Read and download the CBSE Class 12 Mathematics Matrices Important Questions Set A. Designed for 2025-26, this advanced study material provides Class 12 Mathematics students with detailed revision notes, sure-shot questions, and detailed answers. Prepared by expert teachers and they follow the latest CBSE, NCERT, and KVS guidelines to ensure you get best scores.
Advanced Study Material for Class 12 Mathematics Chapter 03 Matrices
To achieve a high score in Mathematics, students must go beyond standard textbooks. This Class 12 Chapter 03 Matrices study material includes conceptual summaries and solved practice questions to improve you understanding.
Class 12 Mathematics Chapter 03 Matrices Notes and Questions
Question. Fill in the blanks.
(i) If \( A \) and \( B \) are symmetric matrices of same order then \( AB \) is symmetric if and only if \( AB = BA \).
(ii) If \( \begin{bmatrix} x+y & 7 \\ 9 & x-y \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 9 & 4 \end{bmatrix} \), then \( x.y = -3 \).
(iii) If \( \begin{bmatrix} x & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 0 \), then \( x = -8 \).
(iv) If \( A \) is symmetric matrix, then \( B' AB \) is symmetric.
Question. For a \( 2 \times 2 \) matrix, \( A = [a_{ij}] \), whose elements are given by \( a_{ij} = \frac{i}{j} \), write the value of \( a_{12} \).
Answer: \( a_{12} = \frac{1}{2} \)
Question. Write the order of the product matrix.
\( \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \)
Answer: \( 3 \times 3 \)
Question. From the following matrix equation, find the value of \( x \) :
\( \begin{bmatrix} x + y & 4 \\ -5 & 3y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -5 & 6 \end{bmatrix} \)
Answer: \( x = 1 \)
Question. If \( \begin{bmatrix} 3x - 2y & 5 \\ x & -2 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ -3 & -2 \end{bmatrix} \), then find the value of \( y \).
Answer: \( -6 \)
Question. Write a square matrix of order 2, which is both symmetric and skew symmetric.
Answer: \( \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
Question. If matrix \( A = [1\ 2\ 3] \), then write \( AA' \), where \( A' \) is the transpose of matrix \( A \).
Answer: \( [14] \)
Question. If the matrix \( A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix} \) is skew symmetric, find the values of ‘a’ and ‘b’.
Answer: \( a = -2, b = 3 \)
Question. If \( A \) is a square matrix such that \( A^2 = A \), then write the value of \( (I + A)^3 - 7A \)
Answer: \( I \)
Question. If a matrix has 5 elements, write all possible orders it can have.
Answer: \( 1 \times 5 \) and \( 5 \times 1 \)
Question. Write the element \( a_{23} \) of a \( 3 \times 3 \) matrix \( A = (a_{ij}) \) whose elements \( a_{ij} \) are given by \( a_{ij} = \frac{|i - j|}{2} \).
Answer: \( \frac{1}{2} \)
Question. In the matrix equation \( \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 8 & -3 \\ 9 & -4 \end{pmatrix} \). Use elementary operation \( R_2 \rightarrow R_2 + R_1 \) and write the equation thus obtained.
Answer: \( \begin{bmatrix} 2 & 3 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 8 & -3 \\ 17 & -7 \end{bmatrix} \)
Question. Write the number of all possible matrices of order \( 2 \times 2 \) with each entry 1, 2 or 3.
Answer: \( 81 \)
Short Answer Questions-I:
Question. Find a matrix \( A \) such that \( 2A - 3B + 5C = O \), where \( B = \begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix} \) and \( C = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix} \).
Answer: \( \begin{bmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{bmatrix} \)
Question. If \( A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} \) and \( kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} \), then find the value of \( k, a \) and \( b \).
Answer: \( k = -6, a = -4, b = -9 \)
Question. Express \( A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \) as a sum of a symmetric and a skew-symmetric matrix.
Answer: \( \begin{bmatrix} 4 & -1/2 \\ -1/2 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix} \)
Question. Solve the following matrix equation for \( x \): \( \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = O \).
Answer: \( x = 2 \)
Question. If \( 2 \begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \), find \( (x - y) \).
Answer: \( 10 \)
Question. If \( A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} \), then find \( (3A - B) \).
Answer: \( \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix} \)
Question. If \( \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix} \), then write the value of \( x \).
Answer: \( x = 13 \)
Question. If matrix \( A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} \) and \( A^2 = \lambda A \), then write the value of \( \lambda \)
Answer: \( \lambda = 6 \)
Question. If matrix \( A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \) and \( A^2 = pA \), then write the value of \( p \).
Answer: \( p = 4 \)
Short Answer Questions-II:
Question. Given matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), find \( f(A) \), if \( f(x) = 2x^2 - 3x + 5 \).
Answer: \( \begin{bmatrix} 16 & 14 \\ 21 & 37 \end{bmatrix} \)
Question. Find the matrix \( X \) such that \( \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} X = \begin{bmatrix} -1 & -8 & -10 \\ 3 & 4 & 0 \\ 10 & 20 & 10 \end{bmatrix} \).
Answer: \( X = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix} \)
Question. Express the matrix \( \begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix} \) as the sum of a symmetric and a skew symmetric matrix.
Answer: \( \begin{bmatrix} 2 & 2 & 5/2 \\ 2 & -1 & 3/2 \\ 5/2 & 3/2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 & -3/2 \\ -1 & 0 & 1/2 \\ 3/2 & -1/2 & 0 \end{bmatrix} \)
Question. If \( A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \), then find the value of \( A^2 - 3A + 2I \).
Answer: \( \begin{bmatrix} 1 & -1 & -1 \\ 3 & -3 & -4 \\ -3 & 2 & 0 \end{bmatrix} \)
Question. Show that the elements along the main diagonal of a skew symmetric matrix are all zero.
Answer: For a skew-symmetric matrix \( A = [a_{ij}] \), we have \( a_{ij} = -a_{ji} \) for all \( i, j \). For diagonal elements \( i = j \), therefore \( a_{ii} = -a_{ii} \), which implies \( 2a_{ii} = 0 \), hence \( a_{ii} = 0 \) for all \( i \).
Question. If \( A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} \), then calculate \( AC, BC \) and \( (A + B)C \). Also verify that \( (A + B)C = AC + BC \).
Answer: \( AC = \begin{bmatrix} 9 \\ 12 \\ 30 \end{bmatrix} \), \( BC = \begin{bmatrix} 1 \\ 8 \\ -2 \end{bmatrix} \), \( (A + B)C = \begin{bmatrix} 10 \\ 20 \\ 28 \end{bmatrix} \).
Since \( AC + BC = \begin{bmatrix} 9 \\ 12 \\ 30 \end{bmatrix} + \begin{bmatrix} 1 \\ 8 \\ -2 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \\ 28 \end{bmatrix} \), verification is complete.
Question. A manufacturer produces three products \( x, y, z \) which he sells in two markets. Annual sales are indicated in the table:
Market I: \( x = 10,000, y = 2,000, z = 18,000 \)
Market II: \( x = 6,000, y = 20,000, z = 8,000 \)
If unit sale price of \( x, y \) and \( z \) are ₹2.50, ₹1.50 and ₹1.00 respectively, then find the total revenue in each market, using matrices.
Answer: Market I : ₹46,000 ; Market II : ₹53,000
Question. Choose and write the correct option in each of the following questions.
(i) If \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} y & 4x \\ 6y & 4 \end{bmatrix} \) then
(a) \( x = 2, y = 2 \)
(b) \( x = \frac{1}{2}, y = \frac{1}{2} \)
(c) \( x = \frac{1}{2}, y = 2 \)
(d) \( x = 2, y = \frac{1}{2} \)
Answer: (b)
Question. If \( A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \), where \( i = \sqrt{-1} \), then the correct relation is
(a) \( A + B = 0 \)
(b) \( A^2 = B^2 \)
(c) \( A - B = 0 \)
(d) \( A^2 + B^2 = 0 \)
Answer: (b)
Question. A square matrix \( A = [a_{ij}] \) in which \( a_{ij} = 0 \) for \( i \neq j \) and \( a_{ij} = k \) (Constant) for \( i = j \) is called a
(a) Unit matrix
(b) Scalar matrix
(c) Null matrix
(d) Diagonal matrix
Answer: (b)
Question. For the matrix \( A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix} \), find \( x \) and \( y \) so that \( A^2 + xI = yA \).
(a) (8, 8)
(b) (–8, 0)
(c) (–8, –8)
(d) None of these
Answer: (a)
Question. Fill in the blanks.
(i) If \( \begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & 3 \\ 1 & 5 \end{bmatrix} \) then \( x = \) _____________ and \( y = \) _____________ .
Answer: 1, 4
Question. If \( A \) and \( B \) are square matrices of the same order, then \( [k(A - B)]' = \) _____________ , where \( k \) is any scalar.
Answer: \( k(A' - B') \)
Question. If \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \), then write \( A^n \).
Answer: \( \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix} \)
Question. If \( \begin{bmatrix} \cos \frac{2\pi}{7} & -\sin \frac{2\pi}{7} \\ \sin \frac{2\pi}{7} & \cos \frac{2\pi}{7} \end{bmatrix}^k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), then find the least positive integral value of \( k \).
Answer: \( k = 7 \)
Question. If \( \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = A \), then find the value of \( A \).
Answer: \( [-4] \)
Question. Solve for \( x \), \( \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = [0] \).
Answer: \( \frac{1}{7} \)
Question. Find the value of \( x \) and \( y \) which makes the following pair of matrices equal:
\( \begin{bmatrix} 3x + 7 & 5 \\ y + 1 & 2 - 3x \end{bmatrix} = \begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix} \)
Answer: not possible
Question. If \( 2 \begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \), find \( (x - y) \).
Answer: 10
Question. If matrix \( A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \) and \( A^2 = pA \), then write the value of \( p \).
Answer: \( p = 4 \)
Question. Find the value of \( x \), if \( \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = [0] \).
Answer: –14, –2
Question. Show that \( A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} \) satisfies the equation \( x^2 - 6x + 17 = 0 \). Hence, find \( A^{-1} \).
Answer: \( \frac{1}{17} \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix} \)
Question. Let \( A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix} \), express \( A \) as a sum of two matrices such that one is symmetric and other is skew symmetric.
Answer: \( \begin{bmatrix} 3 & 3 & 5/2 \\ 3 & 1 & 9/2 \\ 5/2 & 9/2 & 7 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 5/2 \\ 1 & 0 & -3/2 \\ -5/2 & 3/2 & 0 \end{bmatrix} \)
Question. (i) Prove that the sum of two skew-symmetric matrices is a skew-symmetric matrix.
(ii) Express the following matrix as the sum of a symmetric and a skew-symmetric matrix.
\( \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix} \)
Answer: (ii) \( \frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 10 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0 \end{bmatrix} \)
| CBSE Class 12 Mathematics Case Studies |
| CBSE Class 12 Mathematics Relations and Functions Important Questions Set A |
| CBSE Class 12 Mathematics Relations and Functions Important Questions Set B |
| CBSE Class 12 Mathematics Matrices Important Questions Set A |
| CBSE Class 12 Mathematics Determinants Important Questions Set A |
| CBSE Class 12 Mathematics Determinants Important Questions Set B |
| CBSE Class 12 Mathematics Continuity and Differentiability Important Questions Set A |
| CBSE Class 12 Mathematics Continuity and Differentiability Important Questions Set B |
| CBSE Class 12 Mathematics Application of Derivatives Important Questions Set A |
| CBSE Class 12 Mathematics Integrals Important Questions Set A |
Important Practice Resources for Class 12 Mathematics
CBSE Class 12 Mathematics Chapter 03 Matrices Study Material
Students can find all the important study material for Chapter 03 Matrices on this page. This collection includes detailed notes, Mind Maps for quick revision, and Sure Shot Questions that will come in your CBSE exams. This material has been strictly prepared on the latest 2026 syllabus for Class 12 Mathematics. Our expert teachers always suggest you to use these tools daily to make your learning easier and faster.
Chapter 03 Matrices Expert Notes & Solved Exam Questions
Our teachers have used the latest official NCERT book for Class 12 Mathematics to prepare these study material. We have included previous year examination questions and also step-by-step solutions to help you understand the marking scheme too. After reading the above chapter notes and solved questions also solve the practice problems and then compare your work with our NCERT solutions for Class 12 Mathematics.
Complete Revision for Mathematics
To get the best marks in your Class 12 exams you should use Mathematics Sample Papers along with these chapter notes. Daily practicing with our online MCQ Tests for Chapter 03 Matrices will also help you improve your speed and accuracy. All the study material provided on studiestoday.com is free and updated regularly to help Class 12 students stay ahead in their studies and feel confident during their school tests.
The latest 2025-26 advanced study resources for Class 12 Mathematics are available for free on StudiesToday.com which includes NCERT Exemplars, high-order thinking skills (HOTS) questions, and deep-dive concept summaries.
Our exhaustive Class 12 Mathematics package includes chapter wise revision notes, solved practice sheets, important formulas and Concept Maps to help in better understanding of all topics.
Yes. For Class 12, our resources have been developed to help you get better marks in CBSE school exams and also build fundamental strength needed for entrance tests including Competency Based learning.
in Class 12, students should use Active Recall method, read the concept summary, then solve the Important Questions section without looking at the answers and then check your answers.
All CBSE Mathematics study materials are provided in mobile-friendly PDF. You can download and save them on your device.
Yes, our team has ensured that all Mathematics materials for Class 12 are strictly aligned with the National Education Policy (NEP) 2020 and the latest 2026 CBSE syllabus.