NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 8 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 8 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 8 Mathematics are an important part of exams for Class 8 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 8 Mathematics and also download more latest study material for all subjects. Chapter 9 Algebraic expressions and identities is an important topic in Class 8, please refer to answers provided below to help you score better in exams

Chapter 9 Algebraic expressions and identities Class 8 Mathematics NCERT Solutions

Students of Class 8 studying Mathematics are advised to carefully go through the NCERT questions and their detailed answers provided here for the chapter Chapter 9 Algebraic expressions and identities. The questions in the NCERT textbook for Class 8 Mathematics form an important part of school exams. These solutions for Class 8 follow a step-by-step approach and are highly beneficial for exam preparation. Scroll down to view detailed, chapter-wise solutions for Chapter 9 Algebraic expressions and identities and explore more NCERT solutions and free study materials for Mathematics and other subjects of Class 8.

Chapter 9 Algebraic expressions and identities NCERT Solutions Class 8 Mathematics

Exercise 9.1

Q.1) Identify the terms, their coefficients for each of the following expressions:
i) 5𝑥𝑦𝑧2 − 3𝑧𝑦 ii) 1 + 𝑥 + 𝑥2 iii) 4𝑥2𝑦2 − 4𝑥2𝑦2𝑧2 + 𝑧2
iv) 3 − 𝑝𝑞 + 𝑞𝑟 − 𝑟𝑝   v) 𝑥/2 + 𝑦/2 − 𝑥𝑦 vi) 0.3𝑎 − 06𝑎𝑏 + 0.5𝑏
Sol.1) I) Terms : 5𝑥𝑦𝑧2 And −3𝑧𝑦
Coefficient in 5𝑥𝑦𝑧2 Is 5 and in −3𝑧𝑦 is −3.
ii) terms : 1, 𝑥 and 𝑥2
Coefficient of 𝑥 and coefficient of 𝑥2 in 1.
iii) terms : 4𝑥2𝑦2, −4𝑥2𝑦2𝑧2 and 𝑧2
Coefficient in 4𝑥2𝑦2 is 4, coefficient of −4𝑥2𝑦2𝑧2 is −4 and coefficient of 𝑧2 is 1.
iv) terms : 3, −𝑝𝑞, 𝑞𝑟, −𝑟𝑝
Coefficient of – 𝑝𝑞 is −1, coeficient of 𝑞𝑟 is 1 and coefficient of – 𝑟𝑝 is −1.
v) terms: 𝑥/2, 𝑦/2 and – 𝑥𝑦 
coefficient of 𝑥/2 is 1/2, coefficient of 𝑦/2 is −1 and coefficient of – 𝑥𝑦 is −1
vi) Terms: 0.3𝑎, −06𝑎𝑏 and 0.5𝑏
coefficient of 0.3𝑎 is 0.3, coeficient of −0.6𝑎𝑏 is −0.6 and coefficient of 0.5𝑏 is 0.5.

Q.2) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories:
i) 𝑥 + 𝑦 ii) 1000 iii) 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 iv) 7 + 𝑦 + 5𝑥
v) 2𝑦 – 3𝑦2 vi) 2𝑦 – 3𝑦2 + 4𝑦3 vii) 5𝑥 – 4𝑦 + 3𝑥𝑦 viii) 4𝑧 – 15𝑧2
ix) 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑑𝑎 x) 𝑝𝑞𝑟 xi) 𝑝2𝑞 + 𝑝𝑞2 xii) 2𝑝 + 2𝑞
Sol.2) (i) Since 𝑥 + 𝑦 contains two terms. Therefore it is binomial.
(ii) Since 1000 contains one term. Therefore it is monomial.
(iii) Since 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(iv) Since 7 + 𝑦 + 5𝑥 contains three terms. Therefore it is trinomial.
(v) Since 2𝑦 – 3𝑦2 contains two terms. Therefore it is binomial.
(vi) Since 2𝑦 – 3𝑦2 + 4𝑦3 contains three terms. Therefore it is trinomial.
(vii) Since 5𝑥 – 4𝑦 + 3𝑥𝑦 contains three terms. Therefore it is trinomial.
(viii) Since 4𝑧 – 15𝑧2 contains two terms. Therefore it is binomial. -415 x z
(ix) Since 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑑𝑎 contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(x) Since 𝑝𝑞𝑟 contains one term. Therefore it is monomial.
(xi) Since 𝑝2𝑞 + 𝑝𝑞2 contains two terms. Therefore it is binomial.
(xii) Since 2𝑝 + 2𝑞 contains two terms. Therefore it is binomial.

Q.3) Add the following.
(i) 𝑎𝑏 – 𝑏𝑐, 𝑏𝑐 – 𝑐𝑎, 𝑐𝑎 – 𝑎𝑏 (ii) 𝑎 – 𝑏 + 𝑎𝑏, 𝑏 – 𝑐 + 𝑏𝑐, 𝑐 – 𝑎 + 𝑎𝑐

(iii) 2𝑝 𝑞 – 3𝑝𝑞 + 4, 5 + 7𝑝𝑞 – 3𝑝 𝑞 (iv) 𝑙 + 𝑚 , 𝑚 + 𝑛 , 𝑛 + 𝑙 , 2𝑙𝑚 + 2𝑚𝑛 + 2𝑛𝑙
Sol.3) (i) 𝑎𝑏 – 𝑏𝑐, 𝑏𝑐 – 𝑐𝑎, 𝑐𝑎 – 𝑎𝑏
𝑎𝑏 − 𝑏𝑐
+𝑏𝑐 − 𝑐𝑎
−𝑎𝑏 + 𝑐𝑎
0 + 0 + 0
Hence, the sum is 0.

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-2

Q.4) (a) Subtract 4𝑎 − 7𝑎𝑏 + 3𝑏 + 12 from 12𝑎 − 9𝑎𝑏 + 5𝑏 − 3
(b) Subtract 3𝑥𝑦 + 5𝑦𝑧 − 7𝑧𝑥 from 5𝑥𝑦 − 2𝑦𝑧 − 2𝑧𝑥 + 10𝑥𝑦𝑧
(c) Subtract 4𝑝2𝑞 − 3𝑝𝑞 + 5𝑝𝑞2 − 8𝑝 + 7𝑞 − 10 from 18 − 3𝑝 − 11𝑞 + 5𝑝𝑞 − 2𝑝𝑞2 + 5𝑝2𝑞
Sol.4)

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-3

Exercise 9.2

Q.1) Find the product of the following pairs of monomials:
(i) 4 , 7𝑝 (ii) – 4𝑝, 7𝑝 (iii) −4𝑝, 7𝑝𝑞 (iv) 4𝑝3, −3𝑝 (v) 4𝑝, 0
Sol.1) (i) 4 , 7𝑝
4 × 7 𝑝 = 28𝑝
(ii) – 4𝑝, 7𝑝
4𝑝 × 7𝑝 = −28𝑝2
(iii) −4𝑝, 7𝑝𝑞
4𝑝 × 7𝑝𝑞 = −28𝑝2𝑞
(iv) 4𝑝3, −3𝑝
4𝑝3𝑞 × − 3𝑝 = −12𝑝4𝑞
(v) 4𝑝, 0
4𝑝 × 0 = 0

Q.2) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively: 
(𝑝, 𝑞); (10𝑚, 5𝑛); (20𝑥2, 5𝑦2); (4𝑥, 3𝑥2); (3𝑚𝑛, 4𝑛𝑝)
Sol.2) Area = Length × breadth
(i) 𝑝 × 𝑞 = 𝑝𝑞
(ii) 10𝑚 × 5𝑛 = 50𝑚𝑛
(iii) 20𝑥2 × 5𝑦2 = 100𝑥2𝑦2
(iv) 4𝑥 × 3𝑥2 = 12𝑥3
(v) 3𝑚𝑛 × 4𝑛𝑝 = 12𝑚𝑛2𝑝

Q.3) Complete the following table of products:

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-4

Q.4) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5𝑎, 3𝑎2, 7𝑎4 (ii) 2𝑝, 4𝑞, 8𝑟 (iii) 𝑥𝑦, 2𝑥2𝑦, 2𝑥𝑦2 (iv) 𝑎, 2𝑏, 3𝑐
Sol.4) We know that,
Volume = Length × Breadth × Height
(i) Volume = 5𝑎 × 3𝑎2 × 7𝑎4 = 5 × 3 × 7 × 𝑎 × 𝑎2 × 𝑎4 = 105 𝑎7
(ii) Volume = 2𝑝 × 4𝑞 × 8𝑟 = 2 × 4 × 8 × 𝑝 × 𝑞 × 𝑟 = 64𝑝𝑞𝑟
(iii) Volume = 𝑥𝑦 × 2𝑥2𝑦 × 2𝑥𝑦2 = 2 × 2 × 𝑥𝑦 × 𝑥2𝑦 × 𝑥𝑦2 = 4𝑥4𝑦4
(iv) Volume = 𝑎 × 2𝑏 × 3𝑐 = 2 × 3 × 𝑎 × 𝑏 × 𝑐 = 6𝑎𝑏𝑐

Q.5) Obtain the product of
(i) 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 (ii) 𝑎, − 𝑎2, 𝑎3 (iii) 2, 4𝑦, 8𝑦2, 16𝑦3
(iv) 𝑎, 2𝑏, 3𝑐, 6𝑎𝑏𝑐 (v) 𝑚, − 𝑚𝑛, 𝑚𝑛𝑝
Sol.5) (i) 𝑥𝑦 × 𝑦𝑧 × 𝑧𝑥 = 𝑥2𝑦2𝑧2
(ii) 𝑎 × (− 𝑎2) × 𝑎3 = − 𝑎6
(iii) 2 × 4𝑦 × 8𝑦× 16𝑦3 = 2 × 4 × 8 × 16 × 𝑦 × 𝑦2 × 𝑦3 = 1024 𝑦6
(iv) 𝑎 × 2𝑏 × 3𝑐 × 6𝑎𝑏𝑐 = 2 × 3 × 6 × 𝑎 × 𝑏 × 𝑐 × 𝑎𝑏𝑐 = 36𝑎2 𝑏2𝑐2
(v) 𝑚 × (− 𝑚𝑛) × 𝑚𝑛𝑝 = − 𝑚3𝑛2𝑝

Exercise 9.3

Q.1) Carry out the multiplication of the expressions in each of the following pairs.
(i) 4𝑝, 𝑞 + 𝑟 (ii) 𝑎𝑏, 𝑎 − 𝑏 (iii) 𝑎 + 𝑏, 7𝑎2𝑏2
(iv) 𝑎2 – 9, 4𝑎 (v) 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝, 0
Sol.1) (i) (4𝑝) × (𝑞 + 𝑟) = (4𝑝 × 𝑞) + (4𝑝 × 𝑟) = 4𝑝𝑞 + 4𝑝𝑟
(ii) (𝑎𝑏) × (𝑎 − 𝑏) = (𝑎𝑏 × 𝑎) + [𝑎𝑏 × (− 𝑏)] = 𝑎2𝑏 − 𝑎𝑏2
(iii) (𝑎 + 𝑏) × (7𝑎2 𝑏2) = (𝑎 × 7𝑎2 𝑏2) + (𝑏 × 7𝑎2 𝑏2) = 7𝑎3𝑏2 + 7𝑎2𝑏3
(iv) (𝑎2 − 9) × (4𝑎) = (𝑎2 × 4𝑎) + (− 9) × (4𝑎) = 4𝑎3 − 36𝑎
(v) (𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝) × 0 = (𝑝𝑞 × 0) + (𝑞𝑟 × 0) + (𝑟𝑝 × 0) = 0

Q.2) Complete the table

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-5

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-6

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-7

Q.4) (a) Simplify 3𝑥 (4𝑥 − 5) + 3 and find its values for (i) 𝑥 = 3, (ii) 𝑥 = 1/2
(b) 𝑎 (𝑎2 + 𝑎 + 1) + 5 and find its values for (i) 𝑎 = 0, (ii) 𝑎 = 1, (iii) 𝑎 = − 1.
Sol.4) (a) 3𝑥 (4𝑥 − 5) + 3 = 12𝑥2 − 15𝑥 + 3
(i) For 𝑥 = 3, 12𝑥2 − 15𝑥 + 3 = 12 (3)2 − 15(3) + 3
= 108 − 45 + 3
= 66
(ii) For 𝑥 = 1/2, 12𝑥2 − 15𝑥 + 3 = 12 (1/2)2 − 15 (1/2) + 3 
= 6 − 15/2
= 12 − 15/2 = −3/2

(b) 𝑎 (𝑎2 + 𝑎 + 1) + 5 = 𝑎3 + 𝑎2 + 𝑎 + 5
(i) For 𝑎 = 0, 𝑎3 + 𝑎2 + 𝑎 + 5 = 0 + 0 + 0 + 5 = 5
(ii) For 𝑎 = 1, 𝑎3 + 𝑎2 + 𝑎 + 5 = (1)3 + (1)2 + 1 + 5
= 1 + 1 + 1 + 5 = 8
(iii) For 𝑎 = −1, 𝑎3 + 𝑎2 + 𝑎 + 5 = (−1)3 + (−1)2 + (−1) + 5
= − 1 + 1 − 1 + 5 = 4

Q.5) (a) Add: 𝑝 (𝑝 − 𝑞), 𝑞 (𝑞 − 𝑟) and 𝑟 (𝑟 − 𝑝)
(b) Add: 2𝑥 (𝑧 − 𝑥 − 𝑦) and 2𝑦 (𝑧 − 𝑦 − 𝑥)
(c) Subtract: 3𝑙 (𝑙 − 4𝑚 + 5𝑛) from 4𝑙 (10𝑛 − 3𝑚 + 2𝑙)
(d) Subtract: 3𝑎 (𝑎 + 𝑏 + 𝑐) − 2𝑏 (𝑎 − 𝑏 + 𝑐) from 4𝑐 (− 𝑎 + 𝑏 + 𝑐)
Sol.5) a) 𝑝(𝑝 − 𝑞) + 𝑞(𝑞 − 𝑟) + 𝑟(𝑟 − 𝑝)
= 𝑝2 − 𝑝𝑞 + 𝑞2 − 𝑞𝑟 + 𝑟2 − 𝑟𝑝
= 𝑝2 + 𝑞2 + 𝑟2 − 𝑝𝑞 − 𝑞𝑟 − 𝑟𝑝

b) 2𝑥(𝑧 − 𝑥 − 𝑦) + 2𝑦(𝑧 − 𝑦 − 𝑥)
= 2𝑥𝑧 − 2𝑥2 − 2𝑥𝑦 + 2𝑦𝑧 − 2𝑦2 − 2𝑥𝑦
= 2𝑥𝑧 − 2𝑥𝑦 − 2𝑥𝑦 + 2𝑦𝑧 − 2𝑥2 − 2𝑦2
= −2𝑥2 − 2𝑦2 − 4𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥

c) 4𝑙 (10𝑛 − 3𝑚 + 2𝑙) − 3𝑙 (𝑙 – 4𝑚 + 5𝑛)
= 40𝑙𝑛 − 12𝑙𝑚 + 8𝑙2 − 3𝑙2 + 12𝑙𝑚 − 15𝑙𝑛
= 8𝑙2 − 3𝑙2 − 12𝑙𝑚 + 12𝑙𝑚 + 40𝑙𝑛 − 15𝑙𝑛
= 5𝑙2 + 25𝑙𝑛

d) 4𝑐(−𝑎 + 𝑏 + 𝑐) − [3𝑎(𝑎 + 𝑏 + 𝑐) − 2𝑏(𝑎 − 𝑏 + 𝑐)]
= −4𝑎𝑐 + 4𝑏𝑐 + 4𝑐2 − [3𝑎2 + 3𝑎𝑏 + 3𝑎𝑐 − 2𝑎𝑏 + 2𝑏2 − 2𝑏𝑐
= −4𝑎𝑐 + 4𝑏𝑐 + 4𝑐2 − [3𝑎2 + 2𝑏2 + 3𝑎𝑏 − 2𝑏𝑐 + 3𝑎𝑐 − 2𝑎𝑏]
= −4𝑎𝑐 + 4𝑏𝑐 + 4𝑐2 − [3𝑎2 + 2𝑏2 + 𝑎𝑏 + 3𝑎𝑐 − 2𝑏𝑐]
= −4𝑎𝑐 + 4𝑏𝑐 + 4𝑐2 − 3𝑎2 − 2𝑏2 − 𝑎𝑏 − 3𝑎𝑐 + 2𝑏𝑐
= −3𝑎2 − 2𝑏2 + 4𝑐2 − 𝑎𝑏 + 4𝑏𝑐 + 2𝑏𝑐 − 4𝑎𝑐 − 3𝑎𝑐
= −3𝑎2 − 2𝑏2 + 4𝑐2 − 𝑎𝑏 + 6𝑏𝑐 − 7𝑎𝑐

Exercise 9.4

Q.1) Multiply the binomials.
(i) (2𝑥 + 5) and (4𝑥 − 3) (ii) (𝑦 − 8) and (3𝑦 − 4)
(iii) (2.5𝑙 − 0.5𝑚) and (2.5𝑙 + 0.5𝑚) (iv) (𝑎 + 3𝑏) and (𝑥 + 5)
(v) (2𝑝𝑞 + 3𝑞2)and (3𝑝𝑞 − 2𝑞2) (vi) (3/4 𝑎2 + 3𝑏2) and 4 (𝑎2 −2/3 𝑏2)
Sol.1) (i) (2𝑥 + 5) × (4𝑥 − 3)
= 2𝑥 × (4𝑥 − 3) + 5 × (4𝑥 − 3)
= 8𝑥2 − 6𝑥 + 20𝑥 − 15
= 8𝑥2 + 14𝑥 − 15                 (By adding like terms)

(ii) (𝑦 − 8) × (3𝑦 − 4)
= 𝑦 × (3𝑦 − 4) − 8 × (3𝑦 − 4)
= 3𝑦2 − 4𝑦 − 24𝑦 + 32
= 3𝑦2 − 28𝑦 + 32                  (By adding like terms)

(iii) (2.5𝑙 − 0.5𝑚) × (2.5𝑙 + 0.5𝑚)
= 2.5𝑙 × (2.5𝑙 + 0.5𝑚) − 0.5𝑚 (2.5𝑙 + 0.5𝑚)
= 6.25𝑙2 + 1.25𝑙𝑚 − 1.25𝑙𝑚 − 0.25𝑚2
= 6.25𝑙− 0.25𝑚2

(iv) (𝑎 + 3𝑏) × (𝑥 + 5)
= 𝑎 × (𝑥 + 5) + 3𝑏 × (𝑥 + 5)
= 𝑎𝑥 + 5𝑎 + 3𝑏𝑥 + 15𝑏

(v) (2𝑝𝑞 + 3𝑞2) × (3𝑝𝑞 − 2𝑞2)
= 2𝑝𝑞 × (3𝑝𝑞 − 2𝑞2) + 3𝑞2 × (3𝑝𝑞 − 2𝑞2)
= 6𝑝2𝑞2 − 4𝑝𝑞3 + 9𝑝𝑞3 − 6𝑞4
= 6𝑝2𝑞2 + 5𝑝𝑞2 − 6𝑞4

Q.2) Find the product.
(i) (5 − 2𝑥) (3 + 𝑥) (ii) (𝑥 + 7𝑦) (7𝑥 − 𝑦)
(iii) (𝑎2 + 𝑏) (𝑎 + 𝑏2) (iv) (𝑝2 − 𝑞2) (2𝑝 + 𝑞)
Sol.2) (i) (5 − 2𝑥) (3 + 𝑥)
= 5 (3 + 𝑥) − 2𝑥 (3 + 𝑥)
= 15 + 5𝑥 − 6𝑥 − 2𝑥2
= 15 − 𝑥 − 2𝑥2

(ii) (𝑥 + 7𝑦) (7𝑥 − 𝑦)
= 𝑥 (7𝑥 − 𝑦) + 7𝑦 (7𝑥 − 𝑦)
= 7𝑥2 − 𝑥𝑦 + 49𝑥𝑦 − 7𝑦2
= 7𝑥2 + 48𝑥𝑦 − 7𝑦2

(iii) (𝑎2 + 𝑏) (𝑎 + 𝑏2)
= 𝑎2(𝑎 + 𝑏2) + 𝑏 (𝑎 + 𝑏2)
= 𝑎3 + 𝑎2𝑏2 + 𝑎𝑏 + 𝑏3

(iv) (𝑝2 − 𝑞2) (2𝑝 + 𝑞)
= 𝑝2(2𝑝 + 𝑞) − 𝑞2(2𝑝 + 𝑞)
= 2𝑝3 + 𝑝2𝑞 − 2𝑝𝑞2 − 𝑞3

Q.3) Simplify.
(i) (𝑥2 − 5) (𝑥 + 5) + 25
(ii) (𝑎2 + 5) (𝑏3 + 3) + 5
(iii) (𝑡 + 𝑠2) (𝑡2 − 𝑠)
(iv) (𝑎 + 𝑏) (𝑐 − 𝑑) + (𝑎 − 𝑏) (𝑐 + 𝑑) + 2 (𝑎𝑐 + 𝑏𝑑)
(v) (𝑥 + 𝑦) (2𝑥 + 𝑦) + (𝑥 + 2𝑦) (𝑥 − 𝑦)
(vi) (𝑥 + 𝑦) (𝑥2 − 𝑥𝑦 + 𝑦2)
(vii) (1.5𝑥 − 4𝑦) (1.5𝑥 + 4𝑦 + 3) − 4.5𝑥 + 12𝑦
(viii) (𝑎 + 𝑏 + 𝑐) (𝑎 + 𝑏 − 𝑐)
Sol.3) (i) (𝑥2 − 5) (𝑥 + 5) + 25
= 𝑥2 (𝑥 + 5) − 5 (𝑥 + 5) + 25
= 𝑥3 + 5𝑥2 − 5𝑥 − 25 + 25
= 𝑥3 + 5𝑥2 − 5𝑥

(ii) (𝑎2 + 5) (𝑏3 + 3) + 5
= 𝑎2(𝑏3 + 3) + 5 (𝑏3 + 3) + 5
= 𝑎2𝑏3 + 3𝑎2 + 5𝑏3 + 15 + 5
= 𝑎2𝑏3 + 3𝑎2 + 5𝑏3 + 20

(iii) (𝑡 + 𝑠2) (𝑡2 − 𝑠)
= 𝑡 (𝑡2 − 𝑠) + 𝑠2 (𝑡2 − 𝑠)
= 𝑡3 − 𝑠𝑡 + 𝑠2𝑡2 − 𝑠3

(iv) (𝑎 + 𝑏) (𝑐 − 𝑑) + (𝑎 − 𝑏) (𝑐 + 𝑑) + 2 (𝑎𝑐 + 𝑏𝑑)
= 𝑎 (𝑐 − 𝑑) + 𝑏 (𝑐 − 𝑑) + 𝑎 (𝑐 + 𝑑) − 𝑏 (𝑐 + 𝑑) + 2 (𝑎𝑐 + 𝑏𝑑)
= 𝑎𝑐 − 𝑎𝑑 + 𝑏𝑐 − 𝑏𝑑 + 𝑎𝑐 + 𝑎𝑑 − 𝑏𝑐 − 𝑏𝑑 + 2𝑎𝑐 + 2𝑏𝑑
= (𝑎𝑐 + 𝑎𝑐 + 2𝑎𝑐) + (𝑎𝑑 − 𝑎𝑑) + (𝑏𝑐 − 𝑏𝑐) + (2𝑏𝑑 − 𝑏𝑑 − 𝑏𝑑)
= 4𝑎𝑐

(v) (𝑥 + 𝑦) (2𝑥 + 𝑦) + (𝑥 + 2𝑦) (𝑥 − 𝑦)
= 𝑥 (2𝑥 + 𝑦) + 𝑦 (2𝑥 + 𝑦) + 𝑥 (𝑥 − 𝑦) + 2𝑦 (𝑥 − 𝑦)
= 2𝑥2 + 𝑥𝑦 + 2𝑥𝑦 + 𝑦2 + 𝑥2 − 𝑥𝑦 + 2𝑥𝑦 − 2𝑦2
= (2𝑥2 + 𝑥2) + (𝑦2 − 2𝑦2) + (𝑥𝑦 + 2𝑥𝑦 − 𝑥𝑦 + 2𝑥𝑦)
= 3𝑥2 − 𝑦2 + 4𝑥𝑦

(vi) (𝑥 + 𝑦) (𝑥2 − 𝑥𝑦 + 𝑦2)
= 𝑥 (𝑥2 − 𝑥𝑦 + 𝑦2) + 𝑦 (𝑥2 − 𝑥𝑦 + 𝑦2)
= 𝑥3 − 𝑥2𝑦 + 𝑥𝑦2 + 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3
= 𝑥3 + 𝑦3 + (𝑥𝑦2 − 𝑥𝑦2) + (𝑥2𝑦 − 𝑥2𝑦)
= 𝑥3 + 𝑦3

(vii) (1.5𝑥 − 4𝑦) (1.5𝑥 + 4𝑦 + 3) − 4.5𝑥 + 12𝑦
= 1.5𝑥 (1.5𝑥 + 4𝑦 + 3) − 4𝑦 (1.5𝑥 + 4𝑦 + 3) − 4.5𝑥 + 12𝑦
= 2.25 𝑥2 + 6𝑥𝑦 + 4.5𝑥 − 6𝑥𝑦 − 16𝑦2 − 12𝑦 − 4.5𝑥 + 12𝑦
= 2.25 𝑥2 + (6𝑥𝑦 − 6𝑥𝑦) + (4.5𝑥 − 4.5𝑥) − 16𝑦2 + (12𝑦 − 12𝑦)
= 2.25𝑥2 − 16𝑦2

(viii) (𝑎 + 𝑏 + 𝑐) (𝑎 + 𝑏 − 𝑐)
= 𝑎 (𝑎 + 𝑏 − 𝑐) + 𝑏 (𝑎 + 𝑏 − 𝑐) + 𝑐 (𝑎 + 𝑏 − 𝑐)
= 𝑎2 + 𝑎𝑏 − 𝑎𝑐 + 𝑎𝑏 + 𝑏2 − 𝑏𝑐 + 𝑐𝑎 + 𝑏𝑐 − 𝑐2
= 𝑎2 + 𝑏2 − 𝑐2 + (𝑎𝑏 + 𝑎𝑏) + (𝑏𝑐 − 𝑏𝑐) + (𝑐𝑎 − 𝑐𝑎)
= 𝑎22 + 𝑏2 − 𝑐2 + 2𝑎𝑏

Exercise 9.5

Q.1) Use a suitable identity to get each of the following products.
(i) (𝑥 + 3) (𝑥 + 3) (ii) (2𝑦 + 5) (2𝑦 + 5) (iii) (2𝑎 − 7) (2𝑎 − 7)
(iv) (3𝑎 −1/2) (3𝑎 − 1/2) (v) (1.1𝑚 − 0.4) (1.1 𝑚 + 0.4) (vi) (𝑎2 + 𝑏2) (− 𝑎2 + 𝑏2)
(vii) (6𝑥 − 7) (6𝑥 + 7) (viii) (− 𝑎 + 𝑐) (− 𝑎 + 𝑐) (ix) (𝑥/2 + 3𝑦/4) (𝑥/2 + 3𝑦/4)
(x) (7𝑎 − 9𝑏) (7𝑎 − 9𝑏)
Sol.1) The products will be as follows.
(i) (𝑥 + 3) (𝑥 + 3)
= (𝑥 + 3)2
= (𝑥)2 + 2(𝑥) (3) + (3)2 [(𝑎 + 𝑏)2
= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 𝑥2 + 6𝑥 + 9

(ii) (2𝑦 + 5) (2𝑦 + 5) = (2𝑦 + 5)2
= (2𝑦)2 + 2(2𝑦) (5) + (5)2 [(𝑎 + 𝑏)2
= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 4𝑦+ 20𝑦 + 25

(iii) (2𝑎 − 7) (2𝑎 − 7) = (2𝑎 − 7)2
= (2𝑎)2 − 2(2𝑎) (7) + (7)2 [(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= 4𝑎2 − 28𝑎 + 49

(iv) (3𝑎 −1/2) (3𝑎 − 1/2)
= (3𝑎 − 12)2
= (3𝑎)2 − 2 × 3𝑎 × 1/2 + (1/2)2
[(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= 9𝑎2 − 3𝑎 + 14

(v) (1.1𝑚 − 0.4) (1.1 𝑚 + 0.4)
= (1.1𝑚)2 − (0.4)2 [(𝑎 + 𝑏) (𝑎 − 𝑏) = 𝑎2 − 𝑏22]
= 1.21𝑚2 − 0.16

(vi) (𝑎2 + 𝑏2) (− 𝑎2 + 𝑏2)
= (𝑏2 + 𝑎2) (𝑏2 − 𝑎2)
= (𝑏2)2 − (𝑎2)2 [(𝑎 + 𝑏) (𝑎 − 𝑏) = 𝑎− 𝑏2]
= 𝑏4 − 𝑎4

(vii) (6𝑥 − 7) (6𝑥 + 7)
= (6𝑥)2 − (7)2 [(𝑎 + 𝑏) (𝑎 − 𝑏) = 𝑎2 − 𝑏2]
= 36𝑥2 – 49

(viii) (− 𝑎 + 𝑐) (− 𝑎 + 𝑐)
= (− 𝑎 + 𝑐)2
= (− 𝑎)2 + 2(− 𝑎) (𝑐) + (𝑐)2            [(𝑎 + 𝑏)2= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 𝑎2 − 2𝑎𝑐 + 𝑐2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-9

(x) (7𝑎 − 9𝑏) (7𝑎 − 9𝑏)
= (7𝑎 − 9𝑏)2
= (7𝑎)2 − 2(7𝑎)(9𝑏) + (9𝑏)2 [(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= 49𝑎2 − 126𝑎𝑏 + 81𝑏2

Q.2) Use the identity (𝑥 + 𝑎) (𝑥 + 𝑏) = 𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏 to find the following products.
(i) (𝑥 + 3) (𝑥 + 7) (ii) (4𝑥 + 5) (4𝑥 + 1) (iii) (4𝑥 − 5) (4𝑥 − 1)
(iv) (4𝑥 + 5) (4𝑥 − 1) (v) (2𝑥 + 5𝑦) (2𝑥 + 3𝑦) (vi) (2𝑎2 + 9) (2𝑎2 + 5)
(vii) (𝑥𝑦𝑧 − 4) (𝑥𝑦𝑧 − 2)
Sol.2) The products will be as follows.
(i) (𝑥 + 3) (𝑥 + 7)
= 𝑥2 + (3 + 7) 𝑥 + (3) (7)
= 𝑥2 + 10𝑥 + 21

(ii) (4𝑥 + 5) (4𝑥 + 1)
= (4𝑥)2 + (5 + 1) (4𝑥) + (5) (1)
= 16𝑥2 + 24𝑥 + 5

(iii) (4𝑥 – 5)(4𝑥 – 1)
= (4𝑥)2 + (−5 − 1)4𝑥 + (−5) × (−1)
= 16𝑥2 + (−6) × 4𝑥 + 5 = 16𝑥2 − 24𝑥 + 5

(iv) (4𝑥 + 5)(4𝑥 – 1)
= (4𝑥)2 + {5 × (−1)} × 4𝑥 + 5 × (−1)
= 16𝑥2 + (5 − 1) × 4𝑥 − 5
= 16𝑥2 + 4 × 4𝑥 − 5
= 16𝑥2 + 16𝑥 − 5

(v) (2𝑥 + 5𝑦) (2𝑥 + 3𝑦)
= (2𝑥)2 + (5𝑦 + 3𝑦) (2𝑥) + (5𝑦) (3𝑦)
= 4𝑥2 + 16𝑥𝑦 + 15𝑦2

(vi) (2𝑎2 + 9) (2𝑎2 + 5)
= (2𝑎2)2 + (9 + 5) (2𝑎2) + (9) (5)
= 4𝑎4 + 28𝑎2 + 45

(vii) (𝑥𝑦𝑧 − 4) (𝑥𝑦𝑧 − 2)
= (𝑥𝑦𝑧)2 + (−4 − 2) × 𝑥𝑦𝑧 + (−4) × (−2)
= 𝑥2𝑦2𝑧2 − 6𝑥𝑦𝑧 + 8

Q.3) Find the following squares by suing the identities.
(i) (𝑏 − 7)2
(ii) (𝑥𝑦 + 3𝑧)2
(iii) (6𝑥2 − 5𝑦)2 (iv) (2/3 𝑚 + 3/2 𝑛)2
(v) (0.4𝑝 − 0.5𝑞)2
(vi) (2𝑥𝑦 + 5𝑦)2
Sol.3) (i) (𝑏 − 7)22
= (𝑏)2 − 2(𝑏) (7) + (7)2 [(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2
= 𝑏2 − 14𝑏 + 49

(ii) (𝑥𝑦 + 3𝑧)22
= (𝑥𝑦)2 + 2(𝑥𝑦) (3𝑧) + (3𝑧)2 [(𝑎 + 𝑏)2
= 𝑎2 + 2𝑎𝑏 + 𝑏2]
= 𝑥2𝑦2 + 6𝑥𝑦𝑧 + 9𝑧2

(iii) (6𝑥2 − 5𝑦)2
= (6𝑥2)2 − 2(6𝑥2) (5𝑦) + (5𝑦)2 [(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + 𝑏2]
= 36𝑥2 − 60𝑥2𝑦 + 25𝑦2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-8

(v) (0.4𝑝 − 0.5𝑞)2
= (0.4𝑝)2 − 2 (0.4𝑝) (0.5𝑞) + (0.5𝑞)2[(𝑎 − 𝑏)2
= 𝑎2 − 2𝑎𝑏 + b2]
= 0.16𝑝2 − 0.4𝑝𝑞 + 0.25q2
(vi) (2𝑥𝑦 + 5𝑦)2
= (2𝑥𝑦)2 + 2(2𝑥𝑦) (5𝑦) + (5𝑦)2 [(𝑎 + 𝑏)2
= 𝑎2 + 2𝑎𝑏 + b2]
= 4x2𝑦2 + 20𝑥𝑦2 + 25𝑦2

Q.4) Simplify.
(i) (𝑎2 − b2)2
(ii) (2𝑥 + 5)2 − (2𝑥 − 5)2
(iii) (7𝑚 − 8𝑛)2 + (7𝑚 + 8𝑛)2
(iv) (4𝑚 + 5𝑛)2 + (5𝑚 + 4𝑛)2
(v) (2.5𝑝 − 1.5𝑞)2 − (1.5𝑝 − 2.5𝑞)2 (vi) (𝑎𝑏 + 𝑏𝑐)2 − 2𝑎b2𝑐
(vii) (m2 − 𝑛2𝑚)2 + 2𝑚3𝑛2
Sol.4) (i) (𝑎2 − b2)2
= (𝑎2)2 − 2(𝑎2) (b2) + (b2)2                                                     [(a − b)2 = 𝑎2 − 2ab + b2 ]
= a4 − 𝑎2b2 + b4
(ii) (2x +5)2 − (2x − 5)2
= (2x)2 + 2(2x) (5) + (5)2 − [(2x)2 − 2(2x) (5) + (5)2]              [(a − b)2 = 𝑎2 − 2ab + b2]
[(a + b)2 = 𝑎2 + 2ab + b2]
= 4x2 + 20x + 25 − [4x2 − 20x + 25]
= 4x2 + 20x + 25 − 4x2 + 20x − 25 = 40x

(iii) (7m − 8n)2 + (7m + 8n)2
= (7m)2 − 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2       [(a − b)2 = 𝑎2 − 2ab + b2 and
(a + b)2 = 𝑎2 + 2ab + b2]
= 49m2 − 112mn + 64𝑛2 + 49m2 + 112mn + 64𝑛2
= 98m2 + 128𝑛2

(iv) (4m + 5n)2 + (5m + 4n)2
= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2        [(a + b)2 = 𝑎2 + 2ab + b2]
= 16m2 + 40mn + 25𝑛2 + 25m2 + 40mn + 16𝑛2
= 41m2 + 80mn + 41𝑛2

(v) (2.5p − 1.5q)2 − (1.5p − 2.5q)2
= (2.5p)2 − 2(2.5p) (1.5q) + (1.5q)2 − [(1.5p)2 − 2(1.5p)(2.5q) + (2.5q)2]              [(a − b)2 = 𝑎2 − 2ab + b2 ]
= 6.25𝑝2 − 7.5pq + 2.25q2 − [2.25𝑝2 − 7.5pq + 6.25q2]
= 6.25𝑝2 − 7.5pq + 2.25q2 − 2.25𝑝2 + 7.5pq − 6.25q2]
= 4𝑝2 − 4q2

(vi) (ab + bc)2 − 2ab2c
= (ab)2 + 2(ab)(bc) + (bc)2 − 2ab2c                         [(a + b)2 = 𝑎2 + 2ab + b2 ]
= 𝑎2b2 + 2ab2c + b2c2 − 2ab2c
= 𝑎2b2 + b2c2

(vii) (m2 − 𝑛2m)2 + 2𝑚3𝑛2
= (m2)2 − 2(m2) (𝑛2m) + (𝑛2m)2 + 2𝑚3𝑛2              [(a − b)2 = 𝑎2 − 2ab + b2 ]
= m4 − 2𝑚3𝑛2 + n4m2 + 2𝑚3𝑛2
= m4 + n4m2

Q.5) `Show that
(i) (3𝑥 + 7)2 − 84𝑥 = (3𝑥 − 7)2
(ii) (9𝑝 − 5𝑞)2 + 180𝑝𝑞 = (9𝑝 + 5𝑞)2

(iv) (4𝑝𝑞 + 3𝑞)2 − (4𝑝𝑞 − 3𝑞)2 = 48𝑝q2
(v) (𝑎 − 𝑏) (𝑎 + 𝑏) + (𝑏 − 𝑐) (𝑏 + 𝑐) + (𝑐 − 𝑎) (𝑐 + 𝑎) = 0
Sol.5)
(i) L.H.S = (3x + 7)2 − 84x
= (3x)2 + 2(3x)(7) + (7)2 − 84x
= 9x2 + 42x + 49 − 84x
= 9x2 − 42x + 49
R.H.S = (3x − 7)2 = (3x)2 − 2(3x)(7) +(7)2
= 9x2 − 42x + 49
L.H.S = R.H.S
(ii) L.H.S = (9p − 5q)2 + 180pq
= (9p)2 − 2(9p)(5q) + (5q)2 − 180pq
= 81p2 − 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
R.H.S = (9p + 5q)2
= (9p)2 + 2(9p)(5q) + (5q)2
= 81p2 + 90pq + 25q2q2
L.H.S = R.H.S

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities

(iv) L.H.S = (4pq + 3q)2 − (4pq − 3q)2
= (4pq)2 + 2(4pq)(3q) + (3q)2 − [(4pq)2 − 2(4pq) (3q) + (3q)2]
= 16p2q2 + 24pq2 + 9q2 − [16p2q2 − 24pq2 + 9q2]
= 16p2q2 + 24pq2 + 9q2 −16p2q2 + 24pq2 − 9q2
= 48pq2 = R.H.S

(v) L.H.S = (a − b) (a + b) + (b − c) (b + c) + (c − a) (c + a)
= (a2 − b2) + (b2 − c2) + (c2 − a2) = 0 = R.H.S

Q.6) Using identities, evaluate.
(i) 712 (ii) 992 (iii) 1022 (iv) 9982 (v) (5.2)2 (vi) 297 × 303
(vii) 78 × 82 (viii) 8.92 (ix) 1.05 × 9.5
Sol.6) (i) 712 = (70 + 1)2
= (70)2 + 2(70) (1) + (1)2              [(𝑎 + 𝑏)2= a2 + 2𝑎𝑏 + b2 ]
= 4900 + 140 + 1 = 5041

(ii) 992 = (100 − 1)2
= (100)2 − 2(100) (1) + (1)2           [(𝑎 − 𝑏)= 𝑎2 − 2𝑎𝑏 + b2 ]
= 10000 − 200 + 1 = 9801

(𝑖𝑖𝑖)1022 = (100 + 2)2
= (100)2 + 2(100)(2) + (2)2             [(𝑎 + 𝑏)= a2 + 2𝑎𝑏 + b2 ]
= 10000 + 400 + 4 = 10404

(𝑖𝑣)9982 = (1000 − 2)2
= (1000)2 − 2(1000)(2) + (2)2           [(𝑎 − 𝑏)= a2 − 2𝑎𝑏 + b2 ]
= 1000000 − 4000 + 4 = 996004

(𝑣) (5.2)2 = (5.0 + 0.2)2
= (5.0)2 + 2(5.0) (0.2) + (0.2)2         [(𝑎 + 𝑏)2 = a2 + 2𝑎𝑏 + b2 ]
= 25 + 2 + 0.04 = 27.04

(𝑣𝑖) 297 × 303 = (300 − 3) × (300 + 3)
= (300)2 − (3)2                                  [(𝑎 + 𝑏) (𝑎 − 𝑏) = a2 − b2
= 90000 − 9 = 89991

(𝑣𝑖𝑖) 78 × 82 = (80 − 2) (80 + 2)
= (80)2 − (2)2                                    [(𝑎 + 𝑏) (𝑎 − 𝑏) = a2 − b2]
= 6400 − 4 = 6396

(𝑣𝑖𝑖𝑖) 8.92 = (9.0 − 0.1)2
= (9.0)2 − 2(9.0) (0.1) + (0.1)2         [(𝑎 − 𝑏)2 = a2 − 2𝑎𝑏 + b2]
= 81 − 1.8 + 0.01 = 79.21

(𝑖𝑥) 1.05 × 9.5 = 1.05 × 0.95 × 10
= (1 + 0.05) (1 − 0.05) × 10
= [(1)2 − (0.05)2] × 10
= [1 − 0.0025] × 10                         [(𝑎 + 𝑏) (𝑎 − 𝑏) = a2 − b2]
= 0.9975 × 10 = 9.975

Q.7) Using a2 − b2 = (𝑎 + 𝑏) (𝑎 − 𝑏), find
(i) 512 – 492 (ii) (1.02)2 – (0.98)2 (iii) 1532 − 1472 (iv) 12.12 − 7.92
Sol.7) (𝑖) 512 − 492
= (51 + 49) (51 − 49)
= (100) (2) = 200

(𝑖𝑖)(1.02)2 − (0.98)2
= (1.02 + 0.98) (1.02 − 0.98)
= (2) (0.04) = 0.08

(𝑖𝑖𝑖)1532 − 1472
= (153 + 147) (153 − 147)
= (300) (6) = 1800

(𝑖𝑣)12.12 − 7.92
= (12.1 + 7.9) (12.1 − 7.9)
= (20.0) (4.2) = 84

Q.8) Using (𝑥 + 𝑎) (𝑥 + 𝑏) = 𝑥2 + (𝑎 + 𝑏) 𝑥 + 𝑎𝑏, find
(i) 103 × 104 (ii) 5.1 × 5.2 (iii) 103 × 98 (iv) 9.7 × 9.8
Sol.8) (𝑖) 103 × 104
= (100 + 3) (100 + 4)
= (100)2 + (3 + 4) (100) + (3) (4)
= 10000 + 700 + 12 = 10712

(𝑖𝑖) 5.1 × 5.2
= (5 + 0.1) (5 + 0.2)
= (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)
= 25 + 1.5 + 0.02 = 26.52

(𝑖𝑖𝑖) 103 × 98
= (100 + 3) (100 − 2)
= (100)2 + [3 + (− 2)] (100) + (3) (− 2)
= 10000 + 100 − 6
= 10094

(𝑖𝑣) 9.7 × 9.8
= (10 − 0.3) (10 − 0.2)
= (10)2 + [(− 0.3) + (− 0.2)] (10) + (− 0.3) (− 0.2)
= 100 + (− 0.5)10 + 0.06 = 100.06 − 5 = 95.06

 

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

The above provided NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities is available on our website for free download in Pdf. You can read the solutions to all questions given in your Class 8 Mathematics textbook online or you can easily download them in pdf. The answers to each question in Chapter 9 Algebraic expressions and identities of Mathematics Class 8 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 9 Algebraic expressions and identities Class 8 chapter of Mathematics so that it can be easier for students to understand all answers. These solutions of Chapter 9 Algebraic expressions and identities NCERT Questions given in your textbook for Class 8 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 8.

Where can I download latest NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities

You can download the NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities for latest session from StudiesToday.com

Are the Class 8 Mathematics Chapter 9 Algebraic expressions and identities NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been made available here for latest academic session

How can I improve my scores by reading NCERT Solutions in Class 8 Mathematics Chapter 9 Algebraic expressions and identities

Regular revision of NCERT Solutions given on studiestoday for Class 8 subject Mathematics Chapter 9 Algebraic expressions and identities can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 9 Algebraic expressions and identities Class 8 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 9 Algebraic expressions and identities Class 8 Mathematics solutions based on the latest books for the current academic session

Are NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics available in multiple languages

Yes, NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 9 Algebraic expressions and identities?

All questions given in the end of the chapter Chapter 9 Algebraic expressions and identities have been answered by our teachers