Read and download the CBSE Class 12 Mathematics Differential Equations VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE, NCERT, and KVS examination patterns.
VBQ for Class 12 Mathematics Chapter 9 Differential Equations
For Class 12 students, Value Based Questions for Chapter 9 Differential Equations help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.
Chapter 9 Differential Equations Class 12 Mathematics VBQ Questions with Answers
Question. Show that the differential equation \(x \sin \left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin \left(\frac{y}{x}\right) = 0\) is homogeneous. Find the particular solution of this differential equation, given that \(x = 1\) when \(y = \frac{\pi}{2}\).
Answer: Given differential equation is \(x \sin \frac{y}{x} \frac{dy}{dx} + x - y \sin \frac{y}{x} = 0\)
Dividing both sides by \(x \sin \frac{y}{x}\), we get
\(\frac{dy}{dx} + \text{cosec} \frac{y}{x} - \frac{y}{x} = 0 \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \text{cosec} \frac{y}{x}\) ...(i)
Let \(F(x, y) = \frac{y}{x} - \text{cosec} \frac{y}{x}\)
\(\therefore F(\lambda x, \lambda y) = \frac{\lambda y}{\lambda x} - \text{cosec} \frac{\lambda y}{\lambda x} = \lambda^0 \left[ \frac{y}{x} - \text{cosec} \frac{y}{x} \right] = \lambda^0 F(x, y)\)
Hence, differential equation (i) is homogeneous.
Let \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
Now, equation (i) becomes
\(v + x \frac{dv}{dx} = \frac{vx}{x} - \text{cosec} \frac{vx}{x}\)
\(v + x \frac{dv}{dx} = v - \text{cosec} v \Rightarrow x \frac{dv}{dx} = -\text{cosec} v\)
\(\Rightarrow -\sin v dv = \frac{dx}{x} \Rightarrow -\int \sin v dv = \int \frac{dx}{x}\)
\(\Rightarrow \cos v = \log |x| + C \Rightarrow \cos \frac{y}{x} = \log |x| + C\) ...(ii)
Putting \(y = \frac{\pi}{2}, x = 1\) in (ii), we get
\(\therefore \cos \frac{\pi}{2} = \log 1 + C \Rightarrow 0 = 0 + C \Rightarrow C = 0\)
Hence, particular solution is
\(\cos \frac{y}{x} = \log |x| + 0\) i.e., \(\cos \frac{y}{x} = \log |x|\)
Question. Solve the differential equation: \(\sqrt{1+x^2+y^2+x^2y^2} + xy \frac{dy}{dx} = 0\)
Answer: Given \(\sqrt{1+x^2+y^2+x^2y^2} + xy \frac{dy}{dx} = 0\)
By simplifying the equation, we get
\(xy \frac{dy}{dx} = -\sqrt{1+x^2+y^2+x^2y^2} = -\sqrt{1+x^2+y^2(1+x^2)}\)
\(\Rightarrow xy \frac{dy}{dx} = -\sqrt{(1+x^2)(1+y^2)} = -\sqrt{1+x^2} \sqrt{1+y^2}\)
\(\Rightarrow \frac{y}{\sqrt{(1+y^2)}} dy = -\frac{\sqrt{(1+x^2)}}{x} dx\)
Integrating both sides, we get
\(\int \frac{y}{\sqrt{(1+y^2)}} dy = -\int \frac{\sqrt{(1+x^2)}}{x} dx\) ...(i)
Let \(1+y^2 = t \Rightarrow 2y dy = dt\) and \(1+x^2 = m^2 \Rightarrow 2x dx = 2m dm \Rightarrow x dx = m dm\)
\(\therefore (i) \Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{t}} dt = -\int \frac{m}{m^2-1} \cdot m dm\)
\(\Rightarrow \frac{1}{2} \frac{t^{1/2}}{1/2} + \int \frac{m^2}{m^2-1} dm = 0 \Rightarrow \sqrt{t} + \int \frac{m^2-1+1}{m^2-1} dm = 0\)
\(\Rightarrow \sqrt{t} + \int (1 + \frac{1}{m^2-1}) dm = 0 \Rightarrow \sqrt{t} + m + \frac{1}{2} \log |\frac{m-1}{m+1}| = 0\)
Now, substituting these value of \(t\) and \(m\), we get
\(\sqrt{1+y^2} + \sqrt{1+x^2} + \frac{1}{2} \log |\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}| + C = 0\)
Question. \((x^2 + y^2) dy = xy dx\). If \(y(1) = 1\) and \(y(x_0) = e\), then find the value of \(x_0\).
Answer: Given differential equation is \((x^2 + y^2) dy = xy dx\)
It is also written as
\(\frac{dy}{dx} = \frac{xy}{x^2+y^2}\) ...(i)
Now, to solve let \(y = vx\). [since (i) is a homogeneous equation]
Differentiating \(y = vx\) with respect to \(x\), we get
\(\frac{dy}{dx} = v + x \frac{dv}{dx}\)
Putting \(y = vx\) and \(\frac{dy}{dx} = v + x \frac{dv}{dx}\) in (i), we get
\(v + x \frac{dv}{dx} = \frac{x \cdot vx}{x^2 + (vx)^2}\)
\(v + x \frac{dv}{dx} = \frac{vx^2}{x^2 + v^2x^2} \Rightarrow v + x \frac{dv}{dx} = \frac{vx^2}{x^2(1+v^2)}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{v}{(1+v^2)} - v \Rightarrow x \frac{dv}{dx} = \frac{v - v - v^3}{(1+v^2)}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{-v^3}{(1+v^2)} \Rightarrow \frac{(1+v^2) dv}{v^3} = -\frac{dx}{x}\)
Integrating both sides, we get
\(\int \frac{(1+v^2) dv}{v^3} = -\int \frac{dx}{x}\)
\(\Rightarrow \int \frac{dv}{v^3} + \int \frac{dv}{v} = -\log |x| + C \Rightarrow -\frac{1}{2v^2} + \log |v| = -\log |x| + C\)
\(\Rightarrow -\frac{x^2}{2y^2} + \log |\frac{y}{x}| = -\log |x| + C \Rightarrow -\frac{x^2}{2y^2} + \log |y| - \log |x| = -\log |x| + C\)
\(\Rightarrow -\frac{x^2}{2y^2} + \log |y| = C\) ...(ii)
Given, \(x = 1, y = 1\)
\(\Rightarrow -\frac{1}{2 \times 1} + \log |1| = C \Rightarrow -\frac{1}{2} = C\) [\(\because \log 1 = 0\)]
Now (ii) becomes
\(-\frac{x^2}{2y^2} + \log |y| = -\frac{1}{2} \Rightarrow \log |y| = \frac{x^2}{2y^2} - \frac{1}{2} \Rightarrow \log |y| = \frac{x^2 - y^2}{2y^2}\) ...(iii)
Putting \(x = x_0\) and \(y = e\) in (iii), we get
\(\log |e| = \frac{x_0^2 - e^2}{2e^2} \Rightarrow 1 = \frac{x_0^2 - e^2}{2e^2} \Rightarrow x_0^2 - e^2 = 2e^2\)
\(\Rightarrow x_0^2 = 3e^2 \Rightarrow x_0 = \sqrt{3}e\)
Question. Find the particular solution of the differential equation \(\frac{dy}{dx} + y \tan x = 3x^2 + x^3 \tan x, x \neq \frac{\pi}{2}\), given that \(y = 0\) when \(x = \frac{\pi}{3}\).
Answer: Given, \(\frac{dy}{dx} + y \tan x = 3x^2 + x^3 \tan x\)
\(\Rightarrow \frac{dy}{dx} + \tan x \cdot y = 3x^2 + x^3 \tan x\)
This is of the form \(\frac{dy}{dx} + Py = Q\), where \(P = \tan x, Q = 3x^2 + x^3 \tan x\).
\(\therefore IF = e^{\int \tan x dx} = e^{\log \sec x} = \sec x\)
Therefore, general solution is given by
\(y \cdot \sec x = \int (3x^2 + x^3 \tan x) \cdot \sec x dx + C\)
\(\Rightarrow y \cdot \sec x = \int 3x^2 \sec x dx + \int x^3 \tan x \sec x dx + C\)
\(\Rightarrow y \sec x = \int 3x^2 \sec x dx + x^3 \cdot \sec x - \int 3x^2 \cdot \sec x dx + C\)
\(\Rightarrow y \sec x = x^3 \sec x + C \Rightarrow y = x^3 + C \cos x\)
Now \(x = \frac{\pi}{3}, y = 0\)
\(\therefore 0 = \left(\frac{\pi}{3}\right)^3 + C \cdot \cos \left(\frac{\pi}{3}\right) \Rightarrow 0 = \frac{\pi^3}{27} + \frac{C}{2} \Rightarrow C = -\frac{2\pi^3}{27}\)
Hence, required particular solution is \(y = x^3 - \frac{2\pi^3}{27} \cos x\).
Question. Show that the differential equation \((x - y) \frac{dy}{dx} = x + 2y\) is homogeneous and solve it.
Answer: Given, \((x - y) \frac{dy}{dx} = x + 2y\)
By simplifying the above equation, we get
\(\frac{dy}{dx} = \frac{x + 2y}{x - y}\) ...(i)
Let \(F(x, y) = \frac{x + 2y}{x - y}\)
then \(F(\lambda x, \lambda y) = \frac{\lambda x + 2\lambda y}{\lambda x - \lambda y} = \frac{\lambda(x + 2y)}{\lambda(x - y)} = \lambda^0 F(x, y)\)
\(F(x, y)\) is homogeneous function and hence given differential equation is homogeneous.
Now, let \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
Substituting these values in equation (i), we get
\(v + x \frac{dv}{dx} = \frac{x + 2vx}{x - vx}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v = \frac{1 + 2v - v + v^2}{1 - v} = \frac{1 + v + v^2}{1 - v}\)
\(\Rightarrow \frac{1 - v}{1 + v + v^2} dv = \frac{dx}{x}\)
By integrating both sides, we get
\(\int \frac{1 - v}{1 + v + v^2} dv = \int \frac{dx}{x}\) ...(ii)
LHS = \(\int \frac{1 - v}{v^2 + v + 1} dv\)
Let \(1 - v = A(2v + 1) + B = 2Av + (A + B)\)
Comparing coefficients of both sides, we get
\(2A = -1, A + B = 1\) or \(A = -\frac{1}{2}, B = \frac{3}{2}\)
\(\therefore \int \frac{1 - v}{v^2 + v + 1} dv = \int \frac{-\frac{1}{2}(2v + 1) + \frac{3}{2}}{v^2 + v + 1} dv\)
\(= -\frac{1}{2} \int \frac{2v + 1}{v^2 + v + 1} dv + \frac{3}{2} \int \frac{dv}{v^2 + v + 1}\)
\(= -\frac{1}{2} \int \frac{2v + 1}{v^2 + v + 1} dv + \frac{3}{2} \int \frac{dv}{(v + \frac{1}{2})^2 + \frac{3}{4}}\)
\(= -\frac{1}{2} \log |v^2 + v + 1| + \frac{3}{2} \times \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\)
Now, substituting it in equation (ii), we get
\(-\frac{1}{2} \log |v^2 + v + 1| + \sqrt{3} \tan^{-1} \left( \frac{2v + 1}{\sqrt{3}} \right) = \log x + C\)
\(\Rightarrow -\frac{1}{2} \log |\frac{y^2}{x^2} + \frac{y}{x} + 1| + \sqrt{3} \tan^{-1} \left( \frac{2\frac{y}{x} + 1}{\sqrt{3}} \right) = \log x + C\)
\(\Rightarrow -\frac{1}{2} \log |x^2 + xy + y^2| + \frac{1}{2} \log x^2 + \sqrt{3} \tan^{-1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log x + C\)
\(\Rightarrow -\frac{1}{2} \log |x^2 + xy + y^2| + \sqrt{3} \tan^{-1} \left( \frac{2y + x}{\sqrt{3}x} \right) = C\)
Question. Solve \(\frac{dy}{dx} = \cos (x + y) + \sin (x + y)\).
Answer: Given, \(\frac{dy}{dx} = \cos (x + y) + \sin (x + y)\)
Put \(x + y = z \Rightarrow 1 + \frac{dy}{dx} = \frac{dz}{dx}\)
On substituting these values in equation (i), we get
\(\left(\frac{dz}{dx} - 1\right) = \cos z + \sin z \Rightarrow \frac{dz}{dx} = (\cos z + \sin z + 1) \Rightarrow \frac{dz}{\cos z + \sin z + 1} = dx\)
On integrating both sides, we get
\(\int \frac{dz}{\cos z + \sin z + 1} = \int 1 dx\)
\(\Rightarrow \int \frac{dz}{\frac{1 - \tan^2 z/2}{1 + \tan^2 z/2} + \frac{2 \tan z/2}{1 + \tan^2 z/2} + 1} = \int dx\)
\(\Rightarrow \int \frac{(1 + \tan^2 z/2) dz}{1 - \tan^2 z/2 + 2 \tan z/2 + 1 + \tan^2 z/2} = \int dx\)
\(\Rightarrow \int \frac{(1 + \tan^2 z/2) dz}{2 + 2 \tan z/2} = \int dx \Rightarrow \int \frac{\sec^2 z/2 dz}{2(1 + \tan z/2)} = \int dx\)
Put \(1 + \tan z/2 = t \Rightarrow \left(\frac{1}{2} \sec^2 z/2\right) dz = dt\)
\(\Rightarrow \int \frac{dt}{t} = \int dx \Rightarrow \log |t| = x + C\)
\(\Rightarrow \log |1 + \tan z/2| = x + C \Rightarrow \log |1 + \tan \frac{x+y}{2}| = x + C\)
Question. Find the equation of the curve through the point (1, 0), if the slope of the tangent to the curve at any point (x, y) is \(\frac{y-1}{x^2 + x}\).
Answer: It is given that, slope of tangent to the curve at any point (x, y) is \(\frac{y-1}{x^2 + x}\).
\(\therefore \left(\frac{dy}{dx}\right)_{(x, y)} = \frac{y-1}{x^2 + x}\)
\(\Rightarrow \frac{dy}{dx} = \frac{y-1}{x^2 + x} \Rightarrow \frac{dy}{y-1} = \frac{dx}{x^2 + x}\)
On integrating both sides, we get \(\int \frac{dy}{y-1} = \int \frac{dx}{x^2 + x}\)
\(\Rightarrow \int \frac{dy}{y-1} = \int \frac{dx}{x(x + 1)} \Rightarrow \int \frac{dy}{y-1} = \int \left(\frac{1}{x} - \frac{1}{x + 1}\right) dx\)
\(\Rightarrow \log (y - 1) = \log x - \log (x + 1) + \log C\)
\(\Rightarrow \log (y - 1) = \log \left( \frac{xC}{x + 1} \right)\)
Since, the given curve passes through point (1, 0).
\(\therefore 0 - 1 = \frac{1 \cdot C}{1 + 1} \Rightarrow C = -2\)
The particular solution is \(y - 1 = \frac{-2x}{x + 1} \Rightarrow (y - 1)(x + 1) = -2x \Rightarrow (y - 1)(x + 1) + 2x = 0\).
Question. Find the particular solution of the differential equation: \((1 - y^2)(1 + \log x) dx + 2xy dy = 0\) given that \(y = 0\) when \(x = 1\)
Answer: We have \((1 - y^2)(1 + \log x) dx + 2xy dy = 0\)
\(\Rightarrow 2xy dy = -(1 - y^2)(1 + \log x) dx \Rightarrow \frac{2y}{1 - y^2} dy = -\frac{(1 + \log x) dx}{x}\)
Integrating both sides, we get
\(\int \frac{2y}{1 - y^2} dy = -\int \frac{(1 + \log x)}{x} dx \Rightarrow -\log |1 - y^2| = -\int \frac{(1 + \log x)}{x} dx\)
\(\Rightarrow -\log |1 - y^2| = -\int z dz\) [Let \(1 + \log x = z \Rightarrow \frac{1}{x} dx = dz\)]
\(\Rightarrow \log |1 - y^2| = \frac{z^2}{2} + C \Rightarrow \log |1 - y^2| = \frac{(1 + \log x)^2}{2} + C\)
Putting \(x = 1\) and \(y = 0\), we get
\(\Rightarrow \log 1 = \frac{(1 + \log 1)^2}{2} + C \Rightarrow 0 = \frac{1}{2} + C \Rightarrow C = -\frac{1}{2}\)
Hence, particular solution is \(\log |1 - y^2| = \frac{(1 + \log x)^2}{2} - \frac{1}{2}\).
Question. Find the general solution of the following differential equation: \((1 + y^2) + (x - e^{-\tan^{-1} y}) \frac{dy}{dx} = 0\)
Answer: We have \((1 + y^2) + (x - e^{-\tan^{-1} y}) \frac{dy}{dx} = 0\)
\(\Rightarrow (x - e^{-\tan^{-1} y}) \frac{dy}{dx} = -(1 + y^2)\)
\(\Rightarrow \frac{dy}{dx} = -\frac{1 + y^2}{x - e^{-\tan^{-1} y}} \Rightarrow \frac{dx}{dy} = -\left( \frac{x - e^{-\tan^{-1} y}}{1 + y^2} \right)\)
\(\Rightarrow \frac{dx}{dy} = -\frac{x}{1 + y^2} + \frac{e^{-\tan^{-1} y}}{1 + y^2} \Rightarrow \frac{dx}{dy} + \frac{1}{1 + y^2}x = \frac{e^{-\tan^{-1} y}}{1 + y^2}\)
It is in the form \(\frac{dx}{dy} + Px = Q\), where \(P = \frac{1}{1 + y^2}\) and \(Q = \frac{e^{-\tan^{-1} y}}{1 + y^2}\).
\(\therefore IF = e^{\int P dy} = e^{\int \frac{1}{1 + y^2} dy} = e^{\tan^{-1} y}\)
Therefore, general solution is \(x \cdot e^{\tan^{-1} y} = \int \frac{e^{-\tan^{-1} y}}{1 + y^2} \cdot e^{\tan^{-1} y} dy + C\)
\(\Rightarrow x \cdot e^{\tan^{-1} y} = \int e^{-z} \cdot e^z dz + C\) [Let \(\tan^{-1} y = z \Rightarrow \frac{1}{1 + y^2} dy = dz\)]
\(\Rightarrow x \cdot e^{\tan^{-1} y} = \int e^0 dz + C \Rightarrow x \cdot e^{\tan^{-1} y} = z + C\)
\(\Rightarrow x \cdot e^{\tan^{-1} y} = \tan^{-1} y + C \Rightarrow x = (\tan^{-1} y) e^{-\tan^{-1} y} + C e^{-\tan^{-1} y}\)
Question. Find the particular solution of differential equation: \(\frac{dy}{dx} = - \frac{x + y \cos x}{1 + \sin x}\) given that \(y = 1\) when \(x = 0\).
Answer: We have \(\frac{dy}{dx} = - \frac{x + y \cos x}{1 + \sin x}\)
\(\Rightarrow \frac{dy}{dx} = -\frac{x}{1 + \sin x} - \frac{y \cos x}{1 + \sin x} \Rightarrow \frac{dy}{dx} + \frac{\cos x}{1 + \sin x} y = -\frac{x}{1 + \sin x}\)
It is in the form \(\frac{dy}{dx} + Py = Q\), where \(P = \frac{\cos x}{1 + \sin x}, Q = -\frac{x}{1 + \sin x}\).
Now \(IF = e^{\int \frac{\cos x}{1 + \sin x} dx} = e^{\log |1 + \sin x|} = 1 + \sin x\)
Therefore, general solution is
\(y(1 + \sin x) = \int -\frac{x}{1 + \sin x}(1 + \sin x) dx + C = -\int x dx + C\)
\(\Rightarrow y(1 + \sin x) = -\frac{x^2}{2} + C\)
\(1(1 + \sin 0) = 0 + C \Rightarrow C = 1\) [Given \(y = 1\) and \(x = 0\)]
Hence, particular solution is
\(y(1 + \sin x) = -\frac{x^2}{2} + 1 \Rightarrow y = \frac{2 - x^2}{2(1 + \sin x)}\)
Question. Solve the following differential equation : \((\cot^{-1} y + x) dy = (1 + y^2) dx\)
Answer: We have \((\cot^{-1} y + x) dy = (1 + y^2) dx\)
This can be written as
\(\Rightarrow \frac{dx}{dy} = \frac{\cot^{-1} y + x}{1 + y^2} = \frac{\cot^{-1} y}{1 + y^2} + \frac{x}{1 + y^2} \Rightarrow \frac{dx}{dy} - \frac{1}{1 + y^2} \cdot x = \frac{\cot^{-1} y}{1 + y^2}\)
It is of the form \(\frac{dx}{dy} + Px = Q\), where \(P = \frac{-1}{1 + y^2}\) and \(Q = \frac{\cot^{-1} y}{1 + y^2}\).
\(\therefore IF = e^{\int \frac{-1}{1 + y^2} dy} = e^{\cot^{-1} y}\)
Therefore, required solution of differential equation is
\(x \cdot e^{\cot^{-1} y} = \int \frac{\cot^{-1} y}{1 + y^2} \cdot e^{\cot^{-1} y} dy + C \Rightarrow x \cdot e^{\cot^{-1} y} = I + C\) ... (i)
Here, \(I = \int \frac{\cot^{-1} y}{1 + y^2} \cdot e^{\cot^{-1} y} dy\)
Let \(\cot^{-1} y = t \Rightarrow -\frac{1}{1 + y^2} dy = dt \Rightarrow \frac{1}{1 + y^2} dy = -dt\)
\(\Rightarrow I = -\int t \cdot e^t dt = -[t \cdot e^t - \int e^t dt] = -t e^t + e^t = e^t(1 - t) = e^{\cot^{-1} y} (1 - \cot^{-1} y)\)
Hence, required solution is \(x e^{\cot^{-1} y} = e^{\cot^{-1} y} (1 - \cot^{-1} y) + C\). [From equation (i)]
\(\Rightarrow x = (1 - \cot^{-1} y) + C e^{-\cot^{-1} y}\)
Question. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Answer: Let C denotes the family of circles in the second quadrant and touching the coordinate axes. Let \((-a, a)\) be the coordinate of the centre of any member of this family (see figure).
Equation representing the family C is
\((x + a)^2 + (y - a)^2 = a^2\) ...(i)
or \(x^2 + y^2 + 2ax - 2ay + a^2 = 0\) ...(ii)
Differentiating equation (ii) with respect to \(x\), we get
\(2x + 2y \frac{dy}{dx} + 2a - 2a \frac{dy}{dx} = 0 \Rightarrow x + y \frac{dy}{dx} = a \left( \frac{dy}{dx} - 1 \right)\)
or \(a = \frac{x + yy'}{y' - 1}\) (\(\because y' = \frac{dy}{dx}\))
Substituting the value of \(a\) in equation (i), we get
\(\left[x + \frac{x + yy'}{y' - 1}\right]^2 + \left[y - \frac{x + yy'}{y' - 1}\right]^2 = \left[\frac{x + yy'}{y' - 1}\right]^2\)
\(\Rightarrow [xy' - x + x + yy']^2 + [yy' - y - x - yy']^2 = [x + yy']^2\)
or \((x + y)^2 y'^2 + (x + y)^2 = (x + yy')^2 \Rightarrow (x + y)^2 [(y')^2 + 1] = [x + yy']^2\), is the required differential equation representing the given family of circles.
Question. Find the general solution of the following differential equation: \(x \cos \left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos \left(\frac{y}{x}\right) + x\)
Answer: Given differential equation is \(x \cos \left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos \left(\frac{y}{x}\right) + x\)
\(\frac{dy}{dx} = \frac{y \cos(y/x) + x}{x \cos(y/x)}\) ... (i)
It is homogeneous differential equation.
Let \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
(i) \(\Rightarrow v + x \frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v} - v \Rightarrow x \frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{1}{\cos v} \Rightarrow \cos v dv = \frac{dx}{x}\)
Integrating both sides
\(\Rightarrow \sin v = \log |x| + C \Rightarrow \sin \frac{y}{x} = \log |x| + C\) is the required solution.
Question. Solve the following differential equation: \(3e^x \tan y dx + (2 - e^x) \sec^2 y dy = 0\), given that when \(x = 0, y = \frac{\pi}{4}\)
Answer: Given, \(3e^x \tan y dx + (2 - e^x) \sec^2 y dy = 0\)
\(\Rightarrow (2 - e^x) \sec^2 y dy = -3e^x \tan y dx\)
\(\frac{\sec^2 y}{\tan y} dy = \frac{-3e^x}{2 - e^x} dx \Rightarrow \int \frac{\sec^2 y}{\tan y} dy = 3 \int \frac{-e^x}{2 - e^x} dx\)
\(\Rightarrow \log |\tan y| = 3 \log |2 - e^x| + \log C\)
\(\Rightarrow \log |\tan y| = \log |C \cdot (2 - e^x)^3| \Rightarrow \tan y = C (2 - e^x)^3\)
Putting \(x = 0, y = \frac{\pi}{4}\), we get
\(\tan \frac{\pi}{4} = C(2 - e^0)^3 \Rightarrow 1 = C(2 - 1)^3 \Rightarrow 1 = C\)
Therefore, particular solution is \(\tan y = (2 - e^x)^3\).
Question. Solve: \(x dy - y dx = \sqrt{x^2 + y^2} dx\)
Answer: The given differential equation can be written as
\(\frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}, x \neq 0\)
Clearly, it is a homogeneous differential equation.
Putting \(y = vx\) and \(\frac{dy}{dx} = v + x \frac{dv}{dx}\) in it, we get
\(v + x \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2x^2} + vx}{x} \Rightarrow v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v\)
\(\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2} \Rightarrow \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}\)
Integrating both sides, we get
\(\int \frac{1}{\sqrt{1 + v^2}} dv = \int \frac{1}{x} dx \Rightarrow \log |v + \sqrt{1 + v^2}| = \log |x| + \log C\)
\(\Rightarrow |v + \sqrt{1 + v^2}| = |Cx| \Rightarrow \left|\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right| = |Cx|\)
\(\Rightarrow \{y + \sqrt{x^2 + y^2}\}^2 = C^2x^4\) [Squaring both sides]
Hence, \(\{y + \sqrt{x^2 + y^2}\}^2 = C^2x^4\) gives the required solution.
Question. Show that the differential equation \((x e^{y/x} + y) dx = x dy\) is homogeneous. Find the particular solution of this differential equation, given that \(x = 1\) when \(y = 1\).
Answer: Given differential equation is \((x e^{y/x} + y) dx = x dy \Rightarrow \frac{dy}{dx} = \frac{x e^{y/x} + y}{x}\) ... (i)
Let \(F(x, y) = \frac{x e^{y/x} + y}{x} \Rightarrow F(\lambda x, \lambda y) = \frac{\lambda x e^{\lambda y / \lambda x} + \lambda y}{\lambda x} = \lambda^0 \frac{x e^{y/x} + y}{x} = \lambda^0 F(x, y)\)
Hence, given differential equation (i) is homogeneous.
Let \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
Now, given differential equation (i) would become
\(v + x \frac{dv}{dx} = \frac{x e^v + vx}{x} \Rightarrow v + x \frac{dv}{dx} = e^v + v \Rightarrow x \frac{dv}{dx} = e^v\)
\(\Rightarrow \frac{dv}{e^v} = \frac{dx}{x} \Rightarrow \int e^{-v} dv = \int \frac{dv}{x} \Rightarrow \frac{e^{-v}}{-1} = \log x + C\)
\(\Rightarrow -e^{-y/x} = \log x + C \Rightarrow -\frac{1}{e^{y/x}} = \log x + C \Rightarrow e^{y/x} \cdot \log x + C e^{y/x} + 1 = 0\)
Putting \(x = 1, y = 1\), we get
\(\therefore e \log 1 + Ce + 1 = 0 \Rightarrow C = -\frac{1}{e}\)
\(\therefore\) The required particular solution is
\(e^{y/x} \cdot \log x - \frac{1}{e} e^{y/x} + 1 = 0\) or \(e^{y/x} \log x - e^{(y/x)-1} + 1 = 0\)
Question. Show that the differential equation \(\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0\) is homogeneous. Find the particular solution of this differential equation, given that \(y = \frac{\pi}{4}\) when \(x = 1\).
Answer: Given differential equation is \(\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0 \Rightarrow \frac{dy}{dx} = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x}\) ...(i)
Let \(F(x, y) = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x}\)
Then \(F(\lambda x, \lambda y) = \frac{\lambda y - \lambda x \sin^2\left(\frac{\lambda y}{\lambda x}\right)}{\lambda x} = \lambda^0 \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x} = \lambda^0 F(x, y)\)
Hence, differential equation (i) is homogeneous.
Now, let \(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
Putting these values in (i), we get
\(v + x \frac{dv}{dx} = \frac{vx - x \sin^2\left(\frac{vx}{x}\right)}{x} \Rightarrow v + x \frac{dv}{dx} = \frac{x\{v - \sin^2 v\}}{x}\)
\(\Rightarrow v + x \frac{dv}{dx} = v - \sin^2 v \Rightarrow x \frac{dv}{dx} = -\sin^2 v \Rightarrow \frac{dv}{\sin^2 v} = -\frac{dx}{x}\)
Integrating both sides, we get
\(\int \text{cosec}^2 v dv = -\int \frac{1}{x} dx \Rightarrow -\cot v = -\log x + C \Rightarrow \log x - \cot\left(\frac{y}{x}\right) = C\) ...(ii)
Putting \(y = \frac{\pi}{4}\) and \(x = 1\) in (ii), we get
\(\log 1 - \cot \frac{\pi}{4} = C \Rightarrow 0 - 1 = C \Rightarrow C = -1\)
Hence, particular solution is
\(\log x - \cot\left(\frac{y}{x}\right) = -1 \Rightarrow \log x - \cot\left(\frac{y}{x}\right) + 1 = 0\)
Question. Find the differential equation of the family of curves \((x - h)^2 + (y - k)^2 = r^2\), where \(h\) and \(k\) are arbitrary constants.
Answer: Given family of curve is \((x - h)^2 + (y - k)^2 = r^2\) ...(i)
Differentiating with respect to \(x\), we get
\(2(x - h) + 2(y - k) \cdot \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x - h}{y - k}\) ...(ii)
Differentiating again with respect to \(x\), we get
\(\frac{d^2y}{dx^2} = -\left\{ \frac{(y - k) - (x - h) \cdot \frac{dy}{dx}}{(y - k)^2} \right\} = -\left\{ \frac{(y - k) + (x - h) \cdot \frac{x - h}{y - k}}{(y - k)^2} \right\}\) [From (ii)]
\(\Rightarrow \frac{d^2y}{dx^2} = -\left\{ \frac{(y - k)^2 + (x - h)^2}{(y - k)^3} \right\} = -\frac{r^2}{(y - k)^3}\) [From (i)] ...(iii)
From (ii) \(\left(\frac{dy}{dx}\right)^2 = \left(\frac{x - h}{y - k}\right)^2 \Rightarrow \left(\frac{dy}{dx}\right)^2 = \frac{(x - h)^2}{(y - k)^2}\)
Adding 1 both the sides, we get
\(\left(\frac{dy}{dx}\right)^2 + 1 = \frac{(x - h)^2}{(y - k)^2} + 1 = \frac{(x - h)^2 + (y - k)^2}{(y - k)^2}\)
Putting exponent (power) \(\frac{3}{2}\) both sides, we get
\(\left[ \left(\frac{dy}{dx}\right)^2 + 1 \right]^{3/2} = \left[ \frac{r^2}{(y - k)^2} \right]^{3/2} = \frac{r^3}{(y - k)^3}\)
\(\Rightarrow \left[ \left(\frac{dy}{dx}\right)^2 + 1 \right]^{3/2} = r \cdot \frac{r^2}{(y - k)^3} = -r \frac{d^2y}{dx^2}\) [Using (iii)]
\(\Rightarrow r \frac{d^2y}{dx^2} + \left[ \left(\frac{dy}{dx}\right)^2 + 1 \right]^{3/2} = 0\)
Question. Find the particular solution of the differential equation \(\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}\) given that \(y = \frac{\pi}{2}\) when \(x = 1\).
Answer: Given differential equation is \(\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}\)
\(\Rightarrow (\sin y + y \cos y) dy = x(2 \log x + 1) dx\)
\(\Rightarrow \int \sin y dy + \int y \cos y dy = 2 \int x \log x dx + \int x dx\)
\(\Rightarrow \int \sin y dy + [y \sin y - \int \sin y dy] = 2 \left[ \log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} dx \right] + \int x dx\)
\(\Rightarrow \int \sin y dy + y \sin y - \int \sin y dy = x^2 \log x - \int x dx + \int x dx + C\)
\(\Rightarrow y \sin y = x^2 \log x + C\), is general solution. ...(i)
For particular solution, we put \(y = \frac{\pi}{2}\) when \(x = 1\)
(i) becomes \(\frac{\pi}{2} \sin \frac{\pi}{2} = 1 \cdot \log 1 + C \Rightarrow \frac{\pi}{2} = C\) [\(\because \log 1 = 0\)]
Putting the value of \(C\) in (i), we get the required particular solution
\(y \sin y = x^2 \log x + \frac{\pi}{2}\)
Question. Show that the family of curves for which the slope of the tangent at any point \((x, y)\) on it is \(\frac{x^2 + y^2}{2xy}\), is given by \(x^2 - y^2 = Cx\).
Answer: We know that the slope of the tangent at any point on a curve is \(\frac{dy}{dx}\).
Therefore, \(\frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \Rightarrow \frac{dy}{dx} = \frac{1 + \frac{y^2}{x^2}}{\frac{2y}{x}}\) ...(i)
Clearly, equation (i) is a homogeneous differential equation. To solve it we make substitution.
\(y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}\)
Putting the value of \(y\) and \(\frac{dy}{dx}\) in equation (i), we get
\(v + x \frac{dv}{dx} = \frac{1 + v^2}{2v} \Rightarrow x \frac{dv}{dx} = \frac{1 - v^2}{2v}\)
\(\Rightarrow \frac{2v}{1 - v^2} dv = \frac{dx}{x} \Rightarrow \int \frac{2v}{v^2 - 1} dv = -\int \frac{dx}{x}\)
Integrating both sides, we get
\(\log |v^2 - 1| = -\log |x| + \log |C_1|\)
\(\Rightarrow \log |(v^2 - 1)(x)| = \log |C_1| \Rightarrow (v^2 - 1)x = \pm C_1\)
Replacing \(v\) by \(\frac{y}{x}\), we get
\(\left( \frac{y^2}{x^2} - 1 \right) x = \pm C_1 \Rightarrow (y^2 - x^2) = \pm C_1 x \Rightarrow x^2 - y^2 = Cx\) (where \(\pm C_1 = C\))
Objective Type Questions:
Choose and write the correct option in each of the following questions.
Question. The degree of the differential equation \(\left(1 + \left(\frac{dy}{dx}\right)^3\right)^{2/3} = \left(\frac{d^2y}{dx^2}\right)^2\) is
(a) 1
(b) 2
(c) 3
(d) 4
Answer: c
Question. The order and degree of the differential equation \(\frac{d^4y}{dx^4} = y + \left(\frac{dy}{dx}\right)^4\) are respectively
(a) 4, 1
(b) 4, 2
(c) 2, 2
(d) 2, 4
Answer: a
Question. The integrating factor of the differential equation \(x \frac{dy}{dx} - y = 2x^2\) is
(a) \(e^{-x}\)
(b) \(e^{-y}\)
(c) \(\frac{1}{x}\)
(d) \(x\)
Answer: c
Question. The differential equation of the family of lines passing through the origin is
(a) \(\frac{dy}{dx} = x\)
(b) \(\frac{dy}{dx} = y\)
(c) \(x \frac{dy}{dx} - y = 0\)
(d) \(x + \frac{dy}{dx} = 0\)
Answer: c
Question. Solution of the differential equation \(x \frac{dy}{dx} + y = x e^x\) is
(a) \(xy = e^x (1 - x) + C\)
(b) \(xy = e^x (x + 1) + C\)
(c) \(xy = e^y (y - 1) + C\)
(d) \(xy = e^x (x - 1) + C\)
Answer: d
Question. The general solution of the differential equation \(e^x dy + (y e^x + 2x) dx = 0\) is
(a) \(x e^y + x^2 = C\)
(b) \(x e^y + y^2 = C\)
(c) \(y e^x + x^2 = C\)
(d) \(y e^y + x^2 = C\)
Answer: c
Fill in the blanks.
Question. The number of arbitrary constant (s) in a particular solution of the differential equation \(\tan x dx + \tan y dy = 0\) is _____________ .
Answer: 0
Question. The solution of the differential equation \(x \frac{dy}{dx} + 2y = x^2\) is _____________ .
Answer: \(yx^2 = \frac{x^4}{4} + C\)
Question. The general solution of the differential equation \(\frac{dy}{dx} = \frac{x^2}{y^2}\) is _____________ .
Answer: \(y^3 - x^3 = C\)
Question. The degree of the differential equation \(\frac{d^2y}{dx^2} + e^{dy/dx} = 0\) is ____________ .
Answer: not defined
| CBSE Class 12 Mathematics Relations and Functions VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set A |
| CBSE Class 12 Mathematics Matrices VBQs Set B |
| CBSE Class 12 Mathematics Determinants VBQs Set A |
| CBSE Class 12 Mathematics Determinants VBQs Set B |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set A |
| CBSE Class 12 Mathematics Application of Derivatives VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set A |
| CBSE Class 12 Mathematics Integrals VBQs Set B |
| CBSE Class 12 Mathematics Integrals VBQs Set C |
| CBSE Class 12 Mathematics Application of Integrals VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set A |
| CBSE Class 12 Mathematics Differential Equations VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set A |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set B |
| CBSE Class 12 Mathematics Vector Algebra VBQs Set C |
| CBSE Class 12 Mathematics Linear Programming Geometry VBQs Set A |
Important Practice Resources for Class 12 Mathematics
VBQs for Chapter 9 Differential Equations Class 12 Mathematics
Students can now access the Value-Based Questions (VBQs) for Chapter 9 Differential Equations as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.
Expert-Approved Chapter 9 Differential Equations Value-Based Questions & Answers
Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.
Improve your Mathematics Scores
Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 9 Differential Equations on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.
The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 9 Differential Equations is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.
Yes, all our Mathematics VBQs for Chapter Chapter 9 Differential Equations come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.
VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 9 Differential Equations these questions are as per the latest competency-based education goals.
In the current CBSE pattern for Class 12 Mathematics, Chapter 9 Differential Equations Value Based or Case-Based questions typically carry 3 to 5 marks.
Yes, you can download Class 12 Mathematics Chapter Chapter 9 Differential Equations VBQs in a mobile-friendly PDF format for free.