NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation

NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 8 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 8 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 8 Mathematics are an important part of exams for Class 8 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 8 Mathematics and also download more latest study material for all subjects. Chapter 14 Factorisation is an important topic in Class 8, please refer to answers provided below to help you score better in exams

Chapter 14 Factorisation Class 8 Mathematics NCERT Solutions

Students of Class 8 studying Mathematics are advised to carefully go through the NCERT questions and their detailed answers provided here for the chapter Chapter 14 Factorisation. The questions in the NCERT textbook for Class 8 Mathematics form an important part of school exams. These solutions for Class 8 follow a step-by-step approach and are highly beneficial for exam preparation. Scroll down to view detailed, chapter-wise solutions for Chapter 14 Factorisation and explore more NCERT solutions and free study materials for Mathematics and other subjects of Class 8.

Chapter 14 Factorisation NCERT Solutions Class 8 Mathematics

Exercise 14.1

Q.1) Find the common factors of the given terms.
(i) 12𝑥, 36 (ii) 2𝑦, 22𝑥𝑦 (iii) 14𝑝𝑞, 28𝑝2𝑞2
(iv) 2𝑥, 3𝑥2, 4 (v) 6𝑎𝑏𝑐, 24𝑎𝑏2, 12𝑎2𝑏 (vi) 16𝑥3, −4𝑥2, 32𝑥
(vii) 10𝑝𝑞, 20𝑞𝑟, 30𝑟𝑝 (viii) 3𝑥2𝑦3, 10𝑥3𝑦2, 6𝑥2𝑦2𝑧
Sol.1) (i) 12𝑥 = 2 × 2 × 3 × 𝑥
36 = 2 × 2 × 3 × 3
Hence, the common factors are 2, 2 and 3 = 2 × 2 × 3 = 12

(ii) 2𝑦 = 2 × 𝑦
22𝑥𝑦 = 2 × 11 × 𝑥
Hence, the common factors are 2 and 𝑦 = 2 × 𝑦 = 2𝑦

(iii) 14𝑝𝑞 = 2 × 7 × 𝑝 × 𝑞
28𝑝2𝑞2 = 2 × 2 × 7 × 𝑝 × 𝑝 × 𝑞 × 𝑞
Hence, the common factors are 2 × 7 × 𝑝 × 𝑞 = 14𝑝𝑞

(iv) 2𝑥 = 2 × 𝑥 × 1
3𝑥2 = 3 × 𝑥 × 𝑥 × 1
4 = 2 × 2 × 1
Hence, the common factor is 1.

(v) 6𝑎𝑏𝑐 = 2 × 3 × 𝑎 × 𝑏 × 𝑐
24𝑎𝑏2 = 2 × 2 × 2 × 3 × 𝑎 × 𝑏 × 𝑏
12𝑎2𝑏 = 2 × 2 × 3 × 𝑎 × 𝑎 × 𝑏
Hence, the common factors are 2 × 3 × 𝑎 × 𝑏 × 𝑐 = 6𝑎𝑏𝑐

(vi) 16𝑥3 = 2 × 2 × 2 × 2 × 𝑥 × 𝑥 × 𝑥
−4𝑥2 = (−1) × 2 × 2 × 𝑥 × 𝑥
32𝑥 = 2 × 2 × 2 × 2 × 2 × 𝑥
Hence, the common factors are 2 × 2 × 𝑥 = 4𝑥

(vii) 10𝑝𝑞 = 2 × 5 × 𝑝 × 𝑞
20𝑞𝑟 = 2 × 2 × 5 × 𝑞 × 𝑟
30𝑟𝑝 = 2 × 3 × 5 × 𝑟 × 𝑝
Hence, the common factors are 2 × 5 = 10

(viii) 3𝑥2𝑦3 = 3 × 𝑥 × 𝑥 × 𝑦 × 𝑦 × 𝑦
10𝑥3𝑦2 = 2 × 5 × 𝑥 × 𝑥 × 𝑥 × 𝑦 × 𝑦
6𝑥2𝑦2𝑧 = 2 × 3 × 𝑥 × 𝑥 × 𝑦 × 𝑦 × 𝑧
Hence, the common factors are 𝑥 × 𝑥 × 𝑦 × 𝑦 = 𝑥2𝑦2

Q.2) Factorise the following expressions
(i) 7𝑥 – 42 (ii) 6𝑝 − 12𝑞 (iii) 7𝑎2 + 14𝑎

(iv) −16𝑧 + 20𝑧3 (v) 20𝑙2𝑚 + 30 𝑎𝑙𝑚 (vi) 5𝑥2𝑦 − 15𝑥𝑦2
(vii) 10𝑎2 − 15𝑏2 + 20𝑐2 (viii) −4𝑎2 + 4𝑎𝑏 − 4𝑐𝑎 (ix) 𝑥2𝑦𝑧 + 𝑥𝑦2𝑧 + 𝑥𝑦𝑧2
(x) 𝑎𝑥2𝑦 + 𝑏𝑥𝑦2 + 𝑐𝑥𝑦𝑧
Sol.2) (i) 7𝑥 = 7 × 𝑥
42 = 2 × 3 × 7
The common factor is 7.
∴ 7𝑥 − 42 = (7 × 𝑥) − (2 × 3 × 7) = 7 (𝑥 − 6)

(ii) 6𝑝 = 2 × 3 × 𝑝
12𝑞 = 2 × 2 × 3 × 𝑞
The common factors are 2 and 3.
∴ 6𝑝 − 12𝑞 = (2 × 3 × 𝑝) − (2 × 2 × 3 × 𝑞)
= 2 × 3 [𝑝 − (2 × 𝑞)]
= 6 (𝑝 − 2𝑞)

(iii) 7𝑎2 = 7 × 𝑎 × 𝑎
14𝑎 = 2 × 7 × 𝑎
The common factors are 7 and a.
∴ 7𝑎2 + 14𝑎 = (7 × 𝑎 × 𝑎) + (2 × 7 × 𝑎)
= 7 × 𝑎 [𝑎 + 2] = 7𝑎 (𝑎 + 2)

(iv) 16𝑧 = 2 × 2 × 2 × 2 × 𝑧
20𝑧3 = 2 × 2 × 5 × 𝑧 × 𝑧 × 𝑧
The common factors are 2, 2, and 𝑧.
∴ −16𝑧 + 20𝑧3 = − (2 × 2 × 2 × 2 × 𝑧) + (2 × 2 × 5 × 𝑧 × 𝑧 × 𝑧)
= (2 × 2 × 𝑧) [− (2 × 2) + (5 × 𝑧 × 𝑧)]
= 4𝑧 (− 4 + 5𝑧2)
(v) 20𝑙2𝑚 = 2 × 2 × 5 × 𝑙 × 𝑙 × 𝑚
30𝑎𝑙𝑚 = 2 × 3 × 5 × 𝑎 × 𝑙 × 𝑚
The common factors are 2, 5, 𝑙, and 𝑚.
∴ 20𝑙2𝑚 + 30𝑎𝑙𝑚 = (2 × 2 × 5 × 𝑙 × 𝑙 × 𝑚) + (2 × 3 × 5 × 𝑎 × 𝑙 × 𝑚)
= (2 × 5 × 𝑙 × 𝑚) [(2 × 𝑙) + (3 × 𝑎)]
= 10𝑙𝑚 (2𝑙 + 3𝑎)

(vi) 5𝑥2𝑦 = 5 × 𝑥 × 𝑥 × 𝑦
15𝑥𝑦2 = 3 × 5 × 𝑥 × 𝑦 × 𝑦
The common factors are 5, 𝑥, and 𝑦.
∴ 5𝑥2𝑦 − 15𝑥𝑦2 = (5 × 𝑥 × 𝑥 × 𝑦) − (3 × 5 × 𝑥 × 𝑦 × 𝑦)
= 5 × 𝑥 × 𝑦 [𝑥 − (3 × 𝑦)]
= 5𝑥𝑦 (𝑥 − 3𝑦)

(vii) 10𝑎2 = 2 × 5 × 𝑎 × 𝑎
15𝑏2 = 3 × 5 × 𝑏 × 𝑏
20𝑐2 = 2 × 2 × 5 × 𝑐 × 𝑐
The common factor is 5.
10𝑎2 − 15𝑏2 + 20𝑐2
= (2 × 5 × 𝑎 × 𝑎) − (3 × 5 × 𝑏 × 𝑏) + (2 × 2 × 5 × 𝑐 × 𝑐)
= 5 [(2 × 𝑎 × 𝑎) − (3 × 𝑏 × 𝑏) + (2 × 2 × 𝑐 × 𝑐)]
= 5 (2𝑎2 − 3𝑏2 + 4𝑐2)

(viii) 4𝑎2 = 2 × 2 × 𝑎 × 𝑎
4𝑎𝑏 = 2 × 2 × 𝑎 × 𝑏
4𝑐𝑎 = 2 × 2 × 𝑐 × 𝑎
The common factors are 2, 2, and 𝑎.
∴ −4𝑎2 + 4𝑎𝑏 − 4𝑐𝑎 = −(2 × 2 × 𝑎 × 𝑎) + (2 × 2 × 𝑎 × 𝑏) − (2 × 2 × 𝑐 × 𝑎)
= 2 × 2 × 𝑎 [− (𝑎) + 𝑏 − 𝑐]
= 4𝑎 (−𝑎 + 𝑏 − 𝑐)

(ix) 𝑥2𝑦𝑧 = 𝑥 × 𝑥 × 𝑦 × 𝑧
𝑥𝑦2𝑧 = 𝑥 × 𝑦 × 𝑦 × 𝑧
𝑥𝑦𝑧2 = 𝑥 × 𝑦 × 𝑧 × 𝑧
The common factors are x, y, and z.
∴ 𝑥2𝑦𝑧 + 𝑥𝑦2𝑧 + 𝑥𝑦𝑧2
= (𝑥 × 𝑥 × 𝑦 × 𝑧) + (𝑥 × 𝑦 × 𝑦 × 𝑧) + (𝑥 × 𝑦 × 𝑧 × 𝑧)
= 𝑥 × 𝑦 × 𝑧 [𝑥 + 𝑦 + 𝑧]
= 𝑥𝑦𝑧 (𝑥 + 𝑦 + 𝑧)

(x) 𝑎𝑥2𝑦 = 𝑎 × 𝑥 × 𝑥 × 𝑦
𝑏𝑥𝑦2 = 𝑏 × 𝑥 × 𝑦 × 𝑦
𝑐𝑥𝑦𝑧 = 𝑐 × 𝑥 × 𝑦 × 𝑧
The common factors are x and y.
𝑎𝑥2𝑦 + 𝑏𝑥𝑦2 + 𝑐𝑥𝑦𝑧
= (𝑎 × 𝑥 × 𝑥 × 𝑦) + (𝑏 × 𝑥 × 𝑦 × 𝑦) + (𝑐 × 𝑥 × 𝑦 × 𝑧)
= (𝑥 × 𝑦) [(𝑎 × 𝑥) + (𝑏 × 𝑦) + (𝑐 × 𝑧)]
= 𝑥𝑦 (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧)

Q.3) Factorise
(i) 𝑥2 + 𝑥𝑦 + 8𝑥 + 8𝑦 (ii) 15𝑥𝑦 − 6𝑥 + 5𝑦 – 2 (iii) 𝑎𝑥 + 𝑏𝑥 − 𝑎𝑦 − 𝑏𝑦
(iv) 15𝑝𝑞 + 15 + 9𝑞 + 25𝑝 (v) 𝑧 − 7 + 7𝑥𝑦 – 𝑥𝑦𝑧
Sol.3) (i) 𝑥2 + 𝑥𝑦 + 8𝑥 + 8𝑦
= 𝑥 × 𝑥 + 𝑥 × 𝑦 + 8 × 𝑥 + 8 × 𝑦
= 𝑥 (𝑥 + 𝑦) + 8 (𝑥 + 𝑦)
= (𝑥 + 𝑦) (𝑥 + 8)

(ii) 15𝑥𝑦 – 6𝑥 + 5𝑦 – 2
= 3 × 5 × 𝑥 × 𝑦 − 3 × 2 × 𝑥 + 5 × 𝑦 – 2
= 3𝑥 (5𝑦 − 2) + 1 (5𝑦 − 2)
= (5𝑦 − 2) (3𝑥 + 1)

(iii) 𝑎𝑥 + 𝑏𝑥 – 𝑎𝑦 – 𝑏𝑦
= 𝑎 × 𝑥 + 𝑏 × 𝑥 − 𝑎 × 𝑦 − 𝑏 × 𝑦
= 𝑥 (𝑎 + 𝑏) − 𝑦 (𝑎 + 𝑏)
= (𝑎 + 𝑏) (𝑥 − 𝑦)

(iv) 15𝑝𝑞 + 15 + 9𝑞 + 25𝑝
= 15𝑝𝑞 + 9𝑞 + 25𝑝 + 15
= 3 × 5 × 𝑝 × 𝑞 + 3 × 3 × 𝑞 + 5 × 5 × 𝑝 + 3 × 5
= 3𝑞 (5𝑝 + 3) + 5 (5𝑝 + 3)
= (5𝑝 + 3) (3𝑞 + 5)

(v) 𝑧 − 7 + 7𝑥𝑦 − 𝑥𝑦𝑧
= 𝑧 − 𝑥 × 𝑦 × 𝑧 − 7 + 7 × 𝑥 × 𝑦
= 𝑧 (1 − 𝑥𝑦) − 7 (1 − 𝑥𝑦)
= (1 − 𝑥𝑦) (𝑧 − 7)

Exercise 14.2

Q.1) Factorise the following expressions.
(i) 𝑎2 + 8𝑎 + 16 (ii) 𝑝2 − 10𝑝 + 25 (iii) 25𝑚2 + 30𝑚 + 9
(iv) 49𝑦2 + 84𝑦𝑧 + 36𝑧2 (v) 4𝑥2 − 8𝑥 + 4 (vi) 121𝑏2 − 88𝑏𝑐 + 16𝑐2
(vii) (𝑙 + 𝑚)2− 4𝑙𝑚 (Hint: Expand (𝑙 + 𝑚)2 first)
(viii) 𝑎4 + 2𝑎2𝑏2 + 𝑏4
Sol.1) (i) 𝑎2 + 8𝑎 + 16
This equation can be factorised by using the identity;
𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = (𝑥 + 𝑎)(𝑥 + 𝑏)
Here 𝑥 = 𝑎, 𝑎 = 4 and 𝑏 = 4
= (𝑎)2 + 2 × 𝑎 × 4 + (4)2
= (𝑎 + 4)2
Factors = (𝑎 + 4)2 = (𝑎 + 4)(𝑎 + 4)

(ii) 𝑝2 − 10𝑝 + 25
This equation can be factorised by using the identity;
𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = (𝑥 + 𝑎)(𝑥 + 𝑏)
Here 𝑥 = 𝑝, 𝑎 = −5, and 𝑏 = −5
= (𝑝)2 − 2 × 𝑝 × 5 + (5)2
Factors = (𝑝 – 5)2

(iii) 25𝑚2 + 30𝑚 + 9
This equation can be factorised by using the identity;
(𝑎 – 𝑏)2 = 𝑎2 – 2𝑎𝑏 + 𝑏2
Here 𝑎 = 5𝑚, 𝑏 = 3
= (5𝑚)2 + 2 × 5𝑚 × 3 + (3)2
Factors = (5𝑚 + 3)2

(iv) 49𝑦2 + 84𝑦𝑧 + 36𝑧2
This equation can be factorised by using the identity;
(𝑎 – 𝑏)2 = 𝑎2 – 2𝑎𝑏 + 𝑏2
Here 𝑎 = 7𝑦, 𝑏 = 6𝑧
= (7𝑦)2 + 2 × (7𝑦) × (6𝑧) + (6𝑧)2
Factors = (7𝑦 + 6𝑧)2

(v) 4𝑥2 − 8𝑥 + 4
This equation can be factorised by using the identity;
(𝑎 – 𝑏)2 = 𝑎2 – 2𝑎𝑏 + 𝑏2
Here 𝑎 = 2𝑥, 𝑏 = 2
= (2𝑥)2 − 2 (2𝑥) (2) + (2)2
= (2𝑥 − 2)2
= [(2)(𝑥 − 1)]2
= 4(𝑥 − 1)2

(vi) 121𝑏2 − 88𝑏𝑐 + 16𝑐2
This equation can be factorised by using the identity;
(𝑎 – 𝑏)2 = 𝑎2 – 2𝑎𝑏 + 𝑏2
Here 𝑎 = 11𝑏, 𝑏 = 4𝑐
= (11𝑏)2 − 2 (11𝑏) (4𝑐) + (4𝑐)2
= (11𝑏 − 4𝑐) 2

(vii) (𝑙 + 𝑚)2
− 4𝑙𝑚 (Hint: Expand (𝑙 + 𝑚)2 first)
This equation can be factorised by using the identity;
(𝑎 – 𝑏)2 = 𝑎2 – 2𝑎𝑏 + 𝑏2
= 𝑙2 + 2𝑙𝑚 + 𝑚2 − 4𝑙𝑚
= 𝑙2 − 2𝑙𝑚 + 𝑚2
= (𝑙 − 𝑚)2

(viii) 𝑎4 + 2𝑎2𝑏2 + 𝑏4
This equation can be factorised by using the identity;
(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2
= (𝑎2)2 + 2 (𝑎2) (𝑏2) + (𝑏2)2
= (𝑎2 + 𝑏2)2

Q.2) Factorise
(i) 4𝑝2 − 9𝑞2 (ii) 63𝑎2 − 112𝑏2 (iii) 49𝑥2– 36
(iv) 16𝑥5 − 144𝑥3 (v) (𝑙 + 𝑚)2− (𝑙 − 𝑚)2
(vi) 9𝑥2𝑦2 − 16
(vii) (𝑥2 − 2𝑥𝑦 + 𝑦2) − 𝑧2 (viii) 25𝑎2 − 4𝑏2 + 28𝑏𝑐 − 49𝑐2
Sol.2) (i) 4𝑝2 – 9𝑞2
= (2𝑝)− (3𝑞)2
= (2𝑝 + 3𝑞) (2𝑝 − 3𝑞) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]
(ii) 63𝑎2 − 112𝑏2
= 7(9𝑎2 − 16𝑏2)
= 7[(3𝑎2 − (4𝑏)2]

= 7(3𝑎 + 4𝑏) (3𝑎 − 4𝑏) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]

(iii) 49𝑥2– 36
= (7𝑥)2 − (6)2
= (7𝑥 − 6) (7𝑥 + 6) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]

(iv) 16𝑥5 − 144𝑥3
= 16𝑥3(𝑥2 − 9)
= 16 𝑥3 [(𝑥)2 − (3)2]
= 16 𝑥3(𝑥 − 3) (𝑥 + 3) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]

(v) (𝑙 + 𝑚) 2 − (𝑙 – 𝑚)2
= [(𝑙 + 𝑚) − (𝑙 − 𝑚)] [(𝑙 + 𝑚) + (𝑙 − 𝑚)]
[Using identity: 𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]
= (𝑙 + 𝑚 − 𝑙 + 𝑚) (𝑙 + 𝑚 + 𝑙 − 𝑚)
= 2𝑚 × 2𝑙
= 4𝑚𝑙 = 4𝑙𝑚

(vi) 9𝑥2𝑦2 − 16
= (3𝑥𝑦)2 − (4)2
= (3𝑥𝑦 − 4) (3𝑥𝑦 + 4) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]

(vii) (𝑥2 − 2𝑥𝑦 + 𝑦2) − 𝑧2
= (𝑥 − 𝑦)2 − (𝑧)2 [(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= (𝑥 − 𝑦 − 𝑧) (𝑥 − 𝑦 + 𝑧) [𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]

(viii) 25𝑎2 – 4𝑏2 + 28𝑏𝑐 – 49𝑐2
= 25𝑎2 − (4𝑏− 28𝑏𝑐 + 49𝑐2)
= (5𝑎)2 − [(2𝑏)2 − 2 × 2𝑏 × 7𝑐 + (7𝑐)2]
= (5𝑎)2 − [(2𝑏 − 7𝑐)2] [Using identity (𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= [5𝑎 + (2𝑏 − 7𝑐)] [5𝑎 − (2𝑏 − 7𝑐)]
[Using identity 𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏)]
= (5𝑎 + 2𝑏 − 7𝑐)(5𝑎 − 2𝑏 + 7𝑐)

Q.3) Factorise the expressions
(i) 𝑎𝑥2 + 𝑏𝑥 (ii) 7𝑝2 + 21𝑞2 (iii) 2𝑥3 + 2𝑥𝑦2 + 2𝑥𝑧2
(iv) 𝑎𝑚2 + 𝑏𝑚2 + 𝑏𝑛2 + 𝑎𝑛2 (v) (𝑙𝑚 + 𝑙) + 𝑚 + 1
(vi) 𝑦(𝑦 + 𝑧) + 9(𝑦 + 𝑧) (vii) 5𝑦2 − 20𝑦 − 8𝑧 + 2𝑦𝑧
(viii) 10𝑎𝑏 + 4𝑎 + 5𝑏 + 2 (ix) 6𝑥𝑦 − 4𝑦 + 6 − 9𝑥
Sol.3) (i) 𝑎𝑥2 + 𝑏𝑥
= 𝑎 × 𝑥 × 𝑥 + 𝑏 × 𝑥 = 𝑥(𝑎𝑥 + 𝑏)

(ii) 7𝑝2 + 21𝑞2
= 7 × 𝑝 × 𝑝 + 3 × 7 × 𝑞 × 𝑞 = 7(𝑝2 + 3𝑞2)

(iii) 2𝑥3 + 2𝑥𝑦2 + 2𝑥𝑧2
= 2𝑥(𝑥2 + 𝑦2 + 𝑧2)

(iv) 𝑎𝑚2 + 𝑏𝑚2 + 𝑏𝑛2 + 𝑎𝑛2
= 𝑎𝑚2 + 𝑏𝑚2 + 𝑎𝑛2 + 𝑏𝑛2
= 𝑚2(𝑎 + 𝑏) + 𝑛2(𝑎 + 𝑏)
= (𝑎 + 𝑏) (𝑚2 + 𝑛2)

(v) (𝑙𝑚 + 𝑙) + 𝑚 + 1
= 𝑙𝑚 + 𝑚 + 𝑙 + 1
= 𝑚(𝑙 + 1) + 1(𝑙 + 1)
= (𝑙 + 𝑙) (𝑚 + 1)

(vi) 𝑦 (𝑦 + 𝑧) + 9 (𝑦 + 𝑧)
= (𝑦 + 𝑧) (𝑦 + 9)

(vii) 5𝑦2 − 20𝑦 − 8𝑧 + 2𝑦𝑧
= 5𝑦2 − 20𝑦 + 2𝑦𝑧 − 8𝑧
= 5𝑦(𝑦 − 4) + 2𝑧(𝑦 − 4)
= (𝑦 − 4) (5𝑦 + 2𝑧)

(viii) 10𝑎𝑏 + 4𝑎 + 5𝑏 + 2
= 10𝑎𝑏 + 5𝑏 + 4𝑎 + 2
= 5𝑏(2𝑎 + 1) + 2(2𝑎 + 1)
= (2𝑎 + 1) (5𝑏 + 2)

(ix) 6𝑥𝑦 − 4𝑦 + 6 − 9𝑥
= 6𝑥𝑦 − 9𝑥 − 4𝑦 + 6
= 3𝑥(2𝑦 − 3) − 2(2𝑦 − 3)
= (2𝑦 − 3)(3𝑥 − 2)

Q.4) Factorise
(i) 𝑎4 − 𝑏4 (ii) 𝑝4 – 81 (iii) 𝑥4 − (𝑦 + 𝑧)4
(iv) 𝑥4 − (𝑥 − 𝑧)4
(v) 𝑎4 − 2𝑎𝑏2 + 𝑏4
Sol.4) (i) 𝑎4 − 𝑏4
= (𝑎2)2 − (𝑏2)2
= (𝑎2 − 𝑏2) (𝑎2 + 𝑏2)
= (𝑎 − 𝑏) (𝑎 + 𝑏) (𝑎2 + 𝑏2)

(ii) 𝑝4 – 81
= (𝑝2)2 − (9)2
= (𝑝2 − 9) (𝑝2 + 9)
= [(𝑝)2 − (3)2] (𝑝2 + 9)
= (𝑝 − 3) (𝑝 + 3) (𝑝2 + 9)

(iii) 𝑥4 − (𝑦 + 𝑧)4
= (𝑥2)2 − [(𝑦 + 𝑧)2]2
= [𝑥2 − (𝑦 + 𝑧)2] [𝑥2 + (𝑦 + 𝑧)2]
= [𝑥 − (𝑦 + 𝑧)][ 𝑥 + (𝑦 + 𝑧)] [𝑥2 + (𝑦 + 𝑧)2]
= (𝑥 − 𝑦 − 𝑧) (𝑥 + 𝑦 + 𝑧) [𝑥2 + (𝑦 + 𝑧)2]

(iv) 𝑥4 − (𝑥 − 𝑧)4
= (𝑥2)2 − [(𝑥 − 𝑧)2]2
= [𝑥2 − (𝑥 − 𝑧)2] [𝑥2 + (𝑥 − 𝑧)2]
= [𝑥 − (𝑥 − 𝑧)] [𝑥 + (𝑥 − 𝑧)] [𝑥2 + (𝑥 − 𝑧)2]
= 𝑧(2𝑥 − 𝑧) [𝑥2 + 𝑥2 − 2𝑥𝑧 + 𝑧2]
= 𝑧(2𝑥 − 𝑧) (2𝑥2 − 2𝑥𝑧 + 𝑧2)

(v) 𝑎4 − 2𝑎2𝑏2 + 𝑏4
= (𝑎2)2 − 2 (𝑎2) (𝑏2) + (𝑏2)2
= (𝑎2 − 𝑏2)2
= [(𝑎 − 𝑏)(𝑎 + 𝑏)]2
= (𝑎 − 𝑏)2
(𝑎 + 𝑏)2

Q.5) Factorise the following expressions
(i) 𝑝2 + 6𝑝 + 8 (ii) 𝑞2 − 10𝑞 + 21 (iii) 𝑝2 + 6𝑝 − 16
Sol.5) (i) 𝑝2 + 6𝑝 + 8
It can be observed that, 8 = 4 × 2 and 4 + 2 = 6
∴ 𝑝2 + 2𝑝 + 4𝑝 + 8
= 𝑝(𝑝 + 2) + 4(𝑝 + 2)
= (𝑝 + 2) (𝑝 + 4)

(ii) 𝑞2 − 10𝑞 + 21
It can be observed that, 21 = (−7) × (−3) and (−7) + (−3) = − 10
∴ 𝑞2 − 10𝑞 + 21 = 𝑞2 − 7𝑞 − 3𝑞 + 21
= 𝑞(𝑞 − 7) − 3(𝑞 − 7)
= (𝑞 − 7) (𝑞 − 3)

(iii) 𝑝2 + 6𝑝 − 16
It can be observed that, 16 = (−2) × 8 and 8 + (−2) = 6
𝑝2 + 6𝑝 − 16 = 𝑝2 + 8𝑝 − 2𝑝 − 16
= 𝑝(𝑝 + 8) − 2(𝑝 + 8)
= (𝑝 + 8) (𝑝 − 2)

Exercise 14.3

Q.1) Carry out the following divisions.
(i) 28𝑥4 ÷ 56𝑥 (ii) −36𝑦3 ÷ 9𝑦2 (iii) 66𝑝𝑞2𝑟3 ÷ 11𝑞𝑟2
(iv) 34𝑥3𝑦3𝑧3 ÷ 51𝑥𝑦2𝑧3 (v) 12𝑎8𝑏8 ÷ (−6𝑎6𝑏4)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-5

Q.2) Divide the given polynomial by the given monomial:
(i) (5𝑥2 − 6𝑥) ÷ 3𝑥
(ii) (3𝑦8 − 4𝑦6 + 5𝑦4) ÷ 𝑦4
(iii) 8(𝑥3𝑦2𝑧2 + 𝑥2𝑦3𝑧2 + 𝑥2𝑦2𝑧3) ÷ 4𝑥2𝑦2𝑧2
(iv) (𝑥3 + 2𝑥2 + 3𝑥) ÷ 2𝑥
(v) (𝑝3𝑞6 − 𝑝6𝑞3) ÷ 𝑝3𝑞3
Sol.2)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-4

Q.3) Work out the following divisions.
(i) (10𝑥 − 25) ÷ 5
(ii) (10𝑥 − 25) ÷ (2𝑥 − 5)
(iii) 10𝑦(6𝑦 + 21) ÷ 5(2𝑦 + 7)
(iv) 9𝑥2𝑦2(3𝑧 − 24) ÷ 27𝑥𝑦(𝑧 − 8)
(v) 96𝑎𝑏𝑐(3𝑎 − 12)(5𝑏 − 30) ÷ 144(𝑎 − 4) (𝑏 − 6)
Sol.3)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-3

Q.4) Divide as directed.
(i) 5(2𝑥 + 1) (3𝑥 + 5) ÷ (2𝑥 + 1)
(ii) 26𝑥𝑦(𝑥 + 5) (𝑦 − 4) ÷ 13𝑥(𝑦 − 4)
(iii) 52𝑝𝑞𝑟 (𝑝 + 𝑞) (𝑞 + 𝑟) (𝑟 + 𝑝) ÷ 104𝑝𝑞(𝑞 + 𝑟) (𝑟 + 𝑝)
(iv) 20(𝑦 + 4) (𝑦2 + 5𝑦 + 3) ÷ 5(𝑦 + 4)
(v) 𝑥(𝑥 + 1) (𝑥 + 2) (𝑥 + 3) ÷ 𝑥(𝑥 + 1)
Sol.4)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-2

Q.5) Factorise the expressions and divide them as directed.
(i) (y2 + 7y + 10) ÷ (y + 5)
(ii) (m2 − 14m − 32) ÷ (m + 2)
(iii) (5p2 − 25p + 20) ÷ (p − 1)
(iv) 4yz(z2 + 6z − 16) ÷ 2y(z + 8)
(v) 5pq(p2 − q2) ÷ 2p(p + q)
(vi) 12xy(9x2 − 16y2) ÷ 4xy(3x + 4y)
(vii) 39y3(50y2 − 98) ÷ 26y2(5y + 7)
Sol.5)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-1

""NCERT-Solutions-Class-8-Mathematics-Factorisation

Exercise 14.4

Q.1) Find and correct the errors in the statement: 4(𝑥 – 5) = 4𝑥 – 5
Sol.1) L.H.S. = 4(𝑥 − 5) = 4𝑥 − 20 ≠ R.H.S.
Hence, the correct mathematical statements is 4(𝑥 − 5) = 4𝑥 − 20.

Q.2) Find and correct the errors in the statement: 𝑥(3𝑥 + 2) = 3𝑥2 + 2
Sol.2) L.H.S. = 𝑥(3𝑥 + 2) = 𝑥 × 3𝑥 + 𝑥 × 2 = 3𝑥2 + 2𝑥 ≠ R.H.S.
Hence, the correct mathematical statements is 𝑥(3𝑥 + 2) = 3𝑥2 + 2𝑥

Q.3) Find and correct the errors in the statement: 2𝑥 + 3𝑦 = 5𝑥𝑦
Sol.3) L.H.S = 2𝑥 + 3𝑦 ≠ R.H.S.
Hence, the correct mathematical statements is 2𝑥 + 3𝑦 = 2𝑥 + 3𝑦

Q.4) Find and correct the errors in the statement: 𝑥 + 2𝑥 + 3𝑥 = 5𝑥
Sol.4) L.H.S = 𝑥 + 2𝑥 + 3𝑥 = 1𝑥 + 2𝑥 + 3𝑥 = 𝑥 (1 + 2 + 3) = 6𝑥 ≠ R.H.S.
Hence, the correct mathematical statements is 𝑥 + 2𝑥 + 3𝑥 = 6𝑥.

Q.5) Find and correct the errors in the statement: 5𝑦 + 2𝑦 + 𝑦 − 7𝑦 = 0
Sol.5) L.H.S. = 5𝑦 + 2𝑦 + 𝑦 − 7𝑦 = 8𝑦 − 7𝑦 = 𝑦 ≠ R.H.S
Hence, the correct mathematical statements is 5𝑦 + 2𝑦 + 𝑦 − 7𝑦 = 𝑦.

Q.6) Find and correct the errors in the statement: 3𝑥 + 2𝑥 = 5𝑥2
Sol.6) L.H.S. = 3𝑥 + 2𝑥 = 5𝑥 ≠ R.H.S
Hence, the correct mathematical statements is 3𝑥 + 2𝑥 = 5𝑥.

Q.7) Find and correct the errors in the statement: (2𝑥)2 + 4(2𝑥) + 7 = 4𝑥2 + 8𝑥 + 7
Sol.7) L.H.S = (2𝑥)2 + 4(2𝑥) + 7 = 4𝑥2 + 8𝑥 + 7 ≠ R.H.S
Hence, the correct mathematical statements is (2𝑥)2 + 4(2𝑥) + 7 = 4𝑥2 + 8𝑥 + 7.

Q.8) Find and correct the errors in the statement: (2𝑥)2 + 5𝑥 = 4𝑥 + 5𝑥 = 9𝑥
Sol.8) L.H.S = (2𝑥)2 + 5𝑥 = 4𝑥2 + 5𝑥 ≠ R.H.S.
Hence, the correct mathematical statements is (2𝑥)2 + 5𝑥 = 4𝑥2 + 5𝑥.

Q.9) Find and correct the errors in the statement: (3𝑥 + 2)2 = 9𝑥2 + 12𝑥 + 4
Sol.9) L.H.S. = (3𝑥 + 2)2
= (3𝑥)2 + 2(3𝑥)(2) + (2)2[(𝑎 + 𝑏) 2
= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 9𝑥2 + 12𝑥 + 4 ≠ R.H.S
The correct statement is (3𝑥 + 2) 2
= 9𝑥2 + 12𝑥 + 4

Q.10) Find and correct the errors in the following mathematical statement.
Substituting x = −3 in
(a) 𝑥2 + 5x + 4 gives (−3)2 + 5 (−3) + 4 = 9 + 2 + 4 = 15
(b) 𝑥2 − 5x + 4 gives (−3)2 − 5 (−3) + 4 = 9 − 15 + 4 = −2
(c) 𝑥2 + 5x gives (−3)2 + 5 (−3) = −9 − 15 = −24
Sol.10) (a) L.H.S. = 𝑥2 + 5𝑥 + 4
Putting 𝑥 =-3 in given expression
= (−3)2 + 5(−3) + 4 = 9 − 15 + 4 = −2 ≠ R.H.S.
Hence, 𝑥2 + 5𝑥 + 4 gives (−3)2 + 5(−3) + 4 = 9 − 15 + 4 = −2
(b) L.H.S. = 𝑥2 − 5𝑥 + 4
Putting 𝑥 =-3 in given expression
= (−3)2 − 5(−3) + 4 = 9 + 15 + 4 = 28 ≠ R.H.S.
Hence, 𝑥2 − 5𝑥 + 4 gives (−3)2 − 5(−3) + 4 = 9 + 15 + 4 = 28
(c) L.H.S. = 𝑥2 + 5𝑥
Putting 𝑥 =-3 in given expression
= (−3)2 + 5(−3) = 9 − 15 = −6 ≠ R.H.S.
Hence, 𝑥2 + 5𝑥 gives (−3)2 + 5(−3) = 9 − 15 = −6.

Q.11) Find and correct the errors in the following mathematical statement: (𝑦 − 3)2 = 𝑦2 − 9
Sol.11) L.H.S = (y − 3)2 = (y)2 − 2(y)(3) + (3)2 [(a − b)2 = 𝑎2 − 2ab + 𝑏2]
= y2 − 6y + 9 ≠ R.H.S
The correct statement is (y − 3)2 = y2 − 6y + 9

Q.12) Find and correct the errors in the statement: (𝑧 + 5) = 𝑧2 + 25
Sol.12) L.H.S = (𝑧 + 5)2
= (𝑧)2 + 2(𝑧)(5) + (5)2 [(𝑎 + 𝑏)2
= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 𝑧2 + 10𝑧 + 25 ≠ R.H.S
Hence, the correct statement is (𝑧 + 5)2 = 𝑧2 + 10𝑧 + 25

Q.13) Find and correct the errors in the statement: (2𝑎 + 3𝑏)(𝑎 – 𝑏) = 2𝑎2 – 3𝑏2
Sol.13) L.H.S. = (2𝑎 + 3𝑏) (𝑎 − 𝑏) = 2𝑎 × 𝑎 + 3𝑏 × 𝑎 − 2𝑎 × 𝑏 − 3𝑏 × 𝑏
= 2𝑎2 + 3𝑎𝑏 − 2𝑎𝑏 − 3𝑏2 = 2𝑎2 + 𝑎𝑏 − 3𝑏2 ≠ R.H.S.
Hence, the correct statement is (2𝑎 + 3𝑏)(𝑎 − 𝑏) = 2𝑎2 + 𝑎𝑏 − 3𝑏2

Q.14) Find and correct the errors in the statement: (𝑎 + 4) (𝑎 + 2) = 𝑎2 + 8
Sol.14) L.H.S. = (𝑎 + 4) (𝑎 + 2) = (𝑎)2 + (4 + 2) (𝑎) + 4 × 2
= 𝑎2 + 6𝑎 + 8 ≠ R.H.S
The correct statement is (𝑎 + 4) (𝑎 + 2) = 𝑎2 + 6𝑎 + 8

Q.15) Find and correct the errors in the statement: (𝑎 – 4)(𝑎 – 2) = 𝑎2 − 8
Sol.15) L.H.S. = (𝑎 − 4) (𝑎 − 2) = (𝑎)2 + [(− 4) + (− 2)] (𝑎) + (− 4) (− 2)
= 𝑎2 − 6𝑎 + 8 ≠ R.H.S.
The correct statement is (𝑎 − 4) (𝑎 − 2) = 𝑎2 − 6𝑎 + 8

Q.16) Find and correct the errors in the statement: 3𝑥2/3𝑥2 = 0.
Sol.16) L.H.S. = 3𝑥2/3𝑥2 = 1/1 = 1 ≠ R.H.S.
Hence, the correct statement is 3𝑥2/3𝑥2 = 1.

Q.17) Find and correct the errors in the following mathematical statement: 3𝑥2+1/3𝑥2 = 1 + 1 = 2.
Sol.17) L.H.S. = 3𝑥2+1/3𝑥2 = 3𝑥2/3𝑥2 + 1/3𝑥2
= 1 + 1/3𝑥2 ≠ R.H.S.
Hence, the correct statement is 3𝑥2+1/3𝑥2 = 1 + 1/3𝑥2.

Q.18) Find and correct the errors in the following mathematical statement: 3𝑥/3𝑥+2 = 1/2
Sol.18) L.H.S. = 3𝑥/3𝑥+2 ≠ R.H.S.
Hence, the correct statement is 3𝑥/3𝑥+2 = 3𝑥/3𝑥+2

Q.19) Find and correct the errors in the following mathematical statement: 3/4𝑥+3 = 1/4𝑥
Sol.19) L.H.S. = 3/4𝑥+3 ≠R.H.S.
Hence, the correct statement is 3/4𝑥+3 = 3/4𝑥+3

Q.20) Find and correct the errors in the following mathematical statement: 4𝑥+5/4𝑥 = 5
Sol.20) L.H.S. = 4𝑥+5/4𝑥 = 4𝑥/4𝑥 + 5/4𝑥 = 1 + 5/4𝑥 ≠R.H.S.
Hence, the correct statement is 4𝑥+5/4𝑥 = 1 + 5/4𝑥
.
Q.21) Find and correct the errors in the following mathematical statement: 7𝑥+5/5 = 7𝑥
Sol.21) L.H.S. = 7𝑥+5/5 = 7𝑥/5 + 5/5 = 7𝑥/5 + 1 ≠ R.H.S.
Hence, the correct statement is 7𝑥+5/5 = 7𝑥/5 + 1.

NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation

The above provided NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation is available on our website for free download in Pdf. You can read the solutions to all questions given in your Class 8 Mathematics textbook online or you can easily download them in pdf. The answers to each question in Chapter 14 Factorisation of Mathematics Class 8 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 14 Factorisation Class 8 chapter of Mathematics so that it can be easier for students to understand all answers. These solutions of Chapter 14 Factorisation NCERT Questions given in your textbook for Class 8 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 8.

Where can I download latest NCERT Solutions for Class 8 Mathematics Chapter 14 Factorisation

You can download the NCERT Solutions for Class 8 Mathematics Chapter 14 Factorisation for latest session from StudiesToday.com

Are the Class 8 Mathematics Chapter 14 Factorisation NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 8 Mathematics Chapter 14 Factorisation have been made available here for latest academic session

How can I improve my scores by reading NCERT Solutions in Class 8 Mathematics Chapter 14 Factorisation

Regular revision of NCERT Solutions given on studiestoday for Class 8 subject Mathematics Chapter 14 Factorisation can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 14 Factorisation Class 8 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 14 Factorisation Class 8 Mathematics solutions based on the latest books for the current academic session

Are NCERT solutions for Class 8 Chapter 14 Factorisation Mathematics available in multiple languages

Yes, NCERT solutions for Class 8 Chapter 14 Factorisation Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 14 Factorisation?

All questions given in the end of the chapter Chapter 14 Factorisation have been answered by our teachers