CBSE Class 12 Mathematics Integrals Important Questions Set A

Read and download the CBSE Class 12 Mathematics Integrals Important Questions Set A. Designed for 2025-26, this advanced study material provides Class 12 Mathematics students with detailed revision notes, sure-shot questions, and detailed answers. Prepared by expert teachers and they follow the latest CBSE, NCERT, and KVS guidelines to ensure you get best scores.

Advanced Study Material for Class 12 Mathematics Chapter 7 Integrals

To achieve a high score in Mathematics, students must go beyond standard textbooks. This Class 12 Chapter 7 Integrals study material includes conceptual summaries and solved practice questions to improve you understanding.

Class 12 Mathematics Chapter 7 Integrals Notes and Questions

Multiple Choice Questions

Question. \( \int x^2 e^{x^3} dx \) is equal to
(a) \( \frac{1}{3} e^{x^3} + C \)
(b) \( \frac{1}{3} e^{x^4} + C \)
(c) \( \frac{1}{2} e^{x^3} + C \)
(d) \( \frac{1}{2} e^{x^2} + C \)
Answer: (a)

Question. \( \int \frac{e^x(1+x)}{\cos^2(xe^x)} dx \) is equal to
(a) \( \tan(xe^x) + C \)
(b) \( \cot(xe^x) + C \)
(c) \( \cot(e^x) + C \)
(d) \( \tan[e^x(1+x)] + C \)
Answer: (a)

Question. \( \int e^x (\cos x - \sin x) dx \) is equal to
(a) \( e^x \cos x + C \)
(b) \( e^x \sin x + C \)
(c) \( -e^x \cos x + C \)
(d) \( -e^x \sin x + C \)
Answer: (a)

Question. \( \int \frac{dx}{\sin^2 x \cos^2 x} \) is equal to
(a) \( \tan x + \cot x + C \)
(b) \( (\tan x + \cot x)^2 + C \)
(c) \( \tan x - \cot x + C \)
(d) \( (\tan x - \cot x)^2 + C \)
Answer: (c)

Question. If \( \int \frac{3e^x - 5e^{-x}}{4e^x + 5e^{-x}} dx = ax + b \log|4e^x + 5e^{-x}| + C \) then
(a) \( a = -\frac{1}{8}, b = \frac{7}{8} \)
(b) \( a = \frac{1}{8}, b = \frac{7}{8} \)
(c) \( a = -\frac{1}{8}, b = -\frac{7}{8} \)
(d) \( a = \frac{1}{8}, b = -\frac{7}{8} \)
Answer: (a)

Question. \( \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx \) is equal to
(a) \( 2(\sin x + x \cos \theta) + C \)
(b) \( 2(\sin x - x \cos \theta) + C \)
(c) \( 2(\sin x + 2x \cos \theta) + C \)
(d) \( 2(\sin x - 2x \cos \theta) + C \)
Answer: (a)

Question. \( \int \frac{dx}{\sin(x - a) \sin(x - b)} \) is equal to
(a) \( \sin(b - a) \log \left| \frac{\sin(x - b)}{\sin(x - a)} \right| + C \)
(b) \( \csc(b - a) \log \left| \frac{\sin(x - a)}{\sin(x - b)} \right| + C \)
(c) \( \csc(b - a) \log \left| \frac{\sin(x - b)}{\sin(x - a)} \right| + C \)
(d) \( \sin(b - a) \log \left| \frac{\sin(x - a)}{\sin(x - b)} \right| + C \)
Answer: (c)

Question. \( \int \tan^{-1} \sqrt{x} dx \) is equal to
(a) \( (x+1) \tan^{-1} \sqrt{x} - \sqrt{x} + C \)
(b) \( x \tan^{-1} \sqrt{x} - \sqrt{x} + C \)
(c) \( \sqrt{x} - x \tan^{-1} \sqrt{x} + C \)
(d) \( \sqrt{x} - (x+1) \tan^{-1} \sqrt{x} + C \)
Answer: (a)

Question. \( \int e^x \left( \frac{1 - x}{1 + x^2} \right)^2 dx \) is equal to
(a) \( \frac{e^x}{1 + x^2} + C \)
(b) \( \frac{-e^x}{1 + x^2} + C \)
(c) \( \frac{e^x}{(1 + x^2)^2} + C \)
(d) \( \frac{-e^x}{(1 + x^2)^2} + C \)
Answer: (a)

Question. \( \int \frac{\sin^6 x}{\cos^8 x} dx \) is equal to
(a) \( \frac{\tan^6 x}{5} + C \)
(b) \( \frac{\tan^7 x}{5} + C \)
(c) \( \frac{\tan^7 x}{7} + C \)
(d) none of these
Answer: (c)

Question. If \( \int \frac{x^3}{\sqrt{1 + x^2}} dx = a(1 + x^2)^{3/2} + b\sqrt{1 + x^2} + C \), then
(a) \( a = \frac{1}{3}, b = 1 \)
(b) \( a = -\frac{1}{3}, b = 1 \)
(c) \( a = -\frac{1}{3}, b = -1 \)
(d) \( a = \frac{1}{3}, b = -1 \)
Answer: (d)

Question. The integral \( \int \frac{x^9}{(4x^2 + 1)^6} dx \) is equal to
(a) \( \frac{1}{5x} \left( 4 + \frac{1}{x^2} \right)^{-5} + C \)
(b) \( \frac{1}{5} \left( 4 + \frac{1}{x^2} \right)^{-5} + C \)
(c) \( \frac{1}{10x} (5)^{-5} + C \)
(d) \( \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{-5} + C \)
Answer: (d)

Question. \( \int_0^{\pi/8} \tan^2(2x) dx \) is equal to
(a) \( \frac{4 - \pi}{8} \)
(b) \( \frac{4 + \pi}{8} \)
(c) \( \frac{4 - \pi}{4} \)
(d) \( \frac{4 - \pi}{2} \)
Answer: (a)

Question. \( \int_{a+c}^{b+c} f(x) dx \) is equal to
(a) \( \int_a^b f(x - c) dx \)
(b) \( \int_a^b f(x + c) dx \)
(c) \( \int_a^b f(x) dx \)
(d) \( \int_{a-c}^{b-c} f(x) dx \)
Answer: (b)

Question. If \( f \) and \( g \) are continuous functions in \( [0, a] \) satisfying \( f(x) = f(a - x) \) and \( g(x) + g(a - x) = a \), then \( \int_0^a f(x) \cdot g(x) dx \) is equal to
(a) \( \frac{a}{2} \)
(b) \( \frac{a}{2} \int_0^a f(x) dx \)
(c) \( \int_0^a f(x) dx \)
(d) \( a \int_0^a f(x) dx \)
Answer: (b)

Question. \( \int_{-1}^1 \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx \) is equal to
(a) \( \log 2 \)
(b) \( 2 \log 2 \)
(c) \( \frac{1}{2} \log 2 \)
(d) \( 4 \log 2 \)
Answer: (b)

Question. \( \int_0^1 \frac{e^t}{1 + t} dt = a \), then \( \int_0^1 \frac{e^t}{(1 + t)^2} dt \) is equal to
(a) \( a - 1 + \frac{e}{2} \)
(b) \( a + 1 - \frac{e}{2} \)
(c) \( a - 1 - \frac{e}{2} \)
(d) \( a + 1 + \frac{e}{2} \)
Answer: (a)

Question. \( \int_{-2}^2 |x \cos \pi x| dx \) is equal to
(a) \( \frac{8}{\pi} \)
(b) \( \frac{4}{\pi} \)
(c) \( \frac{2}{\pi} \)
(d) \( \frac{1}{\pi} \)
Answer: (a)

Question. The integral value of \( \int_0^{\pi/2} \frac{\tan x}{1 + m^2 \tan^2 x} dx \), \( m > 0 \), is
(a) \( \frac{\log m}{(m^2 - 1)} \)
(b) \( \log \left( \frac{m^2 - m}{2} \right) \)
(c) \( \log 3m \)
(d) 0
Answer: (a)

Question. \( \int_{-1}^2 |x| dx \) is equal to
(a) 1
(b) \( \frac{3}{2} \)
(c) 2
(d) \( \frac{5}{2} \)
Answer: (d)

Question. Find: \( \int \frac{(3 \sin \theta - 2) \cos \theta}{5 - \cos^2 \theta - 4 \sin \theta} d\theta \)
Answer: We have
\( I = \int \frac{(3 \sin \theta - 2) \cos \theta}{5 - \cos^2 \theta - 4 \sin \theta} d\theta \)
Let \( \sin \theta = z \Rightarrow \cos \theta \, d\theta = dz \)
\( \therefore I = \int \frac{(3z - 2) dz}{5 - (1 - z^2) - 4z} \)
\( = \int \frac{(3z - 2) dz}{5 - 1 + z^2 - 4z} = \int \frac{(3z - 2)}{4 - 4z + z^2} dz = \int \frac{3z - 2}{(z - 2)^2} dz = \int \frac{3z}{(z - 2)^2} dz - 2 \int \frac{dz}{(z - 2)^2} \)
Let \( z - 2 = t \Rightarrow dz = dt \)
\( = \int \frac{3(t + 2) dt}{t^2} - 2 \int \frac{dt}{t^2} = 3 \int \frac{t}{t^2} dt + 6 \int \frac{dt}{t^2} - 2 \int \frac{dt}{t^2} = 3 \int \frac{dt}{t} + 4 \int \frac{dt}{t^2} = 3 \log |t| + 4 \frac{t^{-2+1}}{-2 + 1} + C \)
\( = 3 \log |t| - 4 \cdot \frac{1}{t} + C \)
Putting value of \( t \) in terms of \( z \) then \( z \) in terms of \( \theta \), we get
\( = 3 \log | \sin \theta - 2 | - \frac{4}{\sin \theta - 2} + C \)

Question. Find: \( \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} dx \)
Answer: We have \( I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} dx = \int \frac{x^{1/2} dx}{\sqrt{a^3 - x^3}} = \int \frac{x^{1/2} dx}{\sqrt{(a^{3/2})^2 - (x^{3/2})^2}} \)
Let \( x^{3/2} = t \Rightarrow \frac{3}{2} x^{1/2} dx = dt \Rightarrow x^{1/2} dx = \frac{2}{3} dt \)
\( I = \frac{2}{3} \int \frac{dt}{\sqrt{(a^{3/2})^2 - t^2}} \) \( [\because x^{3/2} = t \Rightarrow x^3 = t^2] \)
\( = \frac{2}{3} \sin^{-1} \left( \frac{t}{a^{3/2}} \right) + C = \frac{2}{3} \sin^{-1} \left( \frac{x^{3/2}}{a^{3/2}} \right) + C \)
\( = \frac{2}{3} \sin^{-1} \sqrt{\frac{x^3}{a^3}} + C \)

Question. Find: \( \int \frac{(2x - 5)e^{2x}}{(2x - 3)^3} dx \)
Answer: We have,
\( \int \frac{(2x - 5)e^{2x}}{(2x - 3)^3} dx = \int e^{2x} \left[ \frac{(2x - 3) - 2}{(2x - 3)^3} \right] dx \)
\( = \int e^3 \cdot e^{2x-3} \left[ \frac{1}{(2x - 3)^2} - \frac{2}{(2x - 3)^3} \right] dx = e^3 \int e^{2x-3} \left[ \frac{1}{(2x - 3)^2} - \frac{2}{(2x - 3)^3} \right] dx \)
Let \( 2x - 3 = t \Rightarrow 2 dx = dt \Rightarrow dx = \frac{dt}{2} \)
\( \Rightarrow I = \frac{e^3}{2} \int e^t \left[ \frac{1}{t^2} - \frac{2}{t^3} \right] dt \Rightarrow I = \frac{e^3}{2} e^t \cdot \frac{1}{t^2} + C \)
Putting \( t = 2x - 3 \)
\( I = \frac{e^3}{2} e^{2x-3} \cdot \frac{1}{(2x - 3)^2} + C \Rightarrow I = \frac{e^{2x}}{2(2x - 3)^2} + C \)

Question. Find : \( \int (2x + 5) \sqrt{10 - 4x - 3x^2} dx \)
Answer: Let, \( I = \int (2x + 5) \sqrt{10 - 4x - 3x^2} dx \)
Let \( (2x + 5) = A \frac{d}{dx}(10 - 4x - 3x^2) + B \)
\( \Rightarrow 2x + 5 = A(-4 - 6x) + B \Rightarrow 2x + 5 = -4A - 6Ax + B \)
Equating, we get
\( -4A + B = 5 \) ...(i) and \( -6A = 2 \) ...(ii)
\( (ii) \Rightarrow A = - \frac{1}{3} \)
Now, from (i) \( \frac{4}{3} + B = 5 \Rightarrow B = 5 - \frac{4}{3} = \frac{11}{3} \)
\( \therefore 2x + 5 = - \frac{1}{3}(-4 - 6x) + \frac{11}{3} \)
Now, \( I = \int \left\{ - \frac{1}{3}(-4 - 6x) + \frac{11}{3} \right\} \sqrt{10 - 4x - 3x^2} dx \)
\( = - \frac{1}{3} \int (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx + \frac{11}{3} \int \sqrt{10 - 4x - 3x^2} dx \)
\( I = -\frac{1}{3} I_1 + \frac{11}{3} I_2 \) ...(iii)
where \( I_1 = \int (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx \) and \( I_2 = \int \sqrt{10 - 4x - 3x^2} dx \)
Now, \( I_1 = \int (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx \)
Let \( 10 - 4x - 3x^2 = z \Rightarrow (-4 - 6x) dx = dz \)
\( \therefore I_1 = \int \sqrt{z} dz = \frac{z^{\frac{1}{2}+1}}{\frac{1}{2} + 1} + C_1 = \frac{2}{3}(10 - 4x - 3x^2)^{3/2} + C_1 \) ...(iv)
Again \( I_2 = \int \sqrt{10 - 4x - 3x^2} dx = \int \sqrt{-3(x^2 + \frac{4}{3}x - \frac{10}{3})} dx \)
\( = \sqrt{3} \int \sqrt{-\{x^2 + 2x \cdot \frac{2}{3} + \frac{4}{9} - \frac{4}{9} - \frac{10}{3}\}} dx = \sqrt{3} \int \sqrt{-\{(x + \frac{2}{3})^2 - \frac{34}{9}\}} dx \)
\( = \sqrt{3} \int \sqrt{\frac{34}{9} - (x + \frac{2}{3})^2} dx = \sqrt{3} \int \sqrt{\left( \frac{\sqrt{34}}{3} \right)^2 - (x + \frac{2}{3})^2} dx \)
\( = \frac{\sqrt{3}}{2} \left( x + \frac{2}{3} \right) \sqrt{10 - 4x - 3x^2} + \frac{\sqrt{3}}{2} \times \frac{34}{9} \sin^{-1} \left( \frac{x + \frac{2}{3}}{\frac{\sqrt{34}}{3}} \right) + C_2 \) ...(v)
Putting the value of \( I_1 \) and \( I_2 \) in (iii), we get
\( I = -\frac{2}{9}(10 - 4x - 3x^2)^{3/2} + \frac{11}{2\sqrt{3}} \left( x + \frac{2}{3} \right) \sqrt{10 - 4x - 3x^2} + \frac{187\sqrt{3}}{27} \sin^{-1} \left( \frac{3}{\sqrt{34}} (x + \frac{2}{3}) \right) + C \)

Question. Evaluate: \( \int_0^1 x \log(1 + 2x) dx \)
Answer: Let \( I = \int_0^1 x \log(1 + 2x) dx \)
Using integration by parts:
\( = \left[ \log(1 + 2x) \cdot \frac{x^2}{2} \right]_0^1 - \int_0^1 \frac{1}{1 + 2x} \cdot 2 \cdot \frac{x^2}{2} dx = \frac{1}{2} [x^2 \log(1 + 2x)]_0^1 - \int_0^1 \frac{x^2}{1 + 2x} dx \)
\( = \frac{1}{2} [1 \log 3 - 0] - \int_0^1 \frac{1}{4} \left[ \frac{4x^2 - 1 + 1}{1 + 2x} \right] dx = \frac{1}{2} \log 3 - \frac{1}{4} \int_0^1 (2x - 1) dx + \frac{1}{2} \int_0^1 \frac{x}{1 + 2x} dx \)
\( = \frac{1}{2} \log 3 - \frac{1}{4} \left[ \frac{2x^2}{2} - x \right]_0^1 + \frac{1}{2} \int_0^1 \frac{1}{2} \frac{(2x + 1 - 1)}{(2x + 1)} dx \)
\( = \frac{1}{2} \log 3 - \frac{1}{4} \left[ x^2 - x \right]_0^1 + \frac{1}{4} \int_0^1 \left( 1 - \frac{1}{2x + 1} \right) dx \)
\( = \frac{1}{2} \log 3 - \frac{1}{4} [1 - 1 - 0] + \frac{1}{4} [x]_0^1 - \frac{1}{8} [\log(1 + 2x)]_0^1 = \frac{1}{2} \log 3 - 0 + \frac{1}{4} - \frac{1}{8} [ \log 3 - \log 1 ] \)
\( = \frac{1}{2} \log 3 + \frac{1}{4} - \frac{1}{8} \log 3 = \frac{3}{8} \log 3 + \frac{1}{4} \)

Question. Evaluate: \( \int_0^\pi \frac{4x \sin x}{1 + \cos^2 x} dx \)
Answer: Let \( I = \int_0^\pi \frac{4x \sin x}{1 + \cos^2 x} dx \) ...(i)
\( = \int_0^\pi \frac{4(\pi - x) \cdot \sin(\pi - x)}{1 + \cos^2(\pi - x)} dx \)
\( I = \int_0^\pi \frac{4(\pi - x) \cdot \sin x}{1 + \cos^2 x} dx \) ...(ii)
Adding (i) and (ii), we get
\( 2I = \int_0^\pi \frac{4(x + \pi - x) \sin x}{1 + \cos^2 x} dx \Rightarrow 2I = 4 \int_0^\pi \frac{\pi \sin x}{1 + \cos^2 x} dx \)
\( I = 2\pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x} dx \)
Let \( \cos x = z \Rightarrow - \sin x \, dx = dz \Rightarrow \sin x \, dx = - dz \)
The limits are, \( x = 0 \Rightarrow z = 1 \) and \( x = \pi \Rightarrow z = -1 \)
\( \therefore I = 2\pi \int_1^{-1} \frac{- dz}{1 + z^2} = 2\pi [ \tan^{-1} z ]_{-1}^1 \)
\( = 2\pi [ \tan^{-1} 1 - \tan^{-1}(-1) ] = 2\pi [ \frac{\pi}{4} + \frac{\pi}{4} ] = 2\pi \times \frac{\pi}{2} \)
\( \Rightarrow I = \pi^2 \).

Question. Evaluate: \( \int_{-\pi}^\pi (\cos ax - \sin bx)^2 dx \)
Answer: Here, \( I = \int_{-\pi}^\pi (\cos ax - \sin bx)^2 dx \)
\( \Rightarrow I = \int_{-\pi}^\pi (\cos^2 ax + \sin^2 bx - 2 \cos ax \sin bx) dx \)
\( \Rightarrow I = \int_{-\pi}^\pi \cos^2 ax \, dx + \int_{-\pi}^\pi \sin^2 bx \, dx - \int_{-\pi}^\pi 2 \cos ax \sin bx \, dx \)
\( \Rightarrow I = 2 \int_0^\pi \cos^2 ax \, dx + 2 \int_0^\pi \sin^2 bx \, dx - 0 \) [First two integrands are even function while third is odd function.]
\( \Rightarrow I = 2 \int_0^\pi \frac{(1 + \cos 2ax)}{2} dx + 2 \int_0^\pi \frac{(1 - \cos 2bx)}{2} dx \)
\( \Rightarrow I = \int_0^\pi dx + \int_0^\pi \cos 2ax \, dx + \int_0^\pi dx - \int_0^\pi \cos 2bx \, dx = \int_0^\pi 2 \, dx + \int_0^\pi \cos 2ax \, dx - \int_0^\pi \cos 2bx \, dx \)
\( \Rightarrow I = 2[x]_0^\pi + \left[ \frac{\sin 2ax}{2a} \right]_0^\pi - \left[ \frac{\sin 2bx}{2b} \right]_0^\pi \)
\( \Rightarrow I = 2\pi + \frac{\sin 2a\pi}{2a} - \frac{\sin 2b\pi}{2b} \)

Question. Evaluate: \( \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx \)
Answer: Let \( I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx \)
\( I = \int_0^\pi \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} dx \)
\( = \int_0^\pi \frac{(\pi - x) \sin x}{1 + \cos^2 x} dx = \pi \int_0^\pi \frac{\sin x \, dx}{1 + \cos^2 x} - I \)
or \( 2I = \pi \int_0^\pi \frac{\sin x \, dx}{1 + \cos^2 x} \) or \( I = \frac{\pi}{2} \int_0^\pi \frac{\sin x \, dx}{1 + \cos^2 x} \)
Put \( \cos x = t \) so that \( - \sin x \, dx = dt \).
The limits are, when \( x = 0, t = 1 \) and \( x = \pi, t = -1 \), we get
\( I = \frac{-\pi}{2} \int_1^{-1} \frac{dt}{1 + t^2} = \pi \int_0^1 \frac{dt}{1 + t^2} \) [\( \because \int_{-a}^a f(x) dx = - \int_a^{-a} f(x) dx \) and \( \int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx \)]
\( = \pi [ \tan^{-1} t ]_0^1 = \pi [ \tan^{-1} 1 - \tan^{-1} 0 ] = \pi [ \frac{\pi}{4} - 0 ] = \frac{\pi^2}{4} \)

Question. Find: \( \int_0^{\pi/4} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \)
Answer: Let \( I = \int_0^{\pi/4} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} = \int_0^{\pi/4} \frac{dx}{\cos^3 x \sqrt{2 \cdot 2 \sin x \cos x}} \)
\( = \frac{1}{2} \int_0^{\pi/4} \frac{dx}{\cos^3 x \sqrt{\frac{\sin x}{\cos x} \cdot \cos^2 x}} = \frac{1}{2} \int_0^{\pi/4} \frac{dx}{\cos^4 x \sqrt{\tan x}} \)
\( = \frac{1}{2} \int_0^{\pi/4} \frac{\sec^4 x \, dx}{\sqrt{\tan x}} = \frac{1}{2} \int_0^{\pi/4} \frac{\sec^2 x \cdot \sec^2 x \, dx}{\sqrt{\tan x}} \)
Let \( \tan x = t \Rightarrow \sec^2 x \, dx = dt \), \( x = 0 \Rightarrow t = 0 \) and \( x = \frac{\pi}{4} \Rightarrow t = 1 \)
\( \therefore I = \frac{1}{2} \int_0^1 \frac{(1 + t^2) dt}{\sqrt{t}} = \frac{1}{2} \int_0^1 (t^{-1/2} + t^{3/2}) dt = \frac{1}{2} \left[ \frac{t^{-1/2+1}}{-1/2+1} \right]_0^1 + \frac{1}{2} \left[ \frac{t^{3/2+1}}{3/2+1} \right]_0^1 \)
\( = \frac{1}{2} \times 2 [ \sqrt{t} ]_0^1 + \frac{1}{2} \times \frac{2}{5} [ t^{5/2} ]_0^1 = 1 + \frac{1}{5} = \frac{6}{5} \)

Question. Evaluate: \( \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} dx \)
Answer: Let \( I = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} dx \)
\( = \int_{-\pi/2}^0 \frac{\cos x}{1 + e^x} dx + \int_0^{\pi/2} \frac{\cos x}{1 + e^x} dx \)
In 1st Integrand, Let \( x = -t \Rightarrow dx = -dt \)
\( x = -\pi/2 \Rightarrow t = \pi/2 \), \( x = 0 \Rightarrow t = 0 \)
\( = \int_{\pi/2}^0 \frac{\cos t}{1 + e^{-t}} (-dt) + \int_0^{\pi/2} \frac{\cos x}{1 + e^x} dx \)
\( = \int_0^{\pi/2} \frac{\cos t}{1 + \frac{1}{e^t}} dt + \int_0^{\pi/2} \frac{\cos x}{1 + e^x} dx = \int_0^{\pi/2} \frac{e^t \cdot \cos t}{1 + e^t} dt + \int_0^{\pi/2} \frac{\cos x}{1 + e^x} dx \)
\( = \int_0^{\pi/2} \frac{e^x \cos x}{1 + e^x} dx + \int_0^{\pi/2} \frac{\cos x}{1 + e^x} dx \) [By property \( \int_a^b f(x) dx = \int_a^b f(t) dt \)]
\( = \int_0^{\pi/2} \frac{(e^x + 1) \cdot \cos x}{1 + e^x} dx = \int_0^{\pi/2} \cos x \, dx = [ \sin x ]_0^{\pi/2} = \sin \pi/2 - \sin 0 = 1 \).

Question. Evaluate: \( \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}} \)
Answer: Let \( I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}} \)
\( = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan(\frac{\pi}{6} + \frac{\pi}{3} - x)}} \) [By using property \( \int_a^b f(x) dx = \int_a^b f(a + b - x) dx \)] ...(i)
\( = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan(\frac{\pi}{2} - x)}} = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \frac{1}{\sqrt{\tan x}}} \)
\( = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} dx \) ...(ii)
Adding (i) and (ii), we get
\( 2I = \int_{\pi/6}^{\pi/3} \frac{(1 + \sqrt{\tan x})}{(1 + \sqrt{\tan x})} dx \)
\( = \int_{\pi/6}^{\pi/3} dx = [x]_{\pi/6}^{\pi/3} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \)
\( 2I = \frac{\pi}{6} \quad \text{or} \quad I = \frac{\pi}{12} \)

Question. Evaluate: \( \int_1^3 [|x-1| + |x-2| + |x-3|] dx \)
Answer: Let \( I = \int_1^3 [|x-1| + |x-2| + |x-3|] dx = \int_1^3 |x-1| dx + \int_1^3 |x-2| dx + \int_1^3 |x-3| dx \)
\( = \int_1^3 |x-1| dx + \int_1^2 |x-2| dx + \int_2^3 |x-2| dx + \int_1^3 |x-3| dx \)
[By property of definite integral]
\( = \int_1^3 (x-1) dx + \int_1^2 -(x-2) dx + \int_2^3 (x-2) dx + \int_1^3 -(x-3) dx \)
\( \begin{cases} x-1 \ge 0, & \text{if } 1 \le x \le 3 \\ x-2 \le 0, & \text{if } 1 \le x \le 2 \\ x-2 \ge 0, & \text{if } 2 \le x \le 3 \\ x-3 \le 0, & \text{if } 1 \le x \le 3 \end{cases} \)
\( = \left[ \frac{(x-1)^2}{2} \right]_1^3 - \left[ \frac{(x-2)^2}{2} \right]_1^2 + \left[ \frac{(x-2)^2}{2} \right]_2^3 - \left[ \frac{(x-3)^2}{2} \right]_1^3 \)
\( = \left( \frac{4}{2} - 0 \right) - \left( 0 - \frac{1}{2} \right) + \left( \frac{1}{2} - 0 \right) - \left( 0 - \frac{4}{2} \right) = 2 + \frac{1}{2} + \frac{1}{2} + 2 = 5 \)

Question. Evaluate: \( \int_0^\pi \frac{x \tan x}{\sec x \csc x} dx \)
Answer: Let \( I = \int_0^\pi \frac{x \tan x}{\sec x \csc x} dx = \int_0^\pi x \cdot \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} \cdot \frac{1}{\sin x}} dx \)
\( I = \int_0^\pi x \sin^2 x \, dx = \int_0^\pi (\pi - x) \sin^2 (\pi - x) dx \) [\( \because \int_0^a f(x) dx = \int_0^a f(a - x) dx \)]
\( I = \int_0^\pi \pi \sin^2 x \, dx - \int_0^\pi x \sin^2 x \, dx \Rightarrow 2I = \pi \int_0^\pi \sin^2 x \, dx \)
\( = \frac{\pi}{2} \int_0^\pi (1 - \cos 2x) dx = \frac{\pi}{2} \int_0^\pi dx - \frac{\pi}{2} \int_0^\pi \cos 2x \, dx = \frac{\pi}{2} [x]_0^\pi - \frac{\pi}{2} \left[ \frac{\sin 2x}{2} \right]_0^\pi \)
\( 2I = \frac{\pi}{2} (\pi - 0) - \frac{\pi}{4} (\sin 2\pi - \sin 0) \)
\( 2I = \frac{\pi^2}{2} - 0 \Rightarrow I = \frac{\pi^2}{4} \)

Question. Evaluate \( \int \frac{dx}{\sin(x - a) \cos(x - b)} \).
Answer: Let \( I = \int \frac{dx}{\sin(x - a) \cos(x - b)} = \frac{1}{\cos(a - b)} \int \frac{\cos(a - b) dx}{\sin(x - a) \cos(x - b)} \)
\( = \frac{1}{\cos(a - b)} \int \frac{\cos((x - b) - (x - a)) dx}{\sin(x - a) \cos(x - b)} \)
\( = \frac{1}{\cos(a - b)} \int \frac{\cos(x - b) \cos(x - a) + \sin(x - b) \sin(x - a)}{\sin(x - a) \cos(x - b)} dx \)
\( = \frac{1}{\cos(a - b)} \int \left\{ \frac{\cos(x - a)}{\sin(x - a)} + \frac{\sin(x - b)}{\cos(x - b)} \right\} dx = \frac{1}{\cos(a - b)} \left[ \int \frac{\cos(x - a)}{\sin(x - a)} dx + \int \frac{\sin(x - b)}{\cos(x - b)} dx \right] \)
\( = \frac{1}{\cos(a - b)} [ \log |\sin(x - a)| - \log |\cos(x - b)| ] + C \)
\( = \frac{1}{\cos(a - b)} \log \left| \frac{\sin(x - a)}{\cos(x - b)} \right| + C \)

Question. Evaluate: \( \int_0^1 \cot^{-1}(1 - x + x^2) dx \)
Answer: Let \( I = \int_0^1 \cot^{-1}(1 - x + x^2) dx \)
\( = \int_0^1 \tan^{-1} \left( \frac{1}{1 - x + x^2} \right) dx \) [\( \because \cot^{-1} x = \tan^{-1} \frac{1}{x} \)]
\( = \int_0^1 \tan^{-1} \frac{x + (1 - x)}{1 - x(1 - x)} dx \)
\( = \int_0^1 \{ \tan^{-1} x + \tan^{-1}(1 - x) \} dx \) [\( \because \tan^{-1}(x + y) = \tan^{-1} \frac{x + y}{1 - xy} \)]
\( = \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1}(1 - x) dx \)
\( = \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1}(1 - (1 - x)) dx \) [\( \because \int_0^a f(x) dx = \int_0^a f(a - x) dx \)]
\( = \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1} x \, dx = 2 \int_0^1 \tan^{-1} x \, dx = 2 \int_0^1 1 \cdot \tan^{-1} x \, dx \)
\( = 2 [ x \cdot \tan^{-1} x ]_0^1 - 2 \int_0^1 \frac{x}{1 + x^2} dx = 2 \times \frac{\pi}{4} - \int_0^1 \frac{2x \, dx}{1 + x^2} = \frac{\pi}{2} - [ \log |1 + x^2| ]_0^1 \)
\( = \frac{\pi}{2} - [ \log 2 - \log 1 ] = \frac{\pi}{2} - \log 2 \)

Question. Evaluate: \( \int_0^1 x^2(1 - x)^n dx \)
Answer: Let \( I = \int_0^1 x^2(1 - x)^n dx \)
\( I = \int_0^1 (1 - x)^2 [1 - (1 - x)]^n dx \) [\( \because \int_0^a f(x) dx = \int_0^a f(a - x) dx \)]
\( = \int_0^1 (1 - 2x + x^2) x^n dx = \int_0^1 (x^n - 2x^{n+1} + x^{n+2}) dx \)
\( = \left[ \frac{x^{n+1}}{n+1} - 2 \cdot \frac{x^{n+2}}{n+2} + \frac{x^{n+3}}{n+3} \right]_0^1 = \frac{1}{n+1} - \frac{2}{n+2} + \frac{1}{n+3} \)
\( = \frac{(n+2)(n+3) - 2(n+1)(n+3) + (n+1)(n+2)}{(n+1)(n+2)(n+3)} \)
\( = \frac{n^2 + 5n + 6 - 2n^2 - 8n - 6 + n^2 + 3n + 2}{(n+1)(n+2)(n+3)} = \frac{2}{(n+1)(n+2)(n+3)} \)

Question. Evaluate: \( \int_1^3 (2x^2 + 5x) dx \) as a limit of a sum.
Answer: Let \( f(x) = 2x^2 + 5x \)
Here \( a = 1, b = 3 \therefore h = \frac{b - a}{n} = \frac{3 - 1}{n} = \frac{2}{n} \Rightarrow nh = 2 \)
Also, \( n \to \infty \iff h \to 0 \).
\( \int_a^b f(x) dx = \lim_{h \to 0} h [ f(a) + f(a + h) + f(a + 2h) + \dots + f(a + (n-1)h) ] \)
\( \int_1^3 (2x^2 + 5x) dx = \lim_{h \to 0} h [ f(1) + f(1 + h) + f(1 + 2h) + \dots + f(1 + (n-1)h) ] \)
\( = \lim_{h \to 0} h [ \{ 2 \cdot 1^2 + 5 \cdot 1 \} + \{ 2(1 + h)^2 + 5(1 + h) \} + \dots + \{ 2(1 + (n-1)h)^2 + 5(1 + (n-1)h) \} ] \)
\( = \lim_{h \to 0} h [ (2 + 5) + \{ 2 + 4h + 2h^2 + 5 + 5h \} + \dots + \{ 2 + 4(n-1)h + 2(n-1)^2h^2 + 5 + 5(n-1)h \} ] \)
\( = \lim_{h \to 0} h [ 7 + \{ 7 + 9h + 2h^2 \} + \dots + \{ 7 + 9(n-1)h + 2(n-1)^2h^2 \} ] \)
\( = \lim_{h \to 0} h [ 7n + 9h \{ 1 + 2 + \dots + (n-1) \} + 2h^2 \{ 1^2 + 2^2 + \dots + (n-1)^2 \} ] \)
\( = \lim_{h \to 0} \left[ 7nh + 9h^2 \frac{(n-1) \cdot n}{2} + 2h^3 \frac{(n-1) \cdot n (2n-1)}{6} \right] \)
\( = \lim_{h \to 0} \left[ 7(nh) + \frac{9(nh)^2 \cdot (1 - \frac{1}{n})}{2} + \frac{2(nh)^3 (1 - \frac{1}{n}) \cdot (2 - \frac{1}{n})}{6} \right] \)
\( = \lim_{n \to \infty} \left[ 14 + \frac{36(1 - \frac{1}{n})}{2} + \frac{16(1 - \frac{1}{n}) \cdot (2 - \frac{1}{n})}{6} \right] \) [\( \because nh = 2 \)]
\( = \lim_{n \to \infty} \left[ 14 + 18(1 - \frac{1}{n}) + \frac{8}{3}(1 - \frac{1}{n}) \cdot (2 - \frac{1}{n}) \right] \)
\( = 14 + 18 + \frac{8}{3} \times 1 \times 2 = 32 + \frac{16}{3} = \frac{96 + 16}{3} = \frac{112}{3} \)

Question. Evaluate : \( \int_{-1}^2 |x^3 - x| dx \)
Answer: If \( x^3 - x = 0 \)
\( \Rightarrow x(x^2 - 1) = 0 \Rightarrow x = 0 \) or \( x^2 = 1 \)
\( \Rightarrow x = 0 \) or \( x = \pm 1 \Rightarrow x = 0, -1, 1 \)
Hence [–1, 2] is divided into three sub intervals [–1, 0], [0, 1] and [1, 2] such that
\( x^3 - x \ge 0 \) on [–1, 0]
\( x^3 - x \le 0 \) on [0, 1]
and \( x^3 - x \ge 0 \) on [1, 2]
Now, \( \int_{-1}^2 |x^3 - x| dx = \int_{-1}^0 |x^3 - x| dx + \int_0^1 |x^3 - x| dx + \int_1^2 |x^3 - x| dx \)
\( = \int_{-1}^0 (x^3 - x) dx + \int_0^1 -(x^3 - x) dx + \int_1^2 (x^3 - x) dx = \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{-1}^0 - \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_0^1 + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_1^2 \)
\( = \{ 0 - (\frac{1}{4} - \frac{1}{2}) \} - \{ (\frac{1}{4} - \frac{1}{2}) - 0 \} + \{ (4 - 2) - (\frac{1}{4} - \frac{1}{2}) \} \)
\( = - \frac{1}{4} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2} + 2 - \frac{1}{4} + \frac{1}{2} = \frac{3}{2} - \frac{3}{4} + 2 = \frac{11}{4} \)

Question. Evaluate \( \int_0^\pi e^{2x} \cdot \sin(\frac{\pi}{4} + x) dx \).
Answer: We have \( I = \int_0^\pi e^{2x} \cdot \sin(\frac{\pi}{4} + x) dx \)
Integrating by part, we get
\( I = \left[ \sin(\frac{\pi}{4} + x) \cdot \frac{e^{2x}}{2} \right]_0^\pi - \int_0^\pi \cos(\frac{\pi}{4} + x) \cdot \frac{e^{2x}}{2} dx \)
\( = \frac{1}{2} \left[ \sin \frac{5\pi}{4} \cdot e^{2\pi} - \sin \frac{\pi}{4} \right] - \frac{1}{2} \int_0^\pi e^{2x} \cdot \cos(\frac{\pi}{4} + x) dx \)
\( = \frac{1}{2} \left[ -\frac{e^{2\pi}}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{2} \left[ \{ \cos(\frac{\pi}{4} + x) \cdot \frac{e^{2x}}{2} \}_0^\pi + \int_0^\pi \sin(\frac{\pi}{4} + x) \cdot \frac{e^{2x}}{2} dx \right] \)
\( = - \frac{e^{2\pi} + 1}{2\sqrt{2}} - \frac{1}{2} \left[ \cos \frac{5\pi}{4} \cdot \frac{e^{2\pi}}{2} - \cos \frac{\pi}{4} \cdot \frac{1}{2} \right] - \frac{1}{4} \int_0^\pi e^{2x} \cdot \sin(\frac{\pi}{4} + x) dx \)
\( I = - \frac{e^{2\pi} + 1}{2\sqrt{2}} - \frac{1}{4} e^{2\pi} \cdot \cos \frac{5\pi}{4} + \frac{1}{4\sqrt{2}} - \frac{1}{4} I \)
\( \frac{5I}{4} = - \frac{e^{2\pi} + 1}{2\sqrt{2}} + \frac{e^{2\pi}}{4\sqrt{2}} + \frac{1}{4\sqrt{2}} = - \frac{e^{2\pi} + 1}{2\sqrt{2}} + \frac{e^{2\pi} + 1}{4\sqrt{2}} = \frac{e^{2\pi} + 1}{4\sqrt{2}} (-2 + 1) = - \frac{e^{2\pi} + 1}{4\sqrt{2}} \)
\( I = - \frac{e^{2\pi} + 1}{5\sqrt{2}} \)

Question. Evaluate : \( \int_{-2}^2 \frac{x^2}{1 + 5^x} dx \)
Answer: Let \( I = \int_{-2}^2 \frac{x^2}{1 + 5^x} dx \) ...(i)
\( = \int_{-2}^2 \frac{(2 + (-2) - x)^2}{1 + 5^{(2 + (-2) - x)}} dx \) \( [ \int_a^b f(x) dx = \int_a^b f(a + b - x) dx ] \)
\( = \int_{-2}^2 \frac{(-x)^2}{1 + 5^{-x}} dx = \int_{-2}^2 \frac{x^2}{1 + \frac{1}{5^x}} dx \)
\( I = \int_{-2}^2 \frac{5^x x^2}{1 + 5^x} dx \) ...(ii)
Adding (i) and (ii), we get
\( 2I = \int_{-2}^2 \frac{(1 + 5^x) x^2}{1 + 5^x} dx = \int_{-2}^2 x^2 dx = \left[ \frac{x^3}{3} \right]_{-2}^2 \)
\( \Rightarrow 2I = \frac{1}{3} [8 - (-8)] \Rightarrow I = \frac{16}{3 \times 2} = \frac{8}{3} \)

Question. Find : \( \int [ \log(\log x) + \frac{1}{(\log x)^2} ] dx \)
Answer: Let \( I = \int [ \log(\log x) + \frac{1}{(\log x)^2} ] dx \)
Let \( \log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt \)
\( \therefore I = \int \{ \log t + \frac{1}{t^2} \} e^t dt \)
\( = \int \{ \log t + \frac{1}{t} - \frac{1}{t} + \frac{1}{t^2} \} e^t dt = \int ( \log t + \frac{1}{t} ) e^t + ( - \frac{1}{t} + \frac{1}{t^2} ) e^t dt \)
\( = e^t \cdot \log t - \frac{1}{t} \cdot e^t + C \) \( [\because \int f(x) + f'(x) e^x dx = f(x) e^x + C] \)
\( = e^{\log x} \log(\log x) - \frac{1}{\log x} e^{\log x} + C \) [Put \( t = \log x \)]
\( = x. \log(\log x) - \frac{x}{\log x} + C \)

Question. Find: \( \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx \)
Answer: Let \( I = \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx \)
Putting \( 5^x = t \Rightarrow 5^x \log 5 \, dx = dt \) or \( 5^x \, dx = \frac{dt}{(\log 5)} \)
Therefore, \( I = \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{(\log 5)} = \frac{1}{(\log 5)} \int 5^{5^t} \cdot 5^t dt \)
Again, putting \( 5^t = u, 5^t dt = \frac{du}{(\log 5)} \)
Therefore, \( I = \frac{1}{(\log 5)} \int 5^u \cdot \frac{du}{(\log 5)} = \frac{1}{(\log 5)^2} \int 5^u du = \frac{5^u}{(\log 5)^2 \cdot (\log 5)} + C \)
\( = \frac{5^u}{(\log 5)^3} + C = \frac{5^{5^t}}{(\log 5)^3} + C = \frac{5^{5^{5^x}}}{(\log 5)^3} + C \)

CBSE Class 12 Mathematics Chapter 7 Integrals Study Material

Students can find all the important study material for Chapter 7 Integrals on this page. This collection includes detailed notes, Mind Maps for quick revision, and Sure Shot Questions that will come in your CBSE exams. This material has been strictly prepared on the latest 2026 syllabus for Class 12 Mathematics. Our expert teachers always suggest you to use these tools daily to make your learning easier and faster.

Chapter 7 Integrals Expert Notes & Solved Exam Questions

Our teachers have used the latest official NCERT book for Class 12 Mathematics to prepare these study material. We have included previous year examination questions and also step-by-step solutions to help you understand the marking scheme too. After reading the above chapter notes and solved questions also solve the practice problems and then compare your work with our NCERT solutions for Class 12 Mathematics.

Complete Revision for Mathematics

To get the best marks in your Class 12 exams you should use Mathematics Sample Papers along with these chapter notes. Daily practicing with our online MCQ Tests for Chapter 7 Integrals will also help you improve your speed and accuracy. All the study material provided on studiestoday.com is free and updated regularly to help Class 12 students stay ahead in their studies and feel confident during their school tests.

Where can I find the most advanced study material for CBSE Class 12 Mathematics for 2026?

The latest 2025-26 advanced study resources for Class 12 Mathematics are available for free on StudiesToday.com which includes NCERT Exemplars, high-order thinking skills (HOTS) questions, and deep-dive concept summaries.

What does the 2026 Mathematics study package for Class 12 include?

Our exhaustive Class 12 Mathematics package includes chapter wise revision notes, solved practice sheets, important formulas and Concept Maps to help in better understanding of all topics.

Is this study material enough for both CBSE exams and competitive tests?

Yes. For Class 12, our resources have been developed to help you get better marks in CBSE school exams and also build fundamental strength needed for entrance tests including Competency Based learning.

How should Class 12 students use this Mathematics material for maximum marks?

in Class 12, students should use Active Recall method, read the concept summary, then solve the Important Questions section without looking at the answers and then check your answers.

Can I download Class 12 Mathematics study notes in PDF for offline use?

All CBSE Mathematics study materials are provided in mobile-friendly PDF. You can download and save them on your device.

Are the Class 12 Mathematics resources updated for the latest NEP guidelines?

Yes, our team has ensured that all Mathematics materials for Class 12 are strictly aligned with the National Education Policy (NEP) 2020 and the latest 2026 CBSE syllabus.