Read and download the CBSE Class 10 Introduction to Trigonometry Sure Shot Questions Set F. Designed for 2025-26, this advanced study material provides Class 10 Mathematics students with detailed revision notes, sure-shot questions, and detailed answers. Prepared by expert teachers and they follow the latest CBSE, NCERT, and KVS guidelines to ensure you get best scores.
Advanced Study Material for Class 10 Mathematics Chapter 8 Introduction to Trigonometry
To achieve a high score in Mathematics, students must go beyond standard textbooks. This Class 10 Chapter 8 Introduction to Trigonometry study material includes conceptual summaries and solved practice questions to improve you understanding.
Class 10 Mathematics Chapter 8 Introduction to Trigonometry Notes and Questions
Question. Solve : \( \frac{2}{3} \text{cosec}^2 58^\circ - \frac{2}{3} \cot 58^\circ \tan 32^\circ - \frac{5}{3} \tan 13^\circ \tan 37^\circ \tan 45^\circ \tan 53^\circ \tan 77^\circ \).
Answer: Consider,
\( \frac{2}{3} \text{cosec}^2 58^\circ - \frac{2}{3} \cot 58^\circ \tan 32^\circ - \frac{5}{3} \tan 13^\circ \tan 37^\circ \tan 45^\circ \tan 53^\circ \tan 77^\circ \)
\( = \frac{2}{3} \text{cosec}^2 58^\circ - \frac{2}{3} \cot 58^\circ \tan (90^\circ - 58^\circ) - \frac{5}{3} \tan 13^\circ \tan 37^\circ \tan 45^\circ \tan (90^\circ - 37^\circ) \tan (90^\circ - 13^\circ) \)
\( = \frac{2}{3} \text{cosec}^2 58^\circ - \frac{2}{3} \cot 58^\circ \cot 58^\circ - \frac{5}{3} \tan 13^\circ \tan 37^\circ \tan 45^\circ \cot 37^\circ \cot 13^\circ \)
\( = \frac{2}{3} (\text{cosec}^2 58^\circ - \cot^2 58^\circ) - \frac{5}{3} (\tan 13^\circ \cot 13^\circ)(\tan 37^\circ \cot 37^\circ) \tan 45^\circ \)
\( = \frac{2}{3}(1) - \frac{5}{3}(1)(1)(1) = \frac{2}{3} - \frac{5}{3} = -1 \).
Question. Evaluate :
\[ \left( \frac{3 \sin 43^\circ}{\cos 47^\circ} \right)^2 - \frac{\cos 37^\circ \text{cosec } 53^\circ}{\tan 5^\circ \tan 25^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ} \]
Answer: Sol.
\[ \left( \frac{3 \sin 43^\circ}{\cos 47^\circ} \right)^2 - \frac{\cos 37^\circ \text{cosec } 53^\circ}{\tan 5^\circ \tan 25^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ} \]
= \( \left\{ \frac{3 \cos(90^\circ - 43^\circ)}{\cos 47^\circ} \right\}^2 - \frac{\sin(90^\circ - 37^\circ) \text{cosec } 53^\circ}{\cot(90^\circ - 5^\circ) \cot(90^\circ - 25^\circ) \tan 45^\circ \tan 65^\circ \tan 85^\circ} \)
= \( \left\{ \frac{3 \cos 47^\circ}{\cos 47^\circ} \right\}^2 - \frac{\sin 53^\circ \text{cosec } 53^\circ}{\cot 85^\circ \cot 65^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ} \)
[\(\because \cos(90^\circ - \theta) = \sin \theta, \sin(90^\circ - \theta) = \cos \theta, \cot(90^\circ - \theta) = \tan \theta\)]
= \( (3)^2 - \frac{\sin 53^\circ \times \frac{1}{\sin 53^\circ}}{\frac{1}{\tan 85^\circ} \times \frac{1}{\tan 65^\circ} \times \tan 45^\circ \times \tan 65^\circ \times \tan 85^\circ} \)
[\(\because \sin \theta = \frac{1}{\text{cosec } \theta}, \tan \theta = \frac{1}{\cot \theta}\)]
= \( 9 - \frac{1}{\tan 45^\circ} \)
= \( 9 - 1 \) [\(\because \tan 45^\circ = 1\)]
= 8 Ans.
Question. Solve :
\( -\tan \theta \cot (90^\circ - \theta) + \frac{\sec \theta \text{cosec } (90^\circ - \theta) + \sin^2 35^\circ + \sin^2 55^\circ}{\tan 10^\circ \tan 20^\circ \tan 30^\circ \tan 70^\circ \tan 80^\circ} \)
Answer: Sol. We have, \( -\tan \theta \cot (90^\circ - \theta) + \frac{\sec \theta \text{cosec } (90^\circ - \theta) + \sin^2 35^\circ + \sin^2 55^\circ}{\tan 10^\circ \tan 20^\circ \tan 30^\circ \tan 70^\circ \tan 80^\circ} \)
= \( -\tan \theta \tan \theta + \frac{\sec \theta \sec \theta + \sin^2 35^\circ + \sin^2 (90^\circ - 35^\circ)}{\tan 10^\circ \tan 20^\circ \tan 30^\circ \tan (90^\circ - 20^\circ) \tan (90^\circ - 10^\circ)} \)
= \( \frac{1 + \sin^2 35^\circ + \cos^2 35^\circ}{\tan 10^\circ \tan 20^\circ \tan 30^\circ \cot 20^\circ \cot 10^\circ} \)
= \( \frac{1 + 1}{\tan 30^\circ} = 2\sqrt{3} \). Ans.
Question. If \(\sin \theta + \sin^2 \theta = 1\), find the value of \(\cos^{12} \theta + 3 \cos^{10} \theta + 3 \cos^8 \theta + \cos^6 \theta + 2 \cos^4 \theta + 2 \cos^2 \theta - 2\)
Answer: Sol. We have,
\(\sin \theta + \sin^2 \theta = 1\)
\(\Rightarrow \sin \theta = 1 - \sin^2 \theta\)
\(\Rightarrow \sin \theta = \cos^2 \theta\)
Now,
\(\cos^{12} \theta + 3 \cos^{10} \theta + 3 \cos^8 \theta + \cos^6 \theta + 2 \cos^4 \theta + 2 \cos^2 \theta - 2\)
= \((\cos^{12} \theta + 3 \cos^{10} \theta + 3 \cos^8 \theta + \cos^6 \theta) + 2(\cos^4 \theta + \cos^2 \theta - 1)\)
= \((\cos^4 \theta + \cos^2 \theta)^3 + 2(\cos^4 \theta + \cos^2 \theta - 1)\)
= \((\sin^2 \theta + \cos^2 \theta)^3 + 2(\sin^2 \theta + \cos^2 \theta - 1)\)
[\(\because \cos^2 \theta = \sin \theta \therefore \cos^4 \theta = \sin^2 \theta\)]
= \(1 + 2(1 - 1) = 1\) Ans.
Question. If \(\tan^2 \theta = 1 - a^2\), prove that \(\sec \theta + \tan^3 \theta \text{cosec } \theta = (2 - a^2)^{3/2}\)
Answer: Sol. We have,
\(\sec \theta + \tan^3 \theta \text{cosec } \theta\)
= \(\sec \theta \left\{ \frac{\sec \theta + \tan^3 \theta \text{cosec } \theta}{\sec \theta} \right\}\)
[Multiplying and dividing by \(\sec \theta\)]
= \(\sec \theta \left\{ 1 + \tan^3 \theta \cdot \frac{\cos \theta}{\sin \theta} \right\}\)
= \(\sec \theta \{1 + \tan^3 \theta \times \cot \theta\}\)
= \(\sqrt{1 + \tan^2 \theta} \{1 + \tan^2 \theta\}\)
= \(\{1 + \tan^2 \theta\}^{3/2}\)
= \(\{1 + (1 - a^2)\}^{3/2}\) [\(\because \tan^2 \theta = 1 - a^2\); Given]
= \((2 - a^2)^{3/2}\) Hence Proved.
Question. If \(x = a \cos^3 \theta, y = b \sin^3 \theta\), prove that \(\left( \frac{x}{a} \right)^{2/3} + \left( \frac{y}{b} \right)^{2/3} = 1\).
Answer: Sol. Given,
\(x = a \cos^3 \theta\) and \(y = b \sin^3 \theta\)
L.H.S. = \(\left( \frac{x}{a} \right)^{2/3} + \left( \frac{y}{b} \right)^{2/3}\)
= \(\left( \frac{a \cos^3 \theta}{a} \right)^{2/3} + \left( \frac{b \sin^3 \theta}{b} \right)^{2/3}\)
= \((\cos \theta)^{3 \times 2/3} + (\sin \theta)^{3 \times 2/3}\)
= \(\cos^2 \theta + \sin^2 \theta = 1 = \text{R.H.S.}\)
Hence Proved.
Question. Prove that : (1 + \cot A - \text{cosec } A) (1 + \tan A + \sec A) = 2.
Answer: Sol. L.H.S. = \((1 + \cot A - \text{cosec } A) (1 + \tan A + \sec A)\)
= \(\left( 1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A} \right) \left( 1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A} \right)\)
= \(\left( \frac{\sin A + \cos A - 1}{\sin A} \right) \left( \frac{\cos A + \sin A + 1}{\cos A} \right)\)
= \(\frac{(\sin A + \cos A)^2 - 1}{\sin A \cdot \cos A}\) [\(\because (a + b) (a - b) = a^2 - b^2\)]
= \(\frac{\sin^2 A + \cos^2 A + 2 \cdot \sin A \cdot \cos A - 1}{\sin A \cdot \cos A}\)
= \(\frac{1 + 2 \sin A \cdot \cos A - 1}{\sin A \cdot \cos A} = \frac{2 \sin A \cdot \cos A}{\sin A \cdot \cos A}\)
= 2 (R.H.S.) Hence Proved.
Question. Prove that \(\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A\)
Answer: Sol. Consider, L.H.S. = \(\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A}\)
= \(\frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A) \cos A}\)
= \(\frac{\cos^2 A + \sin^2 A + 1 + 2 \sin A}{(1 + \sin A) \cos A}\)
= \(\frac{1 + 1 + 2 \sin A}{(1 + \sin A) \cos A}\) [\(\because \cos^2 A + \sin^2 A = 1\)]
= \(\frac{2 + 2 \sin A}{(1 + \sin A) \cos A}\)
= \(\frac{2 (1 + \sin A)}{(1 + \sin A) \cos A} = \frac{2}{\cos A}\)
= 2 sec A = R.H.S. Hence Proved.
Long Answer Type Questions
Question. Prove that : \(\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \text{ cosec } \theta\)
Answer: Sol. L.H.S.
\(= \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}\)
\(= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}\)
\(= \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta - \sin \theta}{\cos \theta}}\)
\(= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}\)
\(= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}\)
\(= \frac{1}{\sin \theta - \cos \theta} \left[ \frac{\sin^2 \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta} \right]\)
\(= \frac{1}{\sin \theta - \cos \theta} \left[ \frac{\sin^3 \theta - \cos^3 \theta}{\cos \theta \cdot \sin \theta} \right]\)
\(= \frac{[\sin \theta - \cos \theta][\sin^2 \theta + \cos^2 \theta + \sin \theta \cdot \cos \theta]}{(\sin \theta - \cos \theta) \cdot (\cos \theta \sin \theta)}\)
[\(\because a^3 - b^3 = (a - b) (a^2 + b^2 + ab)\)]
\(= \frac{\sin^2 \theta + \cos^2 \theta + \sin \theta \cdot \cos \theta}{(\cos \theta \times \sin \theta)}\)
\(= \frac{1 + \sin \theta \cdot \cos \theta}{\cos \theta \times \sin \theta}\) [\(\because \sin^2 \theta + \cos^2 \theta = 1\)]
\(= \frac{1}{\cos \theta \cdot \sin \theta} + \frac{\sin \theta \cdot \cos \theta}{\sin \theta \cdot \cos \theta}\)
\(= 1 + \sec \theta \cdot \text{cosec } \theta = \text{R.H.S.}\)
\(\left( \because \frac{1}{\cos \theta} = \sec \theta, \frac{1}{\sin \theta} = \text{cosec } \theta \right)\)
Hence Proved.
Question. Prove that : [2019 O.D.] \(\frac{\sin \theta}{\cot \theta + \text{cosec } \theta} = 2 + \frac{\sin \theta}{\cot \theta - \text{cosec } \theta}\)
Answer: Sol. L.H.S. = \(\frac{\sin \theta}{\cot \theta + \text{cosec } \theta}\)
\(= \frac{\sin \theta}{\frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta}}\)
\(= \frac{\sin \theta}{\frac{\cos \theta + 1}{\sin \theta}}\)
\(= \frac{\sin^2 \theta}{\cos \theta + 1}\)
\(= \frac{\sin^2 \theta}{1 + \cos \theta} \times \frac{(1 - \cos \theta)}{(1 - \cos \theta)}\)
\(= \frac{\sin^2 \theta (1 - \cos \theta)}{1 - \cos^2 \theta}\)
\(= \frac{\sin^2 \theta (1 - \cos \theta)}{\sin^2 \theta}\)
\(= 1 - \cos \theta\) ...(i)
R.H.S. = \(2 + \frac{\sin \theta}{\cot \theta - \text{cosec } \theta}\)
\(= 2 + \frac{\sin \theta}{\frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}}\)
\(= 2 + \frac{\sin^2 \theta}{\cos \theta - 1}\)
\(= 2 - \frac{\sin^2 \theta}{(1 - \cos \theta)}\)
\(= 2 - \frac{\sin^2 \theta \times (1 + \cos \theta)}{(1 - \cos \theta) \times (1 + \cos \theta)}\)
\(= 2 - \frac{\sin^2 \theta (1 + \cos \theta)}{1 - \cos^2 \theta}\)
\(= 2 - \frac{\sin^2 \theta (1 + \cos \theta)}{\sin^2 \theta}\)
\(= 2 - (1 + \cos \theta)\)
\(= 1 - \cos \theta\) ...(ii)
From equation (i) and (ii), we get
L.H.S. = R.H.S. Hence Proved.
Question. Prove that \(\frac{\sin A - \cos A + 1}{\sin A + \cos A - 1} = \frac{1}{\sec A - \tan A}\)
Answer: Sol. L.H.S. = \(\frac{\sin A - \cos A + 1}{\sin A + \cos A - 1}\)
Dividing the numerator and denominator by \(\cos A\)
\(= \frac{\tan A - 1 + \sec A}{\tan A + 1 - \sec A}\)
\(= \frac{(\tan A + \sec A) - 1}{(\tan A - \sec A) + 1}\)
\(= \frac{(\tan A + \sec A) - (\sec^2 A - \tan^2 A)}{\tan A - \sec A + 1}\) [\(\because \sec^2 A - \tan^2 A = 1\)]
\(= \frac{(\tan A + \sec A) [1 - (\sec A - \tan A)]}{(\tan A - \sec A + 1)}\)
\(= \frac{(\tan A + \sec A) [1 - \sec A + \tan A]}{(\tan A - \sec A + 1)}\)
\(= \tan A + \sec A\)
\(= (\tan A + \sec A) \times \frac{(\sec A - \tan A)}{(\sec A - \tan A)}\)
\(= \frac{\sec^2 A - \tan^2 A}{\sec A - \tan A} = \frac{1}{\sec A - \tan A} = \text{R.H.S.}\)
Hence Proved.
Question. Prove that : [2019 Delhi] \(\frac{\tan^2 A}{\tan^2 A - 1} + \frac{\text{cosec}^2 A}{\sec^2 A - \text{cosec}^2 A} = \frac{1}{1 - 2 \cos^2 A}\)
Answer: Sol. L.H.S. = \(\frac{\tan^2 A}{\tan^2 A - 1} + \frac{\text{cosec}^2 A}{\sec^2 A - \text{cosec}^2 A}\)
\(= \frac{\frac{\sin^2 A}{\cos^2 A}}{\frac{\sin^2 A}{\cos^2 A} - 1} + \frac{\frac{1}{\sin^2 A}}{\frac{1}{\cos^2 A} - \frac{1}{\sin^2 A}}\)
\(= \frac{\frac{\sin^2 A}{\cos^2 A}}{\frac{\sin^2 A - \cos^2 A}{\cos^2 A}} + \frac{\frac{1}{\sin^2 A}}{\frac{\sin^2 A - \cos^2 A}{\cos^2 A \sin^2 A}}\)
\(= \frac{\sin^2 A}{\sin^2 A - \cos^2 A} + \frac{1}{\sin^2 A} \cdot \frac{\cos^2 A \sin^2 A}{\sin^2 A - \cos^2 A}\)
\(= \frac{\sin^2 A}{\sin^2 A - \cos^2 A} + \frac{\cos^2 A}{\sin^2 A - \cos^2 A}\)
\(= \frac{\sin^2 A + \cos^2 A}{\sin^2 A - \cos^2 A}\)
\(= \frac{1}{(1 - \cos^2 A) - \cos^2 A}\) [\(\because \sin^2 A = 1 - \cos^2 A\)]
\(= \frac{1}{1 - 2 \cos^2 A} = \text{R.H.S.}\)
Hence Proved.
Question. Prove that : \(\frac{\sin A - 2 \sin^3 A}{2 \cos^3 A - \cos A} = \tan A\)
Answer: Sol. L.H.S. = \(\frac{\sin A - 2 \sin^3 A}{2 \cos^3 A - \cos A}\)
\(= \frac{\sin A (1 - 2 \sin^2 A)}{\cos A (2 \cos^2 A - 1)}\)
\(= \frac{\sin A (\sin^2 A + \cos^2 A - 2 \sin^2 A)}{\cos A (2 \cos^2 A - (\sin^2 A + \cos^2 A))}\) [\(\because \sin^2 A + \cos^2 A = 1\)]
\(= \frac{\sin A (\cos^2 A - \sin^2 A)}{\cos A (2 \cos^2 A - \sin^2 A - \cos^2 A)}\)
\(= \frac{\sin A (\cos^2 A - \sin^2 A)}{\cos A (\cos^2 A - \sin^2 A)}\)
\(= \frac{\sin A}{\cos A} \times 1\)
\(= \tan A\).
L.H.S. = R.H.S.
Hence Proved.
Question. Prove that : \(\frac{\sec A - 1}{\sec A + 1} = \left( \frac{\sin A}{1 + \cos A} \right)^2 = (\cot A - \text{cosec } A)^2\)
Answer: Sol. L.H.S. = \(\frac{\sec A - 1}{\sec A + 1}\)
\(= \frac{\frac{1}{\cos A} - 1}{\frac{1}{\cos A} + 1}\)
\(= \frac{\frac{1 - \cos A}{\cos A}}{\frac{1 + \cos A}{\cos A}} = \frac{1 - \cos A}{1 + \cos A}\)
\(= \frac{(1 - \cos A)(1 + \cos A)}{(1 + \cos A)(1 + \cos A)}\)
\(= \frac{1 - \cos^2 A}{(1 + \cos A)^2}\)
\(= \frac{\sin^2 A}{(1 + \cos A)^2}\) [\(\because 1 - \cos^2 A = \sin^2 A\)]
\(= \left( \frac{\sin A}{1 + \cos A} \right)^2\)
And \(\left( \frac{\sin A}{1 + \cos A} \right)^2 = \left[ \frac{\sin A}{1 + \cos A} \times \frac{(1 - \cos A)}{(1 - \cos A)} \right]^2\)
\(= \left[ \frac{\sin A(1 - \cos A)}{1 - \cos^2 A} \right]^2\)
\(= \left[ \frac{\sin A(1 - \cos A)}{\sin^2 A} \right]^2\)
\(= \left[ \frac{1 - \cos A}{\sin A} \right]^2\)
\(= \left[ \frac{1}{\sin A} - \frac{\cos A}{\sin A} \right]^2\)
\(= (\text{cosec } A - \cot A)^2\)
\(= (-1)^2 (\cot A - \text{cosec } A)^2\)
\(= (\cot A - \text{cosec } A)^2 = \text{R.H.S.}\)
Hence Proved.
Question. If \(m = \tan \theta + \sin \theta\) and \(n = \tan \theta - \sin \theta\), then \((m^2 - n^2)^2 = 16mn\). Is this statement correct ?
Answer: Sol. We have,
\(m^2 = (\tan \theta + \sin \theta)^2 = \tan^2 \theta + \sin^2 \theta + 2 \tan \theta \cdot \sin \theta\)
\(n^2 = (\tan \theta - \sin \theta)^2 = \tan^2 \theta + \sin^2 \theta - 2 \tan \theta \cdot \sin \theta\)
Thus, \(m^2 - n^2 = 4 \tan \theta \cdot \sin \theta\)
L.H.S. = \((m^2 - n^2)^2 = 16 \tan^2 \theta \cdot \sin^2 \theta = 16 \frac{\sin^4 \theta}{\cos^2 \theta}\)
R.H.S. = \(16 mn\)
\(= 16(\tan \theta + \sin \theta) (\tan \theta - \sin \theta)\)
\(= 16(\tan^2 \theta - \sin^2 \theta)\)
\(= 16 \left( \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta \right)\)
\(= 16 \sin^2 \theta \left( \frac{1}{\cos^2 \theta} - 1 \right)\)
\(= 16 \sin^2 \theta (\sec^2 \theta - 1)\)
\(= 16 \sin^2 \theta \cdot \tan^2 \theta\)
L.H.S. = R.H.S. Hence correct.
Question. If \( a = \sin \theta + \cos \theta \); \( b = \sin^3 \theta + \cos^3 \theta \), then show that \( (3a - 2b) = a^3 \).
Answer: Sol. Given,
\( a = \sin \theta + \cos \theta \) ...(i)
\( b = \sin^3 \theta + \cos^3 \theta \) ...(ii)
Here \( (\sin \theta + \cos \theta)^2 = a^2 \)
\( \Rightarrow \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = a^2 \)
\( \Rightarrow \sin \theta \cos \theta = \frac{a^2 - 1}{2} \) ...(iii)
\( [\because \sin^2 \theta + \cos^2 \theta = 1] \)
Also, \( (\sin \theta + \cos \theta)^3 = a^3 \)
\( \Rightarrow \sin^3 \theta + \cos^3 \theta + 3 \sin \theta \cos \theta (\sin \theta + \cos \theta) = a^3 \)
\( \Rightarrow \sin^3 \theta + \cos^3 \theta + 3 \left( \frac{a^2 - 1}{2} \right) a = a^3 \)
[From (i) and (iii)]
\( \Rightarrow b + \frac{3a}{2} (a^2 - 1) = a^3 \)
\( \Rightarrow 2b + 3a(a^2 - 1) = 2a^3 \) [From (ii)]
\( \Rightarrow 2b + 3a^3 - 3a = 2a^3 \)
\( \Rightarrow (3a - 2b) = a^3 \) Hence Proved.
Question. If \( a \cos \theta - b \sin \theta = c \), prove that \( (a \sin \theta + b \cos \theta) = \sqrt{a^2 + b^2 - c^2} \).
Answer: Sol. Given, \( a \cos \theta - b \sin \theta = c \) ...(i)
Now, \( a^2 + b^2 - c^2 = a^2 + b^2 - (a \cos \theta - b \sin \theta)^2 \)
[From (i)]
\( = a^2 + b^2 - (a^2 \cos^2 \theta + b^2 \sin^2 \theta - 2ab \sin \theta \cos \theta) \)
\( = a^2 + b^2 - [a^2 (1 - \sin^2 \theta) + b^2 (1 - \cos^2 \theta) - 2ab \sin \theta \cos \theta] \)
\( = a^2 + b^2 - [a^2 - a^2 \sin^2 \theta + b^2 - b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta] \)
\( = a^2 + b^2 - a^2 + a^2 \sin^2 \theta - b^2 + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta \)
\( = a^2 \sin^2 \theta + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta \)
\( = (a \sin \theta + b \cos \theta)^2 \)
Thus, \( a^2 + b^2 - c^2 = (a \sin \theta + b \cos \theta)^2 \)
or \( \sqrt{a^2 + b^2 - c^2} = (a \sin \theta + b \cos \theta) \)
\( \Rightarrow (a \sin \theta + b \cos \theta) = \sqrt{a^2 + b^2 - c^2} \).
Hence Proved.
Question. If \( \sec \theta + \tan \theta = p \), prove that \( \sin \theta = \frac{p^2 - 1}{p^2 + 1} \).
Answer: Sol. Given, \( \sec \theta + \tan \theta = p \)
Now, R.H.S. \( = \frac{p^2 - 1}{p^2 + 1} \)
\( = \frac{(\sec \theta + \tan \theta)^2 - 1}{(\sec \theta + \tan \theta)^2 + 1} \)
\( = \frac{\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta - 1}{\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta + 1} \) [\( \because (a + b)^2 = a^2 + b^2 + 2ab \)]
\( = \frac{(\sec^2 \theta - 1) + \tan^2 \theta + 2 \sec \theta \tan \theta}{\sec^2 \theta + (1 + \tan^2 \theta) + 2 \sec \theta \tan \theta} \)
\( = \frac{\tan^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta}{\sec^2 \theta + \sec^2 \theta + 2 \sec \theta \tan \theta} \) [\( \because \sec^2 \theta - 1 = \tan^2 \theta \); \( \sec^2 \theta = 1 + \tan^2 \theta \)]
\( = \frac{2 \tan^2 \theta + 2 \sec \theta \tan \theta}{2 \sec^2 \theta + 2 \sec \theta \tan \theta} \)
\( = \frac{2 \tan \theta (\tan \theta + \sec \theta)}{2 \sec \theta (\sec \theta + \tan \theta)} = \frac{\tan \theta}{\sec \theta} \)
\( = \frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}} \)
\( = \sin \theta = \text{L.H.S.} \) Hence Proved.
Question. If \( \text{cosec } \theta - \sin \theta = m \) and \( \sec \theta - \cos \theta = n \), prove that \( (m^2n)^{2/3} + (mn^2)^{2/3} = 1 \).
Answer: Sol. Given,
\( \text{cosec } \theta - \sin \theta = m \)
\( \Rightarrow \frac{1}{\sin \theta} - \sin \theta = m \)
\( \Rightarrow \frac{1 - \sin^2 \theta}{\sin \theta} = m \)
\( \Rightarrow \frac{\cos^2 \theta}{\sin \theta} = m \)
Also, \( \sec \theta - \cos \theta = n \)
\( \Rightarrow \frac{1}{\cos \theta} - \cos \theta = n \)
\( \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = n \)
\( \Rightarrow \frac{\sin^2 \theta}{\cos \theta} = n \)
Now, consider,
L.H.S. \( = (m^2n)^{2/3} + (mn^2)^{2/3} \)
\( = \left\{ \left( \frac{\cos^2 \theta}{\sin \theta} \right)^2 \left( \frac{\sin^2 \theta}{\cos \theta} \right) \right\}^{2/3} + \left\{ \left( \frac{\cos^2 \theta}{\sin \theta} \right) \left( \frac{\sin^2 \theta}{\cos \theta} \right)^2 \right\}^{2/3} \)
\( = \left( \frac{\cos^4 \theta \cdot \sin^2 \theta}{\sin^2 \theta \cdot \cos \theta} \right)^{2/3} + \left( \frac{\cos^2 \theta \cdot \sin^4 \theta}{\sin \theta \cdot \cos^2 \theta} \right)^{2/3} \)
\( = (\cos^3 \theta)^{2/3} + (\sin^3 \theta)^{2/3} \)
\( = \cos^2 \theta + \sin^2 \theta \)
\( = 1 = \text{R.H.S.} \) Hence Proved.
Question. Prove that \( \frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \cos^2 \theta} + \frac{1}{1 + \sec^2 \theta} + \frac{1}{1 + \text{cosec}^2 \theta} = 2 \)
Answer: Sol. Taking from LHS,
LHS \( = \frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \cos^2 \theta} + \frac{1}{1 + \sec^2 \theta} + \frac{1}{1 + \text{cosec}^2 \theta} \)
\( = \frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \text{cosec}^2 \theta} + \frac{1}{1 + \cos^2 \theta} + \frac{1}{1 + \sec^2 \theta} \) [Re-arranging]
\( = \frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \left( \frac{1}{\sin^2 \theta} \right)} + \frac{1}{1 + \cos^2 \theta} + \frac{1}{1 + \left( \frac{1}{\cos^2 \theta} \right)} \)
\( = \frac{1}{1 + \sin^2 \theta} + \frac{\sin^2 \theta}{1 + \sin^2 \theta} + \frac{1}{1 + \cos^2 \theta} + \frac{\cos^2 \theta}{1 + \cos^2 \theta} \)
\( = \frac{1 + \sin^2 \theta}{1 + \sin^2 \theta} + \frac{1 + \cos^2 \theta}{1 + \cos^2 \theta} \)
\( = 1 + 1 = 2 \)
\( = \text{RHS} \). Hence, proved!
Question. If \( \sec \theta = x + \frac{1}{4x} \), prove that \( \sec \theta + \tan \theta = 2x \) or \( \frac{1}{2x} \).
Answer: Sol. Given, \( \sec \theta = x + \frac{1}{4x} \)
On squaring both sides, we get
\( \sec^2 \theta = \left( x + \frac{1}{4x} \right)^2 \)
We know that
\( \tan^2 \theta = \sec^2 \theta - 1 \)
\( \Rightarrow \tan^2 \theta = \left( x + \frac{1}{4x} \right)^2 - 1 \)
\( \Rightarrow \tan^2 \theta = x^2 + \frac{1}{16x^2} + \frac{1}{2} - 1 \)
\( \Rightarrow \tan^2 \theta = x^2 + \frac{1}{16x^2} - \frac{1}{2} \)
\( \Rightarrow \tan^2 \theta = \left( x - \frac{1}{4x} \right)^2 \)
\( \Rightarrow \tan \theta = \pm \left( x - \frac{1}{4x} \right) \)
When \( \tan \theta = \left( x - \frac{1}{4x} \right) \)
Then, \( \sec \theta + \tan \theta = x + \frac{1}{4x} + x - \frac{1}{4x} = 2x \)
When \( \tan \theta = -\left( x - \frac{1}{4x} \right) \)
Then \( \sec \theta + \tan \theta = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) = \frac{2}{4x} = \frac{1}{2x} \)
\( \sec \theta + \tan \theta = 2x \) or \( \frac{1}{2x} \). Hence Proved.
Assertion and Reasoning Based Questions
DIRECTIONS : In the following questions, a statement 1 is followed by statement 2. Mark the correct choice as :
(a) If both statement 1 and statement 2 are true and statement 2 is the correct explanation of statement 1.
(b) If both statement 1 and statement 2 are true, but statement 2 is not the correct explanation of statement 1.
(c) If statement 1 is true, but statement 2 is false.
(d) If statement 1 is false, but statement 2 is true.
Question. Statement 1 : In a right-angle \(\Delta ABC\), right-angled at B, AB = 4 and BC = 3. Then, value of \( \sec A = \frac{4}{5} \).
Statement 2 : ‘Secant of angle \(\theta\)’ is reverse of ‘cosecant of angle \(\theta\)’.
(a) A
(b) B
(c) C
(d) D
Answer: (b) Statement 1 is correct as by Pythagoras theorem, hypotenuse will be 5. So, the value of sec A will be \( \frac{4}{5} \) and statement 2 is also correct but not the correct reason for statement 1.
Question. Statement 1 : In a right angled \(\Delta ABC\), if \( \text{cosec } A = \sqrt{10} \) then, the value of cot A for the same triangle is \( \frac{2}{1} \).
Statement 2 : By applying Pythagoras theorem we can find the hypotenuse, if base and perpendicular of a right angled triangle is given. And then all trigonometric ratios can be calculated.
(a) A
(b) B
(c) C
(d) D
Answer: (d) Statement 1 is incorrect as value of cot A is \( \frac{3}{1} \) and statement 2 is a complete reason for calculating trigonometric ratio and it is correct.
Question. Statement 1 : The value of \( \tan 90^\circ \) is not-defined.
Statement 2 : ‘Tangent of angle \(\theta\)’ is the ratio of the ‘sine of angle \(\theta\)’ and ‘cosine of angle \(\theta\)’.
(a) A
(b) B
(c) C
(d) D
Answer: (a) \( \tan 90^\circ = \infty \) as \( \sin 90^\circ = 1 \) and \( \cos 90^\circ = 0 \) and \( \tan \theta = \frac{\sin \theta}{\cos \theta} \).
\(\therefore\) statement 2 gives correct reason for statement 1.
Question. Statement 1 : If A and B are complementary angles then \( \sin A = \cos B \) and vice-versa.
Statement 2 : Two angles are said to be complementary if their sum is 180 i.e., \(\theta\) and \( (180^\circ - \theta) \) are complementary angles for an angle \(\theta\).
(a) A
(b) B
(c) C
(d) D
Answer: (c) For statement 1 : \( A + B = 90^\circ \)
\(\therefore A = 90^\circ - B \)
\( \Rightarrow \sin A = \sin (90^\circ - B) \)
\( \Rightarrow \sin A = \cos B \)
But statement 2 is not correct as sum of complementary angles is \( 90^\circ \) not \( 180^\circ \).
| CBSE Class 10 Real Numbers Important Formulas and concepts for exams |
| CBSE Class 10 Real Numbers Sure Shot Questions |
| CBSE Class 10 Polynomials Important Formulas and concepts for exams |
| CBSE Class 10 Polynomials Sure Shot Questions |
| CBSE Class 10 Triangles Important Formulas and concepts for exams |
| CBSE Class 10 Triangles Sure Shot Questions |
| CBSE Class 10 Circles Important Formulas and concepts for exams |
| CBSE Class 10 Circles Sure Shot Questions |
| CBSE Class 10 Areas related to Circles Sure Shot Questions Set A |
| Class 10 Mathematics All Chapters Test Paper Solved |
| CBSE Class 10 Constructions Important Formulas and concepts for exams |
| CBSE Class 10 Constructions Sure Shot Questions |
Important Practice Resources for Class 10 Mathematics
CBSE Class 10 Mathematics Chapter 8 Introduction to Trigonometry Study Material
Students can find all the important study material for Chapter 8 Introduction to Trigonometry on this page. This collection includes detailed notes, Mind Maps for quick revision, and Sure Shot Questions that will come in your CBSE exams. This material has been strictly prepared on the latest 2026 syllabus for Class 10 Mathematics. Our expert teachers always suggest you to use these tools daily to make your learning easier and faster.
Chapter 8 Introduction to Trigonometry Expert Notes & Solved Exam Questions
Our teachers have used the latest official NCERT book for Class 10 Mathematics to prepare these study material. We have included previous year examination questions and also step-by-step solutions to help you understand the marking scheme too. After reading the above chapter notes and solved questions also solve the practice problems and then compare your work with our NCERT solutions for Class 10 Mathematics.
Complete Revision for Mathematics
To get the best marks in your Class 10 exams you should use Mathematics Sample Papers along with these chapter notes. Daily practicing with our online MCQ Tests for Chapter 8 Introduction to Trigonometry will also help you improve your speed and accuracy. All the study material provided on studiestoday.com is free and updated regularly to help Class 10 students stay ahead in their studies and feel confident during their school tests.
You can download the CBSE 2026 Study Material for Class 10 Mathematics for latest session from StudiesToday.com
Yes, you can click on the links above and download Study Material in PDF for Class 10 for Mathematics
Yes, the study material issued for Class 10 Mathematics have been made available here for latest 2026 academic session
You can easily access the links above and download the Class 10 Study Material Mathematics
There is no charge for the Study Material for Class 10 CBSE Mathematics you can download everything free
Planning your studies as per study material given on studiestoday for Class 10 subject Mathematics can help you to score better marks in exams
Yes, studiestoday.com provides all latest CBSE Class 10 Mathematics Study Material with suggested books for current academic session
Yes, studiestoday provides Study Material in Pdf for Class 10 Mathematics in mobile-friendly format and can be accessed on smartphones and tablets.
Yes, Study Material for Class 10 Mathematics is available in multiple languages, including English, Hindi
