Read and download the CBSE Class 12 Mathematics Determinants Important Questions Set A. Designed for 2025-26, this advanced study material provides Class 12 Mathematics students with detailed revision notes, sure-shot questions, and detailed answers. Prepared by expert teachers and they follow the latest CBSE, NCERT, and KVS guidelines to ensure you get best scores.
Advanced Study Material for Class 12 Mathematics Chapter 4 Determinants
To achieve a high score in Mathematics, students must go beyond standard textbooks. This Class 12 Chapter 4 Determinants study material includes conceptual summaries and solved practice questions to improve you understanding.
Class 12 Mathematics Chapter 4 Determinants Notes and Questions
Fill in the Blanks
Question. The value of the determinant \( \begin{vmatrix} \sin^2 23^\circ & \sin^2 67^\circ & \cos 180^\circ \\ -\sin^2 67^\circ & -\sin^2 23^\circ & \cos^2 180^\circ \\ \cos 180^\circ & \sin^2 23^\circ & \sin^2 67^\circ \end{vmatrix} \) is _____________ .
Answer: 0
Question. The cofactor of element \( a_{12} \) in the matrix \( \begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix} \) is _____________ .
Answer: 46
Question. If \( A \) is a skew-symmetric matrix of order 3, then the value of \( |A| = \) _____________ .
Answer: 0
Question. If \( \cos 2\theta = 0 \), then \( \begin{vmatrix} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{vmatrix}^2 = \) _____________ .
Answer: \( \frac{1}{2} \)
Question. If \( x = -9 \) is a root of \( \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0 \), then other two roots are _____________ .
Answer: \( x = 2, x = 7 \)
Very Short Answer Questions
Question. If \( A \) and \( B \) are square matrices of the same order 3, such that \( |A| = 2 \) and \( AB = 2I \), write the value of \( |B| \).
Answer: \( |A| = 2 \) and \( AB = 2I \)
\( \Rightarrow |AB| = |2I| = 8 \)
\( \Rightarrow |A| |B| = 8 \Rightarrow 2 |B| = 8 \Rightarrow |B| = 4 \)
Question. Find \( |AB| \), if \( A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix} \).
Answer: We have, \( AB = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
\( \therefore |AB| = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0 \)
Question. Let \( A \) be a square matric of order 3 × 3. Write the value of \( |2A| \), where \( |A| = 4 \).
Answer: \(\because |kA| = k^n |A|\), where \( n \) is order of matrix \( A \).
Here \( |A| = 4 \) and \( n = 3 \)
\( |2A| = 2^3 \times 4 = 32 \)
Question. If \( \begin{vmatrix} x + 1 & x - 1 \\ x - 3 & x + 2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} \), then write the value of \( x \).
Answer: Given \( \begin{vmatrix} x + 1 & x - 1 \\ x - 3 & x + 2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} \)
\( \Rightarrow (x + 1) (x + 2) - (x - 1) (x - 3) = 12 + 1 \)
\( \Rightarrow x^2 + 2x + x + 2 - (x^2 - 3x - x + 3) = 13 \)
\( \Rightarrow 7x - 1 = 13 \)
\( \Rightarrow 7x = 14 \)
\( \Rightarrow x = 2 \)
Question. If \( A = [a_{ij}] \) is a matrix of order 2 × 2 , such that \( |A| = -15 \) and \( C_{ij} \) represents the cofactor of \( a_{ij} \), then find \( a_{21}C_{21} + a_{22}C_{22} \).
Answer: Given, \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \therefore |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \)
Expanding along \( R_2 \)
\( \Rightarrow -15 = a_{21} \cdot C_{21} + a_{22} \cdot C_{22} \) [\(C_{ij} = \text{Cofactor of } a_{ij}\)]
\( \Rightarrow a_{21}C_{21} + a_{22}C_{22} = -15 \)
Question. Write the value of the following determinant: \( \begin{vmatrix} a - b & b - c & c - a \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix} \)
Answer: Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get
\( \begin{vmatrix} 0 & b - c & c - a \\ 0 & c - a & a - b \\ 0 & a - b & b - c \end{vmatrix} = 0 \) [\( \because \) All elements of \( C_1 \) are zero]
Question. Show that the points (1, 0), (6, 0), (0, 0) are collinear. [CBSE (AI) 2008]
Answer: Since \( \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \)
Hence, (1, 0), (6, 0) and (0, 0) are collinear.
Question. What positive value of \( x \) makes the following pair of determinants equal? \( \begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix} \), \( \begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix} \)
Answer: \(\because \begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix} = \begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix}\)
\( \Rightarrow 2x^2 - 15 = 32 - 15 \Rightarrow 2x^2 = 32 \)
\( \Rightarrow x^2 = 16 \Rightarrow x = \pm 4 \)
\( \Rightarrow x = 4 \) (+ve value).
Question. Evaluate: \( \begin{vmatrix} \cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ \end{vmatrix} \)
Answer: Expanding the determinant, we get
\( \cos 15^\circ \cdot \cos 75^\circ - \sin 15^\circ \cdot \sin 75^\circ = \cos (15^\circ + 75^\circ) = \cos 90^\circ = 0 \)
[Note : \( \cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B \)]
Question. Write the value of the following determinant: \( \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} \)
Answer: Let \( \Delta = \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} \)
Applying \( R_1 \rightarrow R_1 - 6R_3 \), we get
\( \Delta = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = 0 \) [\(\because\) Each element of \( R_1 \) is zero]
Question. If \( A \) is a square matrix and \( |A| = 2 \), then write the value of \( |AA'| \), where \( A' \) is the transpose of matrix \( A \).
Answer: \( |AA'| = |A| \cdot |A'| = |A| \cdot |A| = |A|^2 = 2^2 = 4 \)
[Note: \( |AB| = |A| \cdot |B| \) and \( |A| = |A^T| \), where \( A \) and \( B \) are square matrices.]
Question. If \( A \) is a 3 × 3 invertible matrix, then what will be the value of \( k \) if \( \text{det } (A^{-1}) = (\text{det } A)^k \).
Answer: Given, \( \text{det } (A^{-1}) = (\text{det } A)^k \)
\( \Rightarrow |A^{-1}| = |A|^k \Rightarrow k = -1 \)
Short Answer Questions-I and II
Question. Find the equations of line joining (1,2) and (3,6) using determinants.
Answer: Let given points are \( A(1, 2) \) and \( B(3, 6) \) and \( P(x, y) \) lies on the line joining points \( A \) and \( B \).
\( \therefore \) Points \( A, P \) and \( B \) are collinear
\( \therefore \) Area of \( \Delta APB = 0 \)
\( \Rightarrow \frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ x & y & 1 \\ 3 & 6 & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & 2 & 1 \\ x & y & 1 \\ 3 & 6 & 1 \end{vmatrix} = 0 \)
\( \Rightarrow 1(y - 6) - 2(x - 3) + 1(6x - 3y) = 0 \)
\( \Rightarrow y - 6 - 2x + 6 + 6x - 3y = 0 \Rightarrow 4x - 2y = 0 \)
\( \Rightarrow 2(2x - y) = 0 \)
\( \Rightarrow 2x - y = 0 \)
\( \therefore \) Equation of line be \( 2x - y = 0 \)
Question. Evaluate the determinant: \( \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} \)
Answer: Let \( \Delta = \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} \)
\( = (x + 1) \begin{vmatrix} x^2 - x + 1 & x - 1 \\ 1 & 1 \end{vmatrix} \) [Taking common \( (x + 1) \) from \( R_2 \)]
\( = (x + 1) \{x^2 - x + 1 - (x - 1)\} = (x + 1) (x^2 - 2x + 2) \)
\( = x^3 - 2x^2 + 2x + x^2 - 2x + 2 = x^3 - x^2 + 2 \)
Question. What is the value of the following determinant: \( \begin{vmatrix} 4 & a & b + c \\ 4 & b & c + a \\ 4 & c & a + b \end{vmatrix} \)
Answer: Here, \( \Delta = \begin{vmatrix} 4 & a & b + c \\ 4 & b & c + a \\ 4 & c & a + b \end{vmatrix} = \begin{vmatrix} 4 & a & a + b + c \\ 4 & b & a + b + c \\ 4 & c & a + b + c \end{vmatrix} \) [Applying \( C_3 \rightarrow C_3 + C_2 \)]
\( \Delta = 4(a + b + c) \begin{vmatrix} 1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1 \end{vmatrix} \) [Taking out common 4 from \( C_1 \) and \( a + b + c \) from \( C_3 \)]
\( \Delta = 4(a + b + c) \cdot 0 = 0 \) [\(\because C_1 = C_3\)]
Question. Write the value of \( \Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ -3 & -3 & -3 \end{vmatrix} \).
Answer: Here, \( \Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ -3 & -3 & -3 \end{vmatrix} \)
Applying \( R_1 \rightarrow R_1 + R_2 \), we get
\( = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ z & x & y \\ -3 & -3 & -3 \end{vmatrix} \)
Taking \( (x + y + z) \) common from \( R_1 \), we get
\( = (x + y + z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ -3 & -3 & -3 \end{vmatrix} \)
Applying \( R_3 \rightarrow R_3 + 3R_1 \), we get
\( = (x + y + z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ 0 & 0 & 0 \end{vmatrix} = 0 \) [\(\because\) Each element of \( R_3 \) is zero]
Question. Without expanding evaluate the determinant: \( \begin{vmatrix} (a^x + a^{-x})^2 & (a^x - a^{-x})^2 & 1 \\ (a^y + a^{-y})^2 & (a^y - a^{-y})^2 & 1 \\ (a^z + a^{-z})^2 & (a^z - a^{-z})^2 & 1 \end{vmatrix} \), where \( a > 0 \) and \( x, y, z \in R \).
Answer: Here \( \Delta = \begin{vmatrix} (a^x + a^{-x})^2 & (a^x - a^{-x})^2 & 1 \\ (a^y + a^{-y})^2 & (a^y - a^{-y})^2 & 1 \\ (a^z + a^{-z})^2 & (a^z - a^{-z})^2 & 1 \end{vmatrix} \)
Applying \( C_1 \rightarrow C_1 - C_2 \), we get
\( \Delta = \begin{vmatrix} 4 & (a^x - a^{-x})^2 & 1 \\ 4 & (a^y - a^{-y})^2 & 1 \\ 4 & (a^z - a^{-z})^2 & 1 \end{vmatrix} \) [Using \( (a + b)^2 - (a - b)^2 = 4ab \)]
Taking out 4 from \( C_1 \), we get
\( \Delta = 4 \begin{vmatrix} 1 & (a^x - a^{-x})^2 & 1 \\ 1 & (a^y - a^{-y})^2 & 1 \\ 1 & (a^z - a^{-z})^2 & 1 \end{vmatrix} \Rightarrow \Delta = 4 \times 0 = 0 \). [\(\because C_1 \text{ and } C_3 \text{ are identical}\)]
Long Answer Questions
Question. If \( a, b, c \) are \( p \)th, \( q \)th and \( r \)th terms respectively of a G.P, then prove that \( \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0 \).
Answer: Let \( A \) be the first term and \( R \) be the common ratio of the G.P respectively.
\( \therefore a = AR^{p-1}, b = AR^{q-1}, c = AR^{r-1} \)
Now, we have,
L.H.S. \( \Delta = \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = \begin{vmatrix} \log AR^{p-1} & p & 1 \\ \log AR^{q-1} & q & 1 \\ \log AR^{r-1} & r & 1 \end{vmatrix} \)
\( \Rightarrow \Delta = \begin{vmatrix} \log A + (p - 1) \log R & p & 1 \\ \log A + (q - 1) \log R & q & 1 \\ \log A + (r - 1) \log R & r & 1 \end{vmatrix} \)
[\(\because \log(ab) = \log a + \log b \text{ and } \log a^m = m \log a\)]
\( \Rightarrow \Delta = \begin{vmatrix} \log A & p & 1 \\ \log A & q & 1 \\ \log A & r & 1 \end{vmatrix} + \log R \begin{vmatrix} p - 1 & p & 1 \\ q - 1 & q & 1 \\ r - 1 & r & 1 \end{vmatrix} \)
Apply \( C_2 \rightarrow C_2 - C_3 \)
\( \Rightarrow \Delta = \log A \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \end{vmatrix} + \log R \begin{vmatrix} p - 1 & p - 1 & 1 \\ q - 1 & q - 1 & 1 \\ r - 1 & r - 1 & 1 \end{vmatrix} \)
\( (C_1 = C_3) \text{ and } (C_2 = C_3) \)
\( \Delta = \log A \times 0 + \log R \times 0 \)
\( \therefore \Delta = 0 + 0 = R.H.S \)
\( \therefore \Delta = 0 \)
Question. Using properties of determinants, find the value of \( x \) for which \[ \begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} = 0. \]
Answer: We have, \[ \begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} = 0 \] Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get \[ \begin{vmatrix} 12+x & 4+x & 4+x \\ 12+x & 4-x & 4+x \\ 12+x & 4+x & 4-x \end{vmatrix} = 0 \] \( \Rightarrow (12+x) \begin{vmatrix} 1 & 4+x & 4+x \\ 1 & 4-x & 4+x \\ 1 & 4+x & 4-x \end{vmatrix} = 0 \) [ Taking \( (12+x) \) common from \( C_1 \) ] Applying \( R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1 \), we get \[ (12+x) \begin{vmatrix} 1 & 4+x & 4+x \\ 0 & -2x & 0 \\ 0 & 0 & -2x \end{vmatrix} = 0 \] \( \Rightarrow (x+12)(4x^2) = 0 \Rightarrow x = 0, -12 \)
Question. Using properties of determinants, prove that \[ \begin{vmatrix} 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \\ x-y-z & 2x & 2x \end{vmatrix} = (x+y+z)^3. \]
Answer: LHS = \[ \begin{vmatrix} 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \\ x-y-z & 2x & 2x \end{vmatrix} \] Applying \( R_2 \leftrightarrow R_3 \), then \( R_1 \leftrightarrow R_2 \), we get \[ = \begin{vmatrix} x-y-z & 2x & 2x \\ 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \end{vmatrix} \] Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \), we get \[ = \begin{vmatrix} x+y+z & y+z+x & z+x+y \\ 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \end{vmatrix} \] Taking out \( (x+y+z) \) from first row, we get \[ = (x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \end{vmatrix} \] Applying \( C_1 \rightarrow C_1 - C_3 \) and \( C_2 \rightarrow C_2 - C_3 \), we get \[ = (x+y+z) \begin{vmatrix} 0 & 0 & 1 \\ 0 & -(y+z+x) & 2y \\ (x+y+z) & x+y+z & z-x-y \end{vmatrix} \] Expanding along first row, we get \( = (x+y+z) \{ (x+y+z)^2 \} = (x+y+z)^3 = \text{RHS} \)
Question. If \( x, y, z \) are different and \( \Delta = \begin{vmatrix} x & x^2 & x^3-1 \\ y & y^2 & y^3-1 \\ z & z^2 & z^3-1 \end{vmatrix} = 0 \), then using properties of determinants, show that \( xyz = 1 \).
Answer: We have \[ \begin{vmatrix} x & x^2 & x^3-1 \\ y & y^2 & y^3-1 \\ z & z^2 & z^3-1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix} + \begin{vmatrix} x & x^2 & -1 \\ y & y^2 & -1 \\ z & z^2 & -1 \end{vmatrix} = 0 \] \( \Rightarrow xyz \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} + (-1) \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} = 0 \) [In det 1 taking \( x, y, z \) common from each row and in det 2 using \( C_1 \leftrightarrow C_3 \) and applying \( C_2 \leftrightarrow C_3 \) in det 2] \( \Rightarrow xyz \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} - \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = 0 \) \( \Rightarrow \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} (xyz - 1) = 0 \) If \( \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & x & x^2 \\ 0 & y-x & y^2-x^2 \\ 0 & z-x & z^2-x^2 \end{vmatrix} = 0 \) [Applying \( R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1 \)] \( \Rightarrow \begin{vmatrix} y-x & y^2-x^2 \\ z-x & z^2-x^2 \end{vmatrix} = 0 \Rightarrow (y-x)(z-x) \begin{vmatrix} 1 & y+x \\ 1 & z+x \end{vmatrix} = 0 \) \( \Rightarrow (y-x)(z-x)(z+x-y-x) = 0 \) \( \Rightarrow (y-x)(z-x)(z-y) = 0 \) \( \Rightarrow x = y \) or \( z = x \) or \( y = z \), which is a contradiction. Hence, \( (xyz - 1) = 0 \Rightarrow xyz = 1 \).
Question. Prove that: \[ \begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3 \]
Answer: LHS = \[ \begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} \] Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get \[ = \begin{vmatrix} 2(a+b+c) & a & b \\ 2(a+b+c) & b+c+2a & b \\ 2(a+b+c) & a & c+a+2b \end{vmatrix} \] Taking \( 2(a+b+c) \) common from \( C_1 \), we get \[ = 2(a+b+c) \begin{vmatrix} 1 & a & b \\ 1 & b+c+2a & b \\ 1 & a & c+a+2b \end{vmatrix} \] Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \), we get \[ = 2(a+b+c) \begin{vmatrix} 1 & a & b \\ 0 & a+b+c & 0 \\ 0 & 0 & a+b+c \end{vmatrix} \] Taking \( (a+b+c) \) common from \( R_2 \) and \( R_3 \), we get \[ = 2(a+b+c)^3 \begin{vmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \] Expanding along \( C_1 \), we get \( = 2(a+b+c)^3 [1-0] = 2(a+b+c)^3 = \text{RHS} \)
Question. If \( \Delta = \begin{vmatrix} 1 & a & a^2 \\ a & a^2 & 1 \\ a^2 & 1 & a \end{vmatrix} = -4 \) then find the value of \[ \begin{vmatrix} a^3-1 & 0 & a-a^4 \\ 0 & a-a^4 & a^3-1 \\ a-a^4 & a^3-1 & 0 \end{vmatrix} \].
Answer: We have \( \Delta = \begin{vmatrix} 1 & a & a^2 \\ a & a^2 & 1 \\ a^2 & 1 & a \end{vmatrix} \). \( C_{11} = a^3 - 1; \quad C_{12} = 0; \quad C_{13} = a - a^4 \) \( C_{21} = 0; \quad C_{22} = a - a^4; \quad C_{23} = a^3 - 1 \) \( C_{31} = a - a^4; \quad C_{32} = a^3 - 1; \quad C_{33} = 0 \) Where \( C_{ij} = \) Co-factor of \( a_{ij} \)(\( i, j \))th element of determinant \( \Delta \). Let \( \Delta_1 \) be the determinant made by corresponding co-factor of each element of determinant \( \Delta \). i.e., \( \Delta_1 = \begin{vmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{vmatrix} \) We know that \( \Delta_1 = \Delta^{n-1} \) where \( n \) is order of the determinant. \( \therefore \Delta_1 = (-4)^2 = 16 \) \( \Rightarrow \begin{vmatrix} a^3-1 & 0 & a-a^4 \\ 0 & a-a^4 & a^3-1 \\ a-a^4 & a^3-1 & 0 \end{vmatrix} = 16 \)
Question. Using property of determinant, prove the following: \[ \begin{vmatrix} a & a+b & a+2b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix} = 9b^2(a+b) \]
Answer: LHS = \[ \begin{vmatrix} a & a+b & a+2b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix} \] Applying \( R_1 = R_1 + R_2 + R_3 \), we get \[ = \begin{vmatrix} 3(a+b) & 3(a+b) & 3(a+b) \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix} \] Taking \( 3(a+b) \) common from \( R_1 \), we get \[ = 3(a+b) \begin{vmatrix} 1 & 1 & 1 \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix} \] Applying \( C_1 \rightarrow C_1 - C_3, C_2 \rightarrow C_2 - C_3 \), we get \[ = 3(a+b) \begin{vmatrix} 0 & 0 & 1 \\ b & -b & a+b \\ b & 2b & a \end{vmatrix} \] Expanding along \( R_1 \), we get \( = 3(a+b) \{ 1(2b^2 + b^2) \} = 9b^2(a+b) = \text{RHS} \)
Question. Using properties of determinants, find the value of \( k \) if \[ \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix} = k(x^3+y^3). \]
Answer: We have \( k(x^3+y^3) = \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix} \) Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get \[ = \begin{vmatrix} 2x+2y & y & x+y \\ 2x+2y & x+y & x \\ 2x+2y & x & y \end{vmatrix} \] \( \Rightarrow (2x+2y) \begin{vmatrix} 1 & y & x+y \\ 1 & x+y & x \\ 1 & x & y \end{vmatrix} \) [Taking \( (2x+2y) \) common from \( C_1 \)] Applying \( R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1 \), we get \[ = 2(x+y) \begin{vmatrix} 1 & y & x+y \\ 0 & x & -y \\ 0 & x-y & -x \end{vmatrix} \] \( = 2(x+y) \begin{vmatrix} x & -y \\ x-y & -x \end{vmatrix} = 2(x+y)(-x^2 + xy - y^2) = -2(x+y)(x^2 - xy + y^2) \) \( \Rightarrow k(x^3+y^3) = -2(x^3+y^3) \) Comparing the coefficient of \( (x^3+y^3) \) on both the sides, we get \( k = -2 \)
Question. Using properties of determinants show that \[ \begin{vmatrix} 1 & 1 & 1+x \\ 1 & 1+y & 1 \\ 1+z & 1 & 1 \end{vmatrix} = -(xyz + yz + zx + xy) \]
Answer: LHS = \[ \begin{vmatrix} 1 & 1 & 1+x \\ 1 & 1+y & 1 \\ 1+z & 1 & 1 \end{vmatrix} \] Apply \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \), we get \[ = \begin{vmatrix} 1 & 1 & 1+x \\ 0 & y & -x \\ z & 0 & -x \end{vmatrix} \] Expanding by \( R_1 \), we get \( = 1[-yx - 0] - 1[0 - (-zx)] + (1+x)(0 - zy) = -yx - zx - zy - xyz \) \( = -(xy + xz + zy + xyz) = \text{RHS} \)
Question. Using properties of determinant, prove that: \[ \begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{vmatrix} = a^2(a+x+y+z) \]
Answer: LHS = \[ \begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{vmatrix} \] Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get \[ = \begin{vmatrix} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z \end{vmatrix} \] \( = (a+x+y+z) \begin{vmatrix} 1 & y & z \\ 1 & a+y & z \\ 1 & y & a+z \end{vmatrix} \) [Taking out \( (a+x+y+z) \) common from \( C_1 \)] Apply \( R_1 \rightarrow R_1 - R_2 \), we get \[ = (a+x+y+z) \begin{vmatrix} a & -a & 0 \\ 1 & a+y & z \\ 1 & y & a+z \end{vmatrix} \] Expanding along \( R_1 \), we get \( = (a+x+y+z) \{ a(a+z-z) + a(a+z-z) \} \) \( = a^2(a+x+y+z) = \text{RHS} \)
Question. Using properties of determinant, prove the following: \[ \begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = x^3 \]
Answer: LHS = \[ \begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} \] \( = x^2 \begin{vmatrix} x+y & 1 & 1 \\ 5x+4y & 4 & 2 \\ 10x+8y & 8 & 3 \end{vmatrix} \) [Taking out \( x \) from \( C_2 \) and \( C_3 \)] Applying \( R_2 \rightarrow R_2 - 2R_1 \) and \( R_3 \rightarrow R_3 - 3R_1 \), we get \[ = x^2 \begin{vmatrix} x+y & 1 & 1 \\ 3x+2y & 2 & 0 \\ 7x+5y & 5 & 0 \end{vmatrix} \] Expanding along \( C_3 \), we get \( = x^2 [1 \{ (3x+2y)5 - 2(7x+5y) \} - 0 + 0] = x^2 (15x + 10y - 14x - 10y) \) \( = x^2 (x) = x^3 = \text{RHS} \)
Question. Without expanding, show that: \[ \begin{vmatrix} \text{cosec}^2\theta & \cot^2\theta & 1 \\ \cot^2\theta & \text{cosec}^2\theta & -1 \\ 42 & 40 & 2 \end{vmatrix} = 0 \]
Answer: Given, \( \Delta = \begin{vmatrix} \text{cosec}^2\theta & \cot^2\theta & 1 \\ \cot^2\theta & \text{cosec}^2\theta & -1 \\ 42 & 40 & 2 \end{vmatrix} \) Applying \( C_1 \rightarrow C_1 - C_2 - C_3 \), we get \[ = \begin{vmatrix} \text{cosec}^2\theta - \cot^2\theta - 1 & \cot^2\theta & 1 \\ \cot^2\theta - \text{cosec}^2\theta + 1 & \text{cosec}^2\theta & -1 \\ 0 & 40 & 2 \end{vmatrix} \] \( = \begin{vmatrix} 1-1 & \cot^2\theta & 1 \\ -1+1 & \text{cosec}^2\theta & -1 \\ 0 & 40 & 2 \end{vmatrix} \) [\(\because \text{cosec}^2\theta - \cot^2\theta = 1\)] \( = \begin{vmatrix} 0 & \cot^2\theta & 1 \\ 0 & \text{cosec}^2\theta & -1 \\ 0 & 40 & 2 \end{vmatrix} = 0 \) [\(\because\) All elements of \( C_1 \) are 0]
Question. Prove the following using properties of determinant: \[ \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 2(3abc - a^3 - b^3 - c^3) \]
Answer: LHS = \[ \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] Applying \( R_1 \rightarrow R_1 + R_2 + R_3 \), we get \[ = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] Taking \( 2(a+b+c) \) common from \( R_1 \), we get \[ = 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] Applying \( C_2 \rightarrow C_2 - C_1; C_3 \rightarrow C_3 - C_1 \), we get \[ = 2(a+b+c) \begin{vmatrix} c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix} \] \( = 2(a+b+c) [1(bc - b^2 - c^2 + bc - bc + ac + ab - a^2)] \) [Expanding along \( R_1 \)] \( = 2(a+b+c) (bc + ac + ab - a^2 - b^2 - c^2) \) \( = -2(a+b+c) (a^2 + b^2 + c^2 - ab - bc - ca) = -2(a^3 + b^3 + c^3 - 3abc) \) \( = 2(3abc - a^3 - b^3 - c^3) = \text{RHS} \)
Question. If \( a + b + c \neq 0 \) and \( \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \), then using properties of determinants, prove that \( a = b = c \).
Answer: We have \( \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \) Applying \( C_1 \rightarrow C_1 + C_2 + C_3 \), we get \[ \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} = 0 \] Taking \( (a+b+c) \) common from \( C_1 \), we get \( (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} = 0 \) [\(\because a + b + c \neq 0\)] Applying \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \), we get \[ \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix} = 0 \] Expanding along \( C_1 \), we get \( 1\{(c-b)(b-c) - (a-c)(a-b)\} - 0 + 0 = 0 \Rightarrow -(b-c)^2 - (a-c)(a-b) = 0 \) \( \Rightarrow -b^2 - c^2 + 2bc - a^2 + ab + ac - bc = 0 \Rightarrow a^2 + b^2 + c^2 - bc - ab - ac = 0 \) \( \Rightarrow \frac{1}{2} [2a^2 + 2b^2 + 2c^2 - 2bc - 2ab - 2ac] = 0 \Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0 \) \( \Rightarrow (a-b)^2 = 0; (b-c)^2 = 0; (c-a)^2 = 0 \Rightarrow a-b = 0; b-c = 0; c-a = 0; \) \( \Rightarrow a = b = c \)
Question. Using properties of determinants, show that \(\triangle ABC\) is an isosceles if: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 + \cos A & 1 + \cos B & 1 + \cos C \\ \cos^2 A + \cos A & \cos^2 B + \cos B & \cos^2 C + \cos C \end{vmatrix} = 0 \]
Answer: We have \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 + \cos A & 1 + \cos B & 1 + \cos C \\ \cos^2 A + \cos A & \cos^2 B + \cos B & \cos^2 C + \cos C \end{vmatrix} = 0 \] Applying \( C_1 \rightarrow C_1 - C_3 \) and \( C_2 \rightarrow C_2 - C_3 \), we get \[ \begin{vmatrix} 0 & 0 & 1 \\ \cos A - \cos C & \cos B - \cos C & 1 + \cos C \\ \cos^2 A + \cos A - \cos^2 C - \cos C & \cos^2 B + \cos B - \cos^2 C - \cos C & \cos^2 C + \cos C \end{vmatrix} = 0 \] \( \Rightarrow \begin{vmatrix} 0 & 0 & 1 \\ \cos A - \cos C & \cos B - \cos C & 1 + \cos C \\ (\cos A - \cos C)(\cos A + \cos C + 1) & (\cos B - \cos C)(\cos B + \cos C + 1) & \cos^2 C + \cos C \end{vmatrix} = 0 \) Taking common \( (\cos A - \cos C) \) from \( C_1 \) and \( (\cos B - \cos C) \) from \( C_2 \), we get \( (\cos A - \cos C)(\cos B - \cos C) \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 + \cos C \\ \cos A + \cos C + 1 & \cos B + \cos C + 1 & \cos^2 C + \cos C \end{vmatrix} = 0 \) Applying \( C_1 \rightarrow C_1 - C_2 \), we get \( \Rightarrow (\cos A - \cos C)(\cos B - \cos C) \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 + \cos C \\ \cos A - \cos B & \cos B + \cos C + 1 & \cos^2 C + \cos C \end{vmatrix} = 0 \) Expanding along \( R_1 \), we get \( \Rightarrow (\cos A - \cos C) (\cos B - \cos C) (\cos B - \cos A) = 0 \) \( \Rightarrow \cos A - \cos C = 0 \text{ i.e., } \cos A = \cos C \)
| CBSE Class 12 Mathematics Case Studies |
| CBSE Class 12 Mathematics Relations and Functions Important Questions Set A |
| CBSE Class 12 Mathematics Relations and Functions Important Questions Set B |
| CBSE Class 12 Mathematics Matrices Important Questions Set A |
| CBSE Class 12 Mathematics Determinants Important Questions Set A |
| CBSE Class 12 Mathematics Determinants Important Questions Set B |
| CBSE Class 12 Mathematics Continuity and Differentiability Important Questions Set A |
| CBSE Class 12 Mathematics Continuity and Differentiability Important Questions Set B |
| CBSE Class 12 Mathematics Application of Derivatives Important Questions Set A |
| CBSE Class 12 Mathematics Integrals Important Questions Set A |
Important Practice Resources for Class 12 Mathematics
CBSE Class 12 Mathematics Chapter 4 Determinants Study Material
Students can find all the important study material for Chapter 4 Determinants on this page. This collection includes detailed notes, Mind Maps for quick revision, and Sure Shot Questions that will come in your CBSE exams. This material has been strictly prepared on the latest 2026 syllabus for Class 12 Mathematics. Our expert teachers always suggest you to use these tools daily to make your learning easier and faster.
Chapter 4 Determinants Expert Notes & Solved Exam Questions
Our teachers have used the latest official NCERT book for Class 12 Mathematics to prepare these study material. We have included previous year examination questions and also step-by-step solutions to help you understand the marking scheme too. After reading the above chapter notes and solved questions also solve the practice problems and then compare your work with our NCERT solutions for Class 12 Mathematics.
Complete Revision for Mathematics
To get the best marks in your Class 12 exams you should use Mathematics Sample Papers along with these chapter notes. Daily practicing with our online MCQ Tests for Chapter 4 Determinants will also help you improve your speed and accuracy. All the study material provided on studiestoday.com is free and updated regularly to help Class 12 students stay ahead in their studies and feel confident during their school tests.
The latest 2025-26 advanced study resources for Class 12 Mathematics are available for free on StudiesToday.com which includes NCERT Exemplars, high-order thinking skills (HOTS) questions, and deep-dive concept summaries.
Our exhaustive Class 12 Mathematics package includes chapter wise revision notes, solved practice sheets, important formulas and Concept Maps to help in better understanding of all topics.
Yes. For Class 12, our resources have been developed to help you get better marks in CBSE school exams and also build fundamental strength needed for entrance tests including Competency Based learning.
in Class 12, students should use Active Recall method, read the concept summary, then solve the Important Questions section without looking at the answers and then check your answers.
All CBSE Mathematics study materials are provided in mobile-friendly PDF. You can download and save them on your device.
Yes, our team has ensured that all Mathematics materials for Class 12 are strictly aligned with the National Education Policy (NEP) 2020 and the latest 2026 CBSE syllabus.