CBSE Class 12 Mathematics Matrices VBQs Set B

Read and download the CBSE Class 12 Mathematics Matrices VBQs Set B. Designed for the 2025-26 academic year, these Value Based Questions (VBQs) are important for Class 12 Mathematics students to understand moral reasoning and life skills. Our expert teachers have created these chapter-wise resources to align with the latest CBSE , NCERT, and KVS examination patterns.

VBQ for Class 12 Mathematics Chapter 3 Matrices

For Class 12 students, Value Based Questions for Chapter 3 Matrices help to apply textbook concepts to real-world application. These competency-based questions with detailed answers help in scoring high marks in Class 12 while building a strong ethical foundation.

Chapter 3 Matrices Class 12 Mathematics VBQ Questions with Answers

Fill in the Blanks

Question. A matrix which is not a square matrix is called a ____________ matrix.
Answer: rectangular

Question. If A and B are square matrix of the same order then \( (AB)' = \) ____________ .
Answer: \( B' A' \)

Question. If A is a skew-symmetric matrix and \( n \in N \) such that \( (A^n)^T = \lambda A^n \) then \( \lambda = \) ____________ .
Answer: \( (-1)^n \)

Question. Given a skew-symmetric matrix \( A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix} \), then value of \( (a + b + c)^2 \) is ____________ .
Answer: 0
Solution: We have \( A = -A^T \) (Since Matrix A is skew symmetric)
\( \Rightarrow \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 & -1 \\ a & b & c \\ 1 & 1 & 0 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ -a & -b & -c \\ -1 & -1 & 0 \end{bmatrix} \)
\( \Rightarrow a = 1, b = -b \Rightarrow 2b = 0 \Rightarrow b = 0 \) and \( c = -1 \)
\( \therefore (a + b + c)^2 = (1 + 0 - 1)^2 = 0 \)

Question. If \( A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \) and \( A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \), then \( A = \) ____________ .
Answer: \( \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix} \)
Solution: We have,
\( 2(A + B) + (A - 2B) = 2 \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \)
\( \Rightarrow 3A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix} \)

Very Short Answer Questions

Question. If \( \begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix} \), find the value of \( x + y \).
Answer: Given \( \begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix} \)
Equating, we get
\( x - y = -1 \) ...(i)
\( 2x - y = 0 \) ...(ii)
\( z = 4, w = 5 \)
(ii) - (i) \( \Rightarrow 2x - y - x + y = 0 + 1 \Rightarrow x = 1 \)
Putting it in eq. (i), we get \( 1 - y = -1 \Rightarrow y = 2 \)
\( \therefore x + y = 1 + 2 = 3 \)

Question. If \( \begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix} \), then find the matrix A.
Answer: Given \( \begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix} \)
\( \Rightarrow A = \begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix} = \begin{bmatrix} 8 & -3 & 5 \\ -2 & -3 & -6 \end{bmatrix} \)

Question. Write the element \( a_{23} \) of a \( 3 \times 3 \) matrix \( A = (a_{ij}) \) whose elements \( a_{ij} \) are given by \( a_{ij} = \frac{|i - j|}{2} \).
Answer: \( a_{23} = \frac{|2 - 3|}{2} = \frac{|-1|}{2} = \frac{1}{2} \)

Question. If matrix \( \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} \) is a skew-symmetric matrix, then find the values of \( a, b \) and \( c \).
Answer: Let \( A = \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} \)
Since A is skew-symmetric matrix \( \therefore A^T = -A \)
\( \Rightarrow \begin{bmatrix} 0 & 2 & c \\ a & b & 1 \\ 3 & -1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 0 & 2 & c \\ a & b & 1 \\ 3 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -a & -3 \\ -2 & -b & 1 \\ -c & -1 & 0 \end{bmatrix} \)
By equating corresponding elements, we get
\( a = -2, c = -3 \) and \( b = -b \Rightarrow 2b = 0 \Rightarrow b = 0 \)
\( \therefore a = -2, b = 0 \) and \( c = -3 \)

Question. If \( A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \), then for what value of \( \alpha \), A is an identity matrix.
Answer: If A is identity matrix, then \( A = I_2 \)
\( \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
On equating corresponding elements, we get
\( \Rightarrow \cos \alpha = 1, \sin \alpha = 0 \Rightarrow \alpha = 0 \)

Question. If \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix} \), then find the value of \( k \).
Answer: Given: \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} (1)(3) + (2)(2) & (1)(1) + (2)(5) \\ (3)(3) + (4)(2) & (3)(1) + (4)(5) \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 7 & 11 \\ 17 & 23 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix} \)
Equating the corresponding elements, we get \( k = 17 \)

Question. If the matrix \( A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix} \) is skew symmetric, find the values of \( 'a' \) and \( 'b' \).
Answer: Given \( A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix} \)
For skew symmetric matrix \( A^T = -A \)
\( \begin{bmatrix} 0 & 2 & b \\ a & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -a & 3 \\ -2 & 0 & 1 \\ -b & -1 & 0 \end{bmatrix} \)
On comparing both sides, we get \( a = -2 \) and \( -b = -3 \Rightarrow b = 3 \)

Question. Simplify: \( \cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \)
Answer: Given: \( \cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \)
\( = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{bmatrix} + \begin{bmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix} \)
\( = \begin{bmatrix} \sin^2 \theta + \cos^2 \theta & 0 \\ 0 & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

Question. If A is a \( 3 \times 3 \) matrix, whose elements are given by \( a_{ij} = \frac{1}{3} |-3i + j| \), then write the value of \( a_{23} \).
Answer: \( a_{23} = \frac{1}{3} |-3 \times 2 + 3| = \frac{1}{3} |-6 + 3| = \frac{1}{3} \times 3 = 1 \)

Question. If \( A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \) and \( B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \), then find \( A^T - B^T \).
Answer: Given: \( B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow B^T = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} \)
Now \( A^T - B^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix} \)

Question. For what value of \( x \), is the matrix \( A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} \) a skew-symmetric matrix?
Answer: A will be skew symmetric matrix if \( A = -A^T \).
\( \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 & x \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -x \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix} \)
Equating the corresponding elements, we get \( x = 2 \).

Question. If \( A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \), find \( AA^T \).
Answer: We have, \( AA^T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \)
\( = \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \cos \theta \sin \theta & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \)

Question. Let A and B are matrices of order \( 3 \times 2 \) and \( 2 \times 4 \) respectively. Write the order of matrix (AB).
Answer: Order of \( AB = [a_{ij}]_{3 \times 2} [b_{ij}]_{2 \times 4} = [c_{ij}]_{3 \times 4} \) i.e., order of \( AB \) is \( 3 \times 4 \).

Question. Construct a \( 2 \times 2 \) matrix \( A = [a_{ij}] \) whole elements are given by \( a_{ij} = |(i)^2 - j| \).
Answer: We have, elements of the Matrix are given by \( a_{ij} = |(i)^2 - j| \)
\( \therefore a_{11} = |(1)^2 - 1| = 0, a_{21} = |(2)^2 - 1| = 3 \)
\( a_{12} = |(1)^2 - 2| = 1, a_{22} = |(2)^2 - 2| = 2 \)
\( \therefore \) Matrix \( A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \)

Short Answer Questions-

Question. Find the value of \( x + y \) from the following equation: \( 2 \begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
Answer: Given, \( 2 \begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2x & 10 \\ 14 & 2y - 6 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2x + 3 & 6 \\ 15 & 2y - 4 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
Equating the corresponding elements, we get
\( 2x + 3 = 7 \text{ and } 2y - 4 = 14 \)
\( \Rightarrow 2x = 4 \Rightarrow x = 2 \) and \( 2y = 18 \Rightarrow y = 9 \)
\( \therefore x + y = 2 + 9 = 11 \)

Question. If matrix \( A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \) and \( A^2 = kA \), then write the value of \( k \). 
Answer: Given: \( A^2 = kA \)
\( \Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = k \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = k \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \)
\( \Rightarrow 2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = k \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \)
\( \Rightarrow k = 2 \)

Question. If \( A = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), find scalar \( k \) so that \( A^2 + I = kA \). 
Answer: We have,
\( A^2 = A \times A = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 11 & -8 \\ -4 & 3 \end{bmatrix} \)
and \( kA = k \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -3k & 2k \\ k & -k \end{bmatrix} \)
Given, \( A^2 + I = kA \Rightarrow \begin{bmatrix} 11 & -8 \\ -4 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3k & 2k \\ k & -k \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 12 & -8 \\ -4 & 4 \end{bmatrix} = \begin{bmatrix} -3k & 2k \\ k & -k \end{bmatrix} \)
\( \Rightarrow k = -4 \)

Question. Show that \( A' A \) and \( A A' \) are both symmetric matrices for any matrix \( A \). 
Answer: Let \( P = A'A \)
\( P' = (A'A)' \)
\( = A'(A')' = A'A = P \) [using \( (AB)' = B'A' \)]
So, \( A'A \) is symmetric matrix for any matrix \( A \).
Similarly, let \( Q = AA' \)
\( Q' = (AA')' = (A')'(A)' \)
\( = A(A')' = Q \)
So, \( AA' \) is symmetric matrix for any matrix \( A \).

Question. Matrix \( A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix} \) is given to be symmetric, find values of \( a \) and \( b \). [CBSE Delhi 2016]
Answer: We have \( A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix} \)
\(\because\) \( A \) is symmetric matrix.
\( \Rightarrow A^T = A \Rightarrow \begin{bmatrix} 0 & 3 & 3a \\ 2b & 1 & 3 \\ -2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix} \)
Equating the corresponding elements, we get
\( 2b = 3 \) and \( 3a = -2 \Rightarrow b = \frac{3}{2} \) and \( a = -\frac{2}{3} \)

Question. Show that all the diagonal elements of a skew symmetric matrix are zero. 
Answer: Since, \( A = [a_{ij}] \) is skew symmetric matrix
\( \therefore A^T = -A \)
\( [a_{ij}]^T = -[a_{ij}] \Rightarrow [a_{ji}] = [-a_{ij}] \)
For diagonal elements \( i = j \)
\( \Rightarrow a_{ii} = -a_{ii} \Rightarrow 2a_{ii} = 0 \Rightarrow a_{ii} = 0 \forall i \)
Hence, diagonal elements of skew symmetric matrix are zero.

Question. If \( A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix} \) and \( B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \) and \( BA = (b_{ij}) \), find \( b_{21} + b_{32} \).
Answer: We have, \( A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix} \) and \( B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \)
\( \therefore BA = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}_{3 \times 2} \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}_{2 \times 3} \)
\( [b_{ij}] = \begin{bmatrix} 2-12 & -4+6 & 6+15 \\ 4-20 & -8+10 & 12+25 \\ 2-4 & -4+2 & 6+5 \end{bmatrix}_{3 \times 3} \Rightarrow [b_{ij}] = \begin{bmatrix} -10 & 2 & 21 \\ -16 & 2 & 37 \\ -2 & -2 & 11 \end{bmatrix}_{3 \times 3} \)
Now, \( b_{21} = -16 \); \( b_{32} = -2 \)
\( \therefore b_{21} + b_{32} = -16 - 2 = -18 \)

Question. Find the value of \( (x - y) \) from the matrix equation \( 2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} -3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \). 
Answer: \( \begin{bmatrix} 2x & 10 \\ 14 & 2y-6 \end{bmatrix} + \begin{bmatrix} -3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2x-3 & 10-4 \\ 14+1 & 2y-6+2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2x-3 & 6 \\ 15 & 2y-4 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} \)
We know that two matrices of same order are equal if the corresponding entries are equal.
i.e., \( 2x-3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5 \)
and \( 2y-4 = 14 \Rightarrow 2y = 18 \Rightarrow y = 9 \)
\( \therefore x - y = 5 - 9 = -4 \)

Question. If \( A \) and \( B \) are symmetric matrices, such that \( AB \) and \( BA \) are both defined, then prove that \( AB - BA \) is a skew-symmetric matrix. 
Answer: We have \( A^T = A \) and \( B^T = B \) and \( AB \) and \( BA \) are both defined.
Now \( (AB - BA)^T = (AB)^T - (BA)^T = B^T A^T - A^T B^T \) (\(\because (AB)^T = B^T A^T\))
\( = BA - AB = -(AB - BA) \)
\( \Rightarrow AB - BA \) is a skew-symmetric matrix. Hence proved.

Question. For the matrix \( A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \), find \( A + A^T \) and verify it is a symmetric matrix. 
Answer: We have \( A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \), \( A^T = \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \)
\( \Rightarrow A + A^T = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 8 & 14 \end{bmatrix} \)
\( \Rightarrow (A + A^T)^T = \begin{bmatrix} 4 & 8 \\ 8 & 14 \end{bmatrix}^T = \begin{bmatrix} 4 & 8 \\ 8 & 14 \end{bmatrix} = A + A^T \)
Hence, \( A + A^T \) is a symmetric matrix.

Short Answer Questions-II

Question. For the following matrices \( A \) and \( B \), verify that \( (AB)' = B'A' \). 
\( A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \), \( B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \)
Answer: Given: \( A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \), \( B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \)
\( AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix} \)
\( (AB)' = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \)
\( B' A' = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}' \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \)
\( \therefore (AB)' = B'A' \).

Question. If \( A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \) and \( B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \) and \( (A + B)^2 = A^2 + B^2 \), then find the values of \( a \) and \( b \).
Answer: Here, \( A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \) and \( B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \)
\( \therefore A + B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} = \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix} \)
\( \Rightarrow (A + B)^2 = \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix} \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix} = \begin{bmatrix} (1+a)^2 & 0 \\ (2+b)(1+a) - 2(2+b) & 4 \end{bmatrix} = \begin{bmatrix} a^2+2a+1 & 0 \\ 2a-b+ab-2 & 4 \end{bmatrix} \)
Again \( A^2 + B^2 = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \)
\( = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} a^2+b & a-1 \\ ab-b & b+1 \end{bmatrix} = \begin{bmatrix} a^2+b-1 & a-1 \\ ab-b & b \end{bmatrix} \)
Given, \( (A + B)^2 = A^2 + B^2 \)
\( \begin{bmatrix} a^2+2a+1 & 0 \\ 2a-b+ab-2 & 4 \end{bmatrix} = \begin{bmatrix} a^2+b-1 & a-1 \\ ab-b & b \end{bmatrix} \)
Equating the corresponding elements, we get
\( a^2 + 2a + 1 = a^2 + b - 1 \Rightarrow 2a - b = -2 \) ...(i)
\( a - 1 = 0 \Rightarrow a = 1 \) ...(ii)
\( 2a - b + ab - 2 = ab - b \Rightarrow 2a - 2 = 0 \) ...(iii)
\( b = 4 \) ...(iv)
\( a = 1, b = 4 \) satisfy all four equations (i), (ii), (iii) and (iv)
Hence, \( a = 1, b = 4 \).

Question. Let \( A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \), \( B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix} \) and \( C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix} \). Find a matrix \( D \) such that \( CD - AB = O \).
Answer: Since \( A, B, C \) are all square matrices of order 2, and \( CD - AB \) is well defined, \( D \) must be a square matrix of order 2.
Let \( D = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). Then \( CD - AB = O \) gives
\( \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix} = O \)
\( \begin{bmatrix} 2a+5c & 2b+5d \\ 3a+8c & 3b+8d \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 43 & 22 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
or \( \begin{bmatrix} 2a+5c-3 & 2b+5d \\ 3a+8c-43 & 3b+8d-22 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
By equating the corresponding elements of matrices, we get
\( 2a + 5c - 3 = 0 \) ...(i)
\( 3a + 8c - 43 = 0 \) ...(ii)
\( 2b + 5d = 0 \) ...(iii)
and \( 3b + 8d - 22 = 0 \) ...(iv)
Solving (i) and (ii), we get \( a = -191, c = 77 \) and solving (iii) and (iv), we get \( b = -110, d = 44 \).
Therefore \( D = \begin{bmatrix} -191 & -110 \\ 77 & 44 \end{bmatrix} \).

Question. Express the following matrix as the sum of a symmetric and skew symmetric matrix, and verify your result. 
\( \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} \)
Answer: Let \( A = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} \)
\( A \) can be expressed as
\( A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A') \) ...(i) [\(\because \frac{1}{2}(A + A') + \frac{1}{2}(A - A') = \frac{2A}{2} = A\)]
where, \( A + A' \) and \( A - A' \) are symmetric and skew symmetric matrices respectively.
Now, \( A + A' = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} \)
\( A - A' = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix} \)
Putting these values in (i), we get
\( A = \frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix} \)
\( = \begin{bmatrix} 3 & 1/2 & -5/2 \\ 1/2 & -2 & -2 \\ -5/2 & -2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -5/2 & -3/2 \\ 5/2 & 0 & -3 \\ 3/2 & 3 & 0 \end{bmatrix} \)
Verification:
\( \begin{bmatrix} 3 & 1/2 & -5/2 \\ 1/2 & -2 & -2 \\ -5/2 & -2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -5/2 & -3/2 \\ 5/2 & 0 & -3 \\ 3/2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 3+0 & \frac{1}{2}-\frac{5}{2} & -\frac{5}{2}-\frac{3}{2} \\ \frac{1}{2}+\frac{5}{2} & -2+0 & -2-3 \\ -\frac{5}{2}+\frac{3}{2} & -2+3 & 2+0 \end{bmatrix} = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} = A \)

Question. Find the matrix \( A \) satisfying the matrix equation \( \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). 
Answer: We have, \( \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Let \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)
\( \therefore \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} 2a+c & 2b+d \\ 3a+2c & 3b+2d \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
\( \Rightarrow \begin{bmatrix} -6a-3c+10b+5d & 4a+2c-6b-3d \\ -9a-6c+15b+10d & 6a+4c-9b-6d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Equating the elements, we get:
\( -6a - 3c + 10b + 5d = 1 \) ...(i)
\( 4a + 2c - 6b - 3d = 0 \) ...(ii)
\( -9a - 6c + 15b + 10d = 0 \) ...(iii)
\( 6a + 4c - 9b - 6d = 1 \) ...(iv)
On adding equations (i) and (iv), we get \( c + b = 2-d+d \Rightarrow c + b = 2 \) ...(v)
On adding equations (ii) and (iii), we get \( -5a - 4c + 9b + 7d = 0 \) ...(vi)
On adding equations (vi) and (iv), we get \( a + 0 + 0 + d = 1 \Rightarrow d = 1 - a \) ...(vii)
From equations (v) and (vii), \( c + b = 2, d = 1-a \Rightarrow a + b + c = 3 \) ...(viii) \( \Rightarrow a = 3 - b - c \)
Now, using the values of \( a \) and \( d \) in equation (iii), we get \( -9(3 - b - c) - 6c + 15b + 10( -2 + b + c) = 0 \)
\( \Rightarrow -27 + 9b + 9c - 6c + 15b - 20 + 10b + 10c = 0 \Rightarrow 34b + 13c = 47 \) ...(ix)
Now, using the values of \( a \) and \( d \) in equation (ii), we get \( 4(3 - b - c) + 2c - 6b - 3(b + c - 2) = 0 \)
\( \Rightarrow 12 - 4b - 4c + 2c - 6b - 3b - 3c + 6 = 0 \Rightarrow -13b - 5c = -18 \) ...(x)
On multiplying equation (ix) by 5 and equation (x) by 13, then adding, we get \( b = 1 \)
\( \Rightarrow -13 \times 1 - 5c = -18 \Rightarrow c = 1 \)
\( \therefore a = 3 - 1 - 1 = 1 \) and \( d = 1 - 1 = 0 \)
\( \therefore A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \)

Question. If \( A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \) and \( I \) is the identity matrix of order 2, then show that \( A^2 = 4A - 3I \). Hence find \( A^{-1} \). 
Answer: Here, \( A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \)
\( \therefore A^2 = A.A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4+1 & -2-2 \\ -2-2 & 1+4 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} \) ...(i)
Also, \( 4A - 3I = 4\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} \) ...(ii)
From (i) and (ii), we get \( A^2 = 4A - 3I \)
Pre-multiplying both sides by \( A^{-1} \)
\( A^{-1} . A^2 = A^{-1} . (4A - 3I) \Rightarrow (A^{-1} . A) . A = 4 A^{-1} . A - 3 A^{-1} . I \)
\( \Rightarrow IA = 4I - 3A^{-1} \Rightarrow A = 4I - 3A^{-1} \) [\(\because AA^{-1} = I, A^{-1} I = A^{-1}\)]
\( \Rightarrow 3A^{-1} = 4I - A \)
\( \Rightarrow A^{-1} = \frac{1}{3} \left( 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \right) = \frac{1}{3} \left( \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \right) = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix} \)

Question. Let \( A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \). Then show that \( A^2 - 4A + 7I = 0 \). Using this result calculate \( A^5 \). 
Answer: Here, \( A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \)
\( \Rightarrow A^2 = A \times A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} \)
Now, \( A^2 - 4A + 7I = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - 4 \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
\( = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O \text{ (zero matrix)} \)
\( \Rightarrow A^2 - 4A + 7I = 0 \Rightarrow A^2 = 4A - 7I \)
\( \Rightarrow A.A^2 = 4A.A - 7A.I \) [Pre multiplying by \( A \)]
\( \Rightarrow A^3 = 4A^2 - 7A \) [\( AI = A \)]
\( \Rightarrow A^3 = 4(4A - 7I) - 7A \) [Putting the value of \( A^2 \)]
\( \Rightarrow A^3 = 16A - 28I - 7A \Rightarrow A^3 = 9A - 28I \)
\( \Rightarrow A.A^3 = 9A.A - 28A.I \) [Pre multiplying by \( A \)]
\( \Rightarrow A^4 = 9A^2 - 28A \)
\( \Rightarrow A^4 = 9(4A - 7I) - 28A = 8A - 63I \)
\( \Rightarrow A.A^4 = 8A^2 - 63A \)
\( \Rightarrow A^5 = 8(4A - 7I) - 63A = -31A - 56I \)
\( = -31 \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} - 56 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -118 & -93 \\ 31 & -118 \end{bmatrix} \)

Question. Prove that every square matrix can be uniquely expressed as the sum of a symmetric and skew-symmetric matrix.
Answer: Let \( A \) be any square matrix. Then,
\( A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T) = P + Q \), (say),
where, \( P = \frac{1}{2}(A + A^T), Q = \frac{1}{2}(A - A^T) \)
Now, \( P^T = \left( \frac{1}{2}(A + A^T) \right)^T = \frac{1}{2}(A^T + (A^T)^T) = \frac{1}{2}(A^T + A) = P \)
\( \therefore P \) is symmetric matrix.
Also, \( Q^T = \left( \frac{1}{2}(A - A^T) \right)^T = \frac{1}{2}(A^T - (A^T)^T) = \frac{1}{2}(A^T - A) = - \frac{1}{2}(A - A^T) = -Q \)
\( \therefore Q \) is skew-symmetric matrix.
Thus, \( A = P + Q \), where \( P \) is a symmetric matrix and \( Q \) is a skew-symmetric matrix. Hence, \( A \) is expressible as the sum of a symmetric and a skew-symmetric matrix.
Uniqueness: If possible, let \( A = R + S \), where \( R \) is symmetric and \( S \) is skew-symmetric, then,
\( A^T = (R + S)^T = R^T + S^T \)
\( \Rightarrow A^T = R - S \) [\(\because R^T = R \text{ and } S^T = -S\)]
Now, \( A = R + S \) and \( A^T = R - S \)
\( \Rightarrow R = \frac{1}{2}(A + A^T) = P, S = \frac{1}{2}(A - A^T) = Q \)
Hence, \( A \) is uniquely expressible as the sum of a symmetric and a skew-symmetric matrix.

Question. Choose and write the correct option in each of the following questions.
If \( A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \), then \( A^n \) is equal to
(a) \( \begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix} \)
(b) \( \begin{bmatrix} a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \)
(c) \( \begin{bmatrix} a & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a \end{bmatrix} \)
(d) \( \begin{bmatrix} na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na \end{bmatrix} \)
Answer: (a)

Question. If \( \begin{bmatrix} x-y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix} \), then value of \( y \) is
(a) 1
(b) 3
(c) 2
(d) 5
Answer: (a)

Question. The number of all possible matrices of order \( 3 \times 3 \) with each entry 0 or 1 is 
(a) 27
(b) 18
(c) 81
(d) 512
Answer: (d)

Question. The \( A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \), \( B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \), \( X = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \) and \( y = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \), then \( AB + XY \) equals
(a) [28]
(b) [24]
(c) 28
(d) 24
Answer: (c)

Question. The matrix \( A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix} \) 
(a) scalar matrix
(b) diagonal matrix
(c) unit matrix
(d) square matrix
Answer: (d)

Question. If \( A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix} \), \( n \in N \), then \( A^{4n} \) equals 
(a) \( \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
(b) \( \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix} \)
(c) \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
(d) \( \begin{bmatrix} 0 & 0 \\ i & i \end{bmatrix} \)
Answer: (c)

Question. For any two matrices \( A \) and \( B \), we have
(a) \( AB = BA \)
(b) \( AB \neq BA \)
(c) \( AB = O \)
(d) None of these
Answer: (b)

Question. On using elementary row operation \( R_1 \rightarrow R_1 - 3R_2 \) in the following matrix equation: \( \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \), we have:
(a) \( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)
(b) \( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \)
(c) \( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)
(d) \( \begin{bmatrix} 4 & 2 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)
Answer: (a)

VBQs for Chapter 3 Matrices Class 12 Mathematics

Students can now access the Value-Based Questions (VBQs) for Chapter 3 Matrices as per the latest CBSE syllabus. These questions have been designed to help Class 12 students understand the moral and practical lessons of the chapter. You should practicing these solved answers to improve improve your analytical skills and get more marks in your Mathematics school exams.

Expert-Approved Chapter 3 Matrices Value-Based Questions & Answers

Our teachers have followed the NCERT book for Class 12 Mathematics to create these important solved questions. After solving the exercises given above, you should also refer to our NCERT solutions for Class 12 Mathematics and read the answers prepared by our teachers.

Improve your Mathematics Scores

Daily practice of these Class 12 Mathematics value-based problems will make your concepts better and to help you further we have provided more study materials for Chapter 3 Matrices on studiestoday.com. By learning these ethical and value driven topics you will easily get better marks and also also understand the real-life application of Mathematics.

Where can I find 2025-26 CBSE Value Based Questions (VBQs) for Class 12 Mathematics Chapter Chapter 3 Matrices?

The latest collection of Value Based Questions for Class 12 Mathematics Chapter Chapter 3 Matrices is available for free on StudiesToday.com. These questions are as per 2026 academic session to help students develop analytical and ethical reasoning skills.

Are answers provided for Class 12 Mathematics Chapter Chapter 3 Matrices VBQs?

Yes, all our Mathematics VBQs for Chapter Chapter 3 Matrices come with detailed model answers which help students to integrate factual knowledge with value-based insights to get high marks.

What is the importance of solving VBQs for Class 12 Chapter Chapter 3 Matrices Mathematics?

VBQs are important as they test student's ability to relate Mathematics concepts to real-life situations. For Chapter Chapter 3 Matrices these questions are as per the latest competency-based education goals.

How many marks are usually allocated to VBQs in the CBSE Mathematics paper?

In the current CBSE pattern for Class 12 Mathematics, Chapter 3 Matrices Value Based or Case-Based questions typically carry 3 to 5 marks.

Can I download Mathematics Chapter Chapter 3 Matrices VBQs in PDF for free?

Yes, you can download Class 12 Mathematics Chapter Chapter 3 Matrices VBQs in a mobile-friendly PDF format for free.