NCERT Solutions Class 11 Physics Chapter 12 Thermodynamics

NCERT Solutions Class 11 Physics Chapter 12 Thermodynamics have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 11 Physics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 11 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 11 Physics are an important part of exams for Class 11 Physics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 11 Physics and also download more latest study material for all subjects. Chapter 12 Thermodynamics is an important topic in Class 11, please refer to answers provided below to help you score better in exams

Chapter 12 Thermodynamics Class 11 Physics NCERT Solutions

Class 11 Physics students should refer to the following NCERT questions with answers for Chapter 12 Thermodynamics in Class 11. These NCERT Solutions with answers for Class 11 Physics will come in exams and help you to score good marks

Chapter 12 Thermodynamics NCERT Solutions Class 11 Physics

Question. A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 × 104 J/g?
Answer : Water is flowing at a rate of 3.0 litre/min.
The geyser heats the water, raising the temperature from 27°C to 77°C.
Initial temperature, T1 = 27°C
Final temperature, T2 = 77°C
∴Rise in temperature, ΔT = T2 – T1
= 77 – 27 = 50°C
Heat of combustion = 4 × 104 J/g
Specific heat of water, c = 4.2 J g–1 °C–1
Mass of flowing water, m = 3.0 litre/min = 3000 g/min
Total heat used, ΔQ = mc ΔT
= 3000 × 4.2 × 50
= 6.3 × 10J/min
∴ Rate of consumption = 6.3 × 105 / (4 × 104)  =  15.75 g/min.

Question. What amount of heat must be supplied to 2.0 × 10–2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; = 8.3 J mol–1 K–1.)
Answer : Mass of nitrogen, m = 2.0 × 10–2 kg = 20 g
Rise in temperature, ΔT = 45°C
Molecular mass of N2M = 28
Universal gas constant, R = 8.3 J mol–1 K–1
Number of moles, n = m/M
= (2 × 10-2 × 103) / 28
= 0.714
Molar specific heat at constant pressure for nitrogen, Cp = (7/2)R
= (7/2) × 8.3
= 29.05 J mol-1 K-1
The total amount of heat to be supplied is given by the relation:
ΔQ = nCΔT
= 0.714 × 29.05 × 45
= 933.38 J
Therefore, the amount of heat to be supplied is 933.38 J.

Question. Explain why
(a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature (T1 + T2)/2.
(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
(c) Air pressure in a car tyre increases during driving.
(d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.

Answer : (a) In thermal contact, heat flows from the body at higher temprature to the body at lower temprature till tempratures becomes equal. The final temprature can be the mean temprature (T1 + T2)/2only when thermal capicities of the two bodies are equal.
(b) This is bcause heat absorbed by a substance is directly proportional to the specific heat of the substance.
(c) During driving, the temprature of air inside the tyre increases due to moion. Accordingto Charle's law, P ∝ T. Therefore, air pressure inside the tyre increases.
(d) This is because in a harbour town, the relative humidity is more than in a desert town. hence, the climate of a harbour town is without extremes of hot and cold.

Question. A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?
Answer : The cylinder is completely insulated from its surroundings. As a result, no heat is exchanged between the system (cylinder) and its surroundings. Thus, the process is adiabatic.
Initial pressure inside the cylinder = P1
Final pressure inside the cylinder = P2
Initial volume inside the cylinder = V1
Final volume inside the cylinder = V2
Ratio of specific heats, γ = 1.4
For an adiabatic process, we have:
P1V1γ = P2V2γ
The final volume is compressed to half of its initial volume.
∴ V2 = V1/2
P1V1γ = P2(V1/2)γ
P2/P1 = V1γ / (V1/2)γ
= 2γ = 21.4 = 2.639
Hence, the pressure increases by a factor of 2.639.

Question. In changing the state of a gas adiabatically from an equilibrium state to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state to via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)
Answer : The work done (W) on the system while the gas changes from state A to state B is 22.3 J.
This is an adiabatic process. Hence, change in heat is zero.
∴ ΔQ = 0
ΔW = –22.3 J (Since the work is done on the system)
From the first law of thermodynamics, we have:
ΔQ = ΔU + ΔW
Where,
ΔU = Change in the internal energy of the gas
∴ ΔU = ΔQ – ΔW = – (– 22.3 J)
Δ= + 22.3 J
When the gas goes from state A to state B via a process, the net heat absorbed by the system is:
ΔQ = 9.35 cal = 9.35 × 4.19 = 39.1765 J
Heat absorbed, ΔQ = Δ+ ΔQ
∴ΔW = ΔQ – ΔU
= 39.1765 – 22.3
= 16.8765 J
Therefore, 16.88 J of work is done by the system.

Question. Two cylinders and of equal capacity are connected to each other via a stopcock. contains a gas at standard temperature and pressure. is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:
(a) What is the final pressure of the gas in and B?
(b) What is the change in internal energy of the gas?
(c) What is the change in the temperature of the gas?
(d) Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?

Answer : (a) 0.5 atm
(b) Zero
(c) Zero
(d) No
Explanation:
(a) The volume available to the gas is doubled as soon as the stopcock between cylinders A and B is opened. Since volume is inversely proportional to pressure, the pressure will decrease to one-half of the original value. Since the initial pressure of the gas is 1 atm, the pressure in each cylinder will be 0.5 atm.
(b) The internal energy of the gas can change only when work is done by or on the gas. Since in this case no work is done by or on the gas, the internal energy of the gas will not change.
(c) Since no work is being done by the gas during the expansion of the gas, the temperature of the gas will not change at all.
(d) The given process is a case of free expansion. It is rapid and cannot be controlled. The intermediate states do not satisfy the gas equation and since they are in non-equilibrium states, they do not lie on the P-V-T surface of the system.

Question. A steam engine delivers 5.4×10J of work per minute and services 3.6 × 10J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?
Answer : Work done by the steam engine per minute, W = 5.4 × 108 J
Heat supplied from the boiler, H = 3.6 × 109 J
Efficiency of the engine = Output energy / Input energy
∴ η = W / H  =  5.4 × 108 / (3.6 × 109)  =  0.15
Hence, the percentage efficiency of the engine is 15 %.
Amount of heat wasted = 3.6 × 109 – 5.4 × 108
= 30.6 × 108 = 3.06 × 109 J
Therefore, the amount of heat wasted per minute is 3.06 × 109 J.

Question. An electric heater supplies heat to a system at a rate of 100W. If system performs work at a rate of 75 Joules per second. At what rate is the internal energy increasing?
Answer : Heat is supplied to the system at a rate of 100 W.
∴Heat supplied, Q = 100 J/s
The system performs at a rate of 75 J/s.
∴Work done, W = 75 J/s
From the first law of thermodynamics, we have:
Q = U + W
Where,
U = Internal energy
U = Q – W
= 100 – 75
= 25 J/s
= 25 W
Therefore, the internal energy of the given electric heater increases at a rate of 25 W.

Question. A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig. (12.13).

""NCERT-Solutions-Class-11-Physics-Chapter-12-Thermodynamics

Its volume is then reduced to the original value from E to F by an isobaric process. Calculate the total work done by the gas from D to E to F.
Answer : Total work done by the gas from D to E to F = Area of ΔDEF
Area of ΔDEF = (1/2) DE × EF
Where,
DF = Change in pressure
= 600 N/m2 – 300 N/m2
= 300 N/m2
FE = Change in volume
= 5.0 m3 – 2.0 m3
= 3.0 m3
Area of ΔDEF = (1/2) × 300 × 3 = 450 J
Therefore, the total work done by the gas from D to E to F is 450 J.

Question. A refrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36° C, calculate the coefficient of performance.
Answer : Temperature inside the refrigerator, T1 = 9°C = 282 K
Room temperature, T2 = 36°C = 309 K
Coefficient of performance = T1 / (T2 - T1)
= 282 / (309 - 282)
= 10.44
Therefore, the coefficient of performance of the given refrigerator is 10.44.

More Study Material

NCERT Solutions Class 11 Physics Chapter 12 Thermodynamics

NCERT Solutions Class 11 Physics Chapter 12 Thermodynamics is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 11 Physics textbook online or you can easily download them in pdf.

Chapter 12 Thermodynamics Class 11 Physics NCERT Solutions

The Class 11 Physics NCERT Solutions Chapter 12 Thermodynamics are designed in a way that will help to improve the overall understanding of students. The answers to each question in Chapter 12 Thermodynamics of Physics Class 11 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 12 Thermodynamics Class 11 chapter of Physics so that it can be easier for students to understand all answers.

NCERT Solutions Chapter 12 Thermodynamics Class 11 Physics

Class 11 Physics NCERT Solutions Chapter 12 Thermodynamics is a really good source using which the students can get more marks in exams. The same questions will be coming in your Class 11 Physics exam. Learn the Chapter 12 Thermodynamics questions and answers daily to get a higher score. Chapter 12 Thermodynamics of your Physics textbook has a lot of questions at the end of chapter to test the students understanding of the concepts taught in the chapter. Students have to solve the questions and refer to the step-by-step solutions provided by Physics teachers on studiestoday to get better problem-solving skills.

Chapter 12 Thermodynamics Class 11 NCERT Solution Physics

These solutions of Chapter 12 Thermodynamics NCERT Questions given in your textbook for Class 11 Physics have been designed to help students understand the difficult topics of Physics in an easy manner. These will also help to build a strong foundation in the Physics. There is a combination of theoretical and practical questions relating to all chapters in Physics to check the overall learning of the students of Class 11.

Class 11 NCERT Solution Physics Chapter 12 Thermodynamics

NCERT Solutions Class 11 Physics Chapter 12 Thermodynamics detailed answers are given with the objective of helping students compare their answers with the example. NCERT solutions for Class 11 Physics provide a strong foundation for every chapter. They ensure a smooth and easy knowledge of Revision notes for Class 11 Physics. As suggested by the HRD ministry, they will perform a major role in JEE. Students can easily download these solutions and use them to prepare for upcoming exams and also go through the Question Papers for Class 11 Physics to clarify all doubts

Where can I download latest NCERT Solutions for Class 11 Physics Chapter 12 Thermodynamics

You can download the NCERT Solutions for Class 11 Physics Chapter 12 Thermodynamics for latest session from StudiesToday.com

Can I download the NCERT Solutions of Class 11 Physics Chapter 12 Thermodynamics in Pdf

Yes, you can click on the link above and download NCERT Solutions in PDFs for Class 11 for Physics Chapter 12 Thermodynamics

Are the Class 11 Physics Chapter 12 Thermodynamics NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 11 Physics Chapter 12 Thermodynamics have been made available here for latest academic session

How can I download the Chapter 12 Thermodynamics Class 11 Physics NCERT Solutions

You can easily access the links above and download the Chapter 12 Thermodynamics Class 11 NCERT Solutions Physics for each chapter

Is there any charge for the NCERT Solutions for Class 11 Physics Chapter 12 Thermodynamics

There is no charge for the NCERT Solutions for Class 11 Physics Chapter 12 Thermodynamics you can download everything free

How can I improve my scores by reading NCERT Solutions in Class 11 Physics Chapter 12 Thermodynamics

Regular revision of NCERT Solutions given on studiestoday for Class 11 subject Physics Chapter 12 Thermodynamics can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 12 Thermodynamics Class 11 Physics

Yes, studiestoday.com provides all latest NCERT Chapter 12 Thermodynamics Class 11 Physics solutions based on the latest books for the current academic session

Can NCERT solutions for Class 11 Physics Chapter 12 Thermodynamics be accessed on mobile devices

Yes, studiestoday provides NCERT solutions for Chapter 12 Thermodynamics Class 11 Physics in mobile-friendly format and can be accessed on smartphones and tablets.

Are NCERT solutions for Class 11 Chapter 12 Thermodynamics Physics available in multiple languages

Yes, NCERT solutions for Class 11 Chapter 12 Thermodynamics Physics are available in multiple languages, including English, Hindi