CBSE Class 10 Introduction to Trigonometry Sure Shot Questions Set E

Read and download the CBSE Class 10 Introduction to Trigonometry Sure Shot Questions Set E. Designed for 2025-26, this advanced study material provides Class 10 Mathematics students with detailed revision notes, sure-shot questions, and detailed answers. Prepared by expert teachers and they follow the latest CBSE, NCERT, and KVS guidelines to ensure you get best scores.

Advanced Study Material for Class 10 Mathematics Chapter 8 Introduction to Trigonometry

To achieve a high score in Mathematics, students must go beyond standard textbooks. This Class 10 Chapter 8 Introduction to Trigonometry study material includes conceptual summaries and solved practice questions to improve you understanding.

Class 10 Mathematics Chapter 8 Introduction to Trigonometry Notes and Questions

Points to Remember

  • If triangle \( ABC \) is right-angled at \( B \) and \( \angle BAC = \theta \), then with reference to the angle \( \theta \), we have
    Base \( (B) = AB \), Perpendicular \( (P) = BC \) and Hypotenuse \( (H) = AC \)
    Also,
    \( \sin \theta = \frac{P}{H} \); \( \cos \theta = \frac{B}{H} \); \( \tan \theta = \frac{P}{B} \); \( \text{cosec } \theta = \frac{H}{P} \);
    \( \sec \theta = \frac{H}{B} \); \( \cot \theta = \frac{B}{P} \).
  • \( \sin \theta = \frac{1}{\text{cosec } \theta} \); \( \cos \theta = \frac{1}{\sec \theta} \); \( \tan \theta = \frac{1}{\cot \theta} \)
  • \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \cot \theta = \frac{\cos \theta}{\sin \theta} \)
  • If \( \theta \) is an acute angle, then
    \( \sin (90^\circ – \theta) = \cos \theta \); \( \cos (90^\circ – \theta) = \sin \theta \); \( \tan (90^\circ – \theta) = \cot \theta \); \( \cot (90^\circ – \theta) = \tan \theta \); \( \sec (90^\circ – \theta) = \text{cosec } \theta \); \( \text{cosec } (90^\circ – \theta) = \sec \theta \).
  • \( \sin^2 \theta + \cos^2 \theta = 1 \)
    \( \sec^2 \theta = 1 + \tan^2 \theta \)
    \( \text{cosec}^2 \theta = 1 + \cot^2 \theta \)

Multiple Choice Questions

Question. The value of \( (\tan 1^\circ \tan 2^\circ \dots \tan 89^\circ) \) is equal to ......... 
Answer: 1
Explanation :
\( \tan 1^\circ \tan 2^\circ \dots \tan 89^\circ \)
\( = \tan 1^\circ \tan 2^\circ \dots \tan 45^\circ \dots \tan 88^\circ \tan 89^\circ \)
\( = \tan 1^\circ \tan 2^\circ \dots \tan 45^\circ \dots \tan (90^\circ – 2^\circ) \tan (90^\circ – 1^\circ) \)
\( = \tan 1^\circ \tan 2^\circ \dots \tan 45^\circ \dots \cot 2^\circ \cot 1^\circ \)
[\( \because \tan (90^\circ – \theta) = \cot \theta \)]
\( = \tan 1^\circ \tan 2^\circ \dots \tan 45^\circ \dots \frac{1}{\tan 2^\circ} \frac{1}{\tan 1^\circ} \)
\( = \tan 45^\circ \)
\( = 1 \)

Question. \( \frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ} \) is equal to :
(a) \( \sin 60^\circ \)
(b) \( \cos 60^\circ \)
(c) \( \tan 60^\circ \)
(d) \( \sin 30^\circ \)
Answer: (a)
Sol. \( \frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ} = \frac{2 \cdot \frac{1}{\sqrt{3}}}{1 + (\frac{1}{\sqrt{3}})^2} = \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} = \frac{2 \times 3}{\sqrt{3} \times 4} = \frac{\sqrt{3}}{2} = \sin 60^\circ \).
So, the correct option is (a).

Question. \( 9 \sec^2 A – 9 \tan^2 A \) is equal to :
(a) 1
(b) 9
(c) 8
(d) 0
Answer: (b)
Sol. \( 9 \sec^2 A – 9 \tan^2 A = 9(\sec^2 A – \tan^2 A) = 9(1) = 9 \).
So the correct option is (b).

Question. \( (1 + \tan \theta + \sec \theta) (1 + \cot \theta – \text{cosec } \theta) \) is equal to :
(a) 0
(b) 1
(c) 2
(d) – 1
Answer: (c)
Sol. \( (1 + \tan \theta + \sec \theta) (1 + \cot \theta – \text{cosec } \theta) \)
\( = [1 + \tan \theta + \sec \theta + \cot \theta + \tan \theta \cot \theta + \sec \theta \cot \theta – \text{cosec } \theta – \tan \theta \text{cosec } \theta – \sec \theta \text{cosec } \theta] \)
\( = [1 + \tan \theta + \sec \theta + \cot \theta + 1 + \text{cosec } \theta – \text{cosec } \theta – \sec \theta – \sec \theta \text{cosec } \theta] \)
\( = [2 + \tan \theta + \cot \theta – \sec \theta \text{cosec } \theta] \)
\( = 2 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} – \frac{1}{\sin \theta \cos \theta} \)
\( = 2 + \frac{\sin^2 \theta + \cos^2 \theta - 1}{\sin \theta \cos \theta} \)
\( = 2 + \frac{1 - 1}{\sin \theta \cos \theta} = 2 \).
So, the correct option is (c).

Question. \( (\sec A + \tan A) (1 – \sin A) \) is equal to :
(a) \( \sec A \)
(b) \( \sin A \)
(c) \( \text{cosec } A \)
(d) \( \cos A \)
Answer: (d)
Sol. \( (\sec A + \tan A) (1 – \sin A) \)
\( = \left( \frac{1}{\cos A} + \frac{\sin A}{\cos A} \right) (1 - \sin A) \)
\( = \left( \frac{1 + \sin A}{\cos A} \right) (1 - \sin A) \)
\( = \frac{1 - \sin^2 A}{\cos A} \)
\( = \frac{\cos^2 A}{\cos A} = \cos A \).
So, the correct option is (d).

Question. If \( 3 \sin \theta = 2 \), then \( \text{cosec } \theta \) is equal to :
(a) \( \frac{2}{3} \)
(b) \( \frac{3}{2} \)
(c) 2
(d) 1
Answer: (b)
Sol. We have, \( 3 \sin \theta = 2 \)
\( \Rightarrow \sin \theta = \frac{2}{3} \)
\( \Rightarrow \frac{1}{\text{cosec } \theta} = \frac{2}{3} \)
\( [\because \sin \theta = \frac{1}{\text{cosec } \theta}] \)
\( \Rightarrow \text{cosec } \theta = \frac{3}{2} \).
So, the correct option is (b).

Question. If \( x \sin (90^\circ – \theta) \cot (90^\circ – \theta) = \cos (90^\circ – \theta) \), then the value of \( x \) is :
(a) 0
(b) – 1
(c) 2
(d) 1
Answer: (d)
Sol. We have, \( x \sin (90^\circ – \theta) \cot (90^\circ – \theta) = \cos (90^\circ – \theta) \)
\( \Rightarrow x \cos \theta \tan \theta = \sin \theta \)
\( \Rightarrow x \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = \sin \theta \)
\( \Rightarrow x = 1 \).
So, the correct option is (d).

Fill in the Blanks

Question. The value of \( \sin^2 25^\circ + \sin^2 65^\circ – \tan^2 45^\circ \) is ______
Answer: 0

Question. The value of \( \theta, 0^\circ < \theta < 90^\circ \), for which \( \sin \theta = \cos \theta \) is _________
Answer: \( 45^\circ \)

True/False

Question. The value of \( 3 \text{cosec}^2 \theta – 3 \cot^2 \theta \) is 3.
Answer: True

Question. If A is an acute angle, then \( \sin A \cdot \cos A \le 1 \).
Answer: False
Explanation: If A is acute, then \( \sin A \cdot \cos A \) is always less than 1.

Very Short Answer Type Questions

Question. Express \( \sin 85^\circ + \cos 76^\circ \) in terms of trigonometric ratios of angles between \( 0^\circ \) and \( 45^\circ \).
Answer: \( \sin 85^\circ + \cos 76^\circ = \sin (90^\circ – 5^\circ) + \cos (90^\circ – 14^\circ) = \cos 5^\circ + \sin 14^\circ \). Ans.

Question. Find the value of \( (\sin^2 33^\circ + \sin^2 57^\circ) \) 
Answer: \( \sin^2 33^\circ + \sin^2 57^\circ = \sin^2 33^\circ + \sin^2 (90^\circ – 33^\circ) = \sin^2 33^\circ + \cos^2 33^\circ = 1 \). Ans.

Question. In \( \Delta ABC \) right angled at \( C \), find the value of \( \sin (A + B) \).
Answer: In \( \Delta ABC \),
\( \angle A + \angle B + \angle C = 180^\circ \)
\( \Rightarrow \angle A + \angle B + 90^\circ = 180^\circ \)
\( \Rightarrow \angle A + \angle B = 90^\circ \)
Taking \( \sin \) on both sides, we get \( \sin (A + B) = \sin 90^\circ \)
\( \Rightarrow \sin (A + B) = 1 \). Ans.

Question. If \( A + B = 90^\circ \) and \( \tan A = \frac{3}{4} \), what is the value of \( \cot B \)?
Answer: Given : \( A + B = 90^\circ \)
\( \Rightarrow B = 90^\circ – A \)
or \( \cot B = \cot (90^\circ – A) \)
\( \Rightarrow \cot B = \tan A = \frac{3}{4} \). Ans.

Question. What happens to value of \( \cos \theta \) when \( \theta \) increases from \( 0^\circ \) to \( 90^\circ \)?
Answer: \( \cos 0^\circ = 1 \) and \( \cos 90^\circ = 0 \). So, when \( \theta \) increases from \( 0^\circ \) to \( 90^\circ \), the value of \( \cos \theta \) decreases from 1 to 0. Ans.

Question. If \( \sin^2 A = \frac{1}{2} \tan^2 45^\circ \), where A is an acute angle, find the value of A.
Answer: Given : \( \sin^2 A = \frac{1}{2} \tan^2 45^\circ \)
\( \Rightarrow \sin^2 A = \frac{1}{2}(1)^2 = \frac{1}{2} \)
\( \Rightarrow \sin A = \frac{1}{\sqrt{2}} = \sin 45^\circ \)
\( \Rightarrow A = 45^\circ \). Ans.

 

Question. Evaluate : \( \sin^2 60^\circ + 2 \tan 45^\circ – \cos^2 30^\circ \)
Answer: We know,
\( \sin 60^\circ = \frac{\sqrt{3}}{2}, \tan 45^\circ = 1 \) and \( \cos 30^\circ = \frac{\sqrt{3}}{2} \)
\( \therefore \sin^2 60^\circ + 2 \tan 45^\circ – \cos^2 30^\circ \)
\( = \left( \frac{\sqrt{3}}{2} \right)^2 + 2(1) – \left( \frac{\sqrt{3}}{2} \right)^2 \)
\( = \frac{3}{4} + 2 – \frac{3}{4} \)
\( = 2. \) Ans.

Question. If \( x = a \cos \theta, y = b \sin \theta \), then find the value of \( b^2 x^2 + a^2 y^2 – a^2 b^2 \).
Answer: Given : \( x = a \cos \theta \) and \( y = b \sin \theta \)
Now,
\( b^2 x^2 + a^2 y^2 – a^2 b^2 = b^2(a \cos \theta)^2 + a^2(b \sin \theta)^2 – a^2 b^2 \)
\( = a^2 b^2 \cos^2 \theta + a^2 b^2 \sin^2 \theta – a^2 b^2 \)
\( = a^2 b^2 (\cos^2 \theta + \sin^2 \theta) – a^2 b^2 \)
\( = a^2 b^2 (1) – a^2 b^2 \)
\( [\because \sin^2 \theta + \cos^2 \theta = 1] \)
\( = 0. \) Ans.

Question. Prove that : \( \sin^6 \theta + \cos^6 \theta = 1 – 3 \sin^2 \theta \cos^2 \theta \). 
Answer: Consider,
\( L.H.S. = \sin^6 \theta + \cos^6 \theta \)
\( = (\sin^2 \theta)^3 + (\cos^2 \theta)^3 \)
\( = (\sin^2 \theta + \cos^2 \theta)^3 – 3 \sin^2 \theta \cos^2 \theta (\sin^2 \theta + \cos^2 \theta) \)
\( = 1^3 – 3 \sin^2 \theta \cos^2 \theta (1) \)
\( = 1 – 3 \sin^2 \theta \cos^2 \theta = R.H.S. \) Hence Proved.

Question. Evaluate : \( \sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ \).
Answer: \( \sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ \)
\( = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} \)
\( = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1 \) Ans.

Question. Evaluate : \( \frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ} \) [NCERT]
Answer: \( \frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ} \)
\( = \frac{5 \left( \frac{1}{2} \right)^2 + 4 \left( \frac{2}{\sqrt{3}} \right)^2 – (1)^2}{1} \)
\( [\because \sin^2 \theta + \cos^2 \theta = 1] \)
\( = \frac{5}{4} + \frac{16}{3} – 1 \)
\( = \frac{15 + 64 – 12}{12} = \frac{67}{12}. \) Ans.

Question. If \( \sec 4A = \text{cosec } (A – 20^\circ) \), where \( 4A \) is an acute angle, find the value of \( A \).
Answer: Given : \( \sec 4A = \text{cosec } (A – 20^\circ) \)
\( \Rightarrow \text{cosec } (90^\circ – 4A) = \text{cosec } (A – 20^\circ) \)
\( [\because \sec \theta = \text{cosec } (90^\circ – \theta)] \)
\( \Rightarrow 90^\circ – 4A = A – 20^\circ \)
\( \Rightarrow 110^\circ = 5A \)
\( \Rightarrow A = \frac{110^\circ}{5} = 22^\circ \) Ans.

Question. Show that \( \tan^4 \theta + \tan^2 \theta = \sec^4 \theta – \sec^2 \theta \) 
Answer: Consider,
\( L.H.S. = \tan^4 \theta + \tan^2 \theta \)
\( = \tan^2 \theta (\tan^2 \theta + 1) \)
\( = (\sec^2 \theta – 1) \sec^2 \theta \)
\( [\because \sec^2 \theta – \tan^2 \theta = 1] \)
\( = \sec^4 \theta – \sec^2 \theta = R.H.S. \)
Hence Proved.

Question. Evaluate : \( (\sec A + \tan A) (1 – \sin A) \).
Answer: \( (\sec A + \tan A) (1 – \sin A) \)
\( = \sec A + \tan A – \sin A \cdot \sec A – \sin A \cdot \tan A \)
\( = \frac{1}{\cos A} + \frac{\sin A}{\cos A} – \sin A \cdot \frac{1}{\cos A} – \sin A \cdot \frac{\sin A}{\cos A} \)
\( = \frac{1 + \sin A – \sin A – \sin^2 A}{\cos A} \)
\( = \frac{1 – \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A} = \cos A \) Ans.

Question. If \( \sin \theta + \sin^2 \theta = 1 \), prove that : \( \cos^2 \theta + \cos^4 \theta = 1 \).  
Answer: Given,
\( \sin \theta + \sin^2 \theta = 1 \)
\( \Rightarrow \sin \theta + (1 – \cos^2 \theta) = 1 \)
\( \Rightarrow \sin \theta = \cos^2 \theta \)
\( \Rightarrow \sin^2 \theta = \cos^4 \theta \)
\( \Rightarrow 1 – \cos^2 \theta = \cos^4 \theta \)
\( \Rightarrow \cos^2 \theta + \cos^4 \theta = 1. \) Hence Proved.

Short Answer Type Questions-I

Question. Solve : \( \frac{\sin 50^\circ}{\cos 40^\circ} + \frac{\text{cosec } 40^\circ}{\sec 50^\circ} – 4 \cos 50^\circ \text{cosec } 40^\circ \).
Answer: \( \frac{\sin 50^\circ}{\cos 40^\circ} + \frac{\text{cosec } 40^\circ}{\sec 50^\circ} – 4 \cos 50^\circ \text{cosec } 40^\circ \)
\( = \frac{\sin (90^\circ – 40^\circ)}{\cos 40^\circ} + \frac{\text{cosec } (90^\circ – 50^\circ)}{\sec 50^\circ} – 4 \cos 50^\circ \text{cosec } (90^\circ – 50^\circ) \)
\( = \frac{\cos 40^\circ}{\cos 40^\circ} + \frac{\sec 50^\circ}{\sec 50^\circ} – 4 \cos 50^\circ \sec 50^\circ \)
\( = 1 + 1 – 4 = – 2. \) Ans.

Question. Solve : \( \frac{2}{3}(\cos^4 30^\circ – \sin^4 45^\circ) – 3(\sin^2 60^\circ – \sec^2 45^\circ) + \frac{1}{4}(\cot^2 30^\circ) \).
Answer: \( \frac{2}{3}(\cos^4 30^\circ – \sin^4 45^\circ) – 3(\sin^2 60^\circ – \sec^2 45^\circ) + \frac{1}{4}(\cot^2 30^\circ) \)
\( = \frac{2}{3} \left[ \left( \frac{\sqrt{3}}{2} \right)^4 – \left( \frac{1}{\sqrt{2}} \right)^4 \right] – 3 \left[ \left( \frac{\sqrt{3}}{2} \right)^2 – (\sqrt{2})^2 \right] + \frac{1}{4}(\sqrt{3})^2 \)
\( = \frac{2}{3} \left[ \frac{9}{16} – \frac{1}{4} \right] – 3 \left[ \frac{3}{4} – 2 \right] + \frac{3}{4} \)
\( = \frac{5}{24} + \frac{15}{4} + \frac{3}{4} = \frac{5}{24} + \frac{9}{2} \)
\( = \frac{5 + 108}{24} = \frac{113}{24}. \) Ans.

Question. Solve : \( \frac{\sec^2 \theta – \cot^2 (90^\circ – \theta)}{\text{cosec}^2 67^\circ – \tan^2 23^\circ} + \sin^2 40^\circ + \sin^2 50^\circ \).
Answer: \( \frac{\sec^2 \theta – \cot^2 (90^\circ – \theta)}{\text{cosec}^2 67^\circ – \tan^2 23^\circ} + \sin^2 40^\circ + \sin^2 50^\circ \)
\( = \frac{\sec^2 \theta – \tan^2 \theta}{\text{cosec}^2 67^\circ – \tan^2 (90^\circ – 67^\circ)} + \sin^2 40^\circ + \sin^2 (90^\circ – 40^\circ) \)
\( = \frac{\sec^2 \theta – \tan^2 \theta}{\text{cosec}^2 67^\circ – \cot^2 67^\circ} + \sin^2 40^\circ + \cos^2 40^\circ \)
\( = 1 + 1 = 2. \) Ans.

Question. Evaluate : \( \frac{2 \sin^2 63^\circ + 1 + 2 \sin^2 27^\circ}{3 \cos^2 17^\circ – 2 + 3 \cos^2 73^\circ} \).
Answer: \( \frac{2 \sin^2 63^\circ + 1 + 2 \sin^2 27^\circ}{3 \cos^2 17^\circ – 2 + 3 \cos^2 73^\circ} \)
\( = \frac{2 \sin^2 63^\circ + 1 + 2 \sin^2 (90^\circ – 63^\circ)}{3 \cos^2 17^\circ – 2 + 3 \cos^2 (90^\circ – 17^\circ)} \)
\( = \frac{2 \sin^2 63^\circ + 1 + 2 \cos^2 63^\circ}{3 \cos^2 17^\circ – 2 + 3 \sin^2 17^\circ} \)
\( = \frac{2 + 1}{3 – 2} = 3. \) Ans.

Question. Evaluate : \( \frac{\cos 58^\circ}{\sin 32^\circ} + \frac{2}{\sqrt{3}} \tan 17^\circ \tan 38^\circ \tan 60^\circ \tan 52^\circ \tan 73^\circ – 3(\sin^2 31^\circ + \sin^2 59^\circ) \).
Answer: \( \frac{\cos 58^\circ}{\sin 32^\circ} + \frac{2}{\sqrt{3}} \tan 17^\circ \tan 38^\circ \tan 60^\circ \tan 52^\circ \tan 73^\circ – 3(\sin^2 31^\circ + \sin^2 59^\circ) \)
\( = \frac{\cos (90^\circ – 32^\circ)}{\sin 32^\circ} + \frac{2}{\sqrt{3}} \tan (90^\circ – 73^\circ) \tan (90^\circ – 52^\circ) \tan 60^\circ \tan 52^\circ \tan 73^\circ – 3[\sin^2 (90^\circ – 59^\circ) + \sin^2 59^\circ] \)
\( = \frac{\sin 32^\circ}{\sin 32^\circ} + \frac{2}{\sqrt{3}} \cot 73^\circ \cot 52^\circ \tan 60^\circ \tan 52^\circ \tan 73^\circ – 3[\cos^2 59^\circ + \sin^2 59^\circ] \)
\( = 1 + \frac{2}{\sqrt{3}} \times \sqrt{3} – 3 = 1 + 2 – 3 = 0. \) Ans.

Question. If \( \sqrt{3} \sin \theta = \cos \theta \), find the value of \( \frac{3 \cos^2 \theta + 2 \cos \theta}{3 \cos \theta + 2} \).
Answer: \( \sqrt{3} \sin \theta = \cos \theta \) [Given]
\( \Rightarrow \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}} \)
or \( \tan \theta = \frac{1}{\sqrt{3}} \)
\( \Rightarrow \tan \theta = \tan 30^\circ \)
\( \Rightarrow \theta = 30^\circ \)
Now, \( \frac{3 \cos^2 \theta + 2 \cos \theta}{3 \cos \theta + 2} = \frac{\cos \theta (3 \cos \theta + 2)}{(3 \cos \theta + 2)} = \cos \theta \)
Put \( \theta = 30^\circ \)
\( \Rightarrow \cos 30^\circ = \frac{\sqrt{3}}{2} \) Ans.

Question. If \( A, B \) and \( C \) are interior angles of \( \Delta ABC \), then prove that : \( \text{cosec } \left( \frac{A + C}{2} \right) = \sec \frac{B}{2} \). 
Answer: In \( \Delta ABC \)
\( \angle A + \angle B + \angle C = 180^\circ \) [Angle sum property]
\( \Rightarrow \angle A + \angle C = 180^\circ – \angle B \)
Divide by 2 on both sides
\( \frac{A + C}{2} = \frac{180^\circ}{2} – \frac{B}{2} \)
\( \frac{A + C}{2} = 90^\circ – \frac{B}{2} \)
Taking \( \text{cosec} \) both sides,
\( \text{cosec } \left( \frac{A + C}{2} \right) = \text{cosec } \left( 90^\circ – \frac{B}{2} \right) \)
\( \text{cosec } \left( \frac{A + C}{2} \right) = \sec \frac{B}{2} \)
\( [\because \text{cosec } (90^\circ – \theta) = \sec \theta] \)
Hence Proved.

Question. In \( \Delta ABC \), if \( \angle C = 90^\circ \), prove that \( \sin^2 A + \sin^2 B = 1 \).
Answer: In \( \Delta ABC \)
\( \angle A + \angle B + \angle C = 180^\circ \) [Angle-sum property]
\( \Rightarrow \angle A + \angle B + 90^\circ = 180^\circ \)
\( \Rightarrow \angle A + \angle B = 90^\circ \)
\( \Rightarrow \angle B = 90^\circ - \angle A \)
Now, \( L.H.S. = \sin^2 A + \sin^2 B \)
\( = \sin^2 A + \sin^2 (90^\circ - A) \)
\( = \sin^2 A + \cos^2 A \)
\( = 1 = R.H.S. \)
Hence Proved.

Question. If \( \cot \theta = \frac{15}{8} \), then evaluate \( \frac{(2 + 2\sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(2 - 2\cos \theta)} \).
Answer: Sol. Given, \( \cot \theta = \frac{15}{8} \)
Now, \( \frac{(2 + 2\sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(2 - 2\cos \theta)} \)
\( = \frac{2(1 + \sin \theta)(1 - \sin \theta)}{2(1 + \cos \theta)(1 - \cos \theta)} \)
\( = \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta} \)
\( = \cot^2 \theta \)
\( = \left(\frac{15}{8}\right)^2 = \frac{225}{64} \). Ans.

Question. Prove that \( \frac{\cot^2 \alpha}{1 + \text{cosec } \alpha} = \text{cosec } \alpha - 1 \).  
Answer: Sol. Consider, L.H.S. \( = \frac{\cot^2 \alpha}{1 + \text{cosec } \alpha} \)
\( = \frac{\text{cosec}^2 \alpha - 1}{1 + \text{cosec } \alpha} [\because \cot^2 \alpha = \text{cosec}^2 \alpha - 1] \)
\( = \frac{(\text{cosec } \alpha + 1)(\text{cosec } \alpha - 1)}{1 + \text{cosec } \alpha} \)
\( = \text{cosec } \alpha - 1 \)
\( = \text{cosec } \alpha = R.H.S. \) Hence Proved.

Question. Prove that : \( (\sin \theta - \text{cosec } \theta)(\cos \theta - \sec \theta) = \frac{1}{\tan \theta + \cot \theta} \).
Answer: Sol. Consider, L.H.S. \( = (\sin \theta - \text{cosec } \theta)(\cos \theta - \sec \theta) \)
\( = \left(\sin \theta - \frac{1}{\sin \theta}\right) \left(\cos \theta - \frac{1}{\cos \theta}\right) \)
\( = \frac{(\sin^2 \theta - 1)(\cos^2 \theta - 1)}{\sin \theta \cos \theta} \)
\( = \frac{(-\cos^2 \theta)(-\sin^2 \theta)}{\sin \theta \cos \theta} \)
\( = \sin \theta \cos \theta \)
R.H.S. \( = \frac{1}{\tan \theta + \cot \theta} \)
\( = \frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}} \)
\( = \frac{\sin \theta \cos \theta}{\sin^2 \theta + \cos^2 \theta} \)
\( = \sin \theta \cos \theta [\because \sin^2 \theta + \cos^2 \theta = 1] \)
Thus, L.H.S. \( = \) R.H.S. \( = \sin \theta \cos \theta \).
Hence Proved.

Question. Prove that : \( (\sin \theta + \text{cosec } \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta \). 
Answer: Sol. Consider, L.H.S. \( = (\sin \theta + \text{cosec } \theta)^2 + (\cos \theta + \sec \theta)^2 \)
\( = \sin^2 \theta + \text{cosec}^2 \theta + 2 \sin \theta \text{cosec } \theta + \cos^2 \theta + \sec^2 \theta + 2 \cos \theta \sec \theta \)
\( = (\sin^2 \theta + \cos^2 \theta) + (1 + \cot^2 \theta) + (1 + \tan^2 \theta) + 2(\sin \theta \text{cosec } \theta + \cos \theta \sec \theta) \)
\( = 1 + 1 + \cot^2 \theta + 1 + \tan^2 \theta + 4 \)
\( = 7 + \cot^2 \theta + \tan^2 \theta \)
\( = R.H.S. \) Hence Proved.

Question. If \( \tan(A + B) = \sqrt{3} \) and \( \tan(A - B) = \frac{1}{\sqrt{3}} \), find the value of \( A \) and \( B \) if \( 0^\circ < A + B < 90^\circ \) and \( A > B \).
Answer: Sol. Given, \( \tan(A + B) = \sqrt{3} = \tan 60^\circ \)
or \( A + B = 60^\circ \) ...(i)
and \( \tan(A - B) = \frac{1}{\sqrt{3}} = \tan 30^\circ \)
or \( A - B = 30^\circ \) ...(ii)
Adding (i) and (ii),
\( 2A = 90^\circ \)
or \( A = 45^\circ \)
From (i), \( A + B = 60^\circ \)
or \( B = 60^\circ - 45^\circ = 15^\circ \)
Hence \( A = 45^\circ \) and \( B = 15^\circ \). Ans.

Question. Prove that : \( \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} + \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} = 2 \sec \theta \).
Answer: Sol. Consider, L.H.S. \( = \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} + \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} \)
\( = \sqrt{\frac{(1 + \sin \theta)(1 + \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)}} + \sqrt{\frac{(1 - \sin \theta)(1 - \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}} \)
\( = \sqrt{\frac{(1 + \sin \theta)^2}{1 - \sin^2 \theta}} + \sqrt{\frac{(1 - \sin \theta)^2}{1 - \sin^2 \theta}} \)
\( = \sqrt{\frac{(1 + \sin \theta)^2}{\cos^2 \theta}} + \sqrt{\frac{(1 - \sin \theta)^2}{\cos^2 \theta}} \)
\( = \frac{1 + \sin \theta}{\cos \theta} + \frac{1 - \sin \theta}{\cos \theta} \)
\( = \frac{1 + \sin \theta + 1 - \sin \theta}{\cos \theta} \)
\( = \frac{2}{\cos \theta} = 2 \sec \theta = R.H.S. \) Hence Proved.

Question. If \( x = 3 \sin \theta \) and \( y = 4 \cos \theta \), find the value of \( \sqrt{16x^2 + 9y^2} \).
Answer: Sol. Given, \( x = 3 \sin \theta \)
\( \Rightarrow x^2 = 9 \sin^2 \theta \)
\( \Rightarrow \sin^2 \theta = \frac{x^2}{9} \) ...(i)
and \( y = 4 \cos \theta \)
\( \Rightarrow y^2 = 16 \cos^2 \theta \)
\( \Rightarrow \cos^2 \theta = \frac{y^2}{16} \) ...(ii)
On adding equations (i) and (ii)
\( \sin^2 \theta + \cos^2 \theta = \frac{x^2}{9} + \frac{y^2}{16} \)
\( 1 = \frac{16x^2 + 9y^2}{144} [\because \sin^2 \theta + \cos^2 \theta = 1] \)
\( 16x^2 + 9y^2 = 144 \)
Taking square root of both sides
\( \sqrt{16x^2 + 9y^2} = \sqrt{144} \)
Thus, \( \sqrt{16x^2 + 9y^2} = 12 \). Ans.

Question. If \( \sec \theta + \tan \theta = m \), show that : \( \frac{m^2 - 1}{m^2 + 1} = \sin \theta \).
Answer: Sol. Given, \( \sec \theta + \tan \theta = m \)
Thus, \( \frac{m^2 - 1}{m^2 + 1} = \frac{(\sec \theta + \tan \theta)^2 - 1}{(\sec \theta + \tan \theta)^2 + 1} \)
\( = \frac{\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta - 1}{\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta + 1} \)
\( = \frac{(\sec^2 \theta - 1) + \tan^2 \theta + 2 \sec \theta \tan \theta}{\sec^2 \theta + (\tan^2 \theta + 1) + 2 \sec \theta \tan \theta} \)
\( = \frac{\tan^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta}{\sec^2 \theta + \sec^2 \theta + 2 \sec \theta \tan \theta} \)
\( = \frac{2 \tan^2 \theta + 2 \sec \theta \tan \theta}{2 \sec^2 \theta + 2 \sec \theta \tan \theta} \)
\( = \frac{2 \tan \theta (\tan \theta + \sec \theta)}{2 \sec \theta (\sec \theta + \tan \theta)} \)
\( = \frac{\tan \theta}{\sec \theta} = \frac{\sin \theta / \cos \theta}{1 / \cos \theta} \)
\( = \sin \theta \). Hence Proved.

Question. If \( \sin \theta + \cos \theta = \sqrt{2} \), prove that \( \tan \theta + \cot \theta = 2 \). 
Answer: Sol. Given : \( \sin \theta + \cos \theta = \sqrt{2} \)
Squaring both sides,
\( (\sin \theta + \cos \theta)^2 = (\sqrt{2})^2 \)
\( \Rightarrow \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 2 \)
\( 1 + 2 \sin \theta \cos \theta = 2 [\because \sin^2 \theta + \cos^2 \theta = 1] \)
\( \Rightarrow 2 \sin \theta \cos \theta = 1 \)
\( \Rightarrow \sin \theta \cos \theta = \frac{1}{2} \) ...(i)
We have to prove that \( \tan \theta + \cot \theta = 2 \)
Taking L.H.S.,
\( \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \)
\( = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} \)
\( = \frac{1}{\sin \theta \cos \theta} = \frac{1}{1/2} = 2 = R.H.S. \) Hence Proved.

Question. If \( \cos \theta + \sin \theta = \sqrt{2} \cos \theta \), show that \( \cos \theta - \sin \theta = \sqrt{2} \sin \theta \).
Answer: Sol. Given, \( \cos \theta + \sin \theta = \sqrt{2} \cos \theta \)
\( \Rightarrow (\cos \theta + \sin \theta)^2 = 2 \cos^2 \theta \)
\( \Rightarrow \cos^2 \theta + \sin^2 \theta + 2 \sin \theta \cos \theta = 2 \cos^2 \theta \)
\( \Rightarrow 2 \cos^2 \theta - \cos^2 \theta - \sin^2 \theta = 2 \sin \theta \cos \theta \)
\( \Rightarrow \cos^2 \theta - \sin^2 \theta = 2 \sin \theta \cos \theta \)
\( \Rightarrow (\cos \theta + \sin \theta)(\cos \theta - \sin \theta) = 2 \sin \theta \cos \theta \)
\( \Rightarrow \sqrt{2} \cos \theta (\cos \theta - \sin \theta) = 2 \sin \theta \cos \theta \)
\( \Rightarrow \cos \theta - \sin \theta = \sqrt{2} \sin \theta \).
Hence Proved.

Question. Prove that : \( (1 - \sin \theta + \cos \theta)^2 = 2(1 + \cos \theta)(1 - \sin \theta) \).
Answer: Sol. Consider,
L.H.S. \( = (1 - \sin \theta + \cos \theta)^2 \)
\( = [1 - (\sin \theta - \cos \theta)]^2 \)
\( = 1 + (\sin \theta - \cos \theta)^2 - 2(1)(\sin \theta - \cos \theta) \)
\( = 1 + \sin^2 \theta + \cos^2 \theta - 2 \sin \theta \cos \theta - 2 \sin \theta + 2 \cos \theta \)
\( = 1 + 1 - 2 \sin \theta \cos \theta - 2 \sin \theta + 2 \cos \theta \)
\( = 2 - 2 \sin \theta \cos \theta - 2 \sin \theta + 2 \cos \theta \)
\( = 2[1 - \sin \theta \cos \theta - \sin \theta + \cos \theta] \)
R.H.S. \( = 2(1 + \cos \theta)(1 - \sin \theta) \)
\( = 2[1 - \sin \theta + \cos \theta - \sin \theta \cos \theta] \)
\( = 2[1 - \sin \theta \cos \theta - \sin \theta + \cos \theta] \)
L.H.S. \( = \) R.H.S. Hence Proved.

Question. If tan 2A = cot (A – 18°), wehre 2A is an acute angle, find the value of A. 
Answer: Given: \( \tan 2A = \cot (A - 18^\circ) \), \( 0 \le 2A < 90^\circ \). (2A is acute)
To find: value of A.
We know, \( \tan \theta = \cot (90^\circ - \theta) \) and \( \cot \theta = \tan (90^\circ - \theta) \).
\( \rightarrow \cot (90^\circ - 2A) = \cot (A - 18^\circ) \)
Applying \( \cot^{-1} \) on both sides,
\( 90^\circ - 2A = A - 18^\circ \)
\( 108^\circ = 3A \)
\( \rightarrow A = 36^\circ \).
The value of A is \( 36^\circ \).

Question. If \( \sin \theta + \cos \theta = \sqrt{3} \), then prove that \( \tan \theta + \cot \theta = 1 \). 
Answer: Given : \( \sin \theta + \cos \theta = \sqrt{3} \)
Squaring both sides,
\( (\sin \theta + \cos \theta)^2 = (\sqrt{3})^2 \)
\( \Rightarrow \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 3 \)
\( \Rightarrow 1 + 2 \sin \theta \cos \theta = 3 \) [\( \because \sin^2 \theta + \cos^2 \theta = 1 \)]
\( \Rightarrow 2 \sin \theta \cos \theta = 2 \)
\( \Rightarrow \sin \theta \cos \theta = 1 \)
Now, \( \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \)
\( = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \)
\( = \frac{1}{1} = 1 \). Hence Proved.

Question. If \( \sin (A + 2B) = \frac{\sqrt{3}}{2} \) and \( \cos (A + 4B) = 0, A > B \) and \( A + 4B \le 90^\circ \) then find A and B. [20
Answer: Given : \( \sin (A + 2B) = \frac{\sqrt{3}}{2} \) and \( \cos (A + 4B) = 0 \)
\( \Rightarrow \sin (A + 2B) = \sin 60^\circ \) and \( \cos (A + 4B) = \cos 90^\circ \)
\( \Rightarrow A + 2B = 60^\circ \) and \( A + 4B = 90^\circ \)
On subtracting the above equations, we get
\( 2B = 30^\circ \)
\( \Rightarrow B = \frac{30^\circ}{2} = 15^\circ \)
So, \( A = 60^\circ – 2B \)
\( = 60^\circ – 2 \times 15^\circ \)
\( = 30^\circ \)
\( \therefore A = 30^\circ \) and \( B = 15^\circ \).

Question. Without using trigonometric tables, evaluate : \( \frac{\cos 58^\circ}{\sin 32^\circ} + \frac{\sin 22^\circ}{\cos 68^\circ} - \frac{\cos 38^\circ \text{cosec } 52^\circ}{\tan 18^\circ \tan 35^\circ \tan 60^\circ \tan 72^\circ \tan 55^\circ} \)
Answer: We have,
\( \frac{\cos 58^\circ}{\sin 32^\circ} + \frac{\sin 22^\circ}{\cos 68^\circ} - \frac{\cos 38^\circ \text{cosec } 52^\circ}{\tan 18^\circ \tan 35^\circ \tan 60^\circ \tan 72^\circ \tan 55^\circ} \)
\( = \frac{\cos (90^\circ - 32^\circ)}{\sin 32^\circ} + \frac{\sin (90^\circ - 68^\circ)}{\cos 68^\circ} - \frac{\cos (90^\circ - 52^\circ) \text{cosec } 52^\circ}{\tan (90^\circ - 72^\circ) \tan (90^\circ - 55^\circ) \tan 60^\circ \tan 72^\circ \tan 55^\circ} \)
\( = \frac{\sin 32^\circ}{\sin 32^\circ} + \frac{\cos 68^\circ}{\cos 68^\circ} - \frac{\sin 52^\circ \text{cosec } 52^\circ}{\cot 72^\circ \cot 55^\circ \tan 60^\circ \tan 72^\circ \tan 55^\circ} \)
[\( \because \cos (90^\circ - \theta) = \sin \theta \), \( \sin (90^\circ - \theta) = \cos \theta \), \( \tan (90^\circ - \theta) = \cot \theta \)]
\( = 1 + 1 - \frac{1}{\sqrt{3}} = 2 - \frac{1}{\sqrt{3}} \).

Question. Solve : \( \frac{3 \cos 55^\circ}{7 \sin 35^\circ} - \frac{4(\cos 70^\circ \text{cosec } 20^\circ)}{7(\tan 5^\circ \tan 25^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ)} \)
Answer: We have,
\( \frac{3 \cos 55^\circ}{7 \sin 35^\circ} - \frac{4(\cos 70^\circ \text{cosec } 20^\circ)}{7(\tan 5^\circ \tan 25^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ)} \)
\( = \frac{3 \cos (90^\circ - 35^\circ)}{7 \sin 35^\circ} - \frac{4 \cos (90^\circ - 20^\circ) \text{cosec } 20^\circ}{7 \tan (90^\circ - 85^\circ) \tan (90^\circ - 65^\circ) \tan 45^\circ \tan 65^\circ \tan 85^\circ} \)
\( = \frac{3 \sin 35^\circ}{7 \sin 35^\circ} - \frac{4 \sin 20^\circ \text{cosec } 20^\circ}{7 \cot 85^\circ \cot 65^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ} \)
\( = \frac{3}{7} - \frac{4}{7 \tan 45^\circ} = \frac{3}{7} - \frac{4}{7} = - \frac{1}{7} \).

z More Study Material Class 10 Mathematics
Class 10 Mathematics All Chapters Test Paper Solved

CBSE Class 10 Mathematics Chapter 8 Introduction to Trigonometry Study Material

Students can find all the important study material for Chapter 8 Introduction to Trigonometry on this page. This collection includes detailed notes, Mind Maps for quick revision, and Sure Shot Questions that will come in your CBSE exams. This material has been strictly prepared on the latest 2026 syllabus for Class 10 Mathematics. Our expert teachers always suggest you to use these tools daily to make your learning easier and faster.

Chapter 8 Introduction to Trigonometry Expert Notes & Solved Exam Questions

Our teachers have used the latest official NCERT book for Class 10 Mathematics to prepare these study material. We have included previous year examination questions and also step-by-step solutions to help you understand the marking scheme too. After reading the above chapter notes and solved questions also solve the practice problems and then compare your work with our NCERT solutions for Class 10 Mathematics.

Complete Revision for Mathematics

To get the best marks in your Class 10 exams you should use Mathematics Sample Papers along with these chapter notes. Daily practicing with our online MCQ Tests for Chapter 8 Introduction to Trigonometry will also help you improve your speed and accuracy. All the study material provided on studiestoday.com is free and updated regularly to help Class 10 students stay ahead in their studies and feel confident during their school tests.

Where can I download latest CBSE Study Material for Class 10 Mathematics for 2026

You can download the CBSE 2026 Study Material for Class 10 Mathematics for latest session from StudiesToday.com

Can I download the current year Study Material of Class 10 Mathematics in Pdf

Yes, you can click on the links above and download Study Material in PDF for Class 10 for Mathematics

Is the Class 10 Mathematics Study Material available for the latest session

Yes, the study material issued for Class 10 Mathematics have been made available here for latest 2026 academic session

How can I download the current year Class 10 Mathematics Study Material

You can easily access the links above and download the Class 10 Study Material Mathematics

Is there any charge for the Study Material for Class 10 Mathematics

There is no charge for the Study Material for Class 10 CBSE Mathematics you can download everything free

How can I improve my scores by using the Study Material in Class 10 Mathematics

Planning your studies as per study material given on studiestoday for Class 10 subject Mathematics can help you to score better marks in exams

Are there any websites that offer free Study Material for Class 10 Mathematics for 2026

Yes, studiestoday.com provides all latest CBSE Class 10 Mathematics Study Material with suggested books for current academic session

Can latest Study Material for Class 10 Mathematics be accessed on mobile devices

Yes, studiestoday provides Study Material in Pdf for Class 10 Mathematics in mobile-friendly format and can be accessed on smartphones and tablets.

Is Study Material for Class 10 Mathematics available in multiple languages

Yes, Study Material for Class 10 Mathematics is available in multiple languages, including English, Hindi