Read and download the CBSE Class 12 Mathematics Integrals VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 7 Integrals
For Class 12 students, Value Based Questions for Chapter 7 Integrals help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 7 Integrals Class 12 Mathematics VBQ Questions with Answers
Fill in the Blanks
Question. \( \int_0^{\pi/2} \frac{\sin^n x \, dx}{\sin^n x + \cos^n x} = \) _____________ .
Answer: \( \frac{\pi}{4} \)
Question. \( \int_0^{\pi/2} \cos x e^{\sin x} dx = \) _____________ .
Answer: \( e - 1 \)
Question. \( \int e^{\tan^{-1} x} \left( 1 + \frac{x}{1 + x^2} \right) dx = \) _____________ .
Answer: \( x e^{\tan^{-1} x} + C \)
Question. A primitive of \( |x| \), when \( x < 0 \) is _____________ .
Answer: \( -\frac{1}{2} x^2 + C \)
Question. The value of \( \int_{-\pi}^\pi \sin^3 x \cos^2 x \, dx = \) _____________ .
Answer: 0
Very Short Answer Questions
Question. Evaluate: \( \int \frac{dx}{9 + 4x^2} \)
Answer: \( \int \frac{dx}{9 + 4x^2} = \frac{1}{4} \int \frac{dx}{\frac{9}{4} + x^2} = \frac{1}{4} \int \frac{dx}{(\frac{3}{2})^2 + x^2} \)
\( = \frac{1}{4} \cdot \frac{1}{3/2} \tan^{-1} (\frac{x}{3/2}) + C \)
\( = \frac{1}{6} \tan^{-1} (\frac{2x}{3}) + C \)
Question. Find: \( \int \frac{2^{x+1} - 5^{x-1}}{10^x} dx \)
Answer: \( \int \frac{2^{x+1} - 5^{x-1}}{10^x} dx = \int \frac{2^{x+1}}{(5 \times 2)^x} dx - \int \frac{5^{x-1}}{(5 \times 2)^x} dx \)
\( = \int \frac{2^x \times 2}{5^x \times 2^x} dx - \int \frac{5^x \times \frac{1}{5}}{5^x \times 2^x} dx \)
\( = 2 \int 5^{-x} dx - \frac{1}{5} \int 2^{-x} dx = \frac{-2 \times 5^{-x}}{\log 5} - \frac{1}{5} \times \frac{-2^{-x}}{\log 2} + C \)
\( = \frac{-2}{\log 5} 5^{-x} + \frac{1}{5} \times \frac{2^{-x}}{\log 2} + C \)
\( = \frac{1}{5 \log 2 \cdot 2^x} - \frac{2}{\log 5 \cdot 5^x} + C \)
Question. \( \int \frac{(x^2 + 2)}{x + 1} dx \)
Answer: Let \( I = \int \frac{x^2 + 2}{x + 1} dx = \int (x - 1 + \frac{3}{x + 1}) dx \)
\( = \int (x - 1) dx + 3 \int \frac{1}{x + 1} dx \)
\( = \frac{x^2}{2} - x + 3 \log |x + 1| + C \)
Question. Evaluate: \( \int \sec^2 (7 - x) dx \)
Answer: \( \int \sec^2 (7 - x) dx = \frac{\tan (7 - x)}{-1} + C = -\tan (7 - x) + C \)
Question. Evaluate: \( \int \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx \)
Answer: Let \( \sqrt{x} = z \Rightarrow \frac{1}{2\sqrt{x}} dx = dz \Rightarrow \frac{dx}{\sqrt{x}} = 2dz \)
\( \therefore \int \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx = 2 \int \sec^2 z \, dz = 2 \tan z + C = 2 \tan \sqrt{x} + C \)
Question. Evaluate: \( \int \frac{dx}{x + x \log x} \)
Answer: Let \( I = \int \frac{dx}{x(1 + \log x)} \)
Put \( 1 + \log x = z \Rightarrow \frac{1}{x} dx = dz \)
\( \therefore I = \int \frac{dz}{z} = \log |z| + C = \log |1 + \log x| + C \)
Question. If \( \int_0^a \frac{dx}{1 + 4x^2} = \frac{\pi}{8} \), then find the value of \( a \).
Answer: We have, \( \int_0^a \frac{dx}{1 + 4x^2} = \frac{\pi}{8} \)
\( \Rightarrow \frac{1}{4} \int_0^a \frac{dx}{\frac{1}{4} + x^2} = \frac{\pi}{8} \Rightarrow \frac{1}{4} \int_0^a \frac{dx}{(1/2)^2 + x^2} = \frac{\pi}{8} \)
\( \Rightarrow \frac{1}{4} \times \left[ \frac{1}{1/2} \tan^{-1} \frac{x}{1/2} \right]_0^a = \frac{\pi}{8} \)
\( \Rightarrow \frac{1}{4} \times 2 [ \tan^{-1} 2a - \tan^{-1} 0 ] = \frac{\pi}{8} \)
\( \Rightarrow \tan^{-1} 2a = \frac{\pi}{4} \Rightarrow 2a = \tan \frac{\pi}{4} = 1 \Rightarrow a = \frac{1}{2} \)
Question. Find the value of \( \int_1^4 |x - 5| dx \)
Answer: We have, \( \int_1^4 |x - 5| dx = \int_1^4 -(x - 5) dx \)
\( = - [\frac{x^2}{2} - 5x]_1^4 = - [(\frac{4^2}{2} - 5 \times 4) - (\frac{1^2}{2} - 5 \times 1)] \)
\( = - [ (8 - 20) - (1/2 - 5) ] = - [ -12 + 4.5 ] = 7.5 = \frac{15}{2} \)
Question. If \( \int_0^1 (3x^2 + 2x + k) dx = 0 \), then find the value of \( k \).
Answer: Given, \( \int_0^1 (3x^2 + 2x + k) dx = 0 \Rightarrow [x^3 + x^2 + kx]_0^1 = 0 \)
\( \Rightarrow (1 + 1 + k) - (0) = 0 \Rightarrow k = -2 \)
Short Answer Questions-I
Question. Find \( \int \frac{\tan^3 x}{\cos^3 x} dx \)
Answer: We have, \( I = \int \frac{\tan^3 x}{\cos^3 x} dx = \int \frac{\sin^3 x}{\cos^3 x} \cdot \frac{1}{\cos^3 x} dx = \int \frac{\sin^3 x}{\cos^6 x} dx \)
Let \( \cos x = t \Rightarrow - \sin x \, dx = dt \Rightarrow \sin x \, dx = -dt \)
\( \therefore I = \int \frac{\sin^2 x \sin x \, dx}{\cos^6 x} = \int \frac{(1 - \cos^2 x) \sin x \, dx}{\cos^6 x} \)
\( = \int \frac{-(1 - t^2) dt}{t^6} = \int \frac{t^2 - 1}{t^6} dt = \int (t^{-4} - t^{-6}) dt \)
\( = \frac{t^{-3}}{-3} - \frac{t^{-5}}{-5} + C = \frac{1}{5t^5} - \frac{1}{3t^3} + C \)
\( = \frac{1}{5 (\cos x)^5} - \frac{1}{3 (\cos x)^3} + C = \frac{1}{5} \sec^5 x - \frac{1}{3} \sec^3 x + C \)
Question. Find \( \int e^x \frac{\sqrt{1 + \sin 2x}}{1 + \cos 2x} dx \).
Answer: \( I = \int e^x \frac{\sqrt{1 + \sin 2x}}{1 + \cos 2x} dx = \int e^x \frac{\sqrt{\sin^2 x + \cos^2 x + 2 \sin x \cos x}}{2 \cos^2 x} dx \)
\( = \int e^x \frac{\sqrt{(\sin x + \cos x)^2}}{2 \cos^2 x} dx = \int e^x \frac{\sin x + \cos x}{2 \cos^2 x} dx \)
\( = \frac{1}{2} \int e^x (\frac{\sin x}{\cos^2 x} + \frac{\cos x}{\cos^2 x}) dx = \frac{1}{2} \int e^x (\sec x \tan x + \sec x) dx \)
\( = \frac{1}{2} e^x \sec x + C \) \( [\because \int e^x (f(x) + f'(x)) dx = e^x f(x) + C] \)
Question. Find \( \int \frac{x - 1}{(x - 2)(x - 3)} dx \).
Answer: \( \frac{x - 1}{(x - 2)(x - 3)} = \frac{A}{x - 2} + \frac{B}{x - 3} \)
where \( A = \left. \frac{x-1}{x-3} \right|_{x=2} = \frac{1}{-1} = -1 \) & \( B = \left. \frac{x-1}{x-2} \right|_{x=3} = \frac{2}{1} = 2 \)
\( \therefore \frac{x - 1}{(x - 2)(x - 3)} = \frac{-1}{x - 2} + \frac{2}{x - 3} \)
\( \Rightarrow \int \frac{x - 1}{(x - 2)(x - 3)} dx = - \int \frac{dx}{x - 2} + 2 \int \frac{dx}{x - 3} = - \log (x - 2) + 2 \log (x - 3) + C \)
\( = \log (x - 3)^2 - \log (x - 2) + C = \log \frac{(x - 3)^2}{(x - 2)} + C \)
Question. Find \( \int_{-\pi/4}^0 \frac{1 + \tan x}{1 - \tan x} dx \).
Answer: \( \int_{-\pi/4}^0 \frac{1 + \tan x}{1 - \tan x} dx = \int_{-\pi/4}^0 \tan(\frac{\pi}{4} + x) dx \)
\( = [\log \sec (\frac{\pi}{4} + x)]_{-\pi/4}^0 = \log \sec (\frac{\pi}{4}) - \log \sec (\frac{\pi}{4} - \frac{\pi}{4}) \)
\( = \log (\sqrt{2}) - \log (\sec 0) = \log \sqrt{2} - \log 1 \)
\( = \log \sqrt{2} = \frac{1}{2} \log 2 \)
Question. Find \( \int \frac{dx}{\sqrt{5 - 4x - 2x^2}} \).
Answer: \( \int \frac{dx}{\sqrt{5 - 4x - 2x^2}} = \int \frac{dx}{\sqrt{7 - (2x^2 + 4x + 2)}} \)
\( = \int \frac{dx}{\sqrt{7 - 2(x^2 + 2x + 1)}} = \frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{\frac{7}{2} - (x + 1)^2}} \)
\( = \frac{1}{\sqrt{2}} \sin^{-1} \left( \frac{x + 1}{\sqrt{7/2}} \right) + C = \frac{1}{\sqrt{2}} \sin^{-1} \left( \sqrt{\frac{2}{7}} (x + 1) \right) + C \)
Question. Evaluate \( \int_0^1 \frac{\tan^{-1} x}{1 + x^2} dx \).
Answer: Let \( t = \tan^{-1} x \Rightarrow dt = \frac{1}{1 + x^2} dx \)
Also when, \( x = 0, t = 0 \) and when \( x = 1, t = \frac{\pi}{4} \)
\( \therefore \int_0^1 \frac{\tan^{-1} x}{1 + x^2} dx = \int_0^{\pi/4} t dt = \left[ \frac{t^2}{2} \right]_0^{\pi/4} = \frac{1}{2} [ \frac{\pi^2}{16} - 0 ] = \frac{\pi^2}{32} \)
Question. Evaluate: \( \int_0^1 \frac{dx}{\sqrt{2x + 3}} \).
Answer: Let \( I = \int_0^1 (2x + 3)^{-1/2} dx \)
\( = \left[ \frac{(2x + 3)^{-1/2+1}}{(-1/2 + 1) \times 2} \right]_0^1 = \left[ \frac{(2x + 3)^{1/2}}{1} \right]_0^1 = \sqrt{5} - \sqrt{3} \)
Short Answer Questions-II
Question. Evaluate: \( \int \frac{2x}{(x^2 + 1)(x^2 + 3)} dx \)
Answer: Let \( x^2 = z \Rightarrow 2x dx = dz \)
\( \therefore \int \frac{2x}{(x^2 + 1)(x^2 + 3)} dx = \int \frac{dz}{(z + 1)(z + 3)} \)
Using partial fraction.
Let \( \frac{1}{(z + 1)(z + 3)} = \frac{A}{z + 1} + \frac{B}{z + 3} \) ...(i)
\( \frac{1}{(z + 1)(z + 3)} = \frac{A(z + 3) + B(z + 1)}{(z + 1)(z + 3)} \)
\( \Rightarrow 1 = A(z + 3) + B(z + 1) \Rightarrow 1 = (A + B)z + (3A + B) \)
Equating the coefficient of \( z \) and constant, we get
\( A + B = 0 \) ...(ii)
and \( 3A + B = 1 \) ...(iii)
Subtracting (ii) from (iii), we get \( 2A = 1 \Rightarrow A = 1/2 \) and \( B = -1/2 \)
Putting the values of \( A \) and \( B \) in (i), we get
\( \frac{1}{(z + 1)(z + 3)} = \frac{1}{2(z + 1)} - \frac{1}{2(z + 3)} \)
\( \therefore \int \frac{2x dx}{(x^2 + 1)(x^2 + 3)} = \int \left( \frac{1}{2(z + 1)} - \frac{1}{2(z + 3)} \right) dz = \frac{1}{2} \int \frac{dz}{z + 1} - \frac{1}{2} \int \frac{dz}{z + 3} \)
\( = \frac{1}{2} \log |z + 1| - \frac{1}{2} \log |z + 3| + C = \frac{1}{2} \log |x^2 + 1| - \frac{1}{2} \log |x^2 + 3| + C \)
\( = \frac{1}{2} \log \frac{x^2 + 1}{x^2 + 3} + C = \log \sqrt{\frac{x^2 + 1}{x^2 + 3}} + C \)
Question. Evaluate: \( \int \frac{x^2}{1 - x^4} dx \)
Answer: Let \( I = \int \frac{x^2}{1 - x^4} dx = \int \frac{\frac{1}{2} (x^2 + 1) - \frac{1}{2} (1 - x^2)}{(1 - x^2)(1 + x^2)} dx \)
\( = \int \frac{\frac{1}{2}(1 + x^2)}{(1 - x^2)(1 + x^2)} dx - \frac{1}{2} \int \frac{(1 - x^2)}{(1 - x^2)(1 + x^2)} dx \)
\( = \frac{1}{2} \int \frac{1}{1 - x^2} dx - \frac{1}{2} \int \frac{1}{1 + x^2} dx = \frac{1}{2} \cdot \frac{1}{2} \log \left| \frac{1 + x}{1 - x} \right| + C_1 - \frac{1}{2} \tan^{-1} x + C_2 \)
\( = \frac{1}{4} \log \left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{-1} x + C \)
Question. Evaluate: \( \int \sin x \sin 2x \sin 3x \, dx \)
Answer: Let \( I = \int \sin x \sin 2x \sin 3x \, dx \)
\( = \frac{1}{2} \int \sin x \cdot (2 \sin 2x \sin 3x) dx = \frac{1}{2} \int \sin x \cdot (\cos x - \cos 5x) dx \)
\( = \frac{1}{2 \times 2} \int 2 \sin x \cos x \, dx - \frac{1}{2 \times 2} \int 2 \sin x \cos 5x \, dx \)
\( = \frac{1}{4} \int \sin 2x \, dx - \frac{1}{4} \int (\sin 6x - \sin 4x) dx \)
\( = - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + \frac{\cos 4x}{16} + C \)
Question. Evaluate: \( \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} dx \)
Answer: Let \( I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} dx \Rightarrow I = \int \frac{(\sin^2 x)^3 + (\cos^2 x)^3}{\sin^2 x \cos^2 x} dx \)
\( \Rightarrow I = \int \frac{(\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x)}{\sin^2 x \cos^2 x} dx \)
\( \Rightarrow I = \int \frac{\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x}{\sin^2 x \cos^2 x} dx = \int \tan^2 x \, dx - \int dx + \int \cot^2 x \, dx \)
\( \Rightarrow I = \int (\sec^2 x - 1) dx - \int dx + \int (\csc^2 x - 1) dx \)
\( \Rightarrow I = \int \sec^2 x \, dx + \int \csc^2 x \, dx - x - x - x + C = \tan x - \cot x - 3x + C \)
Question. Evaluate: \( \int \frac{\sin(x - a)}{\sin(x + a)} dx \)
Answer: Let \( I = \int \frac{\sin(x - a)}{\sin(x + a)} dx \)
Let \( x + a = t \Rightarrow x = t - a \Rightarrow dx = dt \)
\( \therefore I = \int \frac{\sin(t - 2a)}{\sin t} dt = \int \frac{\sin t \cos 2a - \cos t \sin 2a}{\sin t} dt \)
\( = \cos 2a \int dt - \int \sin 2a \cot t \, dt = \cos 2a \cdot t - \sin 2a \cdot \log |\sin t| + C \)
\( = \cos 2a \cdot (x + a) - \sin 2a \cdot \log |\sin (x + a)| + C \)
\( = x \cos 2a + a \cos 2a - (\sin 2a) \log |\sin (x + a)| + C \)
Question. Evaluate: \( \int \frac{e^x}{\sqrt{5 - 4e^x - e^{2x}}} dx \)
Answer: Let \( I = \int \frac{e^x}{\sqrt{5 - 4e^x - e^{2x}}} dx \)
Put \( e^x = t \Rightarrow e^x dx = dt \), we get
\( \therefore I = \int \frac{dt}{\sqrt{5 - 4t - t^2}} = \int \frac{dt}{\sqrt{-(t^2 + 4t - 5)}} = \int \frac{dt}{\sqrt{-(t^2 + 2.t.2 + 2^2 - 9)}} \)
\( = \int \frac{dt}{\sqrt{3^2 - (t + 2)^2}} = \sin^{-1} \frac{t + 2}{3} + C = \sin^{-1} (\frac{e^x + 2}{3}) + C \)
Question. Evaluate: \( \int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx \)
Answer: Let \( I = \int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx \)
\( = \int e^x \left( \frac{2 \sin 2x \cos 2x - 4}{2 \sin^2 2x} \right) dx \)
\( = \int e^x (\cot 2x - 2 \csc^2 2x) dx \)
Let \( f(x) = \cot 2x \therefore f'(x) = -2 \csc^2 2x \)
\( \therefore I = \int e^x (f(x) + f'(x)) dx = e^x \cdot f(x) + C = e^x \cdot \cot 2x + C \)
Question. Evaluate: \( \int \frac{x + 2}{\sqrt{x^2 + 5x + 6}} dx \)
Answer: Let \( I = \int \frac{x + 2}{\sqrt{x^2 + 5x + 6}} dx \)
Now, we can express as \( x + 2 = A \frac{d}{dx}(x^2 + 5x + 6) + B \)
\( \Rightarrow x + 2 = A(2x + 5) + B \Rightarrow x + 2 = 2Ax + (5A + B) \)
Equating coefficients both sides, we get
\( 2A = 1, 5A + B = 2 \Rightarrow A = 1/2, B = 2 - 5/2 = -1/2 \)
\( \therefore x + 2 = \frac{1}{2}(2x + 5) - \frac{1}{2} \)
Hence, \( I = \int \frac{\frac{1}{2}(2x + 5) - \frac{1}{2}}{\sqrt{x^2 + 5x + 6}} dx = \frac{1}{2} \int \frac{2x + 5}{\sqrt{x^2 + 5x + 6}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^2 + 5x + 6}} \)
\( I = \frac{1}{2} I_1 - \frac{1}{2} I_2 \) ... (i)
where, \( I_1 = \int \frac{2x + 5}{\sqrt{x^2 + 5x + 6}} dx, I_2 = \int \frac{dx}{\sqrt{x^2 + 5x + 6}} \)
Now, \( I_1 = \int \frac{2x + 5}{\sqrt{x^2 + 5x + 6}} dx \)
Let \( x^2 + 5x + 6 = z \Rightarrow (2x + 5) dx = dz \)
\( \therefore I_1 = \int \frac{dz}{\sqrt{z}} = \int z^{-1/2} dz = \frac{z^{1/2}}{1/2} + C_1 = 2\sqrt{z} + C_1 = 2\sqrt{x^2 + 5x + 6} + C_1 \)
Again \( I_2 = \int \frac{dx}{\sqrt{x^2 + 2 \times x \times \frac{5}{2} + (\frac{5}{2})^2 - \frac{25}{4} + 6}} = \int \frac{dx}{\sqrt{(x + \frac{5}{2})^2 - \frac{1}{4}}} = \int \frac{dx}{\sqrt{(x + \frac{5}{2})^2 - (\frac{1}{2})^2}} \)
\( = \log |(x + \frac{5}{2}) + \sqrt{x^2 + 5x + 6}| + C_2 \)
Putting the value of \( I_1 \) and \( I_2 \) in (i), we get
\( I = \frac{1}{2} [2\sqrt{x^2 + 5x + 6} + C_1] - \frac{1}{2} \{ \log |(x + \frac{5}{2}) + \sqrt{x^2 + 5x + 6}| + C_2 \} \)
\( = \sqrt{x^2 + 5x + 6} - \frac{1}{2} \log |(x + \frac{5}{2}) + \sqrt{x^2 + 5x + 6}| + \frac{1}{2} C_1 - \frac{1}{2} C_2 \)
\( = \sqrt{x^2 + 5x + 6} - \frac{1}{2} \log |(x + \frac{5}{2}) + \sqrt{x^2 + 5x + 6}| + C \)
Question. Evaluate: \( \int \frac{(x^2 - 3x)}{(x - 1)(x - 2)} dx \)
Answer: Let \( I = \int \frac{x^2 - 3x}{(x - 1)(x - 2)} dx = \int \frac{x^2 - 3x}{x^2 - 3x + 2} dx \)
\( = \int \frac{x^2 - 3x + 2 - 2}{x^2 - 3x + 2} dx = \int dx - \int \frac{2 dx}{x^2 - 3x + 2} \)
\( = x - 2 \int \frac{dx}{x^2 - 2 \cdot x \cdot \frac{3}{2} + \frac{9}{4} - \frac{9}{4} + 2} = x - 2 \int \frac{dx}{(x - \frac{3}{2})^2 - (\frac{1}{2})^2} \)
\( = x - 2 \left[ \frac{1}{2(1/2)} \log \left| \frac{x - \frac{3}{2} - \frac{1}{2}}{x - \frac{3}{2} + \frac{1}{2}} \right| \right] + C \)
\( = x - 2 \log \left| \frac{x - 2}{x - 1} \right| + C \)
Question. Find: \( \int \sin^{-1} \sqrt{\frac{x}{a + x}} dx \)
Answer: Let \( I = \int \sin^{-1} \sqrt{\frac{x}{a + x}} dx \)
Put \( x = a \tan^2 \theta \Rightarrow dx = 2a \tan \theta \sec^2 \theta \, d\theta \)
\( \therefore I = \int \sin^{-1} \left( \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \right) (2a \tan \theta \sec^2 \theta) d\theta \)
\( = \int \sin^{-1} (\frac{\tan \theta}{\sec \theta}) 2a \tan \theta \sec^2 \theta \, d\theta = \int \sin^{-1} (\sin \theta) 2a \tan \theta \sec^2 \theta \, d\theta \)
\( = 2a \int \theta \cdot \tan \theta \sec^2 \theta \, d\theta \)
\( = 2a \left[ \theta \cdot \int \tan \theta \sec^2 \theta \, d\theta - \int \left( \frac{d}{d\theta} \theta \cdot \int \tan \theta \sec^2 \theta \, d\theta \right) d\theta \right] \)
\( = 2a \left[ \theta \cdot \frac{\tan^2 \theta}{2} - \int \frac{\tan^2 \theta}{2} d\theta \right] = a \theta \tan^2 \theta - a \int (\sec^2 \theta - 1) d\theta \)
\( = a\theta \tan^2 \theta - a \tan \theta + a\theta + C \)
\( = a \frac{x}{a} \tan^{-1} \sqrt{\frac{x}{a}} - a \sqrt{\frac{x}{a}} + a \tan^{-1} \sqrt{\frac{x}{a}} + C \)
\( = (x + a) \tan^{-1} \sqrt{\frac{x}{a}} - \sqrt{ax} + C \)
Question. Find : \( \int \frac{dx}{\sin x + \sin 2x} \)
Answer: Here, \( I = \int \frac{1}{\sin x + 2 \sin x \cos x} dx \)
\( \Rightarrow I = \int \frac{1}{\sin x (1 + 2 \cos x)} dx \Rightarrow I = \int \frac{\sin x}{\sin^2 x (1 + 2 \cos x)} dx \)
\( \Rightarrow I = \int \frac{\sin x}{(1 - \cos^2 x)(1 + 2 \cos x)} dx = \int \frac{\sin x}{(1 - \cos x)(1 + \cos x)(1 + 2 \cos x)} dx \)
Let \( \cos x = z \Rightarrow - \sin x \, dx = dz \)
\( \Rightarrow I = - \int \frac{dz}{(1 - z)(1 + z)(1 + 2z)} \)
Integrand is proper rational function. By form of partial fraction:
\( \frac{1}{(1 - z)(1 + z)(1 + 2z)} = \frac{A}{1 - z} + \frac{B}{1 + z} + \frac{C}{1 + 2z} \) ...(i)
\( \Rightarrow 1 = A(1 + z)(1 + 2z) + B(1 - z)(1 + 2z) + C(1 + z)(1 - z) \) ...(ii)
Putting \( z = 1 \Rightarrow 1 = A(2)(3) \Rightarrow A = 1/6 \)
Putting \( z = -1 \Rightarrow 1 = B(2)(-1) \Rightarrow B = -1/2 \)
Putting \( z = -1/2 \Rightarrow 1 = C(1/2)(3/2) \Rightarrow C = 4/3 \)
Putting values in (i), we get \( \frac{1}{(1 - z)(1 + z)(1 + 2z)} = \frac{1/6}{1 - z} + \frac{-1/2}{1 + z} + \frac{4/3}{1 + 2z} \)
\( \therefore I = - \int [ \frac{1}{6(1 - z)} - \frac{1}{2(1 + z)} + \frac{4}{3(1 + 2z)} ] dz = \frac{1}{6} \int \frac{dz}{z - 1} + \frac{1}{2} \int \frac{dz}{1 + z} - \frac{4}{3} \int \frac{dz}{1 + 2z} \)
\( \Rightarrow I = \frac{1}{6} \log |z - 1| + \frac{1}{2} \log |1 + z| - \frac{4}{3 \times 2} \log |1 + 2z| + C \)
Putting \( z = \cos x \):
\( \Rightarrow I = \frac{1}{6} \log |1 - \cos x| + \frac{1}{2} \log |1 + \cos x| - \frac{2}{3} \log |1 + 2 \cos x| + C \)
Question. Find: \( \int \frac{x^2}{x^4 - x^2 - 12} dx \)
Answer: Let \( I = \int \frac{x^2}{x^4 - x^2 - 12} dx = \int \frac{x^2}{(x^2 - 4)(x^2 + 3)} dx \)
Let \( x^2 = t \). Then \( \frac{t}{(t - 4)(t + 3)} = \frac{A}{t - 4} + \frac{B}{t + 3} \)
\( t = A(t + 3) + B(t - 4) \). Comparing coeff. of \( t \): \( A + B = 1 \). Constant: \( 3A - 4B = 0 \).
\( \Rightarrow B = 3/4 A \Rightarrow A + 3/4 A = 1 \Rightarrow 7/4 A = 1 \Rightarrow A = 4/7, B = 3/7 \)
\( \therefore \frac{x^2}{(x^2 - 4)(x^2 + 3)} = \frac{4}{7(x^2 - 4)} + \frac{3}{7(x^2 + 3)} \)
\( I = \frac{4}{7} \int \frac{dx}{x^2 - 2^2} + \frac{3}{7} \int \frac{dx}{x^2 + (\sqrt{3})^2} \)
\( = \frac{4}{7} \cdot \frac{1}{2 \times 2} \log \left| \frac{x - 2}{x + 2} \right| + \frac{3}{7} \cdot \frac{1}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} + C \)
\( = \frac{1}{7} \log \left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{-1} \frac{x}{\sqrt{3}} + C \)
Question. Evaluate : \( \int \frac{x^2}{(x^2 + 4)(x^2 + 9)} dx \)
Answer: Let \( I = \int \frac{x^2}{(x^2 + 4)(x^2 + 9)} dx \). Put \( x^2 = t \).
\( \frac{t}{(t + 4)(t + 9)} = \frac{A}{t + 4} + \frac{B}{t + 9} \Rightarrow t = A(t + 9) + B(t + 4) \)
Equating coefficients: \( A + B = 1, 9A + 4B = 0 \).
Solving: \( A = -4/5, B = 9/5 \).
\( \therefore \frac{x^2}{(x^2 + 4)(x^2 + 9)} = -\frac{4}{5(x^2 + 4)} + \frac{9}{5(x^2 + 9)} \)
\( \Rightarrow \int \frac{x^2 dx}{(x^2 + 4)(x^2 + 9)} = -\frac{4}{5} \int \frac{dx}{x^2 + 2^2} + \frac{9}{5} \int \frac{dx}{x^2 + 3^2} = -\frac{4}{5} \times \frac{1}{2} \tan^{-1} \frac{x}{2} + \frac{9}{5} \times \frac{1}{3} \tan^{-1} \frac{x}{3} + C \)
\( = -\frac{2}{5} \tan^{-1} \frac{x}{2} + \frac{3}{5} \tan^{-1} \frac{x}{3} + C \)
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 7 Integrals Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 7 Integrals as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 7 Integrals Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 7 Integrals on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 7 Integrals is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 7 Integrals come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 7 Integrals these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 7 Integrals Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 7 Integrals VBQs in a mobile-friendly PDF format for free.