Read and download NCERT Class 12 Physics Alternating Current in NCERT book for Class 12 Physics. You can download latest NCERT eBooks chapter wise in PDF format free from Studiestoday.com. This Physics textbook for Class 12 is designed by NCERT and is very useful for students. Please also refer to the NCERT solutions for Class 12 Physics to understand the answers of the exercise questions given at the end of this chapter
NCERT Book for Class 12 Physics Chapter 7 Alternating Current
Class 12 Physics students should refer to the following NCERT Book Chapter 7 Alternating Current in Class 12. This NCERT Book for Class 12 Physics will be very useful for exams and help you to score good marks
Chapter 7 Alternating Current NCERT Book Class 12
ALTERNATING CURRENT
INTRODUCTION
We have so far considered direct current (dc) sources and circuits with dc sources. These currents do not change direction with time. But voltages and currents that vary with time are very common. The electric mains supply in our homes and offices is a voltage that varies like a sine function with time. Such a voltage is called alternating voltage (ac voltage) and the current driven by it in a circuit is called the alternating current (accurrent)*. Today, most of the electrical devices we use require ac voltage. This is mainly because most of the electrical energy sold by power companies is transmitted and distributed as alternating current. The main reason for preferring use of ac voltage over dc voltage is that ac voltages can be easily and efficiently converted from one voltage to the other by means of transformers. Further, electrical energy can also be transmitted economically over long distances. AC circuits exhibit characteristics which are exploited in many devices of daily use. For example, whenever we tune our radio to a favourite station, we are taking advantage of a special property of ac circuits – one of many that you will study in this chapter.
REPRESENTATION OF AC CURRENT AND VOLTAGE BY ROTATING VECTORS — PHASORS
In the previous section, we learnt that the current through a resistor is in phase with the ac voltage. But this is not so in the case of an inductor, a capacitor or a combination of these circuit elements. In order to show phase relationship between voltage and current in an ac circuit, we use the notion of phasors. The analysis of an ac circuit is facilitated by the use of a phasor diagram. A phasor* is a vector which rotates about the origin with angular speed ω, as shown in Fig. 7.4. The vertical components of phasors V and I represent the sinusoidally varying quantities v and i. The magnitudes of phasors V and I represent the amplitudes or the peak values vm and im of these oscillating quantities. Figure 7.4(a) shows the voltage and current phasors and their relationship at time t1 for the case of an ac source connected to a resistor i.e., corresponding to the circuit shown in Fig. 7.1. The projection of voltage and current phasors on vertical axis, i.e., vm sinωt and im sinωt, respectively represent the value of voltage and current at that instant. As they rotate with frequency ω, curves in Fig. 7.4(b) are generated. From Fig. 7.4(a) we see that phasors V and I for the case of a resistor are in the same direction. This is so for all times. This means that the phase angle between the voltage and the current is zero.
EXERCISES
7.1 A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?
7.2 (a) The peak voltage of an ac supply is 300 V. What is the rms voltage?
(b) The rms value of current in an ac circuit is 10 A. What is thepeak current?
7.3 A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.
7.4 A 60 μF capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit.
7.5 In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer.
7.6 Obtain the resonant frequency ωr of a series LCR circuit with L = 2.0H, C = 32 μF and R = 10 Ω. What is the Q-value of this circuit?
7.7 A charged 30 μF capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit?
7.8 Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?
7.9 A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 μF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
7.10 A radio can tune over the frequency range of a portion of MW broadcast band: (800 kHz to 1200 kHz). If its LC circuit has an effective inductance of 200 μH, what must be the range of its variable capacitor?
[Hint: For tuning, the natural frequency i.e., the frequency of free oscillations of the LC circuit should be equal to the frequency of the radiowave.]
7.11 Figure 7.21 shows a series LCR circuit connected to a variable frequency 230 V source. L = 5.0 H, C = 80μF, R = 40 Ω.
(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.
Please refer to attached file for NCERT Class 12 Physics Alternating Current
NCERT Class 12 Physics Electric Charges and Fields |
NCERT Class 12 Physics Electrostatic Potential and Capacitance |
NCERT Class 12 Physics Current Electricity |
NCERT Class 12 Physics Moving Charges and Magnetism |
NCERT Class 12 Physics Magnetism and Matter |
NCERT Class 12 Physics Electromagnetic Induction |
NCERT Class 12 Physics Alternating Current |
NCERT Class 12 Physics Electromagnetic Waves |
NCERT Class 12 Physics Ray Optics and Optical Instruments |
NCERT Class 12 Physics Wave Optics |
NCERT Class 12 Physics Dual Nature of Radiation and Matter |
NCERT Class 12 Physics Atoms |
NCERT Class 12 Physics Nuclei |
NCERT Class 12 Physics Semiconductor Electronics Materials and Devices and Simple Circuits |
NCERT Class 12 Physics Communication Systems |
NCERT Class 12 Physics Answers and Solutions |
NCERT Class 12 Physics Answers and Solutions |
NCERT Class 12 Physics Appendix |
NCERT Class 12 Physics BiblioGraphy |
NCERT Book Class 12 Physics Chapter 7 Alternating Current
The above NCERT Books for Class 12 Physics Chapter 7 Alternating Current have been published by NCERT for latest academic session. The textbook by NCERT for Chapter 7 Alternating Current Physics Class 12 is being used by various schools and almost all education boards in India. Teachers have always recommended students to refer to Chapter 7 Alternating Current NCERT etextbooks as the exams for Class 12 Physics are always asked as per the syllabus defined in these ebooks. These Class 12 Chapter 7 Alternating Current book for Physics also includes collection of question. Along with Physics Class 12 NCERT Book in Pdf for Chapter 7 Alternating Current we have provided all NCERT Books in English Medium for Class 12 which will be really helpful for students who have opted for english language as a medium. Class 12 students will need their books in English so we have provided them here for all subjects in Class 12.
You can download the NCERT Book for Class 12 Physics Chapter 7 Alternating Current for latest session from StudiesToday.com
Yes, you can click on the link above and download chapter wise NCERT Books in PDFs for Class 12 for Physics Chapter 7 Alternating Current
Yes, the NCERT Book issued for Class 12 Physics Chapter 7 Alternating Current have been made available here for latest academic session
You can easily access the link above and download the Class 12 NCERT Books Physics Chapter 7 Alternating Current for each chapter