PRACTICE QUESTIONS CLASS X : CHAPTER - 2 POLYNOMIALS

- 1. If $p(x) = 3x^3 2x^2 + 6x 5$, find p(2).
- **2.** Draw the graph of the polynomial $f(x) = x^2 2x 8$.
- 3. Draw the graph of the polynomial $f(x) = 3 2x x^2$.
- 4. Draw the graph of the polynomial $f(x) = -3x^2 + 2x 1$.
- 5. Draw the graph of the polynomial $f(x) = x^2 6x + 9$.
- 6. Draw the graph of the polynomial $f(x) = x^3$.
- 7. Draw the graph of the polynomial $f(x) = x^3 4x$.
- 8. Draw the graph of the polynomial $f(x) = x^3 2x^2$.
- 9. Draw the graph of the polynomial $f(x) = -4x^2 + 4x 1$.

10. Draw the graph of the polynomial $f(x) = 2x^2 - 4x + 5$.

- 11. Find the quadratic polynomial whose zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$.
- 12. Find the quadratic polynomial whose zeroes are $\frac{3-\sqrt{3}}{5}$ and $\frac{3+\sqrt{3}}{5}$.
- 13. Find a quadratic polynomial whose sum and product of zeroes are $\sqrt{2}$ and 3 respectively.
- 14. Find the zeroes of the polynomial $mx^2 + (m + n)x + n$.
- 15. If m and n are zeroes of the polynomial $3x^2 + 11x 4$, find the value of $\frac{m}{n} + \frac{n}{m}$
- 16. If a and b are zeroes of the polynomial $x^2 x 6$, then find a quadratic polynomial whose zeroes are (3a + 2b) and (2a + 3b).

ay.con

- 17. If p and q are zeroes of the polynomial $t^2 4t + 3$, show that $\frac{1}{p} + \frac{1}{q} 2pq + \frac{14}{3} = 0$.
- **18.** If (x 6) is a factor of $x^3 + ax^2 + bx b = 0$ and a b = 7, find the values of a and b.
- **19.** If 2 and -3 are the zeroes of the polynomial $x^2 + (a + 1)x + b$, then find the value of a and b.
- **20.** Obtain all zeroes of polynomial $f(x) = 2x^4 + x^3 14x^2 19x 6$ if two of its zeroes are -2 and -1.
- **21.** Find all the zeroes of the polynomial $2x^3 4x x^2 + 2$, if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- **22.** Find all the zeroes of the polynomial $x^4 3x^3 + 6x 4$, if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- **23.** Find all the zeroes of the polynomial $2x^4 9x^3 + 5x^2 + 3x 1$, if two of its zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$.

- **24.** Find all the zeroes of the polynomial $2x^4 + 7x^3 19x^2 14x + 30$, if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- **25.** Find all the zeroes of the polynomial $x^3 + 3x^2 2x 6$, if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- **26.** Find all the zeroes of the polynomial $2x^3 x^2 5x 2$, if two of its zeroes are -1 and 2.
- **27.** Find all the zeroes of the polynomial $x^3 + 3x^2 5x 15$, if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.
- **28.** Find all the zeroes of the polynomial $x^3 4x^2 3x + 12$, if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
- **29.** Find all the zeroes of the polynomial $2x^3 + x^2 6x 3$, if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
- **30.** Find all the zeroes of the polynomial $x^4 + x^3 34x^2 4x + 120$, if two of its zeroes are 2 and -2.
- **31.** If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be (ax + b), find a and b.
- **32.** If the polynomial $x^4 + 2x^3 + 8x^2 + 12x + 18$ is divided by another polynomial $x^2 + 5$, the remainder comes out to be px + q, find the value of p and q.
- **33.** Find the zeroes of a polynomial $x^3 5x^2 16x + 80$, if its two zeroes are equal in magnitude but opposite in sign.
- **34.** If two zeroes of the polynomial $x^4 + 3x^3 20x^2 6x + 36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeroes of the polynomial.
- **35.** On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4 respectively. Find g(x).
- **36.** If the product of zeroes of the polynomial $ax^2 6x 6$ is 4, find the value of 'a'.
- **37.** If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is reciprocal of the other. Find the value of a.
- **38.** Write a quadratic polynomial, sum of whose zeroes is $2\sqrt{3}$ and their product is 2.
- **39.** Find a polynomial whose zeroes are 2 and -3.
- **40.** Find the zeroes of the quadratic polynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficients.
- **41.** Find the sum and product of zeroes of $p(x) = 2(x^2 3) + x$.
- **42.** Find a quadratic polynomial, the sum of whose zeroes is 4 and one zero is 5.
- **43.** Find the zeroes of the polynomial $p(x) = \sqrt{2}x^2 3x 2\sqrt{2}$.
- **44.** If α and β are the zeroes of $2x^2 + 5(x 2)$, then find the product of α and β .
- 45. Find a quadratic polynomial, the sum and product of whose zeroes are 5 and 3 respectively.

- **46.** Find the zeroes of the quadratic polynomial $f(x) = abx^2 + (b^2 ac)x bc$ and verify the relationship between the zeroes and its coefficients.
- **47.** Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
 - (i) $4x^2 3x 1$ (ii) $3x^2 + 4x - 4$ (iii) $5t^2 + 12t + 7$ (iv) $t^3 - 2t^2 - 15t$ (v) $2x^2 + \frac{7}{2}x + \frac{3}{4}$ (vi) $4x^2 + 5\sqrt{2}x - 3$ (vii) $2s^2 - (1 + 2\sqrt{2})s + \sqrt{2}$ (viii) $v^2 + 4\sqrt{3}v - 15$ (ix) $y^2 + \frac{3}{2}\sqrt{5}y - 5$ (x) $7y^2 - \frac{11}{3}y - \frac{2}{3}$
- **48.** Find the zeroes of the quadratic polynomial $6x^2 7x 3$ and verify the relationship between the zeroes and the coefficients.
- **49.** Find the zeroes of the polynomial $x^2 + \frac{1}{6}x 2$, and verify the relation between the coefficients and the zeroes of the polynomial.
- **50.** Find the zeroes of the quadratic polynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficients.
- **51.** Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $-\frac{3}{2}$, respectively. Also find its zeroes.
- **52.** If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then find the value of k
- **53.** Given that two of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ are 0, find the third zero.
- 54. Given that one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, then find the product of the other two zeroes.
- **55.** If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is -1, then the product of the other two zeroes

Answer the Questions from 28 to 32 and justify:

- **56.** Can $x^2 1$ be the quotient on division of $x^6 + 2x^3 + x 1$ by a polynomial in x of degree 5?
- **57.** What will the quotient and remainder be on division of $ax^2 + bx + c$ by $px^3 + qx^2 + rx + s$, $p \neq 0$?
- **58.** If on division of a polynomial p(x) by a polynomial g(x), the degree of quotient is zero, what is the relation between the degrees of p(x) and g(x)?

- **59.** If on division of a non-zero polynomial p(x) by a polynomial g(x), the remainder is zero, what is the relation between the degrees of p(x) and g(x)?
- **60.** Can the quadratic polynomial $x^2 + kx + k$ have equal zeroes for some odd integer k > 1?
- **61.** If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx + 1$ is -3, then the value of k
- **62.** If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then find the value of a and b.
- **63.** If α and β are zeroes of the quadratic polynomial $x^2 (k + 6)x + 2(2k 1)$. Find the value of k if $\alpha + \beta = \frac{1}{2}\alpha\beta$.
- 64. Obtain all the zeroes of $3x^4 + 6x^3 2x^2 10x + 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
- **65.** Obtain all the zeroes of $x^4 7x^3 + 17x^2 17x + 6$, if two of its zeroes are 3 and 1.
- 66. Obtain all the zeroes of $x^4 7x^2 + 12$, if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
- 67. Two zeroes of the cubic polynomial $ax^3 + 3x^2 bx 6$ are -1 and -2. Find the 3^{rd} zero and value of a and b.
- **68.** α , β and γ are the zeroes of cubic polynomial $x^3 + px^2 + qx + 2$ such that $\alpha \cdot \beta + 1 = 0$. Find the value of 2p + q + 5.
- 69. Find the number of zeroes in each of the following:

- **70.** If the remainder on division of $x^3 + 2x^2 + kx + 3$ by x 3 is 21, find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^3 + 2x^2 + kx 18$.
- **71.** Find the zeroes of the polynomial $f(x) = x^3 5x^2 16x + 80$, if its two zeroes are equal in magnitude but opposite in sign.
- 72. Find the zeroes of the polynomial $f(x) = x^3 5x^2 2x + 24$, if it is given that the product of two zeroes is 12.
- **73.** Find the zeroes of the polynomial $f(x) = x^3 px^2 + qx r$, if it is given that the sum of two zeroes is zero.
- **74.** If the zeroes of the polynomial $x^3 3x^2 + x + 1$ are a b, a, a + b, find a and b.
- **75.** If the zeroes of the polynomial $2x^3 15x^2 + 37x 30$ are a b, a, a + b, find all the zeroes.
- **76.** If the zeroes of the polynomial $x^3 12x^2 + 39x 28$ are a b, a, a + b, find all the zeroes.
- 77. If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by another polynomial $x^2 2x + k$, the remainder comes out to be x + a, find k and a.
- **78.** If the polynomial $6x^4 + 8x^3 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 5$, then find the values of a and b.
- **79.** Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
- **80.** Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 3, -1, -3 respectively.
- **81.** Find a cubic polynomial whose zeroes are 3, $\frac{1}{2}$ and -1.
- **82.** Find a cubic polynomial whose zeroes are -2, -3 and -1.
- **83.** Find a cubic polynomial whose zeroes are 3, 5 and –2.
- **84.** Verify that 5, -2 and $\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 10x^2 27x + 10$ and verify the relation between its zeroes and coefficients.
- **85.** Verify that 3, -2 and 1 are the zeroes of the cubic polynomial $p(x) = x^3 2x^2 5x + 6$ and verify the relation between its zeroes and coefficients.
- **86.** Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
 - (i) $2x^3 + x^2 5x + 2$; $\frac{1}{2}$, 1, -2 (ii) $x^3 4x^2 + 5x 2$; 2, 1, 1
- 87. Find the quotient and remainder when $4x^3 + 2x^2 + 5x 6$ is divided by $2x^2 + 3x + 1$.
- **88.** On dividing $x^4 5x + 6$ by a polynomial g(x), the quotient and remainder were $-x^2 2$ and -5x + 10 respectively. Find g(x).
- **89.** Given that $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 10x 4\sqrt{2}$, find its other two zeroes.

- **90.** Given that the zeroes of the cubic polynomial $x^3 6x^2 + 3x + 10$ are of the form a, a + b, a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.
- **91.** For which values of *a* and *b*, are the zeroes of $q(x) = x^3 + 2x^2 + a$ also the zeroes of the polynomial $p(x) = x^5 x^4 4x^3 + 3x^2 + 3x + b$? Which zeroes of p(x) are not the zeroes of q(x)?
- **92.** Find k so that $x^2 + 2x + k$ is a factor of $2x^4 + x^3 14x^2 + 5x + 6$. Also find all the zeroes of the two polynomials.
- **93.** Given that $x \sqrt{5}$ is a factor of the cubic polynomial $x^3 3\sqrt{5}x + 13x 3\sqrt{5}$, find all the zeroes of the polynomial.
- **94.** For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.

$$(i)\frac{-8}{3},\frac{4}{3} \qquad (ii)\frac{21}{8},\frac{5}{16} (iii)-2\sqrt{3},-9 \qquad (iv)\frac{-3}{2\sqrt{5}},-\frac{1}{2}$$

- **95.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 3x 2$, then find a quadratic polynomial whose zeroes are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$.
- **96.** If α and β are the zeroes of the quadratic polynomial $f(x) = 2x^2 5x + 7$, then find a quadratic polynomial whose zeroes are $2\alpha + 3\beta$ and $2\beta + 3\alpha$.
- 97. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 1$, then find a quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.

98. If α and β are the zeroes of the quadratic polynomial $f(x) = 6x^2 + x - 2$, then find the value of

(i)
$$\alpha - \beta$$

(ii) $\alpha^{2} + \beta^{2}$
(iii) $\alpha^{4} + \beta^{4}$
(iv) $\alpha\beta^{2} + \alpha^{2}\beta$
(v) $\frac{1}{\alpha} + \frac{1}{\beta}$
(vi) $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$
(vii) $\frac{1}{\alpha} - \frac{1}{\beta}$
(viii) $\alpha^{3} + \beta^{3}$
(ix) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
(x) $\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha}$
(xi) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$
(xii) $\alpha^{4}\beta^{3} + \alpha^{3}\beta^{4}$
(xiii) $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$
(xiv) $\frac{\alpha^{2}}{\beta^{2}} + \frac{\beta^{2}}{\alpha^{2}}$

99. If α and β are the zeroes of the quadratic polynomial $f(x) = 4x^2 - 5x - 1$, then find the value of

(i)
$$\alpha - \beta$$

(ii) $\alpha^{2} + \beta^{2}$
(iii) $\alpha^{4} + \beta^{4}$
(iv) $\alpha\beta^{2} + \alpha^{2}\beta$
(v) $\frac{1}{\alpha} + \frac{1}{\beta}$
(vi) $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$
(vii) $\frac{1}{\alpha} - \frac{1}{\beta}$
(viii) $\alpha^{3} + \beta^{3}$
(ix) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
(x) $\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha}$
(xi) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$
(xii) $\alpha^{4}\beta^{3} + \alpha^{3}\beta^{4}$
(xiii) $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$
(xiv) $\frac{\alpha^{2}}{\beta^{2}} + \frac{\beta^{2}}{\alpha^{2}}$

100. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 + x - 2$, then find the value of (i) $\alpha - \beta$ (ii) $\alpha^2 + \beta^2$ (iii) $\alpha^4 + \beta^4$ (iv) $\alpha\beta^2 + \alpha^2\beta$ (v) $\frac{1}{\alpha} + \frac{1}{\beta}$ (vi) $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$ (vii) $\frac{1}{\alpha} - \frac{1}{\beta}$ (viii) $\alpha^3 + \beta^3$ (ix) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (x) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ (xi) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$ (xii) $\alpha^4\beta^3 + \alpha^3\beta^4$ (xiii) $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$ (xiv) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$

101. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 5x + 4$, then find the value of

(1)
$$\alpha - \beta$$

(ii) $\alpha^2 + \beta^2$
(iii) $\alpha^4 + \beta^4$
(iv) $\alpha\beta^2 + \alpha^2\beta$
(iv) $\alpha\beta^2 + \alpha^2\beta$

- **102.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 2x + 3$, then find a quadratic polynomial whose zeroes are $\alpha + 2$ and $\beta + 2$
- **103.** If α and β are the zeroes of the quadratic polynomial $f(x) = 3x^2 4x + 1$, then find a quadratic polynomial whose zeroes are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$.

104. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 2x + 3$, then find a quadratic polynomial whose zeroes are $\frac{\alpha - 1}{\alpha + 1}$ and $\frac{\beta - 1}{\beta + 1}$.

- **105.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 p(x + 1) c$, show that $(\alpha + 1)(\beta + 1) = 1 c$.
- **106.** If α and β are the zeroes of the quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$, find a quadratic polynomial having α and β as its zeroes.
- 107. If sum of the squares of zeroes of the quadratic polynomial $f(x) = x^2 8x + k$ is 40, find the value of k.
- **108.** If α and β are the zeroes of the quadratic polynomial $f(x) = kx^2 + 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, find the value of k.
- **109.** If α and β are the zeroes of the quadratic polynomial $f(x) = 2x^2 + 5x + k$ such that $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, find the value of k.
- 110. What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$.
- 111. What must be subtracted from $4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$.

- 112. Find all the zeroes of the polynomial $x^4 6x^3 26x^2 + 138x 35$, if two of its zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$.
- **113.** Find the values of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- 114. If the polynomial $f(x) = x^4 6x^3 + 16x^2 25x + 10$ is divided by another polynomial $x^2 2x + k$, the remainder comes out to be x + a, find k and a.

115. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 2x - 8$, then find the value of $(ii)\alpha^2 + \beta^2 \qquad (iii)\alpha^4 + \beta^4 \qquad (iv)\alpha\beta^2 + \alpha^2\beta$ (i) $\alpha - \beta$ $(v)\frac{1}{\alpha} + \frac{1}{\beta}$ $(vi)\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$ $(vii)\frac{1}{\alpha} - \frac{1}{\beta}$ $(viii)\alpha^3 + \beta^3$ $(ix)\frac{\alpha}{\beta} + \frac{\beta}{\alpha} \qquad (x)\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} \qquad (xi)\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$ $(xii)\alpha^4\beta^3 + \alpha^3\beta^4$ $(xiii)\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta (xiv)\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$ mm. studies