NCERT Solutions Class 7 Mathematics Chapter 12 Algebraic Expressions have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 7 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 7 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 7 Mathematics are an important part of exams for Class 7 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 7 Mathematics and also download more latest study material for all subjects. Chapter 12 Algebraic Expressions is an important topic in Class 7, please refer to answers provided below to help you score better in exams
Chapter 12 Algebraic Expressions Class 7 Mathematics NCERT Solutions
Students of Class 7 studying Mathematics are advised to carefully go through the NCERT questions and their detailed answers provided here for the chapter Chapter 12 Algebraic Expressions. The questions in the NCERT textbook for Class 7 Mathematics form an important part of school exams. These solutions for Class 7 follow a step-by-step approach and are highly beneficial for exam preparation. Scroll down to view detailed, chapter-wise solutions for Chapter 12 Algebraic Expressions and explore more NCERT solutions and free study materials for Mathematics and other subjects of Class 7.
Chapter 12 Algebraic Expressions NCERT Solutions Class 7 Mathematics
Exercise 12.1
Q.1) Get the algebraic expressions in the following cases using variables, constants and arithmetic operations:
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of m and n.
(vii) Product of numbers y and z subtracted from 10.
(viii) Sum of numbers a and b subtracted from their product.
Sol.1) i) 𝑦 − 𝑧 ii) 𝑥+𝑦/2
iii) 𝑧2 iv) 𝑝𝑞/4
v) 𝑥2 + 𝑦2 vi) 3𝑚𝑛 + 5
vii) 10 − 𝑦𝑧 viii) 𝑎𝑏 − (𝑎 + 𝑏)
Q.2) (i) Identify the terms and their factors in the following expressions, show the terms and factors by tree diagram:
(a) 𝑥 -3 (b) 1 + 𝑥 + 𝑥2 (c) 𝑦 − 𝑦3
(d) 5𝑥𝑦2 + 7𝑥2𝑦 (e) −𝑎𝑏 + 2𝑏2 − 3𝑎2
(ii) Identify the terms and factors in the expressions given below:
(a) -4𝑥 + 5 (b) −4𝑥 + 5𝑦 (c) 5𝑦 + 3𝑦2 (d) 𝑥𝑦 + 2𝑥2𝑦2
(e) 𝑝𝑞 + 𝑞 (f) 1. 𝑎𝑏 − 2.4𝑏 + 3.6𝑎 (g) 3/4 𝑥 + 1/4 (h) 0.1𝑝2 + 0.2𝑞2
Sol.2)
ii) (a) -4𝑥 + 5 (b) −4𝑥 + 5𝑦
Terms −4𝑥, 5 Terms: −4𝑥, 5𝑦
Factors: −4, 𝑥; 5 factors: −4, 𝑥; 5, 𝑦
(c) 5𝑦 + 3𝑦2 (d) 𝑥𝑦 + 2𝑥2𝑦2
Terms: 5𝑦, 3𝑦2 Terms: 𝑥𝑦, 2𝑥2𝑦2
Factors: 5, 𝑦; 3, 𝑦, 𝑦 Factors: 𝑥, 𝑦 ; 2𝑥, 𝑥, 𝑦, 𝑦
(e) 𝑝𝑞 + 𝑞 (f) 1.2𝑎𝑏 − 2.4𝑏 + 3.6𝑎
Terms: 𝑝𝑞, 𝑞 Terms: 1.2𝑎𝑏, −2.4𝑏, 3.6𝑎
Factors: 𝑝, 𝑞 ; 𝑞 Factors: 1.2, 𝑎 , 𝑏 ; −2.4, 𝑏 ; 3.6, 𝑎
(g) 3/4 𝑥 + 1/4 (h) 0.1𝑝2 + 0.2𝑞2
Terms: 3/4 𝑥, 1/4
Terms: 0.1𝑝2, 0.2𝑞2
Factors: 3/4, 𝑥 ; 1/4
Factors: 0.1, 𝑝, 𝑝; 0.2, 𝑞, 𝑞
Q.3) Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) 5 − 3𝑡2 (ii) 1 + 𝑡 + 𝑡2 + 𝑡3 (iii) 𝑥 + 2𝑥𝑦 + 3𝑦
(iv) 100𝑚 + 1000𝑛 (v) −p2q2 + 7𝑝𝑞 (vi) 1.2𝑎 + 0.8𝑏
(vii) 3.14𝑟2 (viii) 2(𝑙 + 𝑏) (ix) 0.1𝑦 + 0.01𝑦2
Sol.3)
Q.4) (a) Identify terms which contain 𝑥 and give the coefficient of 𝑥.
(i) 𝑦2𝑥 + 𝑦 (ii) 13𝑦2 − 8𝑦𝑥 (iii) 𝑥 + 𝑦 + 2 (iv) 5 + 𝑧 + zx
(v) 1 + 𝑥 + 𝑥𝑦 (vi) 12𝑥𝑦2 + 25 (vii) 7𝑥 + 𝑥𝑦2
(b) Identify terms which contain 𝑦2 and give the coefficient of 𝑦2 .
(i) 8 − 𝑥𝑦2 (ii) 5𝑦2 + 7𝑥 (iii) 2𝑥2 − 15𝑥𝑦2 + 7𝑦2
Sol.4)
Q.5) Classify into monomials, binomials and trinomials:
(i) 4𝑦 − 7𝑥 (ii) 𝑦2 (iii) 𝑥 + 𝑦 − 𝑥𝑦 (iv) 100
(v) 𝑎𝑏 − 𝑎 − 𝑏 (vi) 5 − 3𝑡 (vii) 4𝑝2𝑞 − 4𝑝𝑞2 (viii) 7𝑚𝑛
(ix) 𝑧2 − 3𝑧 + 8 (x) 𝑎2 + 𝑏2 (xi) 𝑧2 + 𝑧 (xii) 1 + 𝑥 + 𝑥2
Sol.5) Type of Polynomial
(i) 4𝑦 − 7𝑥 Binomial
(ii) 𝑦2 Monomial
(iii) 𝑥 + 𝑦 − 𝑥𝑦 Trinomial
(iv) 100 Monomial
(v) 𝑎𝑏 − 𝑎 − 𝑏 Trinomial
(vi) 5 − 3𝑡 Binomial
(vii) 4𝑝2𝑞 − 4𝑝𝑞2 Binomial
(viii) 7𝑚𝑛 Monomial
(ix) 𝑧2 − 3𝑧 + 8 Trinomial
(x) 𝑎2 + 𝑏2 Binomial
(xi) 𝑧2 + 𝑧 Binomial
(xii) 1 + 𝑥 + 𝑥2 Trinomial
Q.6) State whether a given pair of terms is of like or unlike terms:
(i) 1, 100 (ii) −7𝑥, (5/2) 𝑥 (iii) −29𝑥, −29𝑦
(iv) 14𝑥𝑦, 42𝑦𝑥 (v) 4𝑚2𝑝, 4𝑚𝑝2 (vi) 12𝑥𝑧, 12𝑥2𝑧2
Sol.6)
The terms which have the same algebraic factors are called like terms and when the terms have different algebraic factors, they are called unlike terms.
Q.7) Identify like terms in the following:
a) −𝑥2𝑦, −4𝑦𝑥2, 8𝑥2, 2𝑥𝑦2, 7𝑦, −11𝑥2 − 100𝑥, −11𝑦𝑥, 20𝑥2𝑦, −6𝑥2, 𝑦 , 2𝑥𝑦 , 3𝑥
b) 10𝑝𝑞, 7𝑝, 8𝑝, −𝑝2𝑞2, −7𝑝𝑞 , −100𝑞 , −23, 12𝑝2𝑞2, −5𝑝2, 41, 2405𝑝,
78𝑞𝑝, 13𝑝2𝑞, 𝑞𝑝2701𝑝2
Sol.7) a) Like terms
i) −𝑥𝑦2, 2𝑥𝑦2 ii) −4𝑦𝑥2, 20𝑥2𝑦 iii) 8𝑥2, −11𝑥2, −6𝑥2
iv) 7𝑦, 𝑦 v) −100𝑥, 3𝑥 vi) −11𝑦𝑥, 2𝑥𝑦
b) Like terms are:
i) 10𝑝𝑞, −7𝑝𝑞 , 78𝑝𝑞 ii) 7𝑝, 2405𝑝 iii) 8𝑞, −100𝑞
iv) −𝑝2𝑞2, 12𝑝2𝑞2 v) −12, 41 vi) −5𝑝2, 701𝑝2
vii) 13𝑝2𝑞, 𝑞𝑝2
Exercise 12.2
Q.1) Simplify combining like terms:
i) 21𝑏 − 32 + 7𝑏 − 20𝑏 ii) −𝑧2 + 13𝑧2 − 5𝑥 + 7𝑧3 − 15𝑧
iii) 𝑝 − (𝑝 − 𝑞) − 𝑞 − (𝑞 − 𝑝) iv) 3𝑎 − 2𝑏 − 𝑎𝑏 − (𝑎 − 𝑏 + 𝑎𝑏) + 3𝑎𝑏 + 𝑏 −𝑎
v) 5𝑥2𝑦 − 5𝑥2 + 3𝑦𝑥2 − 3𝑦2 + 𝑥2 − 𝑦2 + 8𝑥𝑦2 − 3𝑦2
vi) (3𝑦2 + 5𝑦 − 4) − (8𝑦 − 𝑦2 − 4)
Sol.1) i) 21𝑏 − 32 + 7𝑏 − 20𝑏
= 21𝑏 + 7𝑏 − 20𝑏 − 32
= 28𝑏 − 20𝑏 − 32 = 8𝑏 − 32
ii) −z2 + 13z2 − 5𝑥 + 7z3 − 15𝑧
= 7z3 + (−z2 + 13z2) − (5𝑧 + 15𝑧)
= 7z3 + 12z2 − 20𝑧
iii) 𝑝 − (𝑝 − 𝑞) − 𝑞 − (𝑞 − 𝑝)
= 𝑝 − 𝑝 + 𝑞 − 𝑞 − 𝑞 + 𝑝
= 𝑝 − 𝑝 + 𝑝 + 𝑞 − 𝑞 − 𝑞 = 𝑝 − 𝑞
iv) 3𝑎 − 2𝑏 − 𝑎𝑏 − (𝑎 − 𝑏 + 𝑎𝑏) + 3𝑎𝑏 + 𝑏 − 𝑎
= 3𝑎 − 2𝑏 − 𝑎𝑏 − 𝑎 + 𝑏 − 𝑎𝑏 + 3𝑎𝑏 + 𝑏 − 𝑎
= 3𝑎 − 𝑎 − 𝑎 − 2𝑏 + 𝑏 + 𝑏 − 𝑎𝑏 − 𝑎𝑏 + 3𝑎𝑏
= (3𝑎 − 𝑎 − 𝑎) − (2𝑏 − 𝑏 − 𝑏) − (𝑎𝑏 + 𝑎𝑏 − 3𝑎𝑏)
= 𝑎 − 0 − (𝑎 − 𝑏)
= 𝑎 + 𝑎𝑏
v) 5𝑥2𝑦 − 5𝑥2 + 3𝑦𝑥2 − 3𝑦2 + 𝑥2 − 𝑦2 + 8𝑥𝑦2 − 3𝑦2
= 5𝑥2𝑦 + 3𝑦𝑥2 + 8𝑥𝑦2 − 5𝑥2 + 𝑥2 − 3𝑦2 − 𝑦2 − 3𝑦2
= (5𝑥2𝑦 + 3𝑥2𝑦) + 8𝑥𝑦2 − (5𝑥2 − 𝑥2) − (3𝑦2 + 𝑦2 + 3𝑦2)
= 8𝑥2𝑦 + 8𝑥𝑦2 − 4𝑥2 − 7𝑦2
vi) (3𝑦2 + 5𝑦 − 4) − (8𝑦 − 𝑦2 − 4)
= 3𝑦2 + 5𝑦 − 4 − 8𝑦 + 𝑦2 + 4
= (3𝑦2 + 𝑦2) + (5𝑦 − 8𝑦) − (4 − 4)
= 4𝑦2 − 3𝑦 − 0 = 4𝑦2 − 3𝑦
Q.2) Add:
i) 3𝑚𝑛, −5𝑚𝑛, 8𝑚𝑛 − 4𝑚𝑛
ii) 𝑡 − 8𝑡𝑧, 3𝑡𝑧 − 𝑧, 𝑧 − 𝑡
iii) −7𝑚𝑛 + 5, 12𝑚𝑛 + 2, 9𝑚𝑛 − 8, −2𝑚𝑛 − 3
iv) 𝑎 + 𝑏 − 3, 𝑏 − 𝑎 + 3, 𝑎 − 𝑏 + 3
v) 14𝑥 + 10𝑦 − 12𝑥𝑦 − 13, 18 − 7𝑥 − 10𝑦 + 8𝑥𝑦, 4𝑥𝑦
vi) 5𝑚 − 7𝑛, 3𝑛 − 4𝑚 + 2, 2𝑚 − 3𝑚𝑛 − 5
vii) 4𝑥2𝑦, −3𝑥𝑦2, −5𝑥𝑦2, 5𝑥2𝑦
viii) 3𝑝2𝑞2 − 4𝑝𝑞 + 5, −10𝑝2𝑞2, 15 + 9𝑝𝑞 + 7𝑝2𝑞2
ix) 𝑎𝑏 − 4𝑎, 4𝑏 − 𝑎𝑏, 4𝑎 − 4𝑏
x) 𝑥2 − 𝑦2 − 1, 𝑦2 − 1 − 𝑥2 , 1 − 𝑥2 − 𝑦2
Sol.2) i) 3𝑚𝑛, −5𝑚𝑛, 8𝑚𝑛 − 4𝑚𝑛
= 3𝑚𝑛 + (−5𝑚𝑛) + 8𝑚𝑛 + (−4𝑚𝑛)
= (3 − 5 + 8 − 4)𝑚𝑛 = 2𝑚𝑛
ii) 𝑡 − 8𝑡𝑧, 3𝑡𝑧 − 𝑧, 𝑧 − 𝑡
= 𝑡 − 8𝑡𝑧 + 3𝑡𝑧 − 𝑧 + 𝑧 − 𝑡
= 𝑡 − 𝑡 − 8𝑡𝑧 + 3𝑡𝑧 − 𝑧 + 𝑧
= (1 − 1)𝑡 + (−8 + 3)𝑡𝑧 + (−1 + 1)𝑧
= 0 − 5𝑡𝑧 + 0 = −5𝑡𝑧
iii) −7𝑚𝑛 + 5, 12𝑚𝑛 + 2, 9𝑚𝑛 − 8, −2𝑚𝑛 − 3
= −7𝑚𝑛 + 5 + 12𝑚𝑛 + 2 + 9𝑚𝑛 − 8 + (−2𝑚𝑛) − 3
= −7𝑚𝑛 + 12𝑚𝑛 + 9𝑚𝑛 − 2𝑚𝑛 + 5 + 2 − 8 − 3
= (−7 + 12 + 9 − 2)𝑚𝑛 + 7 − 11
= 12𝑚𝑛 − 4
iv) 𝑎 + 𝑏 − 3, 𝑏 − 𝑎 + 3, 𝑎 − 𝑏 + 3
= 𝑎 + 𝑏 − 3 + 𝑏 − 𝑎 + 3 + 𝑎 − 𝑏 + 3
= (𝑎 − 𝑎 + 𝑎) + (𝑏 + 𝑏 − 𝑏) − 3 + 3 + 3
= 𝑎 + 𝑏 + 3
v) 14𝑥 + 10𝑦 − 12𝑥𝑦 − 13, 18 − 7𝑥 − 10𝑦 + 8𝑥𝑦, 4𝑥𝑦
= 14𝑥 + 10𝑦 − 12𝑥𝑦 − 13 + 18 − 7𝑥 − 10𝑦 + 8𝑥𝑦 + 4𝑥𝑦
= 14𝑥 − 7𝑥 + 10𝑦 − 10𝑦 − 12𝑥𝑦 + 8𝑥𝑦 + 4𝑥𝑦 − 13 + 18
= 7𝑥 + 0𝑦 + 0𝑥𝑦 + 5 = 7𝑥 + 5
vi) 5𝑚 − 7𝑛, 3𝑛 − 4𝑚 + 2, 2𝑚 − 3𝑚𝑛 − 5
= 5𝑚 − 7𝑛 + 3𝑛 − 4𝑚 + 2 + 2𝑚 − 3𝑚𝑛 − 5
= 5𝑚 − 4𝑚 + 2𝑚 − 7𝑛 + 3𝑛 − 3𝑚𝑛 + 2 − 5
= (5 − 4 + 2)𝑚 + (−7 + 3)𝑛 − 3𝑚𝑛 − 3
= 3𝑚 − 4𝑛 + 3𝑚𝑛 − 3
vii) 4𝑥2𝑦, −3𝑥𝑦2, −5𝑥𝑦2, 5𝑥2𝑦
= 4𝑥2𝑦 + (−3𝑥𝑦2) + (−5𝑥𝑦2) + 5𝑥2𝑦
= 4𝑥2𝑦 + 5𝑥2𝑦 − 3𝑥𝑦2 − 5𝑥𝑦2
= 9𝑥2𝑦 − 8𝑥𝑦2
viii) 3𝑝2𝑞2 − 4𝑝𝑞 + 5, −10𝑝2𝑞2, 15 + 9𝑝𝑞 + 7𝑝2𝑞2
= 3𝑝2𝑞2 − 4𝑝𝑞 + 5 + (−10𝑝2𝑞2) + 15 + 9𝑝𝑞 + 7𝑝2𝑞2
= 3𝑝2𝑞2 − 10𝑝2𝑞2 + 7𝑝2𝑞2 + 4𝑝𝑞 + 9𝑝𝑞 + 5 + 15
= (3 − 10 + 7)𝑝2𝑞2 + (−4 + 9)𝑝𝑞 + 20
= 0𝑝2𝑞2 + 5𝑝𝑞 + 20 = 5𝑝𝑞 + 20
ix) 𝑎𝑏 − 4𝑎, 4𝑏 − 𝑎𝑏, 4𝑎 − 4𝑏
= 𝑎𝑏 − 4𝑎 + 4𝑏 − 𝑎𝑏 + 4𝑎 − 4𝑏
= −4𝑎 + 4𝑎 + 4𝑏 − 4𝑏 + 𝑎𝑏 − 𝑎𝑏
= 0 + 0 + 0 = 0
x) 𝑥2 − 𝑦2 − 1, 𝑦2 − 1 − 𝑥2 , 1 − 𝑥2 − 𝑦2
= 𝑥2 − 𝑦2 − 1 + 𝑦2 − 1 − 𝑥2 + 1 − 𝑥2 − 𝑦^2
= 𝑥2 − 𝑥2 − 𝑥2 − 𝑦2 + 𝑦2 − 𝑦2 − 1 − 1 + 1
= (1 − 1 − 1)𝑥2 + (−1 + 1 − 1)𝑦2 − 1 − 1 + 1
= −𝑥2 − 𝑦2 − 1
Q.3) Subtract:
i) −5𝑦2 𝑓𝑟𝑜𝑚 𝑦2
ii) 6𝑥𝑦 𝑓𝑟𝑜𝑚 − 12𝑥𝑦
iii) (𝑎 − 𝑏)𝑓𝑟𝑜𝑚 (𝑎 + 𝑏)
iv) 𝑎(𝑏 − 5)𝑓𝑟𝑜𝑚 𝑏(5 − 𝑎)
v) −𝑚2 + 5𝑚𝑛 𝑓𝑟𝑜𝑚 4𝑚2 − 3𝑚𝑛 + 8
vi) −𝑥2 + 10𝑥 − 5 𝑓𝑟𝑜𝑚 5𝑥 − 10
vii) 5𝑎2 − 7𝑎𝑏 + 5𝑏2 𝑓𝑟𝑜𝑚 3𝑎𝑏 − 2𝑎2 − 2𝑏2
viii) 4𝑝𝑞 − 5𝑞2 − 3𝑝2 𝑓𝑟𝑜𝑚 5𝑝2 + 3𝑞2 − 𝑝𝑞
Sol.3) i) 𝑦2 − (−5𝑦2) = 𝑦2 + 5𝑦2
= 6𝑦2
ii) −12𝑥𝑦 − (6𝑥𝑦) = −12𝑥𝑦 − 6𝑥𝑦
= −18𝑥𝑦
iii) (𝑎 + 𝑏) − (𝑎 − 𝑏) = 𝑎 + 𝑏 − 𝑎 + 𝑏
= 𝑎 − 𝑎 + 𝑏 + 𝑏 = 2𝑏
iv) 𝑏(5 − 𝑎) − 𝑎(𝑏 − 5) = 5𝑏 − 𝑎𝑏 − 𝑎𝑏 + 5𝑎
= 5𝑏 − 2𝑎𝑏 + 5𝑎
= 5𝑎 + 5𝑏 − 2𝑎𝑏
v) 4𝑚2 − 3𝑚𝑛 + 8 − (−𝑚2 + 5𝑚𝑛)
= 4𝑚2 − 3𝑚𝑛 + 8 + 𝑚2 − 5𝑚𝑛
= 4𝑚2 + 𝑚2 − 3𝑚𝑛 − 5𝑚𝑛 + 8
= 5𝑚2 − 8𝑚𝑛 + 8
vi) 5𝑥 − 10 − (−𝑥2 + 10𝑥 − 5)
= 5𝑥 − 10 + 𝑥2 − 10𝑥 + 5
= 𝑥2 + 5𝑥 − 10𝑥 − 10 + 5
= 𝑥2 − 5𝑥 − 5
vii) 3𝑎𝑏 − 2𝑎2 − 2𝑏2 − (5𝑎2 − 7𝑎𝑏 + 5𝑏2)
= 3𝑎𝑏 − 2𝑎2 − 2𝑏2 − 5𝑎2 − 7𝑎𝑏 − 5𝑏2
= 3𝑎𝑏 + 7𝑎𝑏 − 2𝑎2 − 5𝑎2 − 2𝑏2 − 5𝑏2
= 10𝑎𝑏 − 7𝑎2 − 7𝑏2
= −7𝑎2 − 7𝑏2 + 10𝑎𝑏
viii) 5𝑝2 + 3𝑞2 − 𝑝𝑞 − (4𝑞 − 5𝑞2 − 3𝑝2)
= 5𝑝2 + 3𝑞2 − 𝑝𝑞 − 4𝑝𝑞 + 5𝑞2 + 3𝑝2
= 5𝑝2 + 3𝑝2 + 3𝑞2 + 5𝑞2 − 𝑝𝑞 − 4𝑝𝑞
= 8𝑝2 + 8𝑞2 − 5𝑝𝑞
Q.4) (a) What should be added to 𝑥2 + 𝑥𝑦 + 𝑦2 to obtain 2𝑥2 + 3𝑥𝑦 ?
(b) What should be subtracted from 2𝑎 + 8𝑏 + 10 to get −3𝑎 + 7𝑏 + 16 ?
Sol.4) A) Let 𝑝 should be added
Then according to the question,
𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑝 = 2𝑥2 + 3𝑥𝑦
⇒ 𝑝 = 2𝑥2 + 3𝑥𝑦 − (𝑥2 + 𝑥𝑦 + 𝑦2)
⇒ 𝑝 = 2𝑥2 + 3𝑥𝑦 − 𝑥2 − 𝑥𝑦 − 𝑦2
⇒ 𝑝 = 2𝑥2 − 𝑥2 − 𝑦2 + 3𝑥𝑦 − 𝑥𝑦
⇒ 𝑝 = 𝑥2 − 𝑦2 + 2𝑥𝑦
Hence, 𝑥2 − 𝑦2 + 2𝑥𝑦 should be added
B) let 𝑞 should be subtracted
Then according to question,
2𝑎 + 8𝑏 + 10 − 𝑞 = −3𝑎 + 7𝑏 + 16
⇒ −𝑞 = −3𝑎 + 7𝑏 + 16 − (2𝑎 + 8𝑏 + 10)
⇒ −𝑞 = −3𝑎 + 7𝑏 + 16 − 2𝑎 − 8𝑏 − 10
⇒ −𝑞 = −3𝑎 − 2𝑎 + 7𝑏 − 8𝑏 + 16 − 10
⇒ −𝑞 = −5𝑎 − 𝑏 + 6
⇒ 𝑞 = −(−5𝑎 − 𝑏 + 6)
⇒ 𝑞 = 5𝑎 + 𝑏 − 6
Q.5) What should be taken away from 3𝑥2 − 4𝑦2 + 5𝑥𝑦 + 20 to obtain −𝑥2 − 𝑦2 + 6𝑥𝑦 + 20 ?
Sol.5) Let 𝑞 should be subtracted
Then according to question,
3𝑥2 − 4𝑦2 + 5𝑥𝑦 + 20 − 𝑞 = −𝑥2 − 𝑦2 + 6𝑥𝑦 + 20
⇒ 𝑞 = 3𝑥2 − 4𝑦2 + 5𝑥𝑦 + 20 − (−𝑥2 − 𝑦2 + 6𝑥𝑦 + 20)
⇒ 𝑞 = 3𝑥2 − 4𝑦2 + 5𝑥𝑦 + 20 + 𝑥2 + 𝑦2 − 6𝑥𝑦 − 20
⇒ 𝑞 = 3𝑥2 + 𝑥2 − 4𝑦2 + 𝑦2 + 5𝑥𝑦 − 6𝑥𝑦 + 20 − 20
⇒ 𝑞 = 4𝑥2 − 3𝑦2 − 𝑥𝑦 + 0
Hence, 4𝑥2 − 3𝑦2 − 𝑥𝑦 should be subtracted.
Q.6) (a) From the sum of 3𝑥 – 𝑦 + 11 and – 𝑦 – 11, subtract 3𝑥 – 𝑦 – 11.
(b) From the sum of 4 + 3𝑥 and 5 – 4𝑥 + 2𝑥2, subtract the sum of 3𝑥2 – 5𝑥 and – 𝑥2 + 2𝑥 + 5.
Sol.6) a) According to question,
(3𝑥 − 𝑦 + 11) + (−𝑦 − 11) − (3𝑥 − 𝑦 − 11) = 3𝑥 − 𝑦 + 11 − 𝑦 − 11 − 3𝑥 + 𝑦 + 11
= 3𝑥 − 3𝑥 − 𝑦 + 𝑦 + 11 − 11 + 11
= (3 − 3)𝑥 − (1 + 1 − 1)𝑦 + 11 + 11 − 11
= 0𝑥 − 𝑦 + 11 = −𝑦 + 11
b) According to the question,
[(4 + 3𝑥) + (5 − 4𝑥 + 2𝑥2)] − [(3𝑥2 − 5𝑥) + (−𝑥2 + 2𝑥 + 5)]
= [4𝑥 + 3𝑥 + 5 − 4𝑥 + 2𝑥2] − [3𝑥2 − 5𝑥 − 𝑥2 + 2𝑥 + 5]
= [2𝑥2 + 3𝑥 − 4𝑥 + 5 + 4] − [3𝑥2 − 𝑥2 + 2𝑥 − 5𝑥 + 5]
= [2𝑥2 − 𝑥 + 9] − [2𝑥2 − 3𝑥 + 5]
= 2𝑥2 − 𝑥 + 9 − 2𝑥2 + 3𝑥 − 5
= 2𝑥2 − 2𝑥2 − 𝑥 + 3𝑥 + 9 − 5
= 2𝑥 + 4
Exercise 12.3
Q.1) If m = 2, find the value of:
i) 𝑚 − 2 ii) 3𝑚 − 5 iii) 9 − 5𝑚 iv) 3𝑚2 − 2𝑚 − 7 v) 5𝑚/2 − 4
Sol.1) i) 𝑚 − 2
= 2 − 2 = 0 [putting 𝑚 = 2]
ii) 3𝑚 − 5
= 3 × 2 − 5 [putting 𝑚 = 2]
= 6 − 5 = 1
iii) 9 − 5𝑚
= 9 − 5 × 2 [putting 𝑚 = 2]
= 9 − 10 = −1
iv) 3𝑚2 − 2𝑚 − 7
= 3(2)2 − 2(2) − 7 [putting 𝑚 = 2]
= 3 × 4 − 2 × 2 − 7
= 12 − 4 − 7
= 12 − 11 = 1
v) (5𝑚/2) − 4
= (5×2/2) − 4 [putting 𝑚 = 2]
= (10/2) − 4
= 5 − 4 = 1
Q.2) If 𝑥 = −2, find
(i) 4𝑝 + 7
(ii) −3𝑝2 + 4𝑝 + 7
(iii) −2𝑝3 − 3𝑝2 + 4𝑝 + 7
Sol.2) (i) 4𝑝 + 7
= 4(−2) + 7 [putting 𝑝 = −2]
= −8 + 7 = −1
(ii) −3𝑝2 + 4𝑝 + 7
= −3(−2)2 + 4(−2) + 7 [putting 𝑝 = −2]
= −3 × 4 − 8 + 7
= −12 − 8 + 7
= −20 + 7 = −13
(iii) −2𝑝3 − 3𝑝2 + 4𝑝 + 7
= −2(−2)3 − 3(−2)2 + 4(−2) + 7 [putting 𝑝 = −2]
= −2 × (−8) − 3 × 4 − 8 + 7
= 16 − 12 − 8 + 7
= −20 + 23 = 3
Q.3) Find the value of the following expressions, when 𝑥 =- 1:
(i) 2𝑥 − 7 ii) −𝑥 + 2 iii) 𝑥2 + 2𝑥 + 1 iv) 2𝑥2 − 𝑥 − 2
Sol.3) i) 2𝑥 − 7
= 2(−1) − 7 [putting 𝑚 = 2]
= −2 − 7 = −9
ii) −𝑥 + 2
= −(−1) + 2 [putting 𝑚 = 2]
= 1 + 2 = 3
iii) 𝑥2 + 2𝑥 + 1
= (−1)2 + 2(−1) + 1 [putting 𝑚 = 2]
= 1 − 2 + 1
= 2 − 2 = 0
iv) 2𝑥2 − 𝑥 − 2
= 2(−1)2 − (−1) − 2 [putting 𝑚 = 2]
= 2 × 1 + 1 − 2
= 2 + 1 − 2
= 3 − 2 = 1
Q.4) If 𝑎 = 2, 𝑏 = −2, find the value of:
i) 𝑎2 + 𝑏2 ii) 𝑎2 + 𝑎𝑏 + 𝑏2 iii) 𝑎2 − 𝑏2
Sol.4) i) 𝑎2 + 𝑏2
= (2)2 + (2)2
= 4 + 4 = 8
ii) 𝑎2 + 𝑎𝑏 + 𝑏2
= (2)2 + (2)(−2) + (−2)2
= 4 − 4 + 4 = 4
iii) 𝑎2 − 𝑏2
= (2)2 − (−2)2
= 4 − 4 = 0
Q.5) When 𝑎 = 0, 𝑏 = −1 find the value of the given expressions:
(i) 2𝑎 + 2𝑏 ii) 2𝑎2 + 𝑏2 + 1 iii) 2𝑎2𝑏 + 2𝑎𝑏2 + 𝑎𝑏 iv) 𝑎2 + 𝑎𝑏 + 2
Sol.5) i) 2𝑎 + 2𝑏
= 2(0) + 2(−1)
= 0 − 2 = −2
ii) 2𝑎2 + 𝑏2 + 1
= 2(0)2 + (−1)2 + 1
= 2 × 0 + 1 + 1 = 0 + 2 = 0 [putting 𝑎 = 0, 𝑏 = −1]
iii) 2𝑎2𝑏 + 2𝑎𝑏2 + 𝑎𝑏
= 2(0)2(−1) + 2(0)(−1)2 + (0)(−1)
= 0 + 0 + 0 = 0
iv) 𝑎2 + 𝑎𝑏 + 2
= (0)2 + (0)(−1) + 2
= 0 + 0 + 2 = 2
Q.6) Simplify the following expressions and find the value at 𝑥 = 2:
(i) 𝑥 + 7 + 4(𝑥 − 5)
(ii) 3(𝑥 + 2) + 5𝑥 − 7
(iii) 10𝑥 + 4(𝑥 − 2)
(iv) 5(3𝑥 − 2) + 4𝑥 + 8
Sol.6) (i) 𝑥 + 7 + 4(𝑥 − 5)
= 𝑥 + 7 + 4𝑥 − 20
= 4𝑥 + 𝑥 + 7 − 20 = 5𝑥 − 13
= 5(2) − 13 = 10 − 13 [𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 = 2 ]
= −3
(ii) 3(𝑥 + 2) + 5𝑥 − 7
= 3𝑥 + 6 + 5𝑥 − 7
= 3𝑥 + 5𝑥 + 6 − 7 = 8𝑥 − 1
= 8( 2) – 1 [𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 = 2 ]
= 16 – 1 = 15
(iii) 10𝑥 + 4(𝑥 − 2)
= 10𝑥 + 4𝑥 − 8
= 14𝑥 − 8
= 14( 2) – 8 [𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 = 2 ]
28 – 8 = 20
(iv) 5(3𝑥 − 2) + 4𝑥 + 8
= 15𝑎 − 10 + 4𝑥 + 8
= 15𝑎 + 4𝑎 − 10 + 8 = 19𝑎 − 2 [𝑃𝑢𝑡𝑡𝑖𝑛𝑔 = 2 ]
= 19(2) − 2 = 38 − 2
= 36
Q.7) Simplify these expressions and find their values if 𝑥 = 3, 𝑎 =– 1, 𝑏 =– 2.
i) 3𝑥 – 5 – 𝑥 + 9 ii) 2– 8𝑥 + 4𝑥 + 4 iii) 3𝑎 + 5 – 8𝑎 + 1
iv) 10– 3𝑏– 4– 5𝑏 v) 2𝑎– 2𝑏– 4– 5 + 𝑎
Sol.7) Putting values 𝑥 = 3, 𝑎 =– 1, 𝑏 =– 2.
i) 3𝑥 – 5 – 𝑥 + 9
= 3𝑥 − 𝑥 − 5 + 9 = 2𝑥 + 4
= 2 × 3 + 4
= 6 + 4 = 10
ii) 2– 8𝑥 + 4𝑥 + 4
= −8𝑥 + 4𝑥 + 2 + 4 = −4𝑥 − 6
= −4 × 3 + 6
= −12 + 6 = −12
iii) 3𝑎 + 5 – 8𝑎 + 1
= 3𝑎 − 8𝑎 + 5 + 1 = −5𝑎 + 6
= −5(−1) + 6
= 5 + 6 = 11
iv) 10– 3𝑏– 4– 5𝑏
= −3𝑏 − 5𝑏 + 10 − 4 = −8𝑏 + 6
= −8(−2) + 6
= 16 + 6 = 22
v) 2𝑎– 2𝑏– 4– 5 + 𝑎
= 2𝑎 + 𝑎 − 2𝑏 − 4 − 5
= 3𝑎 − 2𝑏 − 9 = 3(−1) − 2(−2) − 9
= −3 + 4 − 9 = −8
Q.8) (i) If 𝑧 = 10, find the value of 𝑧3 − 3(𝑧 − 10) .
(ii) 𝐼𝑓 𝑝 = -10, find the value of 𝑝2 − 2𝑝 − 100.
Sol.8) i) 𝑧3 − 3(𝑧 − 10)
= 𝑧3 − 3𝑧 + 30 [putting 𝑧 = 10]
= (10 × 10 × 10) − (3 × 10) + 30
= 1000 − 30 + 30 = 1000
ii) 𝑝2 − 2𝑝 − 100
= (−10) × (−10) − 2(−10) − 100 [putting 𝑝 = −10]
= 100 + 20 − 100 = 20
Q.9) What should be the value of 𝑎 if the value of 2𝑥2 + 𝑥 – 𝑎 equals to 5, when 𝑥 = 0?
Sol.9) 2𝑥2 + 𝑥 – 𝑎 = 5 , when 𝑥 = 0
(2 × 0) + 0 − 𝑎 = 5
= 0 − 𝑎 = 5
= 𝑎 = −5
Q.10) Simplify the expression and find its value when 𝑎 = 5 and 𝑏 =– 3.
2(𝑎2 + 𝑎𝑏) + 3– 𝑎𝑏
Sol.10) 2(𝑎2 + 𝑎𝑏) + 3– 𝑎𝑏 , where 𝑎 = 5 & 𝑏 = −3
= 2𝑎2 + 2𝑎𝑏 + 3 − 𝑎𝑏
= 2𝑎2 + 2𝑎𝑏 − 𝑎𝑏 + 3
= 2𝑎2 + 𝑎𝑏 + 3
Now, putting the values of 𝑎 𝑎𝑛𝑑 𝑏
= 2 × (5 × 5) + 5 × (−3) + 3
= 50 − 15 + 3 = 38
Exercise 12.4
Q.1) Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
Sol.1)
(i) 5𝑛 + 1
Putting 𝑛 = 5, 5 × 5 + 1 = 25 + 1 = 26
Putting 𝑛 = 10, 5 × 10 + 1 = 50 + 1 = 51
Putting 𝑛 =100, 5 × 100 + 1 = 500 + 1 = 501
(ii) 3𝑛 + 1
Putting 𝑛 = 5, 3 × 5 + 1 = 15 + 1 = 16
Putting 𝑛 = 10, 3 × 10 + 1 = 30 + 1 = 31
Putting 𝑛 =100, 3 × 100 + 1 = 300 + 1 = 301
(iii) 5𝑛 + 2
Putting 𝑛 = 5, 5 × 5 + 2 = 25 + 2 = 27
Putting 𝑛 = 10, 5 × 10 + 2 = 50 + 2 = 52
Putting 𝑛 =100, 5 × 100 + 2 = 500 + 2 = 502
Q.2) Use the given algebraic expression to complete the table of number patterns.
Sol.2) (i) 2𝑛 − 1
Putting 𝑛 =100, 2 × 100 – 1 = 200 – 1 = 199
(ii) 3𝑛 + 2
Putting 𝑛 = 5, 3 × 5 + 2 = 15 + 2 = 17
Putting 𝑛 = 10, 3 × 10 + 2 = 30 + 2 = 32
Putting 𝑛 =100, 3 × 100 + 2 = 300 + 2 = 302
(iii) 4𝑛 + 1
Putting 𝑛 = 5, 4 × 5 + 1 = 20 + 1 = 21
Putting 𝑛 = 10, 4 × 10 + 1 = 40 + 1 = 41
Putting 𝑛 =100, 4 × 100 + 1 = 400 + 1 = 401
(iv) 7𝑛 + 20
Putting 𝑛 = 5, 7 × 5 + 20 = 25 + 20 = 55
Putting 𝑛 = 10, 7 × 10 + 20 = 70 + 20 = 90
Putting 𝑛 =100, 7 × 100 + 20 = 700 + 20 = 720
(v) 𝑛2 + 1
Putting 𝑛 = 5, 5 × 5 + 1 = 25 + 1 = 26
Putting 𝑛 = 10, 10 × 10 + 1 = 100 + 1 = 101
Putting 𝑛 =100, 100 × 100 + 1 = 10000 + 1 = 10001
NCERT Solutions Class 7 Mathematics Chapter 12 Algebraic Expressions
The above provided NCERT Solutions Class 7 Mathematics Chapter 12 Algebraic Expressions is available on our website for free download in Pdf. You can read the solutions to all questions given in your Class 7 Mathematics textbook online or you can easily download them in pdf. The answers to each question in Chapter 12 Algebraic Expressions of Mathematics Class 7 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 12 Algebraic Expressions Class 7 chapter of Mathematics so that it can be easier for students to understand all answers. These solutions of Chapter 12 Algebraic Expressions NCERT Questions given in your textbook for Class 7 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 7.
You can download the NCERT Solutions for Class 7 Mathematics Chapter 12 Algebraic Expressions for latest session from StudiesToday.com
Yes, the NCERT Solutions issued for Class 7 Mathematics Chapter 12 Algebraic Expressions have been made available here for latest academic session
Regular revision of NCERT Solutions given on studiestoday for Class 7 subject Mathematics Chapter 12 Algebraic Expressions can help you to score better marks in exams
Yes, studiestoday.com provides all latest NCERT Chapter 12 Algebraic Expressions Class 7 Mathematics solutions based on the latest books for the current academic session
Yes, NCERT solutions for Class 7 Chapter 12 Algebraic Expressions Mathematics are available in multiple languages, including English, Hindi
All questions given in the end of the chapter Chapter 12 Algebraic Expressions have been answered by our teachers
