CBSE Class 12 Mathematics Continuity and Differentiability VBQs Set B

Read and download the CBSE Class 12 Mathematics Continuity and Differentiability VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.

VBQ for Class 12 Mathematics Chapter 5 Continuity and Differentiability

For Class 12 students, Value Based Questions for Chapter 5 Continuity and Differentiability help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.

Chapter 5 Continuity and Differentiability Class 12 Mathematics VBQ Questions with Answers

Fill in the Blanks

Question. If \( y = \tan^{-1} x + \cot^{-1} x, x \in R \), then \( \frac{dy}{dx} \) is equal to _____________. 
Answer: 0
Solution: We have, \( y = \tan^{-1} x + \cot^{-1} x, x \in R \)
\( \Rightarrow y = \frac{\pi}{2} \)
\( \therefore \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{2}\right) = 0 \)

Question. If \( \cos (xy) = k \), where \( k \) is a constant and \( xy \neq n\pi, n \in Z \), then \( \frac{dy}{dx} \) is equal to _____________. 
Answer: \( \frac{-y}{x} \)
Solution: We have, \( \cos (xy) = k \)
Diff. w.r.t \( x \), we get
\( -\sin(xy) \times \left\{ x\frac{dy}{dx} + y \right\} = 0 \)
\( \Rightarrow x\frac{dy}{dx} + y = 0 \) [\( \because xy \neq n\pi \therefore \sin(xy) \neq 0 \)]
\( \Rightarrow \frac{dy}{dx} = \frac{-y}{x} \)

Question. The number of points of discontinuity of \( f \) defined by \( f(x) = |x| - |x + 1| \) is _____________. 
Answer: 0

Question. The function \( f(x) = \frac{2 - x^2}{9x - x^3} \) is discontinuous exactly at _____________ points.
Answer: three

Very Short Answer Questions

Question. If the function \( f \) defined as \( f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ k, & x = 3 \end{cases} \) is continuous at \( x = 3 \), find the value of \( k \). 
Answer: It is given that \( f(x) \) is continuous at \( x = 3 \)
\( \therefore \lim_{x \to 3} f(x) = f(3) \)
\( \Rightarrow \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = k \)
\( \Rightarrow \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)} = k \)
\( \Rightarrow \lim_{x \to 3} (x + 3) = k \Rightarrow 3 + 3 = k \)
\( \Rightarrow k = 6 \)

Question. For what value of ‘\( k \)’ is the function \( f(x) = \begin{cases} \frac{\sin 5x}{3x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \) continuous at \( x = 0 \)? 
Answer: \( \lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0 + h) \)
\( = \lim_{h \to 0} f(h) = \lim_{h \to 0} \left( \frac{\sin 5h}{3h} + \cos h \right) \)
\( = \lim_{h \to 0} \frac{\sin 5h}{5h} \times \frac{5}{3} + \lim_{h \to 0} \cos h = 1 \times \frac{5}{3} + 1 \) [\( \because h \to 0 \Rightarrow 5h \to 0 \)]
\( \Rightarrow \lim_{x \to 0^+} f(x) = \frac{8}{3} \)
Also, \( f(0) = k \)
Since, \( f(x) \) is continuous at \( x = 0 \).
\( \Rightarrow \lim_{x \to 0^+} f(x) = f(0) \Rightarrow \frac{8}{3} = k \)

Question. Determine value of the constant ‘\( k \)’ so that the function \( f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \ge 0 \end{cases} \) is continuous at \( x = 0 \). 
Answer: \( \because f(x) \) is continuous at \( x = 0 \)
\( \Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \)
Now, \( \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h) \)
\( = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \frac{k(-h)}{|-h|} = \lim_{h \to 0} \frac{-kh}{h} = -k \)
Also, \( f(0) = 3 \)
\( \because \lim_{x \to 0^-} f(x) = f(0) \)
\( \Rightarrow -k = 3 \Rightarrow k = -3 \)

Question. If \( y = 2\sqrt{\sec(e^{2x})} \); then find \( \frac{dy}{dx} \). 
Answer: Given, \( y = 2\sqrt{\sec(e^{2x})} \)
\( \therefore \frac{dy}{dx} = \frac{d}{dx}(2\sqrt{\sec(e^{2x})}) = 2 \times \frac{1}{2\sqrt{\sec(e^{2x})}} \times \sec(e^{2x}) \tan(e^{2x}) \times 2e^{2x} \)
\( = 2\sqrt{\sec(e^{2x})} \tan(e^{2x}) \cdot e^{2x} = 2e^{2x} \sqrt{\sec(e^{2x})} \tan(e^{2x}) \)

Question. If \( y = \text{cosec } (\cot \sqrt{x}) \), then find \( \frac{dy}{dx} \). 
Answer: \( y = \text{cosec}(\cot \sqrt{x}) \)
\( \therefore \frac{dy}{dx} = \frac{d}{dx}(\text{cosec}(\cot \sqrt{x})) \)
\( = -\text{cosec}(\cot \sqrt{x}) \cot(\cot \sqrt{x}) \times (-\text{cosec}^2(\sqrt{x})) \times \frac{1}{2\sqrt{x}} \)
\( = \frac{\text{cosec}(\cot \sqrt{x}) \cot(\cot \sqrt{x}) \text{cosec}^2(\sqrt{x})}{2\sqrt{x}} \)

Question. Find the derivative of \( \log_{10} x \) with respect to \( x \). 
Answer: Let \( y = \log_{10} x = \log_{10} e \cdot \log_e x \)
\( \therefore \frac{dy}{dx} = \log_{10} e \times \frac{1}{x} = \frac{\log_{10} e}{x} \) \( \left[ \because \frac{d}{dx} \log_e x = \frac{1}{x} \right] \)

Question. If \( y = 5e^{7x} + 6e^{-7x} \), show that \( \frac{d^2 y}{dx^2} = 49y \). 
Answer: \( \because y = 5e^{7x} + 6e^{-7x} \Rightarrow \frac{dy}{dx} = 35e^{7x} - 42e^{-7x} \)
\( \Rightarrow \frac{d^2 y}{dx^2} = 245e^{7x} + 294e^{-7x} = 49(5e^{7x} + 6e^{-7x}) = 49y \)

Question. If \( y = \log (\cos e^x) \), then find \( \frac{dy}{dx} \). 
Answer: \( \because y = \log (\cos e^x) \)
\( \Rightarrow \frac{dy}{dx} = \frac{d}{dx} (\log (\cos e^x)) = \frac{1}{\cos(e^x)} \times (-\sin(e^x)) \times e^x \)
\( = \frac{-\sin(e^x) \cdot e^x}{\cos(e^x)} = -e^x \tan(e^x) \)
\( \therefore \frac{dy}{dx} = -e^x \tan(e^x) \)

Short Answer Questions-I

Question. Find \( \frac{dy}{dx} \) at \( t = \frac{2\pi}{3} \) when \( x = 10(t - \sin t) \) and \( y = 12(1 - \cos t) \).
Answer: Given, \( x = 10(t - \sin t) \) and \( y = 12(1 - \cos t) \)
\( \because x = 10(t - \sin t) \Rightarrow \frac{dx}{dt} = 10(1 - \cos t) \) (Differentiating w.r.t. \( t \))
Again \( y = 12(1 - \cos t) \Rightarrow \frac{dy}{dt} = 12(0 + \sin t) = 12 \sin t \) (Differentiating w.r.t. \( t \))
Now, \( \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{12 \sin t}{10(1 - \cos t)} \)
\( \therefore \left. \frac{dy}{dx} \right]_{t = \frac{2\pi}{3}} = \frac{12 \sin \frac{2\pi}{3}}{10(1 - \cos \frac{2\pi}{3})} = \frac{6}{5} \times \frac{\sin(\pi - \frac{\pi}{3})}{(1 - \cos(\pi - \frac{\pi}{3}))} \)
\( = \frac{6}{5} \times \frac{\sin \frac{\pi}{3}}{1 + \cos \frac{\pi}{3}} = \frac{6}{5} \times \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}} = \frac{6\sqrt{3}}{5 \times 3} = \frac{2\sqrt{3}}{5} \)

Question. Find \( \frac{dy}{dx} \) at \( x = 1, y = \frac{\pi}{4} \) if \( \sin^2 y + \cos xy = K \). 
Answer: \( \sin^2 y + \cos xy = K \)
Differentiating w.r.t. \( x \), we get
\( 2\sin y \cdot \cos y \frac{dy}{dx} + (-\sin xy)(x \cdot \frac{dy}{dx} + y) = 0 \)
\( \Rightarrow \sin 2y \cdot \frac{dy}{dx} - x \sin xy \frac{dy}{dx} - y \sin xy = 0 \)
\( \Rightarrow \frac{dy}{dx} (\sin 2y - x \sin xy) = y \sin xy \)
\( \Rightarrow \frac{dy}{dx} = \frac{y \sin xy}{(\sin 2y - x \sin xy)} \)
\( \Rightarrow \left. \frac{dy}{dx} \right]_{x=1, y=\frac{\pi}{4}} = \frac{\frac{\pi}{4} \cdot \sin \frac{\pi}{4}}{\sin \frac{\pi}{2} - 1 \cdot \sin \frac{\pi}{4}} = \frac{\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} = \frac{\frac{\pi}{4\sqrt{2}}}{\frac{\sqrt{2}-1}{\sqrt{2}}} = \frac{\pi}{4(\sqrt{2}-1)} \)

Question. If \( (1 + x)^n = C_0 + C_1x + C_2x^2 + .... + C_nx^n \), then prove that 
(i) \( C_1 + 2C_2 + .... + nC_n = n \cdot 2^{n-1} \)
(ii) \( C_1 - 2C_2 + 3C_3 - .... + (-1)^n nC_n = 0 \)

Answer: We have, \( (1 + x)^n = C_0 + C_1x + C_2x^2 + .... + C_nx^n \)
Differentiating both sides with respect to \( x \), we have
\( n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + .... + nC_nx^{n-1} \)
Putting \( x = 1 \) and \( x = -1 \) successively, we have
(i) \( C_1 + 2C_2 + 3C_3 + .... + nC_n = n \cdot 2^{n-1} \)
and (ii) \( C_1 - 2C_2 + 3C_3 - .... + (-1)^n nC_n = 0 \)

Question. If \( y = (\cos x)^{(\cos x)^{(\cos x) \dots \infty}} \), then show that \( \frac{dy}{dx} = \frac{y^2 \tan x}{y \log \cos x - 1} \).
Answer: We have, \( y = (\cos x)^{(\cos x)^{(\cos x) \dots \infty}} \)
\( \Rightarrow y = (\cos x)^y \)
\( \therefore \log y = \log (\cos x)^y \Rightarrow \log y = y \log \cos x \)
On differentiating w.r.t. \( x \), we get
\( \frac{1}{y} \cdot \frac{dy}{dx} = y \cdot \frac{d}{dx} \log \cos x + \log \cos x \cdot \frac{dy}{dx} \)
\( \Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} \cos x + \log \cos x \cdot \frac{dy}{dx} \)
\( \Rightarrow \frac{dy}{dx} \left[ \frac{1}{y} - \log \cos x \right] = \frac{-y \sin x}{\cos x} = -y \tan x \)
\( \therefore \frac{dy}{dx} = \frac{-y^2 \tan x}{(1 - y \log \cos x)} = \frac{y^2 \tan x}{y \log \cos x - 1} \)

Question. If \( x = a \cos \theta ; y = b \sin \theta \), then find \( \frac{d^2 y}{dx^2} \). 
Answer: We have,
\( x = a \cos \theta \Rightarrow \frac{dx}{d\theta} = -a \sin \theta \)
and \( y = b \sin \theta \Rightarrow \frac{dy}{d\theta} = b \cos \theta \)
\( \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \cos \theta}{-a \sin \theta} = -\frac{b}{a} \cot \theta \)
Again diff. w.r.t \( x \), we have
\( \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{b}{a} \frac{d}{dx} (-\cot \theta) = -\frac{b}{a} \times (-\text{cosec}^2 \theta) \frac{d\theta}{dx} \)
\( = \frac{b}{a} \times (\text{cosec}^2 \theta) \times \left( -\frac{1}{a \sin \theta} \right) \)
\( \therefore \frac{d^2 y}{dx^2} = -\frac{b}{a^2} \text{cosec}^3 \theta \)

 

Question. If \( y^x = e^{y - x} \), then prove that \( \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \). 
Answer: Given, \( y^x = e^{y - x} \)
Taking logarithm both sides, we get \( \log y^x = \log e^{y - x} \)
\( \Rightarrow x. \log y = (y - x) . \log e \Rightarrow x . \log y = y - x \)
\( \Rightarrow x(1 + \log y) = y \Rightarrow x = \frac{y}{1 + \log y} \)
Differentiating both sides with respect to \( y \), we get
\( \frac{dx}{dy} = \frac{(1 + \log y).1 - y.\left(0 + \frac{1}{y}\right)}{(1 + \log y)^2} = \frac{1 + \log y - 1}{(1 + \log y)^2} = \frac{\log y}{(1 + \log y)^2} \)
\( \Rightarrow \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \)
[\( \because \) (i) \( \log_e mn = \log_e m + \log_e n \), (ii) \( \log_e \frac{m}{n} = \log_e m - \log_e n \), (iii) \( \log_e m^n = n \log_e m \), (iv) \( \log_e e = 1 \)]

Question. If \( (\cos x)^y = (\cos y)^x \), then find \( \frac{dy}{dx} \). 
Answer: Given, \( (\cos x)^y = (\cos y)^x \)
Taking logarithm both sides, we get \( \log(\cos x)^y = \log(\cos y)^x \)
\( \Rightarrow y . \log(\cos x) = x . \log(\cos y) \) [\( \because \log m^n = n \log m \)]
Differentiating both sides with respect to \( x \), we get
\( y \cdot \frac{1}{\cos x} (-\sin x) + \log(\cos x) \cdot \frac{dy}{dx} = x \cdot \frac{1}{\cos y} \cdot (-\sin y) \cdot \frac{dy}{dx} + \log(\cos y) \)
\( \Rightarrow -\frac{y \sin x}{\cos x} + \log(\cos x) \cdot \frac{dy}{dx} = -\frac{x \sin y}{\cos y} \cdot \frac{dy}{dx} + \log(\cos y) \)
\( \Rightarrow \log(\cos x) \cdot \frac{dy}{dx} + \frac{x \sin y}{\cos y} \cdot \frac{dy}{dx} = \log(\cos y) + \frac{y \sin x}{\cos x} \)
\( \Rightarrow \frac{dy}{dx} \left[ \log(\cos x) + \frac{x \sin y}{\cos y} \right] = \log(\cos y) + \frac{y \sin x}{\cos x} \)
\( \Rightarrow \frac{dy}{dx} = \frac{\log(\cos y) + \frac{y \sin x}{\cos x}}{\log(\cos x) + \frac{x \sin y}{\cos y}} = \frac{\log(\cos y) + y \tan x}{\log(\cos x) + x \tan y} \)

Question. Find the value of \( \frac{dy}{dx} \) at \( \theta = \frac{\pi}{4} \), if \( x = ae^{\theta}(\sin \theta - \cos \theta) \) and \( y = ae^{\theta}(\sin \theta + \cos \theta) \). 
Answer: Given, \( x = ae^{\theta}(\sin \theta - \cos \theta) \) and \( y = ae^{\theta}(\sin \theta + \cos \theta) \)
Taking \( x = ae^{\theta}(\sin \theta - \cos \theta) \)
Differentiating with respect to \( \theta \), we get
\( \frac{dx}{d\theta} = ae^{\theta}(\cos \theta + \sin \theta) + a(\sin \theta - \cos \theta).e^{\theta} = ae^{\theta}(\cos \theta + \sin \theta + \sin \theta - \cos \theta) \)
\( = 2ae^{\theta} \sin \theta \) ...(i)
Again, \( y = ae^{\theta}(\sin \theta + \cos \theta) \)
Differentiating with respect to \( \theta \), we get
\( \frac{dy}{d\theta} = ae^{\theta}(\cos \theta - \sin \theta) + a(\sin \theta + \cos \theta).e^{\theta} = ae^{\theta}(\cos \theta - \sin \theta + \sin \theta + \cos \theta) \)
\( = 2ae^{\theta} \cos \theta \) ...(ii)
\( \therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{2ae^{\theta} \cos \theta}{2ae^{\theta} \sin \theta} = \cot \theta \) [From (i) and (ii)]
\( \Rightarrow \frac{dy}{dx} = \cot \theta \Rightarrow \left[ \frac{dy}{dx} \right]_{\theta = \frac{\pi}{4}} = \cot \frac{\pi}{4} = 1 \)

Question. Differentiate the following with respect to \( x \): \( (\sin x)^x + (\cos x)^{\sin x} \). 
Answer: Let \( u = (\sin x)^x \) and \( v = (\cos x)^{\sin x} \)
\( \therefore \) Given differential equation becomes \( y = u + v \)
\( \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \) ....(i)
Now, \( u = (\sin x)^x \)
Taking log on both sides, we get \( \log u = x \log \sin x \)
Differentiating with respect to \( x \), we get
\( \frac{1}{u} \cdot \frac{du}{dx} = x \cdot \frac{1}{\sin x} \cdot \cos x + \log \sin x \Rightarrow \frac{du}{dx} = u(x \cot x + \log \sin x) \)
\( \Rightarrow \frac{du}{dx} = (\sin x)^x [x \cot x + \log \sin x] \) ....(ii)
Again \( v = (\cos x)^{\sin x} \)
Taking log on both sides, we get \( \log v = \sin x \cdot \log \cos x \)
Differentiating with respect to \( x \), we get
\( \frac{1}{v} \cdot \frac{dv}{dx} = \sin x \cdot \frac{1}{\cos x} (-\sin x) + \log(\cos x) \cdot \cos x \)
\( \Rightarrow \frac{dv}{dx} = v \left[ -\frac{\sin^2 x}{\cos x} + \cos x \cdot \log \cos x \right] = (\cos x)^{\sin x} [\cos x \cdot \log(\cos x) - \frac{\sin^2 x}{\cos x}] \)
\( = (\cos x)^{1+\sin x} [\log(\cos x) - \tan^2 x] \) (Simplification variant dependent on steps) ....(iii)
From (i), (ii) and (iii), we get
\( \frac{dy}{dx} = (\sin x)^x [x \cot x + \log \sin x] + (\cos x)^{\sin x} [\cos x \log(\cos x) - \sin x \tan x] \)

Question. If \( \cos y = x \cos(a + y) \), with \( \cos a \neq \pm 1 \), then prove that \( \frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a} \). Hence show that \( \sin a \frac{d^2y}{dx^2} + \sin 2(a + y) \frac{dy}{dx} = 0 \). 
Answer: Given, \( \cos y = x \cos(a + y) \)
\( \therefore x = \frac{\cos y}{\cos(a + y)} \)
Differentiating with respect to \( y \) on both sides, we get
\( \frac{dx}{dy} = \frac{\cos(a + y) \times (-\sin y) - \cos y \times [-\sin(a + y)]}{\cos^2(a + y)} \)
\( \Rightarrow \frac{dx}{dy} = \frac{\cos y \sin(a + y) - \sin y \cos(a + y)}{\cos^2(a + y)} \Rightarrow \frac{dx}{dy} = \frac{\sin(a + y - y)}{\cos^2(a + y)} \)
\( \Rightarrow \frac{dx}{dy} = \frac{\sin a}{\cos^2(a + y)} \)
\( \therefore \frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a} \)
Differentiating both sides w.r.t. \( x \), we get
\( \frac{d^2 y}{dx^2} = \frac{1}{\sin a} \left[ 2 \cos(a + y) \cdot (-\sin(a + y)) \cdot \frac{dy}{dx} \right] \)
\( \Rightarrow \sin a \frac{d^2 y}{dx^2} = - \sin 2(a + y) \cdot \frac{dy}{dx} \Rightarrow \sin a \frac{d^2 y}{dx^2} + \sin 2(a + y) \frac{dy}{dx} = 0 \)

Question. If \( x = a \sin 2t (1 + \cos 2t) \) and \( y = b \cos 2t (1 - \cos 2t) \), then show that \( \frac{dy}{dx} \) at \( t = \frac{\pi}{4} = \frac{b}{a} \). Also find the value of \( \frac{dy}{dx} \) at \( t = \frac{\pi}{3} \). 
Answer: Given, \( x = a \sin 2t (1 + \cos 2t) \) and \( y = b \cos 2t (1 - \cos 2t) \)
\( \Rightarrow \frac{dx}{dt} = a [\sin 2t \times (-2 \sin 2t) + (1 + \cos 2t) \times 2 \cos 2t] = a [-2 \sin^2 2t + 2 \cos 2t + 2 \cos^2 2t] \)
\( = a(2 \cos 4t + 2 \cos 2t) = 2a (\cos 4t + \cos 2t) \)
Again, \( \frac{dy}{dt} = b [\cos 2t \times 2 \sin 2t + (1 - \cos 2t) \times (-2 \sin 2t)] \)
\( = b [\sin 4t - 2 \sin 2t + \sin 4t] = b [2 \sin 4t - 2 \sin 2t] = 2b (\sin 4t - \sin 2t) \)
\( \therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2b(\sin 4t - \sin 2t)}{2a(\cos 4t + \cos 2t)} = \frac{b(\sin 4t - \sin 2t)}{a(\cos 4t + \cos 2t)} \)
So, \( \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{4}} = \frac{b}{a} \left[ \frac{\sin \pi - \sin \frac{\pi}{2}}{\cos \pi + \cos \frac{\pi}{2}} \right] = \frac{b}{a} \times \left( \frac{0 - 1}{-1 + 0} \right) = \frac{b}{a} \) and
\( \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{3}} = \frac{b}{a} \left[ \frac{\sin \frac{4\pi}{3} - \sin \frac{2\pi}{3}}{\cos \frac{4\pi}{3} + \cos \frac{2\pi}{3}} \right] = \frac{b}{a} \left[ \frac{-\sin \frac{\pi}{3} - \sin \frac{\pi}{3}}{-\cos \frac{\pi}{3} - \cos \frac{\pi}{3}} \right] \)
\( = \frac{b}{a} \times \left[ \frac{-2 \sin \frac{\pi}{3}}{-2 \cos \frac{\pi}{3}} \right] = \frac{b}{a} \tan \frac{\pi}{3} = \frac{\sqrt{3}b}{a} \)

Question. If \( \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \), then show that \( \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}} \). 
Answer: Given, \( \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \)
Putting \( x = \sin \alpha \Rightarrow \alpha = \sin^{-1} x \) and \( y = \sin \beta \Rightarrow \beta = \sin^{-1} y \), we get
\( \sqrt{1 - \sin^2 \alpha} + \sqrt{1 - \sin^2 \beta} = a(\sin \alpha - \sin \beta) \Rightarrow \cos \alpha + \cos \beta = a(\sin \alpha - \sin \beta) \)
\( \Rightarrow 2 \cos \frac{(\alpha + \beta)}{2} \cos \frac{(\alpha - \beta)}{2} = a . 2 \cos \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right) \)
\( \Rightarrow \cot \left( \frac{\alpha - \beta}{2} \right) = a \Rightarrow \frac{\alpha - \beta}{2} = \cot^{-1} a \Rightarrow \alpha - \beta = 2 \cot^{-1} a \)
\( \Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a \)
Differentiating both sides with respect to \( x \), we get
\( \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}} \)

Question. If \( x = \cos t(3 - 2 \cos^2 t) \) and \( y = \sin t (3 - 2 \sin^2 t) \), then find the value of \( \frac{dy}{dx} \) at \( t = \frac{\pi}{4} \). 
Answer: Given, \( x = \cos t(3 - 2 \cos^2 t) \)
Differentiating both sides with respect to \( t \), we get
\( \frac{dx}{dt} = \cos t [0 + 4 \cos t \cdot \sin t] + (3 - 2 \cos^2 t).(-\sin t) \)
\( = 4 \sin t \cdot \cos^2 t - 3 \sin t + 2 \cos^2 t \cdot \sin t \)
\( = 6 \sin t \cos^2 t - 3 \sin t = 3 \sin t (2 \cos^2 t - 1) = 3 \sin t \cdot \cos 2t \)
Again, \( y = \sin t (3 - 2 \sin^2 t) \)
Differentiating both sides with respect to \( t \), we get
\( \frac{dy}{dt} = \sin t . [0 - 4 \sin t \cos t] + (3 - 2 \sin^2 t) . \cos t \)
\( = - 4 \sin^2 t \cdot \cos t + 3 \cos t - 2 \sin^2 t \cdot \cos t = 3 \cos t - 6 \sin^2 t \cdot \cos t \)
\( = 3 \cos t (1 - 2 \sin^2 t) = 3 \cos t \cdot \cos 2t \)
Now, \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3 \cos t \cdot \cos 2t}{3 \sin t \cdot \cos 2t} \Rightarrow \frac{dy}{dx} = \cot t \)
\( \therefore \left. \frac{dy}{dx} \right]_{t = \frac{\pi}{4}} = \cot \frac{\pi}{4} = 1 \)

Question. Differentiate \( \tan^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \) with respect to \( \cos^{-1}(2x \sqrt{1 - x^2}) \), when \( x \neq 0 \). 
Answer: Let \( u = \tan^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \) and \( v = \cos^{-1}(2x \sqrt{1 - x^2}) \)
We have to determine \( \frac{du}{dv} \)
Put \( x = \sin \theta \Rightarrow \theta = \sin^{-1} x \)
Now, \( u = \tan^{-1} \left( \frac{\sqrt{1 - \sin^2 \theta}}{\sin \theta} \right) \Rightarrow u = \tan^{-1} \left( \frac{\cos \theta}{\sin \theta} \right) \)
\( \Rightarrow u = \tan^{-1}(\cot \theta) \Rightarrow u = \tan^{-1} \left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] \)
\( \Rightarrow u = \frac{\pi}{2} - \theta \Rightarrow u = \frac{\pi}{2} - \sin^{-1} x \)
\( \Rightarrow \frac{du}{dx} = 0 - \frac{1}{\sqrt{1 - x^2}} \Rightarrow \frac{du}{dx} = -\frac{1}{\sqrt{1 - x^2}} \)
Again, \( v = \cos^{-1}(2x \sqrt{1 - x^2}) \)
\( \because x = \sin \theta \)
\( \therefore v = \cos^{-1}(2 \sin \theta \sqrt{1 - \sin^2 \theta}) \Rightarrow v = \cos^{-1}(2 \sin \theta \cdot \cos \theta) \)
\( \Rightarrow v = \cos^{-1}(\sin 2\theta) \Rightarrow v = \cos^{-1} \left[ \cos \left( \frac{\pi}{2} - 2\theta \right) \right] \)
\( \Rightarrow v = \frac{\pi}{2} - 2\theta \Rightarrow v = \frac{\pi}{2} - 2 \sin^{-1} x \)
\( \Rightarrow \frac{dv}{dx} = 0 - \frac{2}{\sqrt{1 - x^2}} \Rightarrow \frac{dv}{dx} = -\frac{2}{\sqrt{1 - x^2}} \)
\( \therefore \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{-\frac{1}{\sqrt{1 - x^2}}}{-\frac{2}{\sqrt{1 - x^2}}} = \frac{1}{2} \)

Question. Differentiate the following function with respect to \( x \): \( y = (\sin x)^x + \sin^{-1} \sqrt{x} \). 
Answer: Given, \( y = (\sin x)^x + \sin^{-1} \sqrt{x} \)
\( y = u + v \), where \( u = (\sin x)^x \), \( v = \sin^{-1} \sqrt{x} \)
\( \therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \) ...(i)
Now, \( u = (\sin x)^x \)
Taking log both sides, we get \( \log u = \log (\sin x)^x \Rightarrow \log u = x . \log(\sin x) \)
Differentiating both sides with respect to \( x \), we get
\( \frac{1}{u} \cdot \frac{du}{dx} = x \cdot \frac{1}{\sin x} \cos x + \log \sin x \Rightarrow \frac{du}{dx} = u(x \cot x + \log \sin x) \)
\( \Rightarrow \frac{du}{dx} = (\sin x)^x (x \cot x + \log \sin x) \) ...(ii)
Also, \( v = \sin^{-1} \sqrt{x} \)
\( \frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x} \sqrt{1 - x}} \) ...(iii)
From (i), (ii) and (iii), we get
\( \therefore \frac{dy}{dx} = (\sin x)^x (x \cot x + \log \sin x) + \frac{1}{2\sqrt{x(1 - x)}} \)

Question. If \( x^{13}y^7 = (x + y)^{20} \), then prove that \( \frac{dy}{dx} = \frac{y}{x} \). 
OR
If \( x^m y^n = (x + y)^{m+n} \), then prove that \( \frac{dy}{dx} = \frac{y}{x} \). 

Answer: Given \( x^{13}y^7 = (x + y)^{20} \)
Taking logarithm on both sides, we get \( \log(x^{13}y^7) = \log(x + y)^{20} \)
\( \Rightarrow \log x^{13} + \log y^7 = 20 \log(x + y) \Rightarrow 13 \log x + 7 \log y = 20 \log(x + y) \)
Differentiating both sides with respect to \( x \), we get
\( \frac{13}{x} + \frac{7}{y} \cdot \frac{dy}{dx} = \frac{20}{x + y} \left( 1 + \frac{dy}{dx} \right) \Rightarrow \frac{13}{x} - \frac{20}{x + y} = \left( \frac{20}{x + y} - \frac{7}{y} \right) \frac{dy}{dx} \)
\( \Rightarrow \frac{13x + 13y - 20x}{x(x + y)} = \left( \frac{20y - 7x - 7y}{(x + y)y} \right) \frac{dy}{dx} \Rightarrow \frac{13y - 7x}{x(x + y)} = \left( \frac{13y - 7x}{y(x + y)} \right) \cdot \frac{dy}{dx} \)
\( \Rightarrow \frac{dy}{dx} = \frac{13y - 7x}{x(x + y)} \times \frac{y(x + y)}{13y - 7x} \Rightarrow \frac{dy}{dx} = \frac{y}{x} \)
OR
Do yourself (similar question)

Question. Differentiate with respect to \( x \): \( \sin^{-1} \left( \frac{2^{x+1} \cdot 3^x}{1 + (36)^x} \right) \). 
Answer: Let \( y = \sin^{-1} \left( \frac{2^{x+1} \cdot 3^x}{1 + (36)^x} \right) = \sin^{-1} \left( \frac{2 \cdot 2^x \cdot 3^x}{1 + (6^2)^x} \right) = \sin^{-1} \left( \frac{2 \cdot 6^x}{1 + (6^x)^2} \right) \)
Let \( 6^x = \tan \theta \Rightarrow \theta = \tan^{-1} (6^x) \)
\( \therefore y = \sin^{-1} \left( \frac{2 \tan \theta}{1 + \tan^2 \theta} \right) \Rightarrow y = \sin^{-1} (\sin 2\theta) \)
\( \Rightarrow y = 2\theta \Rightarrow y = 2 . \tan^{-1} (6^x) \)
\( \Rightarrow \frac{dy}{dx} = \frac{2}{1 + (6^x)^2} \cdot 6^x \cdot \log_e 6 \Rightarrow \frac{dy}{dx} = \frac{2 \cdot 6^x \cdot \log_e 6}{1 + 36^x} \)

Question. If \( x \sin(a + y) + \sin a \cos(a + y) = 0 \), then prove that \( \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \). 
Answer: Given \( x \sin(a + y) + \sin a \cos(a + y) = 0 \)
\( \Rightarrow x = -\frac{\sin a \cos(a + y)}{\sin(a + y)} \Rightarrow x = - \sin a . \cot(a + y) \)
Differentiating with respect to \( y \), we get
\( \frac{dx}{dy} = + \sin a . \text{cosec}^2(a + y) = \frac{\sin a}{\sin^2(a + y)} \)
\( \Rightarrow \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \)

Question. If \( e^x + e^y = e^{x + y} \), then prove that \( \frac{dy}{dx} + e^{y - x} = 0 \). 
Answer: Given, \( e^x + e^y = e^{x + y} \)
Differentiating both sides with respect to \( x \), we get
\( e^x + e^y \cdot \frac{dy}{dx} = e^{x + y} \left\{ 1 + \frac{dy}{dx} \right\} \)
\( \Rightarrow e^x + e^y \cdot \frac{dy}{dx} = e^{x + y} + e^{x + y} \cdot \frac{dy}{dx} \Rightarrow (e^y - e^{x + y}) \frac{dy}{dx} = e^{x + y} - e^x \)
\( \Rightarrow (e^y - e^x - e^y) \frac{dy}{dx} = e^x + e^y - e^x \) [\( \because e^x + e^y = e^{x + y} \) (given)]
\( \Rightarrow e^x \cdot \frac{dy}{dx} = - e^y \Rightarrow \frac{dy}{dx} = - \frac{e^y}{e^x} \)
\( \Rightarrow \frac{dy}{dx} = - e^{y - x} \Rightarrow \frac{dy}{dx} + e^{y - x} = 0 \)

Question. If \( x = e^{\cos 2t} \) and \( y = e^{\sin 2t} \), prove that \( \frac{dy}{dx} = - \frac{y \log x}{x \log y} \).
Answer: We have \( x = e^{\cos 2t} \)
\( \frac{dx}{dt} = e^{\cos 2t} (-2 \sin 2t) = -2x \sin 2t \) [Differentiating w.r.t. \( t \)]
Again \( y = e^{\sin 2t} \)
\( \frac{dy}{dt} = e^{\sin 2t} . 2 \cos 2t = 2y \cos 2t \) [Differentiating w.r.t. \( t \)]
Now, \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2y \cos 2t}{-2x \sin 2t} \Rightarrow \frac{dy}{dx} = - \frac{y \cos 2t}{x \sin 2t} \)
\( \Rightarrow \frac{dy}{dx} = - \frac{y \log x}{x \log y} \) [\( \because x = e^{\cos 2t} \Rightarrow \log x = \cos 2t; y = e^{\sin 2t} \Rightarrow \log y = \sin 2t \)]
Hence proved.

Question. If \( x \in R - [-1, 1] \) then prove that the derivative of \( \sec^{-1}x \) with respect to \( x \) is \( \frac{1}{|x| \sqrt{x^2 - 1}} \). 
Answer: Let \( y = \sec^{-1} x \)
Then, \( \sec y = \sec(\sec^{-1} x) = x \)
Differentiating both sides with respect to \( x \), we have
\( \frac{d}{dx} \sec y = \frac{d}{dx} (x) \Rightarrow \frac{d}{dy}(\sec y) \frac{dy}{dx} = 1 \)
\( \Rightarrow \sec y \tan y \frac{dy}{dx} = 1 \) [Using chain rule]
\( \Rightarrow \frac{dy}{dx} = \frac{1}{\sec y \tan y} = \frac{1}{|\sec y| . |\tan y|} \)
\( \Rightarrow \frac{dy}{dx} = \frac{1}{|\sec y| \sqrt{\tan^2 y}} = \frac{1}{|\sec y| \sqrt{\sec^2 y - 1}} = \frac{1}{|x| \sqrt{x^2 - 1}} \)
[Note: If \( x > 1 \), then \( y \in (0, \frac{\pi}{2}) \) \( \therefore \sec y > 0, \tan y > 0 \Rightarrow |\sec y| . |\tan y| = \sec y \tan y \). If \( x < -1 \), then \( y \in (\frac{\pi}{2}, \pi) \) \( \therefore \sec y < 0, \tan y < 0 \Rightarrow |\sec y| . |\tan y| = (-\sec y)(-\tan y) = \sec y \tan y \)]

SECOND ORDER DERIVATIVES

Question. If \( x = a \cos \theta + b \sin \theta \) and \( y = a \sin \theta - b \cos \theta \), then show that \( y^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0 \).
Answer: Given, \( x = a \cos \theta + b \sin \theta \Rightarrow \frac{dx}{d\theta} = -a \sin \theta + b \cos \theta \) ...(i)
Also, \( y = a \sin \theta - b \cos \theta \Rightarrow \frac{dy}{d\theta} = a \cos \theta + b \sin \theta \) ...(ii)
\( \therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta + b \sin \theta}{-a \sin \theta + b \cos \theta} \) [From (i) and (ii)]
\( \Rightarrow \frac{dy}{dx} = \frac{a \cos \theta + b \sin \theta}{b \cos \theta - a \sin \theta} \Rightarrow \frac{dy}{dx} = \frac{x}{y} \) (Note: based on \( x, y \) definitions) ...(iii)
Differentiating again with respect to \( x \), we get
\( \frac{d^2 y}{dx^2} = - \frac{y - x \cdot \frac{dy}{dx}}{y^2} \Rightarrow y^2 \frac{d^2 y}{dx^2} = -y + x \frac{dy}{dx} \Rightarrow y^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0 \)

Question. If \( y = Pe^{ax} + Qe^{bx} \), then show that \( \frac{d^2y}{dx^2} - (a+b) \frac{dy}{dx} + aby = 0 \). 
Answer: Given, \( y = Pe^{ax} + Qe^{bx} \)
On differentiating with respect to \( x \), we have \( \frac{dy}{dx} = Pae^{ax} + Qbe^{bx} \)
Again, differentiating with respect to \( x \), we have \( \frac{d^2 y}{dx^2} = Pa^2e^{ax} + Qb^2e^{bx} \)
Now, LHS \( = \frac{d^2 y}{dx^2} - (a + b) \frac{dy}{dx} + aby \)
\( = Pa^2e^{ax} + Qb^2e^{bx} - (a + b)(Pae^{ax} + Qbe^{bx}) + ab (Pe^{ax} + Qe^{bx}) \)
\( = Pa^2e^{ax} + Qb^2e^{bx} - Pa^2e^{ax} - Pabe^{ax} - Qabebx - Qb^2e^{bx} + Pabe^{ax} + Qabebx \)
\( = 0 = RHS \)

Question. If \( y = e^{a \cos^{-1} x} \), \( -1 < x < 1 \), then show that \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0 \). 
Answer: Given, \( y = e^{a \cos^{-1} x} \), \( -1 < x < 1 \)
Differentiating w.r.t \( x \), we have
\( \therefore \frac{dy}{dx} = e^{a \cos^{-1} x} \times a \times \frac{-1}{\sqrt{1 - x^2}} = - \frac{ay}{\sqrt{1 - x^2}} \)
\( \Rightarrow \sqrt{1 - x^2} \frac{dy}{dx} = - ay \)
Squaring both sides, we have \( (1 - x^2) \left( \frac{dy}{dx} \right)^2 = a^2 y^2 \)
Again differentiating w.r.t. \( x \), we have
\( (1 - x^2) \times 2 \frac{dy}{dx} \cdot \frac{d^2 y}{dx^2} + \left( \frac{dy}{dx} \right)^2 \times (-2x) = a^2 \times 2y \frac{dy}{dx} \)
\( \Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = a^2 y \Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0 \) Proved

Question. If \( y = \sin(\log x) \), then prove that \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0 \). 
Answer: Given, \( y = \sin(\log x) \)
\( \Rightarrow \frac{dy}{dx} = \cos(\log x) \times \frac{1}{x} = \frac{\cos(\log x)}{x} \)
Again, \( \frac{d^2 y}{dx^2} = \frac{x \left[ -\sin(\log x) \times \frac{1}{x} \right] - \cos(\log x) \cdot 1}{x^2} = \frac{-\sin(\log x) - \cos(\log x)}{x^2} \)
Now, LHS \( = x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y \)
\( = x^2 \frac{\{-\sin(\log x) - \cos(\log x)\}}{x^2} + x \frac{\cos(\log x)}{x} + \sin(\log x) \)
\( = - \cos(\log x) - \sin(\log x) + \cos(\log x) + \sin(\log x) = 0 = RHS \)

Question. If \( y = \text{cosec}^{-1} x \), \( x > 1 \), then show that \( x(x^2 - 1) \frac{d^2y}{dx^2} + (2x^2 - 1) \frac{dy}{dx} = 0 \). 
Answer: \( \because y = \text{cosec}^{-1} x \)
Differentiating with respect to \( x \), we get \( \therefore \frac{dy}{dx} = - \frac{1}{x \sqrt{x^2 - 1}} \)
Again differentiating with respect to \( x \), we get
\( \frac{d^2 y}{dx^2} = - \frac{x \sqrt{x^2 - 1} \cdot 0 + 1 \cdot \left[ x \cdot \frac{2x}{2 \sqrt{x^2 - 1}} + \sqrt{x^2 - 1} \right]}{x^2(x^2 - 1)} \)
\( \Rightarrow \frac{d^2 y}{dx^2} = \frac{\frac{x^2 + x^2 - 1}{\sqrt{x^2 - 1}}}{x^2(x^2 - 1)} = \frac{2x^2 - 1}{\sqrt{x^2 - 1} \cdot x^2 (x^2 - 1)} \)
\( \Rightarrow x(x^2 - 1) \frac{d^2 y}{dx^2} = \frac{2x^2 - 1}{x \sqrt{x^2 - 1}} = (2x^2 - 1) \left( - \frac{dy}{dx} \right) \)
\( \Rightarrow x(x^2 - 1) \frac{d^2 y}{dx^2} + (2x^2 - 1) \frac{dy}{dx} = 0 \)

Question. If \( y = 3 \cos(\log x) + 4 \sin(\log x) \), show that \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0 \). 
Answer: Given, \( y = 3 \cos(\log x) + 4 \sin(\log x) \)
Differentiating with respect to \( x \), we get \( \frac{dy}{dx} = \frac{-3 \sin(\log x)}{x} + \frac{4 \cos(\log x)}{x} \)
\( \Rightarrow y_1 = \frac{1}{x} [-3 \sin(\log x) + 4 \cos(\log x)] \)
Again differentiating with respect to \( x \), we get
\( \frac{d^2 y}{dx^2} = \frac{x \left[ \frac{-3 \cos(\log x)}{x} - \frac{4 \sin(\log x)}{x} \right] - [-3 \sin(\log x) + 4 \cos(\log x)]}{x^2} \)
\( = \frac{-3 \cos(\log x) - 4 \sin(\log x) + 3 \sin(\log x) - 4 \cos(\log x)}{x^2} \)
\( \frac{d^2 y}{dx^2} = \frac{- \sin(\log x) - 7 \cos(\log x)}{x^2} \Rightarrow y_2 = \frac{- \sin(\log x) - 7 \cos(\log x)}{x^2} \)
Now, LHS \( = x^2 y_2 + xy_1 + y \)
\( = x^2 \left( \frac{- \sin(\log x) - 7 \cos(\log x)}{x^2} \right) + x \times \frac{1}{x} [-3 \sin(\log x) + 4 \cos(\log x)] + 3 \cos(\log x) + 4 \sin(\log x) \)
\( = - \sin(\log x) - 7 \cos(\log x) - 3 \sin(\log x) + 4 \cos(\log x) + 3 \cos(\log x) + 4 \sin(\log x) \)
\( = 0 = RHS \)

Question. If \( x = a(\cos t + t \sin t) \) and \( y = a(\sin t - t \cos t) \), \( 0 < t < \frac{\pi}{2} \), find \( \frac{d^2x}{dt^2} \), \( \frac{d^2y}{dt^2} \) and \( \frac{d^2y}{dx^2} \).
Answer: Given, \( x = a(\cos t + t \sin t) \)
Differentiating both sides with respect to \( t \), we get \( \frac{dx}{dt} = a(-\sin t + t \cos t + \sin t) \Rightarrow \frac{dx}{dt} = at \cos t \) ...(i)
Differentiating again with respect to \( t \), we get \( \frac{d^2 x}{dt^2} = a(-t \sin t + \cos t) = a(\cos t - t \sin t) \)
Again, \( y = a(\sin t - t \cos t) \)
Differentiating with respect to \( t \), we get \( \frac{dy}{dt} = a(\cos t + t \sin t - \cos t) \Rightarrow \frac{dy}{dt} = at \sin t \) ...(ii)
Differentiating again with respect to \( t \) we get \( \frac{d^2 y}{dt^2} = a(t \cos t + \sin t) \)
Now, \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \) [From (i) and (ii)]
\( \Rightarrow \frac{dy}{dx} = \frac{at \sin t}{at \cos t} \Rightarrow \frac{dy}{dx} = \tan t \)
Differentiating again with respect to \( x \), we get
\( \frac{d^2 y}{dx^2} = \sec^2 t \cdot \frac{dt}{dx} = \sec^2 t \cdot \frac{1}{dx/dt} = \frac{\sec^2 t}{at \cos t} = \frac{\sec^3 t}{at} \) [From (i)]
Hence, \( \frac{d^2 x}{dt^2} = a(\cos t - t \sin t) \), \( \frac{d^2 y}{dt^2} = a(t \cos t + \sin t) \) and \( \frac{d^2 y}{dx^2} = \frac{\sec^3 t}{at} \).

VBQs for Chapter 5 Continuity and Differentiability Class 12 Mathematics

Students can now access the Value-Based Questions (VBQs) for Chapter 5 Continuity and Differentiability as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.

Expert-Approved Chapter 5 Continuity and Differentiability Value-Based Questions & Answers

Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.

Improve your Mathematics Scores

Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 5 Continuity and Differentiability on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.

Where can I find 2025-26 CBSE Value Based Questions (VBQs) for Class 12 Mathematics Chapter Chapter 5 Continuity and Differentiability?

The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 5 Continuity and Differentiability is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.

Are answers provided for Class 12 Mathematics Chapter Chapter 5 Continuity and Differentiability VBQs?

Yes, all our Mathematics VBQs for Chapter Chapter 5 Continuity and Differentiability come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.

What is the importance of solving VBQs for Class 12 Chapter Chapter 5 Continuity and Differentiability Mathematics?

VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 5 Continuity and Differentiability these questions are as per the latest competency-based education goals.

How many marks are usually allocated to VBQs in the CBSE Mathematics paper?

In the current CBSE pattern for Class 12 Mathematics, Chapter 5 Continuity and Differentiability Value Based or Case-Based questions typically carry 3 to 5 marks.

Can I download Mathematics Chapter Chapter 5 Continuity and Differentiability VBQs in PDF for free?

Yes, you can download Class 12 Mathematics Chapter Chapter 5 Continuity and Differentiability VBQs in a mobile-friendly PDF format for free.