \( C_2 \) and \( C_3 \), we get
\( \Delta = (-1) a^2b^2c^2 \begin{vmatrix} -1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} \)
Since the determinant of a triangular matrix is product of its diagonal elements.
\( = (-1) a^2b^2c^2 (-1) \times (2) \times (2) = 4a^2b^2c^2 = \text{RHS} \)
Question. Prove that \( \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c) \).
Answer: \( \text{LHS} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} \)
Operating \( C_2 \rightarrow C_2 - C_1 \) and \( C_3 \rightarrow C_3 - C_1 \), we get
\( = \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^3 & b^3 - a^3 & c^3 - a^3 \end{vmatrix} \)
Taking \( (b - a) \) and \( (c - a) \) common from \( C_2 \) and \( C_3 \), we get
\( = (b - a)(c - a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^3 & b^2 + ba + a^2 & c^2 + ca + a^2 \end{vmatrix} \)
Operating \( C_3 \rightarrow C_3 - C_2 \), we get
\( = (b - a)(c - a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ a^3 & b^2 + ba + a^2 & c^2 + ca - b^2 - ba \end{vmatrix} \)
Expanding along \( R_1 \), we get
\( = (b - a)(c - a)(c^2 + ca - b^2 - ba) = (b - a)(c - a)[c^2 - b^2 + a(c - b)] \)
\( = (b - a)(c - a)[(c - b)(c + b) + a(c - b)] = (b - a)(c - a)(c - b)[c + b + a] \)
\( = (a - b)(b - c)(c - a)(a + b + c) = \text{RHS} \).
Question. Prove that \( \begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx) \).
Answer: \( \text{LHS} = \begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} \)
Operating \( R_1 \rightarrow R_1 - R_3 \) and \( R_2 \rightarrow R_2 - R_3 \), we get
\( = \begin{vmatrix} x - z & x^2 - z^2 & yz - xy \\ y - z & y^2 - z^2 & zx - xy \\ z & z^2 & xy \end{vmatrix} = \begin{vmatrix} (x - z) & (x - z)(x + z) & -y(x - z) \\ (y - z) & (y - z)(y + z) & -x(y - z) \\ z & z^2 & xy \end{vmatrix} \)
Taking \( (x - z) \) and \( (y - z) \) common from \( R_1 \) and \( R_2 \), we get
\( = (x - z)(y - z) \begin{vmatrix} 1 & x + z & -y \\ 1 & y + z & -x \\ z & z^2 & xy \end{vmatrix} \)
Operating \( R_2 \rightarrow R_2 - R_1 \), and \( R_3 \rightarrow R_3 - zR_1 \), we get
\( = (x - z)(y - z) \begin{vmatrix} 1 & x + z & -y \\ 0 & y - x & y - x \\ 0 & -xz & xy + yz \end{vmatrix} \)
Expanding along \( R_1 \), we get
\( = (x - z)(y - z)[(y - x)(xy + yz) + xz(y - x)] \)
\( = (x - y)(y - z)(z - x)(xy + yz + zx) = \text{RHS} \)
Question. Prove that \( \begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} = (a + b + c)^3 \)
Answer: \( \text{LHS} = \begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \)
Operating \( R_1 \rightarrow R_1 + R_2 + R_3 \), we get
\( = \begin{vmatrix} a + b + c & a + b + c & a + b + c \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \)
Taking \( (a + b + c) \) common from first row, we get
\( = (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \)
Operating \( C_2 \rightarrow C_2 - C_1 \) and \( C_3 \rightarrow C_3 - C_1 \), we get
\( = (a + b + c) \begin{vmatrix} 1 & 0 & 0 \\ 2b & -c - a - b & 0 \\ 2c & 0 & -a - b - c \end{vmatrix} \)
Since determinant of a triangular matrix is equal to product of its diagonal elements
\( \therefore = (a + b + c)(a + b + c)(a + b + c) = (a + b + c)^3 = \text{RHS} \)
Question. By using properties of determinant, show that:
\( \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} = (1 + a^2 + b^2)^3 \)
Answer: \( \text{LHS} = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \)
Applying \( C_1 \rightarrow C_1 - bC_3 \), and \( C_2 \rightarrow C_2 + aC_3 \), we get
\( = \begin{vmatrix} (1 + a^2 + b^2) & 0 & -2b \\ 0 & (1 + a^2 + b^2) & 2a \\ b(1 + a^2 + b^2) & -a(1 + a^2 + b^2) & 1 - a^2 - b^2 \end{vmatrix} \)
Taking out \( (1 + a^2 + b^2) \) from \( C_1 \) and \( C_2 \) column, we get
\( = (1 + a^2 + b^2)^2 \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ b & -a & 1 - a^2 - b^2 \end{vmatrix} \)
Applying \( R_3 \rightarrow R_3 - bR_1 \), we get
\( = (1 + a^2 + b^2)^2 \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ 0 & -a & 1 - a^2 + b^2 \end{vmatrix} \)
Expanding along first column, we get
\( = (1 + a^2 + b^2)^2 [1 - a^2 + b^2 + 2a^2] \)
\( = (1 + a^2 + b^2)^2 (1 + a^2 + b^2) = (1 + a^2 + b^2)^3 = \text{RHS} \)
Question. By using properties of determinant, show that:
\( \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2 \)
Answer: \( \text{LHS} = \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \)
\( = \frac{abc}{abc} \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \) [Multiplying and dividing by \( abc \)]
Multiplying \( a \) in \( C_1 \), \( b \) in \( C_2 \) and \( c \) in \( C_3 \), we get
\( = \frac{1}{abc} \begin{vmatrix} a^3 + a & ab^2 & ac^2 \\ a^2b & b^3 + b & bc^2 \\ a^2c & b^2c & c^3 + c \end{vmatrix} \)
Taking \( a, b \) and \( c \) common from \( R_1, R_2 \) and \( R_3 \) respectively, we get
\( = \frac{abc}{abc} \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ a^2 & b^2 + 1 & c^2 \\ a^2 & b^2 & c^2 + 1 \end{vmatrix} \)
Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get
\( = \begin{vmatrix} 1 + a^2 + b^2 + c^2 & b^2 & c^2 \\ 1 + a^2 + b^2 + c^2 & b^2 + 1 & c^2 \\ 1 + a^2 + b^2 + c^2 & b^2 & c^2 + 1 \end{vmatrix} \)
Taking \( (1 + a^2 + b^2 + c^2) \) common from \( C_1 \), we get
\( = (1 + a^2 + b^2 + c^2) \begin{vmatrix} 1 & b^2 & c^2 \\ 1 & b^2 + 1 & c^2 \\ 1 & b^2 & c^2 + 1 \end{vmatrix} \)
Applying \( R_1 \rightarrow R_1 - R_3 \) and \( R_2 \rightarrow R_2 - R_3 \), we get
\( = (1 + a^2 + b^2 + c^2) \begin{vmatrix} 0 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & b^2 & c^2 + 1 \end{vmatrix} \)
Expanding along first column, we get
\( = (1 + a^2 + b^2 + c^2) [1(0 \times (-1) - 1 \times (-1))] = (1 + a^2 + b^2 + c^2) \times 1 = \text{RHS} \)
Hence Proved
Question. Prove that: \[\begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} = 4a^2b^2c^2\]
Answer: LHS \( = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} \)
\( = abc \begin{vmatrix} a & c & a + c \\ a + b & b & a \\ b & b + c & c \end{vmatrix} \) [Taking out \( a, b, c \) from \( C_1, C_2 \) and \( C_3 \)]
\( = abc \begin{vmatrix} 0 & c & a + c \\ 2b & b & a \\ 2b & b + c & c \end{vmatrix} \) [Applying \( C_1 \rightarrow C_1 + C_2 - C_3 \)]
\( = 2ab^2c \begin{vmatrix} 0 & c & a + c \\ 1 & b & a \\ 1 & b + c & c \end{vmatrix} \) [Taking out \( 2b \) from \( C_1 \)]
\( = 2ab^2c \begin{vmatrix} 0 & c & a + c \\ 0 & -c & a - c \\ 1 & b + c & c \end{vmatrix} \) [Applying \( R_2 \rightarrow R_2 - R_3 \)]
\( = 2ab^2c \cdot 1 \cdot \begin{vmatrix} c & a + c \\ -c & a - c \end{vmatrix} = 2ab^2c (ac - c^2 + ac + c^2) \) [Expanding by \( I \) column]
\( = 2ab^2c(2ac) = 4a^2b^2c^2 = \text{RHS} \)
Question. Prove: \[\begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix} = (1 + pxyz)(x - y)(y - z)(z - x)\]
Answer: LHS \( \Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix} \)
\( = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + \begin{vmatrix} x & x^2 & px^3 \\ y & y^2 & py^3 \\ z & z^2 & pz^3 \end{vmatrix} = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + xyz \begin{vmatrix} 1 & x & px^2 \\ 1 & y & py^2 \\ 1 & z & pz^2 \end{vmatrix} \) [Taking common \( x, y, z \) from \( R_1, R_2, R_3 \) respectively]
\( = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + (xyz)p \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} \) [Taking \( p \) common from \( C_3 \)]
By changing (transforming) column to column in first determinant, we get
\( = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} + pxyz \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (1 + pxyz) \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} \)
Applying \( R_1 \rightarrow R_1 - R_3 \) and \( R_2 \rightarrow R_2 - R_3 \), we get
\( = (1 + pxyz) \begin{vmatrix} 0 & x - z & x^2 - z^2 \\ 0 & y - z & y^2 - z^2 \\ 1 & z & z^2 \end{vmatrix} \)
Taking out \( (x - z), (y - z) \) from \( R_1 \) and \( R_2 \) respectively, we get
\( = (1 + pxyz)(x - z)(y - z) \begin{vmatrix} 0 & 1 & x + z \\ 0 & 1 & y + z \\ 1 & z & z^2 \end{vmatrix} \)
Expanding along \( C_1 \), we get
\( = (1 + pxyz)(x - z)(y - z) [y + z - x - z] \)
\( = (1 + pxyz)(x - y)(y - z)(z - x) = \text{RHS} \).
Question. If \( a, b \) and \( c \) are real numbers and \( \Delta = \begin{vmatrix} b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a \end{vmatrix} = 0 \), then show that either \( a + b + c = 0 \) or \( a = b = c \).
Answer: Given \( \Delta = \begin{vmatrix} b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a \end{vmatrix} \)
\( = \begin{vmatrix} 2(a + b + c) & 2(a + b + c) & 2(a + b + c) \\ c + a & a + b & b + c \\ a + b & b + c & c + a \end{vmatrix} \) [Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \)]
\( = 2(a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ c + a & a + b & b + c \\ a + b & b + c & c + a \end{vmatrix} \) [Taking common \( 2(a + b + c) \) from \( R_1 \)]
Applying \( C_1 \rightarrow C_1 - C_3 \) and \( C_2 \rightarrow C_2 - C_3 \), we get
\( = 2(a + b + c) \begin{vmatrix} 0 & 0 & 1 \\ a - b & a - c & b + c \\ a - c & b - a & c + a \end{vmatrix} \)
Expanding along \( R_1 \), we get
\( = 2(a + b + c) [(a - b)(b - a) - (a - c)(a - c)] \)
\( = 2(a + b + c) [ab - a^2 - b^2 + ab - (a^2 + c^2 - 2ac)] \)
\( = 2(a + b + c) [ab - a^2 - b^2 + ab - a^2 - c^2 + 2ac] \)
\( = 2(a + b + c) [-2a^2 - b^2 - c^2 + 2ab + 2ac] \)
\( = -2(a + b + c) [a^2 + b^2 + c^2 - ab - bc - ca] \)
\( = -(a + b + c) [2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca] \)
\( = -(a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2] \)
Now, given that \( \Delta = 0 \)
\( \Rightarrow \Delta = (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2] = 0 \)
So, either \( (a + b + c) = 0 \) or \( (a - b)^2 + (b - c)^2 + (c - a)^2 = 0 \) i.e., \( a = b = c \).
Question. Show that points \( A(a, b + c), B(b, c + a), C(c, a + b) \) are collinear.
Answer: We have,
Area of \( \Delta ABC = \frac{1}{2} \begin{vmatrix} a & b + c & 1 \\ b & c + a & 1 \\ c & a + b & 1 \end{vmatrix} \)
\( = \frac{1}{2} \begin{vmatrix} a & a + b + c & 1 \\ b & b + c + a & 1 \\ c & c + a + b & 1 \end{vmatrix} \) (Applying \( C_2 \rightarrow C_2 + C_1 \))
\( = \frac{1}{2} (a + b + c) \begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix} \) (Taking \( (a + b + c) \) common from \( C_2 \))
\( = \frac{1}{2} \times (a + b + c) \times 0 \) (\(\because C_2 = C_3\))
\( \Rightarrow \text{ar}(\Delta ABC) = 0 \)
Since area of \( \Delta ABC \) is zero, therefore points \( A, B \) and \( C \) are collinear.
Hence proved.
Multiple Choice Questions
Question. If \(\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}\), then \( x \) is equal to
(a) 6
(b) \(\pm 6\)
(c) \(- 6\)
(d) 0
Answer: (b)
Question. The value of determinant \(\begin{vmatrix} a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c \end{vmatrix}\)
(a) \( a^3 + b^3 + c^3 \)
(b) \( 3abc \)
(c) \( a^3 + b^3 + c^3 - 3abc \)
(d) None of these
Answer: (c)
Question. The area of a triangle with vertices \((-3, 0), (3, 0)\) and \((0, k)\) is 9 sq. units. The value of \( k \) will be
(a) 9
(b) 3
(c) \(-9\)
(d) 6
Answer: (b)
Question. If \( A, B \) and \( C \) are angles of a triangle, then the determinant \(\begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}\) is equal to
(a) 0
(b) \(-1\)
(c) 1
(d) None of these
Answer: (a)
Question. If \( f(x) = \begin{vmatrix} 0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0 \end{vmatrix}\), then
(a) \( f(a) = 0 \)
(b) \( f(b) = 0 \)
(c) \( f(0) = 0 \)
(d) \( f(1) = 0 \)
Answer: (c)
Question. If \( x, y, z \) are all different from zero and \(\begin{vmatrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{vmatrix} = 0\), then value of \( x^{-1} + y^{-1} + z^{-1} \) is
(a) \( xyz \)
(b) \( x^{-1} y^{-1} z^{-1} \)
(c) \(-x -y -z\)
(d) \(-1\)
Answer: (d)
Question. There are two values of \( a \) which makes determinant \( \Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86 \), then sum of these numbers is
(a) 4
(b) 5
(c) \(- 4\)
(d) 9
Answer: (c)
Question. If \( A \) is a non-singular square matrix of order 3 such that \( A^2 = 3A \), then value of \( |A| \) is
(a) \(-3\)
(b) 3
(c) 9
(d) 27
Answer: (d)
Question. If \(\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0\), then the value of \( x \) is
(a) 3
(b) 0
(c) \(-1\)
(d) 1
Answer: (c)
Question. The value of the determinant \(\begin{vmatrix} x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x \end{vmatrix}\) is
(a) \( 9x^2(x + y) \)
(b) \( 9y^2(x + y) \)
(c) \( 3y^2(x + y) \)
(d) \( 7x^2(x + y) \)
Answer: (b)
Question. If \( a, b, c \) are in AP, then the value of determinant \( \Delta = \begin{vmatrix} x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c \end{vmatrix}\) is
(a) 0
(b) 1
(c) \( x \)
(d) \( 2x \)
Answer: (a)
Question. The value of \(\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}\) is
(a) \((a - b)(b - c)(c - a)\)
(b) \((b - a)(c - b)(c - a)\)
(c) \( a(b - c)(c - a) \)
(d) None of these
Answer: (a)
Question. The value of \(\begin{vmatrix} 0 & a - b & a - c \\ b - a & 0 & b - c \\ c - a & c - b & 0 \end{vmatrix}\) is
(a) \( a \)
(b) \( b \)
(c) 0
(d) None of these
Answer: (c)
Question. The value of \(\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix}\) is
(a) 1
(b) \(-1\)
(c) 0
(d) \( \omega \)
Answer: (c)
Question. If area of triangle is 35 sq units with vertices \((2, -6), (5, 4)\) and \((k, 4)\), then \( k \) is
(a) 12
(b) \(-2\)
(c) \(-12, -2\)
(d) \( 12, -2 \)
Answer: (d)
Question. Let \( A \) be a square matrix of order \( 3 \times 3 \), then \( |KA| \) is equal to
(a) \( K|A| \)
(b) \( K^2|A| \)
(c) \( K^3|A| \)
(d) \( 3K|A| \)
Answer: (c)
Question. The value of \(\begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix}\) is
(a) 0
(b) 1
(c) \(-1\)
(d) None
Answer: (a)
Question. The value of \(\begin{vmatrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{vmatrix}\) is
(a) 1
(b) 0
(c) \( a + b \)
(d) \( a - b \)
Answer: (b)
Question. If \( \Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \) and \( A_{ij} \) is cofactors of \( a_{ij} \), then value of \( \Delta \) is given by
(a) \( a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33} \)
(b) \( a_{11} A_{11} + a_{12} A_{21} + a_{13} A_{31} \)
(c) \( a_{21} A_{11} + a_{22} A_{12} + a_{23} A_{13} \)
(d) \( a_{11} A_{11} + a_{21} A_{21} + a_{31} A_{31} \)
Answer: (d)
Question. If \( A \) is a \( 3 \times 3 \) matrix such that \( |A| = 8 \), then \( |3A| \) equals
(a) 8
(b) 24
(c) 72
(d) 216
Answer: (d)
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 4 Determinants Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 4 Determinants as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 4 Determinants Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 4 Determinants on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 4 Determinants is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 4 Determinants come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 4 Determinants these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 4 Determinants Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 4 Determinants VBQs in a mobile-friendly PDF format for free.