Unit - 10

Ocsillations And Waves

Downloaded from www.studiestoday.com

SUMMARY

1. Waves : The motion of the disturbance in the medium (or in free space) is called wave pulse or generally a wave.
2. Amplitude of a wave : Amplitude of oscillation of particles of the medium is called the amplitude of a wave.
3. Wavelength and frequency : The linear distance between any two points or particles having phase difference of $2 \pi \mathrm{rad}$ is called the wavelength (λ) of the wave.

Frequency of wave is just the frequency of oscillation of particles of the medium. Relation between wavelength and frequency :
$\mathrm{v}=\mathrm{f}, \lambda=\frac{\omega}{\mathrm{k}}$ where, v is the speed of wave in the medium.
4. Mechanical waves : The waves which require elastic medium for their transmission are called mechanical waves, e.g. sound waves.
5. Transverse and longitudinal waves: Waves in which the oscillations are in a direction perpendicular to the direction of wave propagation are called the transverse wave.
Waves in which the oscillations of the particles of medium are a!cng the direction of wave propagation are called longitudinal waves.
6. Wave Equation : The equation which describe the displacement for any particle of medium at a required time is called wave equation. Various forms of wave equations are as follows :
(i) $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}-\mathrm{kx})$
(ii) $y=A \sin \left(\frac{t}{T}-\frac{x}{\lambda}\right)$
(iii) $y=A \sin 2 \pi\left(t-\frac{x}{v}\right)$
(iv) $y=A \sin \frac{2 \pi}{\lambda}(v t-x)$

The above equations are for the wave travelling in the direction of increasing value of x. If the wave is travelling in the direction of decreasing value of x then put ' + ' instead of '- ' in above equations.
7. The elasticity and inertia of the medium are necessary for the propagation of the mechanical waves.
8. The speed of the transverse waves in a medium like string kept under tension, $v=\sqrt{\frac{T}{\mu}}$ where, $T=$ Tension in the string and $(I=$ mass per unit length of the string $--y$
9. Speed of sound waves in elastic medium, $v=\sqrt{\frac{E}{\rho}}$
where, $\mathrm{E}=$ Elastic constant of a medium, $\rho=$ Density of the medium.
Speed of longitudinal waves in a fluid, $v=\sqrt{\frac{B}{\rho}}=\sqrt{\frac{\gamma P}{\rho}}$
where, B - Bulk modulus of a medium $y=\frac{C_{p}}{C_{v}}=1.41$ (for air)
Speed of longitudinal waves in a linear medium like a rod, $\mathrm{v}=\sqrt{\frac{\gamma}{\rho}}$
where, $\gamma=$ Young modulus, $\rho=$ Density of a medium
At constant pressure and constant humidity, speed of sound waves in gas is directly proportional to the square root of its absolute temperature.
$\mathrm{v}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}} \quad \therefore \mathrm{v} \propto \sqrt{\mathrm{T}}$
The speed of sound in a gas does not depend on the pressure variation.
10. Principle of Superposition : When a particle of medium comes under the influence of two or more waves simultaneously, its net displacement is the vector sum of displacement that could occur under the influence of the individual waves.
11. Stationary Waves: When two waves having same amplitude and frequency and travelling in mutually opposite directions are superposed the resultant wave formed loses the property of propagation. Such a wave is .called a stationary wave.
Equation of stationary wave $: y=-2 A \operatorname{sinkx} \cos \omega t$
Amplitude of stationary wave : $2 \mathrm{~A} \sin \mathrm{kx}$
Position of nodes in stationary wave $x_{n}=\frac{n \lambda}{2}$
where, $\mathrm{n}=1,2,3 \ldots$.At all these points the amplitude is zero.
Position of antinodes in stationary wave's,
$\mathrm{x}_{\mathrm{n}}=(2 \mathrm{n}-1) \frac{\lambda}{4}$ where $, \mathrm{n}-1,2,3, \ldots$.
The amplitude of all these points is 2 A .
12. Frequencies corresponding to different normal modes of vibration in a stretched string of length L fixed at both the ends are given by,

$$
\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{2 \mathrm{~L}}=\frac{\mathrm{n}}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu}} \text { where } \mathrm{n}-1,2,3 \ldots \ldots
$$

13. In a closed pipe the values of possible wavelengths required for stationary wave pattern are given by.
$\lambda n=\frac{4 L}{(2 n-1)}$ and possible frequencies, $f_{n}=(2 n-1) \frac{v}{4 L}=(2 n-1) f_{1}$
where, $\mathrm{n}=1,2,3, \ldots$. and $\mathrm{L}=$ length of pipe.
In a closed pipe only odd harmonics $f_{1}, 3 f_{1}, 5 f_{1} \ldots$ are possible.
14. In an open pipe the values of possible wavelength required for stationary waves are given by,
$\lambda \mathrm{n}=\frac{2 \mathrm{~L}}{\mathrm{n}}$ and possible frequencies, $\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{2 \mathrm{~L}}=\mathrm{nf}_{1}$ where, $\mathrm{n}-1,2,3, \ldots \ldots$ and
L - length of pipe.
In open pipe of the harmonics like $\mathrm{f}_{1}, 2 \mathrm{f}_{1}, 3 \mathrm{f}_{1} \ldots .$. are possible.
15. Beat: The phenomenon of the loudness of sound becoming maximum periodically due to superposition of two sound waves of equal amplitude and slightly different frequencies is called the 'beats'.
Number of beats produced in unit time $=f_{1}-f_{2}$.
16. Doppler Effect : Whenever there is a relative motion between a source of sound and a listener with respect to the medium in which the waves are propagating the frequency of sound experienced by the listener is different from that which is emitted by the source. This phenomenon is called Doppler effect.

Frequency listened by the listener, $f_{L}=\frac{v \pm v_{L}}{v \pm v_{S}} f_{S}$
Where, $\mathrm{v}=$ velocity of sound, $\mathrm{v}_{\mathrm{L}}=$ velocity of a listener,
$\mathrm{v}_{\mathrm{S}}=$ velocity of a source, $\mathrm{f}_{\mathrm{S}}=$ frequency of sound emitted by the source.
17. If a body repeats its motion along a certain path, about a fixed point, at a definite interval of time, it is said to have periodic motion.
18. If a body moves to and fro, back and forth, or up and down about a fixed point in a fixed interval of time, such a motion is called an oscillatory motion.
19. When a body moves to and fro repeatedly about an equilibrium position under a restoring force, which is always directed towards equilibrium position and whose magnitude at any instant is directly proportional to the displacement of the body from the equilibrium position of that instant then such a motion is known as simple harmonic motion.
20. The maximum displacement of the oscillator on cither side of mean position is called amplitude of the oscillator.
21. The time taken by the oscillator to complete one oscillation is known as periodic time or time period or period (T) of the oscillator.
22. The number of oscillation completed by the simple harmonic oscillator in one second is known as its frcquency(f).
23. 2π times the frequency of oscillator is the angular frequency CO of that oscillator.
24. $\mathrm{T}=\frac{1}{\mathrm{f}}=\frac{2 \pi}{\omega}$ or $\quad \mathrm{f}=\frac{1}{\mathrm{~T}}$ or $\omega=\frac{2 \pi}{\mathrm{~T}}$
25. For simple harmonic motion, the displacement $y(t)$ of a particle from its equilibrium position is represented by sine, cosine or its linear combination like

$$
\begin{aligned}
& y(t)=A \sin (\omega t+\phi) \\
& y(t)=B \cos (\omega t+\phi) \\
& y(t)=A^{\prime} \sin \omega t+B^{\prime} \cos \omega t \\
& \text { where } A^{\prime}=A \cos \phi \text { and } B^{\prime}=B \sin \phi
\end{aligned}
$$

26. The velocity of SHO is given by $v= \pm \omega \sqrt{A^{2}-y^{2}}$
27. The acceleration of SHO is given by $\mathrm{a}=-\omega^{2} \mathrm{y}$
28. A particle of mass m oscillating under the influence of Hook's Law exhibits simple harmonic motion with
$\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} ;$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
29. Differential equation for SHM is $\frac{d^{2} y}{d t h}+\omega^{2} y=0$
30. For scries combination of n spring of spring constants $k_{1}, k_{2}, k_{3}, \ldots, k_{n}$, the equivalent spring constant is $\frac{1}{\mathrm{k}}=\frac{1}{\mathrm{k}_{1}}=\frac{1}{\mathrm{k}_{2}}+\ldots \frac{1}{\mathrm{k}_{\mathrm{n}}}$ the periodic time $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
31. For parallel combination of n springs of spring constants k ky k \qquad kn , the equivalent spring constant is
$\mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\ldots .+\mathrm{k}_{\mathrm{n}}$ and period $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
32. The kinetic energy of the SHO is $\mathrm{K}=\frac{1}{2} \mathrm{~m} \omega^{2}\left(\mathrm{~A}^{2}-\mathrm{y}^{2}\right)$
33. The potential energy of the SHO is $\mathrm{U}=\frac{1}{2} \mathrm{ky}^{2}$
34. The total mechanical energy of SHO is $\mathrm{E}=\mathrm{K}+\mathrm{U}=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}=\frac{1}{2} k \mathrm{~A}^{2}$
35. For SHO, at $y-0$, the potential energy is minimum $(U=0)$ and the kinetic energy is maximum $\left(\mathrm{K}=\frac{1}{2} \mathrm{kA}^{2}=\mathrm{E}\right)$
36. For SHO, at $y= \pm A$, the potential energy is maximum $\left(U=\frac{1}{2} k A^{2}=E\right)$ and the kinetic energy is minimum $(\mathrm{K}=0)$
37. Simple harmonic motion is the projection of uniform circular motion on a diameter of the reference circle.
38. For simple pendulum, for small angular displacement
$\mathrm{T}=2 \pi \sqrt{\frac{1}{\mathrm{~g}}}$ and
$\omega=2 \pi \mathrm{f}=\frac{2 \pi}{\mathrm{~T}}=\sqrt{\frac{\mathrm{g}}{\mathrm{l}}}$
39. For simple pendulum, T is independent of the mass of the bob as well as the amplitude of the oscillaions.
40. The differential equaiton for damped harmonic oscillation is
with the displacement
$\mathrm{m} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=\mathrm{b} \frac{\mathrm{dy}}{\mathrm{dt}}=+\mathrm{ky}=0$
and angular frequency $\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}$
41. $E(t)=\frac{1}{2} k A^{2} e^{-e t l m}$ gives the mechanical energy of damped oscillation at time t.
42. A system oscillates under the influence of external periodic force are forced oscillations.
43. The differential equation for forced oscillations is
$\frac{d^{2} y}{d t^{2}}=\frac{b}{m} \frac{d y}{d t}+\frac{k}{m} y=\frac{F_{0}}{m} \sin \omega t$
44. The amplitude for forced oscillation is

$$
A=\frac{F_{0}}{\left[m^{2}\left(\omega_{0}-\omega^{2}\right)^{2}+b^{2} \omega^{2}\right]^{\frac{1}{2}}}
$$

MCQ

For the answer of the following questions choose the correct alternative from among the given ones.

SECTION - I:

1. If the equation for a particle performing S.H.M. is given by $\boldsymbol{y}=\operatorname{Sin} 2 \mathrm{t}+\sqrt{3} \operatorname{Cos} 2 \mathrm{t}$, its periodic time will be \qquad .s.
(A) 21
(B) p
(C) $2 p$
(D) 4 p .
2. The distance travelled by a particle performing S.H.M. during time interval equal to its periodic time is \qquad
(A) A
(B) 2 A
(C) 4 A
(D) Zero.
3. A person standing in a stationary lift measures the periodic time of a simple pendulum inside the lift to be equal to T. Now, if the lift moves along the vertically upward direction with an acceleration of $\frac{g}{3}$, then the periodic time of the lift will now be \qquad
(A) $\sqrt{3} T$
(B) $\frac{\sqrt{3}}{2} T$
(C) $\frac{T}{3}$
(D) $\frac{T}{\sqrt{3}}$
4. If the equation for displacement of two particles executing S.H.M. is given by $\boldsymbol{y}_{I}=2 \operatorname{Sin}(10 \mathrm{t}+\mathrm{e})$ and $\boldsymbol{y}_{2}=3 \operatorname{Cos} 10 \mathrm{t}$ respectively, then the phase difference between the velocity of two particles will be \qquad
(A) - è
(B) è
(C) $\theta-\frac{\pi}{2}$
(D) $\theta+\frac{\pi}{2}$.
5. When a body having mass \boldsymbol{m} is suspended from the free end of two springs suspended from a rigid support, as shown in figure, its periodic time of oscillation is \mathbf{T}. If only one of the two springs are used, then the periodic time would be \qquad
(A) $\frac{T}{\sqrt{2}}$
(B) $\frac{T}{2}$
(C) $\sqrt{2} T$
(D) 2 T

6. If the maximum velocity of two springs (both has same mass) executing S.H.M. and having force constants $\boldsymbol{k}_{\boldsymbol{1}}$ and \boldsymbol{k}_{2} respectively are same, then the ratio of their amplitudes will be \qquad
(A) $\frac{k_{1}}{k_{2}}$
(B) $\frac{k_{2}}{k_{1}}$
(C) $\sqrt{\frac{k_{1}}{k_{2}}}$
(D) $\sqrt{\frac{k_{2}}{k_{1}}}$
7. As shown in figure, two masses of 3.0 kg and 1.0 kg are attached at the two ends of a spring having force constant $300 \mathrm{~N} \mathrm{~m}^{-1}$. The natural frequency of oscillation for the system will be \qquad .hz. (Ignore friction)
(A) $1 / 4$
(B) $1 / 3$
(C) 4
(D) 3

3kg_ $\quad \infty \quad$
1 kg
8. The bob of a simple pendulum having length ' \boldsymbol{l} ' is displaced from its equilibrium position by an angle of è and released. If the velocity of the bob, while passing through its equilibrium position is \boldsymbol{v}, then $\boldsymbol{v}=$ \qquad
(A) $\sqrt{2 g l(1-\operatorname{Cos} \theta)}$
(B) $\sqrt{2 g l(1+\operatorname{Sin} \theta)}$
(C) $\sqrt{2 g l(1-\operatorname{Sin} \theta)}$
(D) $\sqrt{2 g l(1+\operatorname{Cos} \theta)}$
9. If $\frac{1}{4}$ of a spring having length \boldsymbol{l} is cutoff, then what will be the spring constant of remaining part?
(A) k
(B) 4 k
(C) $\frac{4 k}{3}$
(D) $\frac{3 k}{4}$
10. The amplitude for a S.H.M. given by the equation $x=3 \operatorname{Sin} 3 \mathrm{pt}+4 \operatorname{Cos} 3 \mathrm{pt}$ is \qquad .m.
(A) 5
(B) 7
(C) 4
(D) 3 .
11. When an elastic spring is given a displacement of 10 mm , it gains an potential energy equal to U. If this spring is given an additional displacement of 10 mm , then its potential energy will be \qquad
(A) U
(B) 2 U
(C) 4 U
(D) $\mathrm{U} / 4$.
12. The increase in periodic time of a simple pendulum executing S.H.M. is \qquad .when its length is increased by 21%.
(A) 42%
(B) 10%
(C) 11%
(D) 21%.
13. A particle executing S.H.M. has an amplitude A and periodic time T. The minimum time required by the particle to get displaced by $\frac{A}{\sqrt{2}}$ from its equilibrium position is \qquad s.
(A) T
(B) $\mathrm{T} / 4^{\prime}$
(C) $\mathrm{T} / 8$
(D) $\mathrm{T} / 16$.
14. If a body having mass M is suspended from the free ends of two springs A and B, their periodic time are found to be T_{1} and T_{2} respectively. If both these springs are now connected in series and if the same mass is suspended from the free end, then the periodic time is found to be T . Therefore \qquad
(A) $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$
(B) $\frac{1}{T}=\frac{1}{T_{1}}+\frac{1}{T_{2}}$
(C) $\mathrm{T}^{2}=\mathrm{T}_{1}{ }^{2}+\mathrm{T}_{2}{ }^{2}$
(D) $\frac{1}{T^{2}}=\frac{1}{T_{1}^{2}}+\frac{1}{T_{2}{ }^{2}}$.
15. The displacement of S.H.O. is given by the equation $x=A \operatorname{Cos}\left(\right.$ ùt $\left.+\frac{\pi}{8}\right)$. At what time will it attain maximum velocity?
(A) $\frac{3 \pi}{8 \omega}$
(B) $\frac{8 \pi}{3 \omega}$
(C) $\frac{3 \pi}{16 \omega}$
(D) $\frac{\pi}{16 \omega}$.
16. At what position will the potential energy of a S.H.O. become equal to one third its kinetic energy?
(A) $\pm \frac{A}{2}$
(B) $\pm \frac{A}{\sqrt{2}}$
(C) $\pm \frac{A}{\sqrt{3}}$
(D) $\pm \sqrt{3} A$.
17. Three identical springs are shown in figure. When a 4 kg mass is suspended from spring A, its length increases by 1 cm . Now if a 6 kg mass is suspended from the free end of spring C , then increase in its length is \qquad cm.
(A) 1.5
(B) 3.0
(C) 4.5
(D) 6.0 .

18. For particles A and B executing S.H.M., the equation for displacement is given by $\boldsymbol{y}_{1}=$ $0.1 \operatorname{Sin}(100 t+\mathrm{p} / 3)$ and $\boldsymbol{y}_{2}=0.1 \mathrm{Cospt}$ respectively. The phase difference between velocity of particle A with respect to that of B is \qquad
(A) $-\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $-\frac{\pi}{6}$
(D) $\frac{\pi}{3}$
19. The periodic time of a simple pendulum is T_{1}. Now if the point of suspension of this pendulum starts moving along the vertical direction according to the equation $y=k t^{2}$, the periodic time of the pendulum becomes T_{2}. Therefore, $\frac{T_{1}{ }^{2}}{T_{2}{ }^{2}}=\ldots\left(\mathrm{k}=1 \mathrm{~m} / \mathrm{s}^{2} \& \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) $6 / 5$
(B) $5 / 6$
(C) $4 / 5$
(D) 1
20. A hollow sphere is filled with water. There is a hole at the bottom of this sphere. This sphere is suspended with a string from a rigid support and given an oscillation. During oscillation, the hole is opened up and the periodic time of this oscillating system is measured. The periodic time of the system. \qquad
(A) will remain constant
(B) Will increase upto a certain time
(C) Increases initially and then decreases to attain its initial periodic time
(D) Initially decreases and then will attain the initial periodic time value.
21. The periodic time of a S.H.O. oscillating about a fixed point is 2 s . After what time will the kinetic energy of the oscillator become 25% of its total energy?
(A) $1 / 12 \mathrm{~s}$
(B) $1 / 6 \mathrm{~s}$
(C) $1 / 4 \mathrm{~s}$
(D) $1 / 3 \mathrm{~s}$.
22. A body having mass 5 g is executing S.H.M. with an amplitude of 0.3 m . If the periodic time of the system is $\frac{\pi}{10} \mathrm{~s}$, then the maximum force acting on body is
(A) 0.6 N
(B) 0.3 N
(C) 6 N
(D) 3 N
23. As shown in figure, a body having mass \boldsymbol{m} is attached with two springs having spring constants k_{1} and k_{2}. The frequency of oscillation is \boldsymbol{f}. Now, if the springs constants of both the springs are increased 4 times, then the frequency of oscillation will be equal to \qquad
(A) 2 f
(B) $f / 2$
(C) $\mathrm{f} / 4$
(D) 4 f

24. The figure shows a graph of displacement versus time for a particle executing S.H.M. The acceleration of the S.H.O. at the end of time $\mathbf{t}=\frac{4}{3}$ second is \qquad ..cm.s ${ }^{-2}$
(A) $\frac{\sqrt{3}}{32} \pi^{2}$
(B) $-\frac{\pi^{2}}{32}$
(C) $\frac{\pi^{2}}{32}$
(D) $-\frac{\sqrt{3}}{32} \pi^{2}$

25. As shown in figure, the object having mass \mathbf{M} is executing S.H.M. with an amplitude A. The amplitude of point \mathbf{P} shown in figure will be \qquad
(A) $\frac{k_{1} A}{k_{2}}$
(B) $\frac{k_{2} A}{k_{1}}$
(C) $\frac{k_{1} A}{k_{1}+k_{2}}$
(D) $\frac{k_{2} A}{k_{1}+k_{2}}$

26. Aparticle is executing S.H.M. between $x=-A$ and $x=+A$. If the time taken by the particle to travel from $\mathrm{x}=0$ to $\mathrm{A} / 2$ is T_{1} and that taken to travel from $\mathrm{x}=\mathrm{A} / 2$ to $\mathrm{x}=\mathrm{A}$ is T_{2}, then \qquad
(A) $\mathrm{T}_{1}<\mathrm{T}_{2}$
(B) $\mathrm{T}_{1}>\mathrm{T}_{2}$
(C) $\mathrm{T}_{1}=2 \mathrm{~T}_{2}$
(D) $\mathrm{T}_{1}=\mathrm{T}_{2}$
27. For a particle executing S.H.M., when the potential energy of the oscillator becomes $1 / 8$ the maximum potential energy, the displacement of the oscillator in terms of amplitude A will be \qquad
(A) $\frac{A}{\sqrt{2}}$
(B) $\frac{A}{2 \sqrt{2}}$
(C) $\frac{A}{2}$
(D) $\frac{A}{3 \sqrt{2}}$.

Downloaded from www.studiestoday.com

28. The average values of potential energy and kinetic energy over a cycle for a S.H.O. will be respectively.
(A) $0, \frac{1}{2} m \omega^{2} A^{2}$
(B) $\frac{1}{2} m \omega^{2} A^{2}, 0$
(C) $\frac{1}{2} m \omega^{2} A^{2}, \frac{1}{2} m \omega^{2} A^{2}$
(D) $\frac{1}{4} m \omega^{2} A^{2}, \frac{1}{4} m \omega^{2} A^{2}$.
29. The ratio of force constants of two springs is $1: 5$. The equal mass suspended at the free ends of both springs are performing S.H.M. If the maximum acceleration for both springs are equal, the ratio of amplitudes for both springs is \qquad
(A) $\frac{1}{\sqrt{5}}$
(B) $\frac{1}{5}$
(C) $\frac{5}{1}$
(D) $\frac{\sqrt{5}}{1}$
30. When a mass M is suspended from the free end of a spring, its periodic time is found to be T. Now, if the spring is divided into two equal parts and the same mass M is suspended and oscillated, the periodic time of oscillation is found to be T'. Then \qquad
(A) $\mathrm{T}<\mathrm{T}^{\prime}$
(B) $\mathrm{T}=\mathrm{T}$,
(C) $\mathrm{T}>\mathrm{T}^{\prime}$
(D) Nothing can be said.
31. The periodic time of two oscillators are T and $\frac{5 T}{4}$ respectively. Both oscillators starts their oscillation simultaneously from the mid point of their path of motion. When the oscillator having periodic time T completes one oscillation, the phase difference between the two oscillators will be \qquad
(A) 90°
(B) 112^{0}
(C) 72°
(D) 45°
32. A rectangular block having mass m and cross sectional area A is floating in a liquid having density r. If this block in its equilibrium position is given a small vertical displacement, its starts oscillating with periodic time T . Then in this case....
(A) $T \alpha \frac{1}{\sqrt{m}}$
(B) $T \alpha \sqrt{\rho}$
(C) $T \alpha \frac{1}{\sqrt{A}}$
(D) $T \alpha \frac{1}{\sqrt{\rho}}$
33. As shown in figure, a spring attached to the ground vertically has a horizontal massless plate with a 2 kg mass in it. When the spring (massless) is pressed slightly and released, the 2 kg mass, starts executing S.H.M. The force constant of the spring is $200 \mathrm{~N} \mathrm{~m}^{-1}$. For what minimum value of amplitude, will the mass loose contact with the plate? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(A) 10.0 cm
(B) 8.0 cm
(C) 4.0 cm
(D) For any value less than 12.0 cm .

34. Which of the equation given below represents a S.H.M.?
(A) acceleration $=-\mathrm{k}(x+\mathrm{a})$
(B) acceleration $=\mathrm{k}(x+\mathrm{a})$
(C) acceleration $=\mathrm{k} x$
(D) acceleration $=-\mathrm{k}_{0} x+\mathrm{k}_{1} x^{2}$
\{Here $\mathrm{k}, \mathrm{k}_{0}$ and k_{1} are force constants and units of \boldsymbol{x} and \boldsymbol{a} is meter \}
35. The displacement for a particle performing S.H.M. is given by $x=A \operatorname{Cos}(u ̀ t+\hat{O})$. If the initial position of the particle is 1 cm and its initial velocity is cms^{-1}, then what will be its initial phase? The angular frequency of the particle is $\mathrm{p} \mathrm{s}^{-1}$.
(A) $\frac{2 \pi}{4}$
(B) $\frac{7 \pi}{4}$
(C) $\frac{5 \pi}{4}$
(D) $\frac{3 \pi}{4}$
36. Two simple pendulums having lengths 144 cm and 121 cm starts executing oscillations. At some time, both bobs of the pendulum are at the equilibrium positions and in same phase. After how many oscillations of the shorter pendulum will both the bob's pass through the equilibrium position and will have same phase?
(A) 11
(B) 12
(C) 21
(D) 20
37. The maximum velocity and maximum acceleration of a particle executing S.H.M. are $1 \mathrm{~m} / \mathrm{s}$ and 3.14 $\mathrm{m} / \mathrm{s}^{2}$ respectively. The frequency of oscillation for this particle is \qquad
(A) $0.5 \mathrm{~s}^{-1}$
(B) $3.14 \mathrm{~s}^{-1}$
(C) $0.25 \mathrm{~s}^{-1}$
(D) $2 \mathrm{~s}^{-1}$
38. A particle having mass 1 kg is executing S.H.M. with an amplitude of 0.01 m and a frequency of 60 hz . The maximum force acting on this particle is \qquad N
(A) $144 \mathrm{p}^{2}$
(B) $288 \mathrm{p}^{2}$
(C) $188 \mathrm{p}^{2}$
(D) None of these.
39. A simple pendulum having length \boldsymbol{l} is given a small angular displacement at time $\mathrm{t}=0$ and released. After time t, the linear displacement of the bob of the pendulum is given by \qquad
(A) $\boldsymbol{x}=\mathrm{aSin} 2 \mathrm{p} \sqrt{\frac{l}{g}} t$
(B) $\mathrm{x}=\mathrm{aCos} 2 \mathrm{p} \sqrt{\frac{g}{l}} t$
(C) $\mathrm{x}=\mathrm{a} \operatorname{Sin} \sqrt{\frac{g}{l}} t$
(D) $\mathrm{x}=\mathrm{aCos} \sqrt{\frac{g}{l}} t$
40. Two masses $\boldsymbol{m}_{\boldsymbol{1}}$ and \boldsymbol{m}_{2} are attached to the two ends of a massless spring having force constant \boldsymbol{k}. When the system is in equilibrium, ifthe mass $\boldsymbol{m}_{\boldsymbol{1}}$ is detached, then the angular frequency of mass \boldsymbol{m}_{2} will be
(A) $\sqrt{\frac{k}{m_{1}}}$
(B) $\sqrt{\frac{k}{m_{2}}}$
(C) $\sqrt{\frac{k}{m_{2}}}+m_{1}$
(D) $\sqrt{\frac{k}{m_{1}+m_{2}}}$
41. When the displacement of a S.H.O. is equal to $\mathrm{A} / 2$, what fraction of total energy will be equal to kinetic energy? \{A is amplitude \}
(A) $2 / 7$
(B) ${ }^{3 / 4}$
(C) $2 / 9$
(D) $5 / 7$

Downloaded from www.studiestoday.com

42. The speed of a particle executing motion changes with time according to the equation $\boldsymbol{y}=\mathrm{aSinu} \mathrm{t}+$ bCosùt, then \qquad
(A) Motion is periodic but not a S.H.M.
(B) It is a S.H.M. with amplitude equal to $\mathrm{a}+\mathrm{b}$
(C) It is a S.H.M. with amplitude equal to $\mathrm{a}^{2}+\mathrm{b}^{2}$
(D) Motion is a S.H.M. with amplitude equal to $\sqrt{a^{2}+b^{2}}$.
43. A body is placed on a horizontal plank executing S.H.M. along vertical direction. Its amplitude of oscillation is $3.92 \times 10^{-3} \mathrm{~m}$. What should be the minimum periodic time so that the body does not loose contact with the plank?
(A) 0.1256 s
(B) 0.1356 s
(C) 0.1456 s
(D) 0.1556 s
44. If the kinetic energy of a particle executing S.H.M. is given by $\mathrm{K}=\mathrm{K}_{0} \operatorname{Cos}^{2}$ ùt, then the displacement of the particle is given by
(A) $\left(\frac{K_{0}}{m \omega^{2}}\right)^{1 / 2} \operatorname{Sin} \omega t$
(B) $\left(\frac{2 K_{0}}{m \omega^{2}}\right)^{1 / 2} \operatorname{Sin} \omega t$
(C) $\left(\frac{2 \omega^{2}}{m K_{0}}\right)^{1 / 2} \operatorname{Sin} \omega t$
(D) $\left(\frac{2 K_{0}}{m \omega}\right)^{1 / 2} \operatorname{Sin} \omega t$
45. The equation for displacement of two identical particles performing S.H.M. is given by $x_{1}=4 \operatorname{Sin}(20 \mathrm{t}+\mathrm{p} / 6)$ and $x_{2}=10$ Sinùt. For what value of ù will both particles have same energy?
(A) 4 units
(B) 8 units
(C) 16 units
(D) 20 units
46. A spring having length l and spring constant k is divided into two parts having lengths l_{l} and l_{2}. If l_{l} $=\mathrm{n} l_{2}$, the force constant of the spring having length l_{2} is \ldots \qquad
(A) $\mathrm{k}(1+\mathrm{n})$
(B) $\mathrm{k}\left(\frac{1+n}{n}\right)$
(C) k
(D) $\frac{k}{(n+1)}$
47. When a mass m is suspended from the free end of a massless spring having force constant k, its oscillates with frequency f. Now if the spring is divided into two equal parts and a mass 2 m is suspended from the end of anyone of them, it will oscillate with a frequency equal to \qquad
(A) f
(B) 2 f
(C) $\frac{f}{\sqrt{2}}$
(D) $\sqrt{2} f$
48. A mass m on an inclined smooth surface is attached to two springs as shown in figure. The other ends of both springs are attached to rigid surface. If the force constant of both spring is k, then the periodic time of oscillation for the system is \qquad
(A) $2 \pi\left(\frac{M}{2 k}\right)^{1 / 2}$
(B) $2 \pi\left(\frac{2 M}{k}\right)^{1 / 2}$
(C) $2 \pi\left(\frac{M g \operatorname{Sin} \theta}{2 k}\right)^{1 / 2}$
(D) $2 \pi\left(\frac{2 M g}{k}\right)^{1 / 2}$

49. A body of mass 1 kg suspended from the free end of a spring having force constant $400 \mathrm{Nm}^{-1}$ is executing S.H.M. When the total energy of the system is 2 joule, the maximum acceleration is $\ldots \mathrm{ms}^{-2}$.
(A) $8 \mathrm{~ms}^{-2}$
(B) $10 \mathrm{~ms}^{-2}$
(C) $40 \mathrm{~ms}^{-2}$
(D) $40 \mathrm{cms}^{-2}$
50. When a block of mass \boldsymbol{m} is suspended from the free end of a massless spring having force constant k , its length increases by \boldsymbol{y}. Now when the block is slightly pulled downwards and released, it starts executing S.H.M with amplitude A and angular frequency ù. The total energy of the system comprising of the block and spring is \qquad
(A) $\frac{1}{2} m \omega^{2} A^{2}$
(B) $\frac{1}{2} m \omega^{2} A^{2}+\frac{1}{2} k y^{2}$
(C) $\frac{1}{2} k y^{2}$
(D) $\frac{1}{2} m \omega^{2} A^{2}-\frac{1}{2} k y^{2}$.
51. A spring is attached to the center of a frictionless horizontal turn table and at the other end a body of mass 2 kg is attached. The length of the spring is 35 cm . Now when the turn table is rotated with an angular speed of $10 \mathrm{rad} \mathrm{s}^{-1}$, the length of the spring becomes 40 cm then the force constant of the spring is \qquad N / m.
(A) 1.2×10^{3}
(B) 1.6×10^{3}
(C) 2.2×10^{3}
(D) 2.6×10^{3}
52. As shown in figure (a) and (b), a body of mass m is attached at the ends of the spring system. All springs have the same spring constant k . Now when both systems oscillates along vertical direction, the ratio of their periodic time is \qquad
(A) $1 / 4$
(B) $1 / 2$
(C) 2
(D) 4

53. A simple pendulum is executing S.H.M. around point O between the end points B and C with a periodic time of 6 s . If the distance between B and C is 20 cm then in what time will the bob move from C to D ? Point D is at the mid-point of C and O .
(A) 1 s
(B) 2 s
(C) 3 s
(D) 4 s
54. A small spherical steel ball is placed at a distance slightly away from the center of a concave mirror having radius of curvature 250 cm . If the ball is released, it will now move on the curved surface. What will be the periodic time of this motion? Ignore frictional force and take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(A) $\frac{\pi}{4} s$
(B) p s
(c) $\frac{\pi}{2} s$
(D) 2 p s
55. Two identical springs are attached at the opposite ends of a rod having length \boldsymbol{l} and mass \mathbf{m}. The rod could rotate about its mid-point O as shown in figure. Now, if the point A of the rod is pressed slightly and released, the rod starts executing oscillatory motion. The periodic time of this motion is \qquad
(A) $2 \pi \sqrt{\frac{m}{2 k}}$
(B) $2 \pi \sqrt{\frac{2 m}{k}}$
(C) $\pi \sqrt{\frac{2 m}{3 k}}$
(D) $\pi \sqrt{\frac{3 m}{2 k}}$

Downloaded from www.studiestoday.com

56. A simple pendulum having length l is suspended at the roofof a train moving with constant acceleration ' \boldsymbol{a} ' along horizontal direction. The periodic time of this pendulum is \qquad
(A) $T=2 \pi \sqrt{\frac{l}{g}}$
(B) $T=2 \pi \sqrt{\frac{l}{g+a}}$
(C) $T=2 \pi \sqrt{\frac{l}{g-a}}$
(D) $T=2 \pi \sqrt{\frac{l}{g^{2}+a^{2}}}$.
57. A trolley is sliding down a frictionless slope having inclination è. If a simple pendulum is suspended on top of this trolley, its periodic time is given by $T=2 \pi \sqrt{\frac{l}{g_{e f f}}}$, where $\mathrm{g}_{\text {eff }}=$ \qquad
(A) g
(B) $g \sin \theta$
(C) $g \cos \theta$
(D) $g \tan \theta$
58. One end of a massless spring having force constant k and length 50 cm is attached at the upper end of a plane inclined at an angle $\grave{e}=30^{\circ}$. When a body of mass $\mathrm{m}=1.5 \mathrm{~kg}$ is attached at the lower end of the spring, the length of the spring increases by 2.5 cm . Now, if the mass is displaced by a small amount and released, the amplitude of the resultant oscillation is \qquad
(A) $\frac{\pi}{7}$
(B) $\frac{2 \pi}{7}$
(C) $\frac{\pi}{5}$
(D) $\frac{2 \pi}{5}$
59. Two blocks A and B are attached to the two ends of a spring having length L and force constant \boldsymbol{k} on a horizontal surface. Initially the system is in equilibrium. Now a third block having same mass \boldsymbol{m}, moving with
 velocity \boldsymbol{v} collides with block A. In this situation.
(A) During maximum contraction of the spring, the kinetic energy of the system $A-B$ will be zero.
(B) During maximum contraction of the spring, the kinetic energy of the systemA-B will be $\mathrm{mv}^{2} / 4$
(C) Maximum contraction of the spring is $v \sqrt{\frac{m}{k}}$
(D) Maximum contraction of the spring is $v \sqrt{\frac{2 m}{k}}$
60. The displacement of a particle executing S.H.M. is given by $y=4 \operatorname{Cos}^{2}(t / 2) \operatorname{Sin} 1000 t$. This displacement is due to superposition of. \qquad S.H.M.'s.
(A) 2
(B) 3
(C) 4
(D) 5
61. The displacement of a particle is given by $x=\mathrm{A}$ $\operatorname{Cos} \omega$ t. Which of the following graph represents variation in potential energy as a function of time t and displacement x.
(A) I, III
(B) II, IV
(C) II, III
(D) I, IV

(b)

Downloaded from www.studiestoday.com

62. A system is executing S.H.M. The potential energy of the system for displacement \boldsymbol{x} is E_{1} and for a displacement of \boldsymbol{y}, the potential energy of the system is E_{2}. The potential energy for a displacement of $(x+y)$ is \qquad
(A) $\mathrm{E}_{1}+\mathrm{E}_{2}$
(B) $\sqrt{E_{1}{ }^{2}+E_{2}{ }^{2}}$
(C) $\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{E_{1} E_{2}}$
(D) $\sqrt{E_{1} E_{2}}$
63. A system is executing S.H.M. with a periodic time of $4 / 5$ s under the influence of force F_{1}. When a force F_{2} is applied, the periodic time is $(2 / 5)$ s. Now if F_{1} and F_{2} are applied simultaneously along the same direction, the periodic time will be \qquad
(A) $\frac{4}{5 \sqrt{5}}$
(B) $\frac{5}{4 \sqrt{5}}$
(C) $\frac{8}{4 \sqrt{5}}$
(D) $\frac{8}{5 \sqrt{5}}$
64. The periodic time of a simple pendulum is 3.3 s . Now if the point of support of the pendulum starts moving along the vertically upward direction with a velocity $v=\boldsymbol{k t}\left(\right.$ where $k=2.1 \mathrm{~m} / \mathrm{s}^{2}$), then the new periodic time is \qquad s. $\left\{\right.$ Take $\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right\}$
(A) 3
(B) 2.5
(C) 3.33
(D) 2.33
65. A block is placed on a horizontal table. The table executes S.H.M. along the horizontal plane with a period T. The coefficient of static friction between the table and block is μ. The maximum amplitude of oscillation should be \qquad .so that the block does not slide off the table.
(A) $\frac{\mu g T}{5 \pi}$
(B) $\frac{\mu g T^{2}}{4 \pi^{2}}$
(C) $\frac{\mu g T}{2 \pi}$
(D) $\mu \mathrm{gT}$
66. As shown in figure, a block A having mass M is attached to one end of a massless spring. The block is on a frictionless horizontal surface and the free end of the spring is attached to a wall. Another block B having mass ' m ' is placed on top of block A. Now on displacing this system horizontally and released, it executes S.H.M. What should be the maximum amplitude of oscillation so that B does not slide offA? Coefficient of static friction between the surfaces of the block's is μ.
(A) $\mathrm{A}_{\max }=\frac{\mu m g}{k}$
(B) $\mathrm{A}_{\max }=\frac{\mu(m+M)}{k}$
(C) $\mathrm{A}_{\max }=\frac{\mu(M-m) g}{k}$
(D) $\mathrm{A}_{\max }=\frac{2 \mu(M+m}{k}$

67. A particle is executing S.H.M. about the origin at $x=0$. Which of the following graph shows variation in potential energy with displacement?
(A)

(C)

68. A horizontal plank is executing SHM along the vertical direction with angular frequency ù. A coin is placed on top of this plank. If the amplitude of oscillation is increased gradually, for what maximum amplitude will the coin be on the verge of loosing contact with the plank?
(A) When is plank is at its maximum height
(B) When the plank is at the midpoint.
(C) When the amplitude is $\frac{g}{\omega^{2}}$
(D) When the amplitude is $\frac{g^{2}}{\omega^{2}}$

SECTION : II

Assertion - Reason type questions :

Note:

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option.
(a) Statement -1 is true, statement- 2 is true; statement- 2 is the correct explanation of statement -1 .
(b) Statement -1 is true, statement- 2 is true but statement- 2 is not the correct explanation of statement - 1 .
(c) Statement -1 is true, statement- 2 is false
(d) Statement -1 is false, statement- 2 is true
(A) a
(B) b
(C) c
(D) d
69. Statement - $\mathbf{1}$: If a spring having spring constant k is divided into equal parts, then the spring constant of each part will be 2 k .

Statement-2: When the length of the elastic spring is increased (stretched) by x , then the amount of work required to be done is $\frac{1}{2} k x^{2}$
(A) a
(B) b
(C) c
(D) d
70. Statement-1:The periodic time of a S.H.O. depends on its amplitude and force constant. Statement-2: The elasticity and inertia decides the frequency of S.H.O.
(A) a
(B) b
(C) c
(D) d
71. Statement - 1: For small amplitude, the motion of a simple pendulum is a S.H.M. with periodic time $T=2 \pi \sqrt{\frac{l}{g}}$. For large amplitudes, periodic time is greater than $2 \pi \sqrt{\frac{l}{g}}$.

Statement-2:For large amplitude, the speed of the bob is more when it passes through the mid-point (equilibrium point).
(A) a
(B) b
(C) c
(D) d
72. Statement - 1: Periodic time of a simple pendulum is independent of the mass of the bob. Statement-2:The restoring force does not depend on the mass of the bob.
(A) a
(B) b
(C) c
(D) d
73. Statement - 1: The periodic time of a simple pendulum increases on the surface of moon. Statement-2: Moon is very small as compared to Earth.
(A) a
(B) b
(C) c
(D) d
74. Statement - 1: If the length of a simple pendulum is increased by 3%, then the periodic time changes by 1.5%.

Statement-2: Periodic time of a simple pendulum is proportional to its length.
(A) a
(B) b
(C) c
(D) d
75. Statement - 1: For a particle executing S.H.M. with an amplitude of 0.01 m and frequency 30 hz , the maximum acceleration is $36 \mathrm{p}^{2} \mathrm{~m} / \mathrm{s}^{2}$.
Statement-2: The maximum acceleration for the above particle is $\pm \grave{\mathrm{u}}^{2} \mathrm{~A}$, where A is amplitude.
(A) a
(B) b
(C) c
(D) d
76. Statement - $\mathbf{1}$: The periodic time of a stiff spring is less than that of a soft spring.

Statement-2 : The periodic time of a spring depends on its force constant value and for a stiff spring, it is more.
(A) a
(B) b
(C) c
(D) d
77. Statement-1: The amplitude of an oscillator decreases with time.

Statement-2: The frequency of an oscillator decreases with time.
(A) a
(B) b
(C) c
(D) d
78. Statement - $\mathbf{1}$: For a particle executing SHM, the amplitude and phase is decided by its initial position and initial velocity.
Statement-2:In a SHM, the amplitude and phase is dependent on the restoring force.
(A) a
(B) b
(C) c
(D) d

SECTION - III

COMPREHENSION BASED QUESTIONS

NOTE: Questions 79 to 81 are based on the following passage.

Passage - 1:

As shown in figure, two light springs having force constants $\boldsymbol{k}_{\boldsymbol{1}}=1.8 \mathrm{~N} \mathrm{~m}^{-1}$ and $\boldsymbol{k}_{2}=3.2 \mathrm{~N} \mathrm{~m}^{-1}$ and a block having mass $\mathrm{m}=200 \mathrm{~g}$ are placed on a frictionless horizontal surface. One end of both springs are attached to rigid supports. The distance between the free ends of the spring is 60 cm and the block is moving in this gap with a speed $\boldsymbol{v}=120 \mathrm{~cm} \mathrm{~s}^{-1}$.

79. When the block is moving towards spring k_{2}, what will be the time taken for the spring to get maximum compressed from point D ?
(A) p s
(B) $(\mathrm{p} / 2) \mathrm{s}$
(C) $(\mathrm{p} / 3) \mathrm{s}$
(D) $(\mathrm{p} / 4) \mathrm{s}$
80. When the block is moving towards k_{1}, what will be the time taken for it to get maximum compressed from point C ?
(A) p s
(B) $(2 / 3) \mathrm{s}$
(C) $(\mathrm{p} / 3) \mathrm{s}$
(D) $(\mathrm{p} / 4) \mathrm{s}$
81. What will be the periodic time of the block, between the two springs?
(A) $1+(5 \mathrm{p} / 6) \mathrm{s}$
(B) $1+(7 \mathrm{p} / 6) \mathrm{s}$
(C) $1+(5 \mathrm{p} / 12) \mathrm{s}$
(D) $1+(7 \mathrm{p} / 12) \mathrm{s}$

NOTE: Questions 82 to 84 are based on the following passage.
Passage-2 :
A block having mass \mathbf{M} is placed on a horizontal frictionless surface. This mass is attached to one end of a spring having force constant \boldsymbol{k}. The other end of the spring is attached to a rigid wall. This system consisting of spring and mass \mathbf{M} is executing SHM with amplitude \mathbf{A} and frequency f. When the block is passing through the mid-point of its path of motion, a body of mass mis placed on top of it, as a result of which its amplitude and frequency changes to \mathbf{A}^{\prime} and \mathbf{f}^{\prime}.
82. The ratio of frequencies $\frac{f^{\prime}}{f}=$
(A) $\sqrt{\left(\frac{M}{m+M}\right)}$
(B) $\sqrt{\left(\frac{m}{m+M}\right)}$
(C) $\sqrt{\left(\frac{M A}{m A^{\prime}}\right)}$
(D) $\sqrt{\left(\frac{(M+m) A^{\prime}}{m A}\right)}$
83. If the velocity before putting the mass and after putting it is \boldsymbol{v} and \boldsymbol{v}^{I} respectively, then $\frac{v^{1}}{v}=\ldots$ \qquad
(A) $\left(\frac{M}{m+M}\right)$
(B) $\left(\frac{M+m}{M}\right)$
(C) $\left(\frac{M+m}{M-m}\right) \frac{A^{1}}{A}$
(D) $\left(\frac{M-m}{M+m}\right) \frac{A^{1}}{A}$.
84. The ratio of amplitudes $\frac{A^{1}}{A}=\ldots \ldots$.
(A) $\sqrt{\left(\frac{M+m}{m}\right)}$
(B) $\sqrt{\left(\frac{m}{M+m}\right)}$
(C) $\sqrt{\left(\frac{M}{M+m}\right)}$
(D) $\sqrt{\left(\frac{M+m}{M}\right)}$

NOTE: Questions 85 to 90 are based on the following passage.

Passage - 3:

The equation for displacement of a particle at time t is given by the equation $\boldsymbol{y}=3 \operatorname{Cos} 2 t+4 \operatorname{Sin} 2 t$.
85. The motion of the particle is \qquad
(A) Damped motion
(B) Periodic motion
(C) Rotational motion
(D) S.H.M.
86. The periodic time of oscillation is \qquad
(A) 2 s
(B) p s
(C) $(/ 2) \mathrm{s}$
(D) 2 p s
87. The amplitude of oscillation is \qquad cm
(A) 1
(B) 3
(C) 5
(D) 7
88. The maximum acceleration of the particle is \qquad $. \mathrm{cm} / \mathrm{s}^{2}$.
(A) 4
(B) 12
(C) 20
(D) 28
89. If the mass of the particle is 5 gm , then the total energy of the particle is \qquad
(A) 250
(B) 125
(C) 500
(D) 375
90. The frequency of the particle is \qquad s^{-1}.
(A) (1/p)
(B) p
(C) $(1 / 2 p)$
(D) $(\mathrm{p} / 2)$

Downloaded from www.studiestoday.com

Waves

SECTION - I :

91. Equation for a harmonic progressive wave is given by $\boldsymbol{y}=\mathrm{A} \sin (15 \mathrm{pt}+10 \mathrm{px}+\mathrm{p} / 3)$ where \boldsymbol{x} is in meter and t is in seconds. This wave is \qquad
(A) Travelling along the positive \boldsymbol{x} direction with a speed of $1.5 \mathrm{~ms}^{-1}$.
(B) Travelling along the negative \boldsymbol{x} direction with a speed of $1.5 \mathrm{~ms}^{-1}$.
(C) Has a wavelength of 1.5 m along the $-\boldsymbol{x}$ direction.
(D) Has a wavelength of 1.5 m along the positive \boldsymbol{x}-direction.
92. If the velocity of sound wave in humid air is $\boldsymbol{v}_{\boldsymbol{m}}$ and that in dry air is $\boldsymbol{v}_{\boldsymbol{d}}$, then......
(A) $\boldsymbol{v}_{\boldsymbol{m}}>\boldsymbol{v}_{\boldsymbol{d}}$
(B) $\boldsymbol{v}_{\boldsymbol{m}}<\boldsymbol{v}_{d}$
(C) $v_{m}=v_{d}$
(D) $v_{m} \gg v_{d}$
93. The ratio of frequencies of two waves travelling through the same medium is $\mathbf{2 : 5}$. The ratio of their wavelengths will be \qquad
(A) $2: 5$
(B) $5: 2$
(C) $3: 5$
(D) $5: 3$
94. If the maximum frequency of a sound wave at room temperature is $20,000 \mathrm{hz}$ then its minimum wavelength will be approximately \qquad ($v=340 \mathrm{~ms}^{-1}$)
(A) $0.2 \mathrm{~A}^{0}$
(B$) 5 \mathrm{~A}^{0}$
(C) 5 cm to 2 m
(D) 20 mm
95. If the equation of a wave in a string having linear mass density $\mathbf{0 . 0 4} \mathbf{~ k g ~ m}{ }^{-1}$ is given by $\boldsymbol{y}=0.02$ $\operatorname{Sin}\left[2 \pi\left(\frac{t}{0.04}-\frac{x}{0.50}\right)\right]$, then the tension in the string is \qquad N. (All values are in mks)
(A) 6.25
(B) 4.0
(C) 12.5
(D) 0.5
96. If the equation for a transverse wave is $\mathrm{y}=\mathrm{A} \operatorname{Sin} 2 \mathrm{p}\left(\frac{t}{T}-\frac{x}{\lambda}\right)$, then for what wavelength will the maximum velocity of the particle be double the wave velocity?
(A) $\frac{\pi A}{4}$
(B) $\frac{\pi A}{2}$
(C) pA
(D) 2 pA
97. Consider two points lying at a distance of 10 m and 15 m from an oscillating source. If the periodic time of oscillation is 0.05 s and the velocity of wave produced is $300 \mathrm{~m} / \mathrm{s}$, then what will be the phase difference the two points?
(A) p
(B) $p / 6$
(C) $\mathrm{p} / 3$
(D) $2 \mathrm{p} / 3$

Downloaded from www.studiestoday.com

98. A string is divided into three parts having lengths $\boldsymbol{l}_{\boldsymbol{l}}, \boldsymbol{l}_{2}$ and \boldsymbol{l}_{3} each. If the fundamental frequency of these parts are $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}$ and \boldsymbol{f}_{3} respectively, then the fundamental frequency of the original string $\boldsymbol{f}=$
(A) $\sqrt{f}=\sqrt{f_{1}}+\sqrt{f_{2}}+\sqrt{f_{3}}$
(B) $\boldsymbol{f}=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}+\boldsymbol{f}_{3}$
(C) $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}$
(D) $\frac{1}{\sqrt{f}}=\frac{1}{\sqrt{f_{1}}}+\frac{1}{\sqrt{f_{2}}}+\frac{1}{\sqrt{f_{3}}}$
99. Waves produced by two tuning forks are given by $\boldsymbol{y}_{1}=4 \operatorname{Sin} 500 \mathrm{pt}$ and $\boldsymbol{y}_{2}=2 \operatorname{Sin} 506 \mathrm{pt}$. The number of beats produced per minute is
(A) 360
(B) 180
(c) 60
(D) 3
100. Equation for a progressive harmonic wave is given by $\boldsymbol{y}=8 \operatorname{Sin} 2 \mathrm{p}(0.1 \boldsymbol{x}-2 \mathrm{t})$, where \boldsymbol{x} and \boldsymbol{y} are in cm and \boldsymbol{t} is in seconds. What will be the phase difference between two particles of this wave separated by a distance of 2 cm ?
(A) 18^{0}
(B) 36^{0}
(C) 72^{0}
(D) 54^{0}
101. As shown in figure, two pulses in a string having center to center distance of 8 cm are travelling along mutually opposite direction. If the speed of both the pulse is $2 \mathrm{~cm} / \mathrm{s}$, then after 2 s , the energy of these pulses will be \qquad
(A) zero
(B) totally kinetic energy
(C) totally potential energy

(D) Partially potential energy and partially kinetic energy.
102. Two waves are represented by $\boldsymbol{y}_{1}=$ ASinùt and $\boldsymbol{y}_{2}=$ aCosùt. The phase of the first wave, w.r.t. to the second wave is \qquad
(A) more by radian
(B) less by p radian
(C) more by $\mathrm{p} / 2$
(D) less by $\mathrm{p} / 2$
103. If the resultant of two waves having amplitude \boldsymbol{b} is \boldsymbol{b}, then the phase difference between the two waves is \qquad
(A) 120°
(B) 60°
(C) 90°
(D) 180°
104. If two antinodes and three nodes are formed in a distance of $1.21 \mathrm{~A}^{0}$, then the wavelength of the stationary wave is \qquad
(A) $2.42 \mathrm{~A}^{0}$
(B) $6.05 \mathrm{~A}^{0}$
(C) $3.63 \mathrm{~A}^{0}$
(D) $1.21 \mathrm{~A}^{0}$
105. The function Sin^{2} (ùt) represents
(A) A SHM with periodic time p/ù.
(B) A SHM with a periodic time $2 \mathrm{p} / \mathrm{u}$.
(C) A periodic motion with periodic time p / u.
(D) A periodic motion with period $2 \mathrm{p} / \mathrm{u}$.
106. If two almost identical waves having frequencies n_{1} and n_{2}, produced one after the other superposes then the time interval to obtain a beat of maximum intensity is \qquad
(A) $\frac{1}{n_{1}-n_{2}}$
(B) $\frac{1}{n_{1}}-\frac{1}{n_{2}}$
(C) $\frac{1}{n_{1}}+\frac{1}{n_{2}}$
(D) $\frac{1}{n_{1}+n_{2}}$
107. When two sound waves having amplitude A , angular frequency ù and a phase difference of $\mathrm{p} / 2$ superposes, the maximum amplitude and angular frequency of the resultant wave is
(A) $\sqrt{2} A$, ù
(B) $\frac{A}{\sqrt{2}}, \frac{\omega}{2}$
(C) $\frac{A}{\sqrt{2}}$, ù
(D) $\sqrt{2} A, \frac{\omega}{2}$
108. The amplitude of a wave in a string is 2 cm . This wave is propagating along the x -direction with a speed of $128 \mathrm{~m} / \mathrm{s}$. Five such waves are accommodated in 4 m length of the string. The equation for this wave is \qquad
(A) $\mathbf{y}=0.02 \operatorname{Sin}(15.7 x-2010 t) \mathrm{m}$
(B) $\mathbf{y}=0.02 \operatorname{Sin}(15.7 x+2010 t) \mathrm{m}$
(C) $\mathbf{y}=0.02 \operatorname{Sin}(7.85 x-1005 t) \mathrm{m}$
(D) $\mathbf{y}=0.02 \operatorname{Sin}(7.85 x+1005 t) \mathrm{m}$
109. A string of length 70 cm is stretched between two rigid supports. The resonant frequency for this string is found to be 420 hz and 315 hz . If there are no resonant frequencies between these two values, then what would be the minimum resonant frequency of this string?
(A) 10.5 hz
(B) 1.05 hz
(C) 105 hz
(D) 1050 hz
110. Sound waves propagates with a speed of $350 \mathrm{~m} / \mathrm{s}$ through air and with a speed of $3500 \mathrm{~m} / \mathrm{s}$ through brass. If a sound wave having frequency 700 hz passes from air to brass, then its wavelength
(A) decreases by a fraction of 10
(B) increases 20 times
(C) increases 10 times
(D) decreases by a fraction of 20
111. A transverse wave is represented by $y=A \operatorname{Sin}$ (ùt-kx). For what value of its wavelength will the wave velocity be equal to the maximum velocity of the particle taking part in the wave propagation?
(A) 2 pA
(B) A
(C) pA
(D) $\mathrm{pA} / 2$
112. Two monoatomic ideal gases 1 and 2 has molecular weights m_{1} and m_{2}. Both are kept in two different containers at the same temperature. The ratio of velocity of sound wave in gas 1 and 2 is \qquad
(A) $\sqrt{\frac{m_{2}}{m_{1}}}$
(B) $\sqrt{\frac{m_{1}}{m_{2}}}$
(C) $\frac{m_{1}}{m_{2}}$
(D) $\frac{m_{2}}{m_{1}}$
113. A wire having length L is kept under tension between $x=0$ and $x=L$. In one experiment, the equation of the wave and energy is given by $y_{1}=\operatorname{ASin}\left(\frac{\pi x}{L}\right)$ Sinùt and E_{1} respectively. In another experiment, it is $\mathrm{y}_{2}=\mathrm{ASin}\left(\frac{2 \pi x}{L}\right) \operatorname{Sin} 2$ ùt and E_{2}. Then
(A) $\mathrm{E}_{2}=\mathrm{E}_{1}$
(B) $\mathrm{E}_{2}=2 \mathrm{E}_{1}$
(C) $\mathrm{E}_{2}=4 \mathrm{E}_{1}$
(D) $\mathrm{E}_{2}=16 \mathrm{E}_{1}$

Downloaded from www.studiestoday.com

114. Twenty four tuning forks are arranged in such a way that each fork produces 6 beats/s with the preceding fork. If the frequency of the last tuning fork is double than the first fork, then the frequency of the second tuning fork is
(A) 132
(B) 138
(C) 276
(D) 144
115. If two SHM's are given by the equation $\boldsymbol{y}_{1}=0.1 \operatorname{Sin}(100 \mathrm{pt}+\mathrm{p} / 3)$ and $\boldsymbol{y}_{2}=0.1 \mathrm{Cospt}$, then the phase difference between the velocity of particle 1 and 2 is \qquad
(A) $\mathrm{p} / 6$
(B) $-\mathrm{p} / 3$
(C) $\mathrm{p} / 3$
(D) $-\mathrm{p} / 6$
116. The wave number for a wave having wavelength 0.005 m is \qquad m^{-1}.
(A) 5
(B) 50
(C) 100
(D) 200
117. An listener is moving towards a stationary source of sound with a speed $1 / 4$ times the speed of sound. What will be the percentage increase in the frequency of sound heard by the listener?
(A) 20%
(B) 25%
(C) 2.5%
(D) 5%
118. When the resonance tube experiment, to measure speed of sound is performed in winter, the first harmonic is obtained for 16 cm length of air column. Ifthe same experiment is performed in summer, the second harmonic is obtained for x length of air column. Then
(A) $32>x>16$
(B) $16>x$
(C) $x>48$
(D) $48>x>32$
119. What should be the speed of a source of sound moving towards a stationary listener, so that the frequency of sound heard by the listener is double the frequency of sound produced by the source? $\{$ Speed of sound wave is \boldsymbol{v} \}
(A) v
(B) $2 v$
(C) $v / 2$
(D) $\boldsymbol{v} / 4$
120. A metal wire having linear mass density $10 \mathrm{~g} / \mathrm{m}$ is passed over two supports separated by a distance of 1 m . The wire is kept in tension by suspending a 10 kg mass. The mid point of the wire passes through a magnetic field provided by magnets and an a.c. supply having frequency \boldsymbol{n} is passed through the wire. If the wire starts vibrating with its resonant frequency, what is the frequency ofa.c. supply?
(A) 50 hz
(B) 100 hz
(C) 200 hz
(D) 25 hz
121. If the listener and the source of sound moves along the same direction with the same speed, then.
(A) $\frac{f_{L}}{f_{s}}<1$
(B) $\frac{f_{L}}{f_{s}}=0$
(C) $\frac{f_{L}}{f_{s}}=1$
(D) $\frac{f_{L}}{f_{s}}>1$
122. A wire of length 10 m and mass 3 kg is suspended from a rigid support. The wire has uniform cross sectional area. Now a block of mass 1 kg is suspended at the free end of the wire and a wave having wavelength 0.05 m is produced at the lower end of the wire. What will be the wavelength of this wave when it reached the upper end of the wire?
(A) 0.12 m
(B) 0.18 m
(C) 0.14 m
(D) 0.10 m
123. If the mass of 1 mole of air is $29 \times 10^{-3} \mathrm{~kg}$, then the speed of sound in it at STP is ... \qquad ($\tilde{a}^{=} 7 / 5$). $\left\{\mathrm{T}=273 \mathrm{~K}, \mathrm{P}=1.01 \times 10^{5} \mathrm{~Pa}\right\}$
(A) $270 \mathrm{~m} / \mathrm{s}$
(B) $290 \mathrm{~m} / \mathrm{s}$
(C) $330 \mathrm{~m} / \mathrm{s}$
(D) $350 \mathrm{~m} / \mathrm{s}$

Downloaded from www.studiestoday.com

124. A wave travelling along a string is described by $y=0.005 \operatorname{Sin}(40 x-2 t)$ in SI units. The wavelength and frequency of the wave are. \qquad ..
(A) $(\mathrm{p} / 5) \mathrm{m} ; 0.12 \mathrm{hz}$
(B) $(\mathrm{p} / 10) \mathrm{m} ; 0.24 \mathrm{hz}$
(C) $(\mathrm{p} / 40) \mathrm{m} ; 0.48 \mathrm{hz}$
(D) $(\mathrm{p} / 20) \mathrm{m} ; 0.32 \mathrm{hz}$
125. Two sitar strings A and B playing the note "Dha" are slightly out of time and produce beats of frequency 5 hz . The tension of the string B is slightly increased and the beat frequency is found to decrease to 3 hz . What is the original frequency of B if the frequency of A is 427 hz ?
(A) 432
(B) 422
(C) 437
(D) 417
126. A rocket is moving at a speed of $130 \mathrm{~m} /$ s towards a stationary target. While moving, it emits a wave of frequency 800 hz . Calculate the frequency of the sound as detected by the target. (Speed of wave $=330 \mathrm{~m} / \mathrm{s}$)
(A) 1320 hz
(B) 2540 hz
(C) 1270 hz
(D) 660 hz
127. Length of a steel wire is 11 m and its mass is 2.2 kg . What should be the tension in the wire so that the speed of a transverse wave in it is equal to the speed of sound in dry air at $20^{\circ} \mathrm{C}$ temperature?
(A) $2.31 \times 10^{4} \mathrm{~N}$
(B) $2.25 \times 10^{4} \mathrm{~N}$
(C) $2.06 \times 10^{4} \mathrm{~N}$
(D) $2.56 \times 10^{4} \mathrm{~N}$
128. A wire stretched between two rigid supports vibrates with a frequency of 45 hz . If the mass of the wire is $3.5 \times 10^{-2} \mathrm{~kg}$ and its linear mass density is $4.0 \times 10^{-2} \mathrm{~kg} / \mathrm{m}$, what will be the tension in the wire?
(A) 212 N
(B) 236 N
(C) 248 N
(D) 254 N
129. Tube A has both ends open while tube B has one end closed, otherwise they are identical. The ratio of fundamental frequency of tube A and B is \qquad
(A) $1: 2$
(B) $1: 4$
(C) $2: 1$
(D) $4: 1$
130. Atuning fork arrangement produces 4 beats/second with one fork of frequency 288 hz . A little wax is applied on the unknown fork and it then produces 2 beats/s. The frequency ofthe unknown fork is. \qquad hz.
(A) 286
(B) 292
(C) 294
(D) 288
131. A wave $\boldsymbol{y}=\operatorname{aSin}(\mathrm{u} t-\mathrm{kx}$) on a string meets with another wave producing a node at $\mathrm{x}=0$. Then the equation of the unknown wave is \qquad
(A) $y=a \operatorname{Sin}(u ̀ t+k x)$
(B) $y=-a \operatorname{Sin}(u ̀ t+k x)$
(C) $y=a \operatorname{Sin}(u ̀ t-k x)$
(D) $y=-\operatorname{aSin}(u ̀ t-k x)$
132. When temperature increases, the frequency of a tuning fork.
(A) Increases
(B) Decreases
(C) remains same
(D) Increases or decreases depending on the material.
133. A tuning fork of known frequency 256 hz makes 5 beats per second with the vibrating string of a piano. The beats frequency decreases to 2 beats/s when the tension in the piano string is slightly increased. The frequency of the piano string before increase in the tension was \qquad ..hz.
(A) $256+2$
(B) $256-2$
(C) 256 - 5
(D) $256+5$.

Downloaded from www.studiestoday.com

134. An observer moves towards a stationary source of sound with a velocity one - fiffh the velocity of sound. What is the percentage increase in the apparent frequency?
(A) 5%
(B) 20%
(C) zero
(D) 0.5%
135. The speed of sound in Oxygen $\left(\mathrm{O}_{2}\right)$ at a certain temperature is $460 \mathrm{~m} / \mathrm{s}$. The speed of sound in helium at the same temperature will be \qquad . ms^{-1}. (Assume both gases to be ideal)
(A) 330
(B) 460
(C) 5002
(D) None of these
136. In a longitudinal wave, pressure variation and displacement variation are
(A) In phase
(B) 90° out of phase
(C) 45° out of phase
(D) 180° out of phase
137. A tuning fork of frequency 480 hz produces 10 beats/s when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight increase in tension produces fewer beats per second than before?
(A) 480
(B) 490 hz
(C) 460 hz
(D) 470 hz
138. Which of the following functions represents a wave?
(A) $(\mathrm{x}-\mathrm{vt})^{2}$
(B) $\ln (\mathrm{x}+\mathrm{vt})$
(C) $e^{-(x+v t) 2}$
(D) $\frac{1}{x+v t}$
139. Two sound waves are represented by $y=a \operatorname{Sin}(u ̀ t-k x)$ and $y=a \operatorname{Cos}(u ̀ t-k x)$. The phase difference between the waves in water is
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) π
(D) $\frac{3 \pi}{4}$
140. A string of linear density $0.2 \mathrm{~kg} / \mathrm{m}$ is stretched with a force of 500 N . A transverse wave of length 4.0 m and amplitude $1 / 1$ meter is travelling along the string. The speed of the wave is \qquad m / s.
(A) 50
(B) 62.5
(C) 2500
(D) 12.5
141. Two wires made up of same material are of equal lengths but their radii are in the ratio $1: 2$. On stretching each of these two strings by the same tension, the ratio between their fundamental frequency is. \qquad
(A) $1: 2$
(B) $2: 1$
(C) $1: 4$
(D) $4: 1$
142. The tension in a wire is decreased by 19%, then the percentage decrease in frequency will be
(A) 19%
(B) 10%
(C) 0.19%
(D) None of these
143. An open organ pipe has fundamental frequency 100 hz . What frequency will be produced if its one end is closed?
(A) $100,200,300, \ldots$
(B) $50,150,250 \ldots$
(C) $50,100,200,300$.
(D) $50,100,150,200, \ldots$.
144. A closed organ pipe has fundamental frequency 100 hz . What frequencies will be produced if its other end is also opened?
(A) $200,400,600,800, \ldots$.
(B) $200,300,400,500, \ldots$.
(C) $100,300,500,700, \ldots \ldots$
(D) $100,200,300,400, \ldots \ldots$
145. A column of air of length 50 cm resonates with a stretched string of length 40 cm . The length of the same air column which will resonate with 60 cm of the same string at the same tension is \qquad
(A) 100 cm
(B) 75 cm
(C) 50 cm
(D) 25 cm
146. Two forks A and B when sounded together produce 4 beats $/ \mathrm{s}$. The fork A is in unison with 30 cm length of a sonometer wire and B is in unison with 25 cm length of the same wire at the same tension. The frequencies of the fork are \qquad
(A) $24 \mathrm{hz}, 28 \mathrm{hz}$
(B) $20 \mathrm{hz}, 24 \mathrm{hz}$
(C) $16 \mathrm{hz}, 20 \mathrm{hz}$
(D) $26 \mathrm{hz}, 30 \mathrm{hz}$
147. A tuning fork of frequency 200 hz is in unison with a sonometer wire. The number of beats heard per second when the tension is increased by 1% is \qquad
(A) 1
(B) 2
(C) 4
(D) 0.5
148. A bus is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ towards a huge wall. The driver sounds a horn of frequency 165 hz . If the speed of sound in air is $335 \mathrm{~m} / \mathrm{s}$, the number of beats heard per second by the passengers in the bus will be
(A) 3
(B) 4
(C) 5
(D) 6
149. A vehicle with a horn of frequency \boldsymbol{n} is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction perpendicular to the straight line joining the observer and the vehicle. The observer perceives the sound to have a frequency $\left(\mathrm{n}+\mathrm{n}_{1}\right)$. If the sound velocity in air is $300 \mathrm{~m} / \mathrm{s}$, then......
(A) $n_{1}=10 n$
(B) $\mathrm{n}_{1}=0$
(C) $\mathrm{n}_{1}=0.1 \mathrm{n}$
(D) $\mathrm{n}_{1}=-0.1 \mathrm{n}$
150. In a sine wave, position of different particles at time $t=0$ is shown in figure. The equation for this wave travelling along the positive x -direction can be \qquad
(A) $y=A \sin (\omega t-k x)$
(B) $y=A \cos (k x-\omega t)$
(C) $\mathrm{y}=\mathrm{A} \cos (\omega \mathrm{t}-\mathrm{kx})$
(D) $y=A \sin (k x-\omega t)$

151. Which of the following changes at an antinode in a stationary wave?
(A) Density only
(B) Pressure only
(C) Both pressure and density
(D) Neither pressure nor density
152. A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416 hz . The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to \qquad
(A) 1 kg
(B) 2 kg
(C) 8 kg
(D) 16 kg
153. In brass, the velocity of a longitudinal wave is 100 times the velocity of a transverse wave. If $Y=1$ $\mathrm{x} 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, then stress in the wire is \qquad
(A) $1 \times 10^{13} \mathrm{~N} / \mathrm{m}^{2}$
(B) $1 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(C) $1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
(D) $1 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$.
154. The frequency of tuning fork A is 2% more than the frequency of a standard fork. Frequency of tuning fork B is 3% less than the frequency of the standard fork. If 6 beats per second are heard when the two forks A and B are excited, then frequency of A is \qquad hz.
(A) 120
(B) 122.4
(C) 116.4
(D) 130
155. Fundamental frequency of a sonometer wire is n. If the length and diameter of the wire are doubled keeping the tension same, the new fundamental frequency is \qquad
(A) $\frac{2 n}{\sqrt{2}}$
(B) $\frac{n}{2 \sqrt{2}}$
(C) $\sqrt{2} n$
(D) $\frac{n}{4}$
156. A car blowing its horn at 480 hz moves towards a high wall at a speed of $20 \mathrm{~m} / \mathrm{s}$. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, the frequency of the reflected sound heard by the driver sitting in the car will be closest to \qquad hz.
(A) 540
(B) 524
(C) 568
(D) 480
157. A cylindrical tube open at both ends has a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now.
(A) f/2
(B) f
(C) $3 \mathrm{f} / 4$
(D) 2 f
158. Three sound waves of equal amplitudes have frequencies $(\boldsymbol{v}-1), \boldsymbol{v},(\boldsymbol{v}+1)$. They superpose to give beats. The number of beats produced per second will be \qquad
(A) 3
(B) 2
(C) 1
(D) 4
159. A wave travelling along the x -axis is described by the equation $\mathrm{y}(\mathrm{x}, \mathrm{t})=0.005 \operatorname{Cos}(a \operatorname{a}-\mathrm{a} t)$. If the wavelength and the time period of the wave are 0.08 m and 2.0 s respectively, then á and â in appropriate units are \qquad
(A) $\mathrm{a}=12.50 \mathrm{p}, \hat{\mathrm{a}}=\mathrm{p} / 2.0$
(B) $\mathrm{a}=25 \mathrm{p}, \hat{\mathrm{a}}=\mathrm{p}$
(C) á $=0.08 / \mathrm{p}, \hat{a}=2.0 / \mathrm{p}$
(D) $\mathfrak{a}=0.04 / \mathrm{p}, \hat{a}=1.0 / \mathrm{p}$
160. A wave travelling along a string is described by the equation $y=\operatorname{ASin}(u ̀ t-k x)$. The maximum particle velocity is \qquad
(A) Aù
(B) ù/k
(C) dù/dk
(D) x
161. A string is stretched between fixed points seperated by 75 cm . It is observed to have a resonant frequencies of 420 hz and 315 hz . There are other resonant frequencies between these two. Then the lowest frequency for this string is \qquad .hz.
(A) 1.05
(B) 1050
(C) 10.5
(D) 105
162. Two tuning forks P and Q when set vibrating gives 4 beats/second. If the prong of fork P is filed, the beats are reduced to $2 / \mathrm{s}$. What is the frequency of P , if that of Q is 250 hz .?
(A) 246 hz
(B) 250 hz
(C) 254 hz
(D) 252 hz
163. The length of a string tied across two rigid supports is 40 cm . The maximum wavelength of a stationary wave that can be produced in it is \qquad cm .
(A) 20
(B) 40
(C) 80
(D) 120

Downloaded from www.studiestoday.com

164. A stationary wave of frequency 200 hz are formed in air. If the velocity of the wave is $360 \mathrm{~m} / \mathrm{s}$, the shortest distance between two antinodes is \qquad .m
(A) 1.8
(B) 3.6
(C) 0.9
(D) 0.45
165. A tuning fork produces 8 beats per second with both 80 cm and 70 cm of stretched wire of a sonometer. Frequency ofthe fork is \qquad .hz.
(A) 120
(B) 128
(C) 112
(D) 240
166. An open pipe is in resonance in $2^{\text {nd }}$ harmonic with frequency f_{1}. Now one end of the tube is closed and frequency is increased to f_{2}, such that the resonance again occurs in the nth harmonic. Choose the correct option.
(A) $n=3, f_{2}=(3 / 4) f_{1}$
(B) $n=3, f_{2}=(5 / 4) f_{1}$
(C) $\mathrm{n}=5, \mathrm{f}_{2}=(5 / 4) \mathrm{f}_{1}$
(D) $n=5, f_{2}=(3 / 4) f_{1}$

SECTION : II

Assertion - Reason type questions :

Note:

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option.
(a) Statement -1 is true, statement- 2 is true; statement-2 is the correct explanation of statement -1 .
(b) Statement -1 is true, statement- 2 is true but statement- 2 is not the correct explanation of statement - 1 .
(c) Statement -1 is true, statement- 2 is false
(d) Statement -1 is false, statement- 2 is true
167. Statement -1 : Two waves moving in a uniform string having uniform tension cannot have different velocities.

Statement - 2 : Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.
(A) a
(B) b
(C) c
(D) d
168. Statement - 1: When a sound source moves towards observer, then frequency of sound increases.

Statement-2 : Wavelength of sound in a medium moving towards the observer decreases.
(A) a
(B) b
(C) c
(D) d
169. Statement - 1: Newton's equation for speed of sound was found wrong because he assumed the process to be isothermal.

Statement-2:When sound propagates, the compressions and rarefactions happen so rapidly that there is not enough time for heat to be distributed.
(A) a
(B) b
(C) c
(D) d
170. Statement - $\mathbf{1}$: When pressure in a gas changes, velocity of sound in gas may change.

Statement-2:Velocity of sound is directly proportional to square root of pressure.
(A) a
(B) b
(C) c
(D) d
171. Statement - $\mathbf{1}$: If wave enters from one medium to another medium then sum of amplitudes of reflected wave and transmitted wave is equal to the amplitude of incident wave.

Statement - 2 : If wave enters from one medium to another medium some part of energy is transmitted and rest of the energy is reflected back.
(A) a
(B) b
(C) c
(D) d

SECTION - III

COMPREHENSION BASED QUESTIONS
NOTE: Questions 172 to 174 are based on the following passage.

Passage - 1

A string 25 cm long and having a mass of 2.5 g is under tension. A pipe closed at one end is 40 cm long. When the string is set vibrating in its first overtone and the air in the pipe in its fundamental frequency, 8 beats per second is heard. It is observed that decreasing the tension in the string decreases the beat frequency. The speed of sound in air is $320 \mathrm{~ms}^{-1}$.
172. The frequency of the fundamental mode of the closed pipe is \qquad hz
(A) 100
(B) 200
(C) 300
(D) 400
173. The frequency of the string vibrating in its $1^{\text {st }}$ overtone is \qquad hz
(A) 92
(B) 108
(C) 192
(D) 208 .
174. The tension in the string is very nearly equal to \qquad
(A) 25 N
(B) 27 N
(C) 28 N
(D) 30 N

NOTE: Questions 175 to 178 are based on the following passage.

Passage - 2

Standing waves are produced by the superposition of two waves $\boldsymbol{y}_{\boldsymbol{1}}=0.05 \operatorname{Sin}(3 \mathrm{pt}-2 \mathrm{x})$ and $\quad \boldsymbol{y}_{2}=$ $0.05 \operatorname{Sin}(3 \mathrm{pt}+2 \boldsymbol{x})$ where \boldsymbol{x} and \boldsymbol{y} are in meters and \boldsymbol{t} is in seconds.
175. The speed (in ms^{-1}) of each wave is
(A) 1.5
(B) 3.0
(C) $3 \mathrm{p} / 2$
(D) $3 p$
176. The distance (in meters) between two consecutive nodes is \qquad
(A) $\mathrm{p} / 2$
(B) p
(C) 0.5
(D) 1.0
177. The amplitude of a particle at $x=0.5 \mathrm{~m}$ is \qquad
(A) $1.08 \times 10^{-1} \mathrm{~m}$
(B) $5.4 \times 10^{-2} \mathrm{~m}$
(C) $(\mathrm{p} / 2) \times 10^{-1} \mathrm{~m}$
(D) $\mathrm{p} \times 10^{-1} \mathrm{~m}$
178. The velocity $\left(\right.$ in $\left.\mathrm{ms}^{-1}\right)$ of a particle at $\mathrm{x}=0.25 \mathrm{~m}$ at $\mathrm{t}=0.5 \mathrm{~s}$ is $\ldots \ldots$
(A) 0.1 p
(B) 0.3 p
(C) zero
(D) 0.3

NOTE: Questions 179 to 181 are based on the following passage.

Passage - 3

When two sound waves travel in the same direction in a medium, the displacement of a particle located at \boldsymbol{x} at time \boldsymbol{t} is given by $\boldsymbol{y}_{1}=0.05 \operatorname{Cos}(0.50 \mathrm{px}-100 \mathrm{pt}) \& \boldsymbol{y}_{2}=0.05 \operatorname{Cos}(0.46 \mathrm{p} \boldsymbol{x}-92 \mathrm{pt})$, where $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ and \boldsymbol{x} are in meter and \boldsymbol{t} is in seconds.
179. What is the speed of sound in the medium?
(A) $332 \mathrm{~m} / \mathrm{s}$
(B) $100 \mathrm{~m} / \mathrm{s}$
(C) $92 \mathrm{~m} / \mathrm{s}$
(D) $200 \mathrm{~m} / \mathrm{s}$
180. How many times per second does an observer hear the sound of maximum intensity?
(A) 4
(B) 8
(C) 12
(D) 16
181. At $\boldsymbol{x}=0$, how many times between $\boldsymbol{t}=\boldsymbol{0}$ and $\boldsymbol{t}=\boldsymbol{1} \mathrm{s}$ does the resultant displacement become zero?
(A) 46
(B) 50
(C) 92
(D) 100

NOTE: Questions 182 to 183 are based on the following passage.

Passage - 4

The equation $\mathrm{y}=10 \operatorname{Sin} \frac{\pi x}{4} \operatorname{Cos} 10$ t represents a stationary wave where \boldsymbol{x} and \boldsymbol{y} are in centimeter and \boldsymbol{t} is in seconds.
182. The amplitude of each component wave is \qquad
(A) 5 cm
(B) 10 cm
(C) 20 cm
(D) between 5 cm and 10 cm .
183. The separation between two consecutive nodes is \qquad
(A) 2 cm
(B) 4 cm
(C) 5 cm
(D) 8 cm

KEY NOTE

1	(B)	41	(B)	81	(D)	121	(C)	161	(D)
2	(C)	42	(D)	82	(A)	122	(D)	162	(A)
3	(B)	43	(A)	83	(A)	123	(C)	163	(C)
4	(C)	44	(B)	84	(C)	124	(D)	164	(C)
5	(A)	45	(B)	85	(D)	125	(B)	165	(A)
6	(D)	46	(A)	86	(B)	126	(A)	166	(C)
7	(D)	47	(A)	87	(C)	127	(A)	167	(D)
8	(A)	48	(A)	88	(C)	128	(C)	168	(A)
9	(C)	49	(C)	89	(A)	129	(C)	169	(A)
10	(A)	50	(B)	90	(A)	130	(B)	170	(B)
11	(C)	51	(B)	91	(B)	131	(B)	171	(D)
12	(B)	52	(B)	92	(A)	132	(B)	172	(B)
13	(C)	53	(A)	93	(B)	133	(C)	173	(D)
14	(C)	54	(B)	94	(D)	134	(B)	174	(B)
15	(A)	55	(C)	95	(A)	135	(D)	175	(C)
16	(A)	56	(D)	96	(C)	136	(D)	176	(A)
17	(B)	57	(C)	97	(D)	137	(D)	177	(B)
18	(C)	58	(A)	98	(C)	138	(C)	178	(C)
19	(A)	59	(B)	99	(B)	139	(A)	179	(D)
20	(C)	60	(B)	100	(C)	140	(A)	180	(A)
21	(D)	61	(A)	101	(B)	141	(B)	181	(D)
22	(A)	62	(C)	102	(D)	142	(B)	182	(A)
23	(A)	63	(A)	103	(A)	143	(B)	183	(B)
24	(D)	64	(A)	104	(D)	144	(A)		
25	(D)	65	(B)	105	(A)	145	(B)		
26	(A)	66	(B)	106	(A)	146	(B)		
27	(B)	67	(D)	107	(A)	147	(A)		
28	(D)	68	(C)	108	(C)	148	(C)		
29	(C)	69	(B)	109	(C)	149	(B)		
30	(C)	70	(D)	110	(C)	150	(D)		
31	(C)	71	(B)	111	(A)	151	(D)		
32	(C)	72	(C)	112	(A)	152	(D)		
33	(A)	73	(B)	113	(C)	153	(D)		
34	(A)	74	(C)	114	(B)	154	(A)		
35	(D)	75	(B)	115	(B)	155	(D)		
36	(B)	76	(A)	116	(D)	156	(A)		
37	(A)	77	(C)	117	(B)	157	(B)		
38	(A)	78	(C)	118	(C)	158	(C)		
39	(D)	79	(D)	119	(C)	159	(B)		
40	(B)	80	(C)	120	(A)	160	(A)		

HINT

1. $y=\sin 2 t+\sqrt{3} \cos 2 t$

$$
\begin{aligned}
\therefore \mathrm{y} & =2\left\{\frac{1}{2} \sin 2 \mathrm{t}+\frac{\sqrt{3}}{2} \cos 2 \mathrm{t}\right\} \\
& =2\{\cos \phi \sin 2 \mathrm{t}+\sin \phi \cos 2 \mathrm{t}\}=2 \sin (2 \mathrm{t}+\phi)
\end{aligned}
$$

Compaling than with $\mathrm{y}=\mathrm{A} \sin (\mathrm{wt}+\phi)$, we get

$$
\mathrm{w}=2 \Rightarrow \frac{2 \pi}{\mathrm{~T}}=2 \Rightarrow \mathrm{t}=\pi \mathrm{s}
$$

2.

3. $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$ When lift moves up with accleratim $\mathrm{g} / 3$ the effective graritatianl acclenations in $\mathrm{g}^{1}=\mathrm{g}+\mathrm{g} / 3=4 \mathrm{~g} / 3$
\therefore new peliodic time $\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{l}^{\prime}}{\mathrm{g}^{\prime}}}$
4. $v_{1}=\frac{d y_{1}}{\mathrm{dt}}=2 \times 10 \cos (10 \mathrm{t}+\theta)$
$v_{2}=-3 \times 10 \sin t=30 \cos (10 t+\pi / 2)$
\therefore Phase diffdence $=(10 t+\theta)-(10 t+\pi / 2)=\theta-\pi / 2$
5. For series combination, $\mathrm{K}_{\mathrm{s}}=\frac{\mathrm{K}_{1} \mathrm{k}_{2}}{\mathrm{~K}_{1}+\mathrm{k}_{2}}=\frac{\mathrm{k}}{2}\left(\because \mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{K}\right)$

$$
\text { now } \mathrm{T} \propto \frac{1}{\sqrt{\mathrm{k}}} \therefore \frac{\mathrm{~T}^{\prime}}{\mathrm{T}}=\sqrt{\frac{\mathrm{k}_{\mathrm{s}}}{\mathrm{k}}}=\sqrt{2} \Rightarrow \mathrm{~T}^{\prime}=\sqrt{2} \mathrm{~T}
$$

6. For maximum velocity, $\mathrm{A}_{1} \omega_{1}=\mathrm{A}_{2} \omega_{2}$

$$
\therefore \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\omega_{2}}{\omega_{1}}=\sqrt{\frac{\mathrm{k}_{2} / \mathrm{m}_{2}}{\mathrm{k}_{1} / \mathrm{m}_{1}}}=\sqrt{\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}}\left(\because \mathrm{~m}_{1}=\mathrm{m}_{2}\right)
$$

7. Reduced mass of system $\mu=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=0.75 \mathrm{~kg}$
\therefore freq of oscillation $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}=\frac{20}{\pi} \simeq 3 \mathrm{~Hz}$
8.

9. $\mathrm{K}_{1} \ell_{1}=\mathrm{K}_{2} \ell_{2}=\mathrm{k} \ell$
$\therefore \mathrm{K}_{1}\left(\frac{\ell}{4}\right)=\mathrm{K}_{2}\left(\frac{3}{4} \ell\right)=\mathrm{k} \ell$
\therefore force constant of spring having lenght $\frac{3}{4} l$ in

$$
\mathrm{k}_{2}=\frac{4}{3} \mathrm{k}
$$

10. Amplitnde of SHM given by $x=a \sin \omega t+b \cos \omega t$ in

$$
\mathrm{A}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\left(3^{2}+4^{2}\right)^{\frac{1}{2}}=5 \mathrm{~m}
$$

11. $u \propto y^{2} \therefore \frac{u_{2}}{u_{1}}=\left(\frac{y_{2}}{y_{1}}\right)^{2} \Rightarrow u_{2}=4 u$
12. $\mathrm{T} \alpha \sqrt{1}^{1}$ because 2π and g are constants

$$
\begin{aligned}
& \therefore \frac{T_{2}}{T_{1}}=\sqrt{\frac{l_{2}}{l_{1}}}=\sqrt{\frac{1.21 l_{1}}{l_{1}}}=1.1 \\
& \therefore \% \text { increase }=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1}} \times 100=10 \%
\end{aligned}
$$

13. $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$

$$
\begin{gathered}
\frac{\mathrm{A}}{\sqrt{2}}=\mathrm{A} \sin \omega \mathrm{t}\{\phi=0\} \Rightarrow \frac{1}{\sqrt{2}}=\sin \omega \mathrm{t}=\pi / 4 \\
\therefore \frac{2 \pi}{\mathrm{~T}} \cdot \mathrm{t}=\frac{\pi}{4} \quad \therefore \mathrm{t}=\mathrm{T} / 8
\end{gathered}
$$

14. $\mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{~m}^{1}}{\mathrm{k}_{1}}} \Rightarrow \mathrm{k}_{1}=\frac{4 \pi^{2} \cdot \mathrm{M}}{\mathrm{T}_{1}{ }^{2}}$ and $\mathrm{k}_{2}=\frac{4 \pi^{2} \mathrm{M}}{\mathrm{T}_{2}{ }^{2}}$
for Series connection; $T=2 \pi \sqrt{\frac{M}{k}}$ where $k=\frac{k_{1} k_{2}}{k_{1}+k_{2}}$
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}^{1}}{4 \pi^{2} \mathrm{M}}\left(\mathrm{T}_{1}^{2}+\mathrm{T}_{2}^{2}\right)}$
$\therefore \mathrm{T}=\sqrt{\mathrm{T}_{1}^{2}+\mathrm{T}_{2}^{2}} \Rightarrow \mathrm{~T}^{2}=\mathrm{T}_{1}^{2}+\mathrm{T}_{2}^{2}$
15. $x=A \cos (\omega t+\pi / 8) \Rightarrow v=\frac{d x}{d t}=-A \omega \sin \left(\omega t+\frac{\pi}{2}\right)$

If $\sin (\omega t+\pi / 8)=1$, then velocity will be maximam

$$
\Rightarrow \omega \mathrm{t}+\frac{\pi}{8}=\frac{\pi}{2} \Rightarrow \omega \mathrm{t}=\frac{3 \pi}{8} \Rightarrow \mathrm{t}=\frac{3 \pi}{8 \omega}
$$

16. $3 \mathrm{u}=\mathrm{k}$

$$
\therefore 3 \times \frac{1}{2} \mathrm{ky}^{2}=\frac{1}{2} \mathrm{k}\left(\mathrm{~A}^{2}-\mathrm{y}^{2}\right) \Rightarrow \mathrm{y}= \pm \frac{\mathrm{A}}{2}
$$

17. For spring A_{b} restaning face $\mathrm{F}=\mathrm{kx}$

$$
\therefore \text { displacement } \mathrm{x}=\mathrm{F} / \mathrm{k}
$$

figure (b) if the resultant spring contant

$$
\begin{aligned}
\mathrm{m}^{\circ} \mathrm{k}^{1} \text {, then } & \mathrm{k}^{1} \\
= & \frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}} \text { (Series) } \\
& =\mathrm{k} / 2
\end{aligned}
$$

\therefore in figure (b) if on applying a force F^{\prime}, if displacement in x^{\prime}, then $x^{\prime}=F^{\prime} / k^{\prime}$
$\therefore \frac{\mathrm{x}^{\prime}}{\mathrm{x}}=\frac{\mathrm{F}^{\prime}}{\mathrm{k}^{\prime}} \cdot \frac{\mathrm{k}}{\mathrm{F}}=\frac{6}{4} \times 2=3$
$\therefore \mathrm{x}^{\prime}=3 \mathrm{x}=3 \times 1 \mathrm{~cm}=3 \mathrm{~cm}$
18. $v_{1}=\frac{d y_{1}}{d t}$
and $v_{2}=\frac{d y_{2}}{d t}$
19. Here $\mathrm{y}=\mathrm{kt}^{2}$

$$
\therefore \frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{kt} \Rightarrow \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=2 \mathrm{k}=2 \mathrm{~ms}^{-2}
$$

\therefore the point of support in moving upwards with an accelaration of $2 \mathrm{~m} / \mathrm{s}^{2}$
\therefore effective accl $\mathrm{l}^{\mathrm{n}} \cdot \mathrm{g}^{\prime}=\mathrm{g}+\mathrm{a}=12 \mathrm{~m} / \mathrm{s}^{2}$
Now $\mathrm{T}_{1}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$ and $\mathrm{T}_{2}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}^{\prime}}}$
20. $\mathrm{T}=2 \pi \sqrt{\frac{\ell^{\prime}}{\mathrm{g}}}$ as water leaks, the center of gravity moves down and hence " ℓ " increases.
$\therefore \mathrm{T}$ increases initially
When all the water has leaked, the center of gravity moves up and hence " ℓ " decreases and hence T decreases Finally the centre of gravity steady at the center of sphde and so T will remain constant.
21. Kinetic energy $=25 \% \mathrm{E}$

$$
\therefore \mathrm{K}=\frac{1}{4} \mathrm{E}
$$

22. $\mathrm{F}_{\text {max }}=\mathrm{ma}_{\max }=\mathrm{mA} \omega^{2}=\mathrm{mA} \frac{4 \pi^{2}}{\mathrm{~T}^{2}}=0.6 \mathrm{~N}$.
23. For parallel combination $\mathrm{k}_{\mathrm{p}}=\mathrm{k}_{1}+\mathrm{k}_{2}$
\therefore freqrency $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{~m}}} \rightarrow(1)$
Now when k_{1} and k_{2} in increased 4 times,

$$
\mathrm{f}^{1}=\frac{1}{2 \pi} \sqrt{\frac{4\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}{\mathrm{m}}}=2 \mathrm{f} .(\text { from }(1))
$$

24. From graph $\mathrm{A}=1 \mathrm{~cm} \rightarrow \mathrm{~T}=8 \mathrm{~s}$

$$
\begin{aligned}
& \therefore y=A \sin \omega t=A \sin \frac{2 \pi}{T} t \Rightarrow y=\frac{\sqrt{3}}{2} \mathrm{~cm} \\
& a=-w^{2} y=\frac{-4 \pi^{2}}{T^{2}} \cdot \frac{\sqrt{3^{1}}}{2}=-\frac{\sqrt{3^{1}}}{3^{2}} \pi^{2} \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}
\end{aligned}
$$

25. Now $\mathrm{k} \propto \frac{1}{\ell} \Rightarrow \mathrm{k} \ell=$ contant
$\Rightarrow \mathrm{k}_{1} \ell_{1}=\mathrm{k}_{2} \ell_{2} \Rightarrow \ell_{2}=\mathrm{k}_{1} \ell_{1}$

Now, $\mathrm{A}=l_{1}\left(\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{k}_{2}}\right) \Rightarrow \mathrm{l}_{1}=\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{2}+\mathrm{k}_{2}}\right) \mathrm{A}$
26. $v=w \sqrt{\mathrm{~A}^{2}-\mathrm{x}^{2}}$,
the velocity for moving form $x=0$ to $x=A / 2$ will ge more them for $x=A / 2$ tox $=A$
$\therefore \mathrm{T}_{1}<\mathrm{T}_{2}$.
27. $\mathrm{U}=\frac{1}{8} \mathrm{u}_{\text {max }}$
$\therefore \frac{1}{2} \mathrm{ky}^{2}=\frac{1}{8}\left(\frac{1}{2} \mathrm{kA}^{2}\right) \Rightarrow \mathrm{y}^{2}=\frac{\mathrm{A}^{2}}{8}$
28. In the expression for both Kinetic and potential energy, We have the square of the halmonic functions (sine or cisine).

The average of which over a cycle is $1 / 2$

$$
\therefore\langle\mathrm{u}\rangle=\frac{\mathrm{E}}{2}=\langle\mathrm{K}\rangle=\frac{1}{4} \mathrm{~m} \omega^{2} \mathrm{~A}^{2}
$$

29. Angnlar freqvency $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$

Since ' m ' is constant, $\omega \alpha \sqrt{K}^{\prime}$
Now, $\mathrm{a}_{\text {max }}=\mathrm{A} \omega^{2} \Rightarrow \omega=\sqrt{\frac{\mathrm{a}_{\text {max }}}{\mathrm{A}}}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{a}_{\max }}{\mathrm{A}}=\mathrm{k} \Rightarrow \frac{\mathrm{a}_{\max }}{\mathrm{K}}=\mathrm{A} \\
& \therefore \mathrm{~A} \alpha \frac{1}{\mathrm{k}}
\end{aligned}
$$

30. For a spring, $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \mathrm{T} \alpha \frac{1}{\sqrt{\mathrm{k}}}(\because \mathrm{m}$ is comtant $)$
31. Phase of $1^{\text {st }}$ oscillater $\theta_{1}=\omega_{1} \mathrm{t}+\phi=\frac{2 \pi}{\mathrm{~T}_{1}} \mathrm{t}+\phi$

For $2^{\text {nd }}$ oscillater, $\theta_{2}=\omega_{2} \mathrm{t}+\phi=\frac{2 \pi}{\mathrm{~T}_{2}} \mathrm{t}+\phi$
phase diff $\theta_{1}-\theta_{2}$
32. Restoring force $\mathrm{F}=-\mathrm{Ay} \mathrm{\rho g}=-(\mathrm{A} \rho \mathrm{g}) \mathrm{y}=-\mathrm{ky}$

$$
\therefore \mathrm{k}=\mathrm{A} \rho \mathrm{~g} \Rightarrow \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \mathrm{~T} \alpha \frac{1}{\sqrt{\mathrm{~A}^{1}}}
$$

33. To loose comtact, the condition in ; $\mathrm{m} \omega^{2} \mathrm{~A}=\mathrm{mg}$
$\therefore \mathrm{A}=\mathrm{g} / \omega^{2}=\frac{\mathrm{mg}}{\mathrm{k}}\left(\because \mathrm{k}=\mathrm{mw}^{2}\right)$

34. In SHM, accelelation and displacement are opposite in direction Also a $\alpha \mathrm{y}$.
35. Here $\mathrm{t}=0, \mathrm{x}=1 \mathrm{~cm}$ and $v=\pi \mathrm{cm} \mathrm{s}^{-1}, \mathrm{w}=\pi \mathrm{s}^{-1}$

$$
\begin{align*}
& \text { Now, } x=A \cos (\omega t+\phi)----(1) \tag{1}\\
& \text { Velocity } v=\frac{d x}{d t}=-A \omega \sin (\omega t+\phi) \tag{2}
\end{align*}
$$

Solved the equation (1) and (2)
36. $\mathrm{T}_{1}=2 \pi \sqrt{\frac{144}{\mathrm{~g}}}$ and $\mathrm{T}_{2}=2 \pi \sqrt{\frac{121}{\mathrm{~g}}} \quad \therefore \mathrm{~T}_{1}>\mathrm{T}_{2}$
\therefore When the shorter pendulum completes n oscillations, the longer one completes $(\mathrm{n}-1)$
oscilla tions (when in same phase).

$$
\therefore \mathrm{nT}_{2}=(\mathrm{n}-1) \mathrm{T}_{1}
$$

37. $\therefore \omega=\frac{\omega^{2} \mathrm{r}}{\mathrm{r} \omega}=3.14 \quad \therefore 2 \pi \mathrm{f}=3.14 \Rightarrow \mathrm{f}=\frac{3.14}{2 \pi}=0.5 \mathrm{~s}^{-1}$
38. Maximum force $=m \omega^{2} \mathrm{~A}=\mathrm{m} 4 \pi^{2} \mathrm{f}^{2} \mathrm{~A}$
39. Periodic time $\mathrm{T}=2 \pi \sqrt{\frac{1}{\mathrm{~g}}}$ and $\omega=\frac{2 \pi}{\mathrm{~T}} \Rightarrow \omega=\sqrt{\frac{\mathrm{g}}{\mathrm{l}}}$

Linear displacement $\mathrm{x}=\mathrm{a} \cos \omega \mathrm{t}$
40. $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}_{1}+\mathrm{m}_{2}}}$ or removing m , angular frequency $\omega^{\prime}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}_{2}}}$
41. Kinetic energy $K=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)$

$$
\text { Now total energy } E=\frac{1}{2} m \omega^{2} A^{2}
$$

42. $\mathrm{y}=\mathrm{a} \sin \omega \mathrm{t}+\mathrm{b} \cos \omega \mathrm{t}$,

Taking $\mathrm{a}=\mathrm{A} \cos \theta$ and $\mathrm{b}=A \sin \theta$,

$$
\begin{gathered}
y=A \cos \theta \sin \omega t+A \sin \theta \cdot \cos \omega t \\
=A \sin (\omega t+\theta)
\end{gathered}
$$

Now $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{A}^{2} \quad \therefore \mathrm{~A}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
43. The body will not loose contact with the surface,
if $\mathrm{mg}=\mathrm{m} \omega^{2} \mathrm{r}=\frac{\mathrm{m} 4 \pi^{2}}{\mathrm{~T}^{2}} \cdot \mathrm{r}\{$ where r is amplitude $\} \quad \therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{r}}{\mathrm{g}}}$
44. Maximum kinetic energy $\mathrm{K}_{0}=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2} \quad \therefore \mathrm{~A}=\left(\frac{2 \mathrm{~K}_{0}}{\mathrm{~m} \omega^{2}}\right)^{1 / 2}$
\therefore Equation for displacement is;
$y=A \sin \omega t=\left(\frac{2 K_{o}}{m \omega^{2}}\right)^{1 / 2} \sin \omega t$
45. $\mathrm{E}=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2} \Rightarrow \mathrm{E} \alpha \omega^{2} \mathrm{~A}^{2}$

$$
\therefore \mathrm{E} \alpha(\mathrm{~A} \omega)^{2} \Rightarrow\left(\omega_{1} \mathrm{~A}_{1}\right)^{2}=\left(\omega_{2} \mathrm{~A}_{2}\right)^{2}
$$

46. k_{2} be the spring constant of the spring having lenght ℓ_{2}.

$$
\text { Now, } \ell_{1}+\ell_{2}=\ell
$$

$$
\mathrm{n} \ell_{2}+\ell_{2 .}=\ell
$$

47. $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ and $\mathrm{f}^{\prime}=\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k}}{2 \mathrm{~m}}}\left\{\because \mathrm{k}^{\prime}=2 \mathrm{k}\right\}$

$$
\therefore \mathrm{f}^{\prime}=\mathrm{f}
$$

48. Here both springs are in parallel. The restoring force on the system in only due to spring and not due to gravitational force \therefore We can ignore the slope.
Equivalent spring cantant $=\mathrm{k}+\mathrm{k}=2 \mathrm{k}$
\therefore Periodic time $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}^{1}}{2 \mathrm{k}}}$
49. Enelgy stoved = Work done

$$
\therefore \mathrm{E}=\frac{1}{2} \mathrm{kA}^{2}
$$

Now maximum accelaration

$$
\mathrm{a}_{\max }=\omega^{2} \mathrm{~A}
$$

50. Potential energy gainad by the spring on suspending mass " m " is $\frac{1}{2} \mathrm{ky}^{2}$.

When system executes SHM, the energy gained by the system $=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}$
\therefore total final energy of the system $=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}+\frac{1}{2} \mathrm{ky}^{2}$.
51. Radius of the rotational motion $\mathrm{r}=0.4 \mathrm{~m}$

When the turn table rotates, the restoring force
developed in the spring $=$ centrifugal force

$$
\therefore \mathrm{F}_{\text {restore }}=\mathrm{m} \omega^{2} \mathrm{r}=2(10)^{2} \times 0.4=80 \mathrm{~N}
$$

Now increase in lenght of spring $=40-35=5 \mathrm{~cm}$
\therefore Force constant $\mathrm{k}-\frac{\mathrm{F}}{\mathrm{x}}=\frac{80}{0.05}=1.6 \times 10^{3} \mathrm{~N} / \mathrm{m}$.
52. In case-I, springs are connected in parallel.
\therefore equivalent force constant $\mathrm{k}_{\mathrm{p}}=\mathrm{k}_{1}+\mathrm{k}_{2}=2 \mathrm{k}$.
\therefore Peliodic time $\mathrm{T}_{\mathrm{p}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{kp}}}=2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{k}}}$
In case-II, spring are connected in series.
\therefore Equivalent force constant $\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{\mathrm{k}}{2}$
\therefore periodic time $\mathrm{T}_{\mathrm{s}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{\mathrm{s}}}}=2 \pi \sqrt{\frac{2 \mathrm{~m}}{\mathrm{k}}} \quad \therefore \frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{s}}}=\frac{1}{2}$.
53. Here $\mathrm{T}=6 \mathrm{~s}$

Amplitude $\mathrm{OB}=\mathrm{OC}=\frac{1}{2} \mathrm{BC}=10 \mathrm{~cm}$
$\therefore \mathrm{OD}=5 \mathrm{~cm}$
Now driplacement $\mathrm{x}=\mathrm{A} \sin (\mathrm{wt}+\phi) \rightarrow(1)$
where $\mathrm{A}=10 \mathrm{gm}, \omega=\frac{2 \pi}{\mathrm{~T}}=\pi / 3 \mathrm{rad}$
Now if at $\mathrm{t}=0$, oscillator is at C .

ie. at $t=0, x=A$
$\therefore \mathrm{A}=\mathrm{A} \sin (\omega \times 0+\phi)(\mathrm{OR}) \mathrm{A}=\mathrm{A} \sin \phi$

$$
\begin{aligned}
& \Rightarrow \sin \phi=1 \\
& \Rightarrow \phi=\pi / 2
\end{aligned}
$$

Putting this in eqn. (1)

$$
x=A \sin (\omega t+\pi / 2)=A \cos \omega t=10 \cos \omega t
$$

\therefore for $\mathrm{x}=5 \mathrm{~cm}$,
$5=10 \cos \omega \mathrm{t} \Rightarrow \cos \omega \mathrm{t}=1 / 2$
$\therefore \omega \mathrm{t}=\pi / 3$

$$
\therefore \mathrm{t}=1 \mathrm{~S}
$$

54. Force responsible for oscillation in

$$
\begin{aligned}
& \mathrm{F}=\mathrm{mg} \sin \theta=\mathrm{mg} \theta\{\because \theta \text { is small }\} \\
& =\mathrm{mg} \cdot \frac{\mathrm{x}}{\mathrm{R}} \\
& \text { Comparing this with } \\
& \qquad \mathrm{F}=-\mathrm{kx} \\
& \qquad \mathrm{k}=\frac{\mathrm{mg}}{\mathrm{R}}
\end{aligned}
$$

55. Let the rod be pressed down by " x " at point A and released.
\therefore both spring gets displaced by "x"
\therefore Restoring torque produced

$$
\begin{gathered}
\tau=\mathrm{kx} \times\left(\frac{\ell}{2}\right)+\mathrm{kx} \times\left(\frac{\ell}{2}\right) \\
=\mathrm{kx} \ell
\end{gathered}
$$

Now $\tan \theta=\mathrm{x} / \frac{\ell}{2}=\frac{2 \mathrm{x}}{\ell}$

If θ in small; $\tan \theta \approx \theta=\frac{2 x}{\ell}$

$$
\therefore \mathrm{x}=\frac{\ell \theta}{2}
$$

\therefore torque $\tau=\mathrm{k}\left(\frac{\ell \theta}{2}\right) \times \ell=\frac{\mathrm{k} \theta \ell^{2}}{2}$
Now moment of inertia of rod with reference to O is if I , then

$$
\frac{\mathrm{Id}^{2} \theta}{\mathrm{dt}^{2}}=-\left(\frac{\mathrm{k} \ell^{2}}{2}\right) \theta \quad \therefore \frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}=-\left(\frac{\mathrm{k} \ell^{2}}{2 \mathrm{I}}\right) \theta
$$

Comparing with $\therefore \frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}=-\omega^{2} \theta$;
$\omega=\sqrt{\frac{\mathrm{k} \ell^{2}}{2 \mathrm{I}}} \quad$ where $\omega=\frac{2 \pi}{\mathrm{~T}}$ and $\mathrm{I}=\frac{\mathrm{m} \ell^{2}}{12}$
$\therefore \mathrm{T}=\pi \sqrt{\frac{2 \mathrm{~m}}{3 \mathrm{k}}}$
56. Here 2 acceleration vectors g. and a are acting along mutually prependicular direction .
\therefore effective acceleratioin $\mathrm{l}^{\mathrm{n}} \mathrm{g}_{\text {eff }}=\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}$

$$
\therefore \mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}_{\text {eff }}}}
$$

57. g^{2} off $=a_{x}{ }^{2}+(g-a y)^{2}$ here, $a_{x} g \sin \theta \cos \theta, a y=g \sin ^{2} \theta$

$$
\begin{aligned}
& =\mathrm{a}_{\mathrm{x}}^{2}+\mathrm{g}^{2}+\mathrm{a}_{\mathrm{y}}{ }^{2}-2 \mathrm{ga} \mathrm{y} \\
& =\mathrm{a}^{2} \sin ^{2} \theta \cos ^{2} \theta+\mathrm{g}^{2}+\mathrm{g}^{2} \sin ^{2} \theta-2 \mathrm{~g}^{2} \sin ^{2} \theta \\
& =\mathrm{g}^{2}\left(1-\sin ^{2} \theta\right) \\
& =\mathrm{g}^{2} \cos ^{2} \theta
\end{aligned}
$$

$\therefore \mathrm{g}_{\text {eff }}=\mathrm{g} \cos \theta$
58. When the length of spring increases by $\mathrm{x}=2.5 \mathrm{~cm}$
force $\mathrm{F}=\mathrm{mg} \sin \theta$

$$
\begin{aligned}
\therefore \text { force constant } \mathrm{k}=\frac{\mathrm{F}}{\mathrm{x}}=\frac{\mathrm{mg} \sin \theta}{\mathrm{x}} \\
\therefore \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{x}}{\mathrm{~g} \sin \theta}}=\frac{\pi}{7} \mathrm{~S} .
\end{aligned}
$$

59. Since the spring is massless, when C
collides with A, both A and B will gain equal momentum. Also, since A and B have equal mass, both will have same velocity. Let this velocity be u.
\therefore Acc. to the law of conservation of momentum,
$\mathrm{mv}=\mathrm{mu}+\mathrm{mu}=2 \mathrm{mu}$

$$
\therefore u=\frac{v}{2}
$$

Now if the compression produced in the spring is x , then acc. to law of conservation of energy,

$$
\begin{aligned}
& \frac{1}{2} \mathrm{~m} v^{2}=\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{kx}^{2} \\
& \therefore v^{2}=2 u^{2}+\frac{k x^{2}}{m}=2\left(\frac{v^{2}}{4}\right)+\frac{k x^{2}}{m} \\
& \therefore \frac{k x^{2}}{m}=\frac{v^{2}}{2} \Rightarrow x=v \sqrt{\frac{m}{2 k}}^{4}---(1)
\end{aligned}
$$

Now block A and B will have equal kinetic energy.

$$
\therefore \frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{mu}^{2}=\mathrm{mu}^{2}
$$

\therefore During maximum contraction,
kinetic energy of the systemA-B is

$$
\mathrm{mu}^{2}=\frac{m \cdot v^{2}}{4}
$$

60. Displacement

$$
y=4 \cos ^{2}\left(\frac{t}{2}\right) \sin 100 t
$$

61. Here $x=\mathrm{A} \cos \omega \mathrm{t}$

Now potential energy $=\frac{1}{2} m \omega^{2} x^{2}$ \{taking P.E. as a function of $\left.x\right\}$
\therefore when $\mathrm{x}=0$, potential energy $=0$
\therefore graph (b) \rightarrow III
Also, potential energy $=\frac{1}{2} m \omega^{2}(\mathrm{~A} \cos \omega \mathrm{t})^{2}\{$ taking P. E. as a function of time $\}$
At $t=0$ potential energy $=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}$
\therefore graph -I
62. $\quad E_{1}=\frac{1}{2} m \omega^{2} x^{2} \Rightarrow \sqrt{E_{1}}=x \sqrt{\frac{1}{2} m \omega^{2}}-----(1)$
$E_{2}=\frac{1}{2} m \omega^{2} y^{2} \Rightarrow \sqrt{E_{2}}=y \sqrt{\frac{1}{2} m \omega^{2}}$
$\therefore \mathrm{E}=\frac{1}{2} \mathrm{~m} \omega^{2}(\mathrm{x}+\mathrm{y})^{2} \Rightarrow \sqrt{\mathrm{E}}=(\mathrm{x}+\mathrm{y}) \sqrt{\frac{1}{2} \mathrm{~m} \omega^{2}}$
From(1), (2) \{(3),
$\sqrt{\mathrm{E}}=\sqrt{\mathrm{E}_{1}}+\sqrt{\mathrm{E}_{2}}$
or $\mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{\mathrm{E}_{1} \mathrm{E}_{2}}$
63. $\omega_{1}{ }^{2}=\frac{\mathrm{k}}{\mathrm{m}}=\frac{\mathrm{kx}}{\mathrm{mx}}=\frac{\mathrm{F}_{1}}{\mathrm{mx}}---(1)$

Similarly, $\omega_{2}{ }^{2}=\frac{\mathrm{F}_{2}}{\mathrm{mx}}----(2)$
If F_{1} and F_{2} acts simaltaneously, then angular frequency

$$
\mathrm{w}_{2}=\frac{\mathrm{F}_{1}+\mathrm{F}_{2}}{\mathrm{mx}}----(3)
$$

From (1), (2) and (3); $\omega^{2}=\omega_{1}{ }^{2}+\omega_{2}{ }^{2} \quad$ Now, use equ. $\omega=\frac{2 \pi}{\mathrm{~T}}$
64. Initial periodic time $\mathrm{T}_{1}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \rightarrow(1)$

When pendulum moves along vertical direction, effictive acceleration $g_{\text {eff }}=g+a$ where ' a ' in accleration of pendulum.

Now, $a=\frac{\mathrm{d} v}{\mathrm{dt}}=\frac{\mathrm{d}(\mathrm{kt})}{\mathrm{dt}}=\mathrm{k}=2.1 \mathrm{~m} . \mathrm{s}^{-2}$
\therefore New periodic time $\mathrm{T}_{2}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}_{\text {eff }}}} \rightarrow$ (2)
$\therefore \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\sqrt{\frac{\mathrm{g}}{\mathrm{g}_{\text {eff }}}}$
65. Block will not slide if $\mu \mathrm{mg} \geq \mathrm{ma}$

$$
\Rightarrow \mu \mathrm{g} \geq \mathrm{a}
$$

To prevent the block from sliding the maximum acceleration
of table must be $\mathrm{a}_{\text {max }}=\mu \mathrm{g}$
Now maximum accleration $\mathrm{a}_{\text {max }}=\omega^{2} \mathrm{~A}$

$$
\begin{aligned}
& \therefore \omega^{2} \mathrm{~A}_{\max }=\mu \mathrm{g} \\
& \therefore \mathrm{~A}_{\max }=\frac{\mu \mathrm{g}}{\omega^{2}}=\frac{\mu \mathrm{gT}^{2}}{4 \pi^{2}}
\end{aligned}
$$

66. Angular frequency of system

$$
\omega=\left[\frac{\mathrm{k}}{(\mathrm{M}+\mathrm{m}}\right]^{1 / 2}-\cdots--(1)
$$

Now to prevent B from sliding offA, the maximum force acting on B should not be more than the frictional force $\mu \mathrm{mg}$.

$$
\therefore \mathrm{f}_{\max }=\mathrm{ma} \mathrm{~m}_{\max }=\mathrm{m} \omega^{2} \mathrm{~A}_{\max } \longrightarrow(2)
$$

From (1) \& (2)

$$
\therefore \mathrm{f}_{\max }=\mathrm{m}\left(\frac{\mathrm{k}}{\mathrm{~m}+\mathrm{M}}\right) \mathrm{A}_{\max }
$$

To prevent block from sliding, $\therefore \mathrm{f}_{\max }=\mu \mathrm{mg} \quad \therefore \frac{\mathrm{mkA}_{\max }}{\mathrm{m}+\mathrm{M}}=\mu \mathrm{mg}$
67. Restoring force $\mathrm{F}=-\mathrm{kx}$

$$
\text { Now, } \mathrm{F}=-\frac{\mathrm{du}}{\mathrm{dx}} \quad \therefore-\mathrm{kx}=-\frac{\mathrm{du}}{\mathrm{dx}} \quad \therefore \mathrm{du}=\mathrm{k} . \mathrm{x} . \mathrm{dx}
$$

$\therefore U(x)=\int_{0}^{\mathrm{x}} \mathrm{k} \cdot \mathrm{x} \cdot \mathrm{dx}=\frac{\mathrm{kx}^{2}}{2}+\mathrm{C}$
Where C in contant of integration.
Now in a SHM, potential energy at the equilibrium position is zero.

$$
\begin{aligned}
& \therefore \mathrm{u}(\mathrm{x}=0)=0 \quad \therefore \mathrm{C}=0 \\
& \mathrm{u}(\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2} \text { in an equation for a parabola. }
\end{aligned}
$$

68. At the upper most end,
when $\mathrm{mg}=\mathrm{R}+\mathrm{m} \omega^{2} \mathrm{~A}$, coin will loose contact.
Taking $\mathrm{R}=0$
$m \omega^{2} A=m g$

$$
\mathrm{A}=\mathrm{g} / \omega^{2}
$$

69. Force required to increase the lenght by x in $\mathrm{F}=\mathrm{kx}----$-(1)

After spring is divided into 2 equal parts,

$$
\begin{gathered}
F=k^{\prime} x^{\prime} \text { where } x^{\prime}=x / 2 \\
=k^{\prime} \frac{x}{2}---(2)
\end{gathered}
$$

$$
\text { from }(1) \&(2) ; \mathrm{k}^{\prime}=2 \mathrm{k}
$$

70. Frequency of SHM depends on elasticity \& inertia.
71. Restoring force $\mathrm{F}=-\mathrm{mg} \sin \theta$ OR

$$
\mathrm{F}=-\mathrm{mg}_{\mathrm{e}} \text { where } \mathrm{g}_{\mathrm{e}}=\mathrm{g} \sin \theta
$$

If θ is small, $\sin \theta \cong \theta$
\therefore Effective value ofg is $\mathrm{g}_{\mathrm{e}} \theta$
For large oscillation, g $\sin \theta<\mathrm{g} \theta(\because \sin \theta<\theta)$

$$
\therefore \mathrm{T}>2 \pi \sqrt{\ell^{1} / \mathrm{g}}
$$

72. Restoring force $\mathrm{F}=-\mathrm{mg} \sin \theta$
which depends on " m "
73. " g " in less on moon
\therefore form the equation $\mathrm{T}=2 \pi \sqrt{\frac{\ell^{1}}{\mathrm{~g}}}$,
T will increase
As compared to earth, moon in small
74. Periodic time $\mathrm{T} \propto \sqrt{\ell}$

$$
\begin{aligned}
& \therefore \Delta \mathrm{T}=\frac{1}{2 \sqrt{\ell}} \cdot \Delta \ell\{\text { On differentiation\}} \\
& \therefore \frac{\Delta \mathrm{T}}{\mathrm{~T}}=1.5 \%
\end{aligned}
$$

75. $\mathrm{a}_{\text {max }}=\omega^{2} \mathrm{~A}=4 \pi^{2} \mathrm{f}^{2} \mathrm{~A}=4 \pi^{2}(30)^{2} \times 0.01$

$$
=36 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}
$$

Since the oscillator moves between $+\mathrm{A} \&-\mathrm{A}$,

$$
\text { maximum acceleration }= \pm 36 \pi^{2}
$$

77. Energy dissipates \& so amplitnde decreases.

Statement - 2 in false.
78. Statement -1 in true. statement -2 in false. In a SHM, amplitnde \& phase does not depend on restornig force.
79. Time taken by the spring k_{2} to get maximum compressed from point $\mathrm{D}=$ half period of oscillation of the block.
(if block in attached at the frce end of spring)
i.e. $\mathrm{t}_{2}=\frac{\mathrm{T}_{2}}{2}=\frac{1}{2} 2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{2}}}=\frac{1}{2} 2 \pi \sqrt{\frac{0.2}{0.3}}=\frac{\pi}{4} \mathrm{~s}$
80. Similarly $\mathrm{t}_{1}=\frac{\mathrm{T}_{1}}{2}=\frac{\pi}{3} \mathrm{~s}$
81. Time period of Block $\mathrm{T}=$ Time taken by the block to move from C to D and D to C
82. $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{M}}}$ and $\mathrm{f}^{\prime}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}+\mathrm{M}}}$
83. According to the law of conservation of momentum,

$$
M V=(M+m) v^{\prime}
$$

84. According to the law of conservation of energy,

Kinetic Energy at mid point = potential Energy at the end points

$$
\therefore \frac{1}{2} M v^{2}=\frac{1}{2} k A^{2}
$$

And $\frac{1}{2}(M+m) v^{1^{2}}=\frac{1}{2} k A^{1^{2}}$
85. $y=3 \cos 2 t+4 \sin 2 t$
$\therefore \mathrm{A} \sin \phi=3$ And $\mathrm{A} \cos \phi=4$
$\therefore \mathrm{y}=\mathrm{A} \sin \phi \cos 2 \mathrm{t}+\mathrm{A} \cos \phi \sin 2 \mathrm{t}$
$\therefore \mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$
Which shows that the motion is simple harmonic motion
86. $\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi \mathrm{s}$
87. Amplitude $\mathrm{A}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~cm}$
88. Maximum Accelaration of
a particle $=\mathrm{A} \omega^{2}=5(2)^{2}=20 \mathrm{~cm} \mathrm{~s}^{-2}$
89. Mechanical Energy $=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2}=250$ erg
90. frequency of the particle $\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{\pi} \mathrm{~S}^{-1}$
91. On comparing $\mathrm{y}=\mathrm{A} \sin \left(15 \pi t+10 \pi x+\frac{\pi}{3}\right)$
with $y=A \sin (\omega t+k x+\theta)$
92. At constant pressure density of water vapour is less than dry air.
\therefore with increase in humidity according to the equation $v=\sqrt{\frac{\gamma \mathrm{p}}{\rho}}$ the velocity of sound increases.
93. $f \alpha \lambda^{-1} \quad \therefore \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\lambda_{2}}{\lambda_{1}}$
94. From the equation $\mathrm{v}=\mathrm{f} \lambda, \lambda_{\text {min }}=\frac{v}{\mathrm{f}_{\max }}=17 \mathrm{~mm}$ which is nearer to 20 mm
95. On comparing with the wave equation
$\mathrm{y}=\mathrm{A} \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$ we get, $\quad \mathrm{T}=0.04 \mathrm{~s}, \lambda=0.5 \mathrm{~m} \Rightarrow v=\frac{25}{2} m s^{-1}$
$\therefore T=v^{2} \pi=6.25 \mathrm{~N}$
96. Maximum velocity of particle $=\mathrm{A} \omega$
\therefore wave velocity $=\mathrm{f} \lambda$
\therefore Maximum velocity of particle $=2 \mathrm{x}$ wave velocity
$\therefore \mathrm{A} \omega=2 \mathrm{f} \lambda \Rightarrow \lambda=\pi \mathrm{A}$
97. Putting values in $\lambda=v T$
if phase diff.. $=$ in the interval $\Delta \mathrm{x}$ is $\Delta \delta$ then
$\Delta \delta=\frac{2 \pi}{\lambda} \Delta \mathrm{x}=\frac{2 \pi}{15} \times(15-10)=\frac{2 \pi}{3}$
98. Freq. of a wave in a string f $\alpha \frac{1}{\ell}$
$\therefore \ell=\ell_{1}+\ell_{2}+\ell_{3} \quad \therefore \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{f}_{1}}+\frac{1}{\mathrm{f}_{2}}+\frac{1}{\mathrm{f}_{3}}$
99. On comparing $\mathrm{y}_{1}=4 \sin 500 \pi \mathrm{t}$ with $\mathrm{y}_{1}=\mathrm{A} \sin \omega_{1} \mathrm{t}$
we get $\omega_{1}=2 \pi \mathrm{f}_{1}=500 \pi \Rightarrow \mathrm{f}_{1}=250 \mathrm{~Hz}$
Similarly y ${ }_{2}=2 \sin 506 \pi \mathrm{t}$
$\therefore \omega_{2}=2 \pi \mathrm{f}_{2}=506 \pi \Rightarrow \mathrm{f}_{2}=253 \mathrm{~Hz}$
\therefore Freq. of beats $=\mathrm{f}_{2}-\mathrm{f}_{1}=3$
\therefore No.of beats heard per minute $=3 \times 60=180$
100.
$y=8 \sin 2 \pi(0.1 x-2 t)$
$\therefore y=-8 \sin 2 \pi(2 t-0.1 x)$ comparing with $y=A \sin \left(\frac{t}{T}-\frac{x}{\lambda}\right)$
We get $\frac{1}{\lambda}=0.1 \Rightarrow \lambda=10 \mathrm{~cm}$
Now path diffrence between 2 particles $\delta=\frac{2 \pi}{\lambda} \cdot \mathrm{x}=\mathrm{kx}$
$\therefore \delta=\frac{2 \times 180 \times 2}{10}=72^{\circ}$
101. Distance covered by the pulse $=$ speed x time $=4 \mathrm{~cm}$ in 2 seconds both will cover 4 cm \& the centre of both will superpose $\&$ potential energy will be zero.
\therefore Total energy will be in the from of kinetic energy.
102. $\mathrm{y}_{1}=\mathrm{a} \sin \omega \mathrm{t} \& \mathrm{y}_{2}=\mathrm{a} \cos \omega \mathrm{t}=\mathrm{a} \sin (\omega \mathrm{t}+\pi / 2)$
$\therefore 1$ st wave is ilagging behind in phase by $\pi / 2$
103. Here A is the amplitude of resultant wave formed by 2 waves having amplitude A_{1} and A_{2} respectively.
$\mathrm{A}^{2}=\mathrm{A}_{1}{ }^{2}+\mathrm{A}_{2}{ }^{2}+2 \mathrm{~A}_{1} \mathrm{~A}_{2} \cos \theta$ Also θ in the phase $\mathrm{A}_{1}, \mathrm{~A}_{2}$
Now puttng $A_{1}=A_{2}=b \& A=b$, We get
$b^{2}=2 b^{2}(1+\cos \theta)$
$\therefore \cos \theta=-1 / 2 \Rightarrow \theta=120^{\circ}$
104. As seen from fig., distance between 3 nodes in λ

105. $\mathrm{y}=\sin ^{2} \omega \mathrm{t}=\frac{1-\cos 2 \omega \mathrm{t}}{2}=\frac{1}{2}-\frac{1}{2} \cos 2 \omega \mathrm{t}$ \qquad -(1)
$\therefore \mathrm{v}=\frac{1}{2} 2 \omega \sin (2 \omega \mathrm{t})=\omega \sin 2 \omega \mathrm{t}$
$\therefore \mathrm{a}=2 \omega^{2} \cos 2 \omega \mathrm{t}$
$=2 \times 2 \omega^{2}\left(\frac{1}{2}-Y\right)\{$ From eng. (1) $\}$
$=-4 \omega^{2}\left(\frac{1}{2}-\mathrm{y}\right)$
\therefore a $\alpha-y\{\therefore \mathrm{SHM}\}$
Now, $\frac{2 \pi}{\mathrm{~T}}=2 \omega \Rightarrow \mathrm{~T}=\frac{\pi}{\omega}$
106. No.of beats produced per second $=\quad=n_{1}-n_{2}$
\therefore Time interval between 2 consecutive beats $=\frac{1}{\mathrm{n}_{1}-\mathrm{n}_{2}}$
107. Since the phase difference between the 2 waves in $\frac{\pi}{2}$ they are oscillating along mutually perpendicalal direction.
\therefore Resultant ampltude $=\sqrt{\mathrm{A}^{2}+\mathrm{A}^{2}}=\sqrt{2} \mathrm{~A}$
\therefore Angular freq. will remain same.
108. $\mathrm{A}=0.02 \mathrm{~m}, \mathrm{v}=\frac{\omega}{\mathrm{k}}=128 \mathrm{~ms}^{-1}$
$5 \lambda=4 \Rightarrow \lambda=\frac{4}{5} \mathrm{~m}, \mathrm{k}=\frac{2 \pi}{\lambda}=2.5 \pi=7.85$
$\therefore \omega=128 \times \mathrm{k}=128 \times 7.85 \cong 1005$
$y=A \sin (k x-\omega t)$
$\therefore \mathrm{y}=0.02 \sin (7.85 \mathrm{x}-1005 \mathrm{t})$
109. Let the number of loops obtained for 315 Hz and 420 Hz n and ($\mathrm{n}+1$) respectively.
$\therefore \mathrm{f}_{\mathrm{n}}=\mathrm{nf}_{1}=315$
$\therefore \mathrm{f}_{\mathrm{n}+1}=(\mathrm{n}+1) \mathrm{f}_{1}=420$
$\therefore \mathrm{f}_{\mathrm{n}+1}-\mathrm{f}_{\mathrm{n}}=\mathrm{f}_{1}=105 \mathrm{~Hz}$
110. When, sound waves travel fromone medium to another, its frequency does not change.
$\therefore \mathrm{f}=\frac{\mathrm{v}}{\lambda}=\mathrm{consant}$
$\therefore \frac{\mathrm{v}_{\mathrm{a}}}{\lambda_{\mathrm{a}}}=\frac{\mathrm{v}_{\mathrm{b}}}{\lambda_{\mathrm{b}}}$
$\lambda_{\mathrm{b}}=\frac{\mathrm{v}_{\mathrm{b}}}{\mathrm{v}_{\mathrm{a}}} \quad \lambda_{\mathrm{a}}=10 \lambda_{\mathrm{a}}$
111. Wave velocity $=$ max. velo.of particle
$\frac{\omega}{\mathrm{k}}=\mathrm{A} \omega \quad \therefore \mathrm{A}=\frac{1}{\mathrm{k}}=\frac{\lambda}{2 \pi}$
$\therefore \lambda=2 \pi \mathrm{~A}$
112. Speed of sound in an ideal gas $v=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{m}}}$
$\therefore \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}\left(\therefore v \frac{1}{\sqrt{\mathrm{~m}}}\right)$
113. $\mathrm{E}=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2}=\frac{1}{2} \mathrm{~m} \quad 4 \pi^{2} \mathrm{f}^{2} \mathrm{~A}^{2}$
$\therefore \mathrm{E} \alpha \mathrm{f}^{2} \Rightarrow \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\left(\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}\right)^{2}=\left(\frac{\mathrm{f}}{2 \mathrm{f}}\right)^{2}=\frac{1}{4} \quad \therefore \quad \mathrm{E}_{2}=4 \mathrm{E}_{1}$
114. Let hte freq. of 1 st fork be f_{1}
$\therefore \quad$ frequency of 2 nd fork $=\mathrm{f}_{1}+6=\mathrm{f}_{1}+6(2-1)$
$\therefore \quad$ freq. of th 24 th fork $=f_{1}+6(24-1)=\mathrm{f}_{1}+138$
Now, freq. of 24th fork $=2 \mathrm{x}$ freq. of 1 st fork (given)
$\therefore \mathrm{f}_{1}+138=2 \mathrm{f}_{1} \quad \therefore \mathrm{f}_{1}=138 \mathrm{~Hz}$
115. Differentabing $\mathrm{y}_{1}=0.1 \sin \left(100 \mathrm{t}+\frac{\pi}{3}\right)$ w.r.t time,
$\mathrm{v}_{1}=(0.1)(100) \cos \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)$
Similarly differentiating $\mathrm{y}_{2}=0.1 \cos \omega$ t w.r.t. time,
$v_{2}=0.1 \sin \left(\pi t+\frac{\pi}{2}\right)$
\therefore phase difference between the 2 velocities is
$\delta=\left(\pi \mathrm{t}+\frac{\pi}{3}\right)-\left(\pi \mathrm{t}+\frac{\pi}{2}\right)=\frac{-\pi}{6} \mathrm{rad}$
116. Wave number $=\frac{1}{\lambda}=\frac{1}{0.005}=200 \mathrm{~m}^{-1}$
117. Frequency heard by the listener
$f_{L}=\left(\frac{v+v_{L}}{v}\right) f_{s} \quad\left(\therefore v_{s}=0\right)$
$\therefore \frac{\mathrm{f}_{\mathrm{L}}}{\mathrm{f}_{\mathrm{s}}}=\frac{\mathrm{v}+\mathrm{v}_{2}}{\mathrm{v}} \quad=\frac{\mathrm{v}+\frac{\mathrm{v}}{4}}{\mathrm{v}}=\frac{5}{4}$
$\therefore \%$ increase $=\frac{\mathrm{f}_{\mathrm{L}}-\mathrm{f}_{\mathrm{S}}}{\mathrm{f}_{\mathrm{S}}} \times 100=\left(\frac{5-4}{4}\right) \times 100=25 \%$
118. From $v=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}, v \alpha \sqrt{\mathrm{~T}}$

In summer, velocity increases \& hence decreases and so Lincreases.
The length of 2nd halmonics $x=3 L_{1}=3 \times 16=48 \mathrm{~cm}$
In summer, velocity being more, $\mathrm{x}>3 \mathrm{~L}_{1} \quad \therefore \mathrm{x}>48$
119. In $f_{L}=\left(\frac{v+v_{L}}{v+v_{s}}\right) f_{s}$
putting $v_{L}=0, f_{L}=2 f_{s}, \quad v=v, \quad v_{s}=-v_{s}$
$2 \mathrm{f}_{\mathrm{s}}=\left(\frac{v}{v-v_{\mathrm{s}}}\right) \mathrm{f}_{\mathrm{s}} \quad \Rightarrow 2 v_{\mathrm{s}}=v \quad \therefore v_{\mathrm{s}}=\frac{v}{2}$
120. For resonance, the frequency of a.c. supply should be same as fundamnetal freq. of wire.
$\therefore \mathrm{f}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{}}=50 \mathrm{~Hz}$
121. $\frac{f_{L}}{f_{S}}=\frac{v+v_{L}}{v+v_{S}}$ or $\frac{f_{L}}{f_{S}}=\frac{v-v_{L}}{v-v_{S}}$
but, $v_{L}=v_{\mathrm{S}} \therefore \frac{\mathrm{f}_{\mathrm{L}}}{\mathrm{f}_{\mathrm{S}}}=1$
122. Since the rope is heavy, the tension at the lower end $\&$ top end of the rope will be different.

Mass of rope $\mathrm{m}_{2}=3 \mathrm{~kg}$
Mass of block $\mathrm{m}_{1}=1 \mathrm{~kg}$
\therefore tension at the lower end $\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{~g}=1 \mathrm{~g} \mathrm{~N} \&$
at the upper end in $T_{2}=\left(m_{1}+m_{2}\right) \mathrm{g}=4 \mathrm{~g} \mathrm{~N}$
Now speed of wave in rope $\mathrm{v}=\sqrt{\frac{T}{-}} \Rightarrow f \lambda=\sqrt{\frac{T}{}}$

$$
\therefore \lambda=\sqrt{\mathrm{T}} \quad(\therefore \mathrm{f}, \mu \text { are constants })
$$

\therefore Wave length at lower and $\lambda_{1}=\sqrt{T_{1}}$ \& at the upper end $\lambda_{2}=\sqrt{T_{2}}$

$$
\therefore \frac{\lambda_{2}}{\lambda_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}} \Rightarrow \lambda_{2}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}=\lambda_{1}=\lambda_{2}=0.1 \mathrm{~m}
$$

123. Speed of sound $=\sqrt{\frac{\gamma \mathrm{P}}{\rho}}$

$$
\begin{aligned}
& \rho=\frac{\text { mass of } 1 \text { mole air }}{\text { Volume of } 1 \text { mole air }}=\frac{29 \times 10^{-3} \mathrm{~kg}}{22.4 \times 10^{-3} \mathrm{~m}^{3}}=1.3 \\
& \therefore \text { speed }=\sqrt{\frac{7}{5} \times \frac{1.01 \times 10^{5}}{1.3}}=330 \mathrm{~ms}^{-1}
\end{aligned}
$$

130 The was decreases the frequency of unknown fork. The possible unknown frequencies are, (288+4) Hz and $(288-4) \mathrm{Hz}$. Wax reduces 284 Hz and so beats should increases. It is not given in the question. This frequency is ruled out. Wax reduces 292 Hz and so beats should decrease. It is given that the beats decrease from 2 to 4 . Hence the unknown fork has frequency 292 Hz .
consider option (a)
131 Stationary wave: $\mathrm{Y}=\mathrm{a} \sin (\mathrm{wt}-\mathrm{kx})+\mathrm{a} \sin (\mathrm{wt}+\mathrm{kx})$
When $x=0, Y \neq 0$. The option is not acceptable
consider option (b)
stationary wave : $\mathrm{Y}=\mathrm{a} \sin (\mathrm{wt}-\mathrm{kx})-\mathrm{a} \sin (\mathrm{wt}+\mathrm{kx})$
At $x=0, Y=0$. This option holds good.
Option (c) gives $\mathrm{Y}=2 \mathrm{a} \sin (\mathrm{wt}-\mathrm{kx})$
At $\mathrm{x}=0, \mathrm{Y} \neq 0$
Option (d) gives $\mathrm{Y}=0$.
Hence option (b) holds good.

132 When temperature increases, l increases. Hence frequency decreases.
The possible frequency of piano are $(256+5) \mathrm{Hz}$ and $(256-5) \mathrm{Hz}$.
For a piano string $v=\frac{1}{21} \sqrt{\frac{T}{-}}$ When tension T increases v increases.
(i) If 261 Hz increases, beats / second increase. This is not given.
(ii) If 251 Hz increases due to tension, beats / second decrease. This is given.

134

135

141 Here, $\rho_{1}=\rho_{2}, \frac{r_{1}}{r_{2}}=\frac{1}{2}, T_{1}=T_{2}$

$$
\mathrm{f}_{1}=\frac{1}{2 l r_{1}} \sqrt{\frac{T_{1}}{\pi \rho_{1}}}, \mathrm{f}_{2}=\frac{1}{2 l r_{2}} \sqrt{\frac{T_{2}}{\pi \rho_{2}}} \therefore \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{2}{1}
$$

143 When one end is closed $f_{1}=\frac{100}{2}=50 H_{z}$
$\mathrm{f}_{2}=3 \mathrm{f}_{1}=150 \mathrm{~Hz}, \mathrm{f}_{3}=5 \mathrm{f}_{1}=250 \mathrm{~Hz}$ and so on...
144 When other end of pipe is opened, its fundamental frequency becomes 200 Hz . The overtone have frequencies $400,600,800 \mathrm{~Hz}$.. node, nor does density.

152 For a sonometer fundamental $\mathrm{f}=\frac{1}{22} \sqrt{\frac{\mathrm{~T}}{\mu}}$
To maintatin the fundamental mode, in doubling the length, tension must be quadrupled.
153 velocity of transverse waves $\mathrm{U}_{\mathrm{T}}=\sqrt{\frac{T}{m}}=\sqrt{\frac{T}{\pi r^{2} \rho}}$
velocity of longitudinal waves $v_{L}=\sqrt{\frac{Y}{\rho}}$
$\therefore \frac{\mathrm{v}_{\mathrm{L}}}{\mathrm{v}_{\mathrm{T}}}=\sqrt{\frac{\mathrm{Y}}{\mathrm{T} / \pi \mathrm{r}^{2}}}=\sqrt{\frac{\mathrm{Y}}{\text { stress }}}$

154 Let the frequency of standard fork $=\mathrm{x}$
$\therefore \mathrm{f}_{\mathrm{A}}=\frac{102}{100} \mathrm{x}, \mathrm{f}_{\mathrm{B}}=\frac{97}{100} \mathrm{x}, \mathrm{f}_{\mathrm{B}}=\frac{97}{100} \mathrm{x}$
Now $f_{A}-f_{B}=\frac{102 x}{100}-\frac{97}{100} x \quad \therefore x=120 \mathrm{~Hz}$
If the length of the wire between the two bridges is ℓ, then the frequency of vibration is
$\mathrm{n}=\frac{1}{21} \sqrt{\frac{\mathrm{~T}}{\mathrm{~m}}}=\frac{1}{21} \sqrt{\frac{\mathrm{~T}}{\pi \mathrm{r}^{2} \mathrm{~d}}}$
If the length and diameter of the wire are doubled keeping the tension same, then new fundamental frequency will be $n / 4$
$\frac{f_{L}}{f_{S}}=\frac{v+v_{L}}{v+v_{S}}$ using this equation the frequency ofreflected sound heard by the girl,
$\mathrm{f}_{\mathrm{L}}=\frac{\mathrm{v}+\mathrm{v}_{\mathrm{L}}}{\mathrm{v}-\mathrm{v}_{\mathrm{S}}} f_{\mathrm{S}}$
$\mathrm{f}_{\text {open }}=\frac{v}{2 \ell_{\text {open }}}$
$\mathrm{f}_{\text {closed }}=\frac{\mathrm{v}}{4 \ell_{\text {closed }}}=\frac{v}{4 \ell_{\text {open }} / 2}\left[\right.$ As $\left.\ell_{\text {closed }}=\frac{\ell_{\text {open }}}{2}\right]$
$=\frac{v}{2 \ell_{\text {open }}}=\mathrm{f}_{\text {open }}$
i.e. frequency remains unchanged.

If we assume that all the three waves are in same phase at $t=0$, we shall hear only 1 beat s^{1}
$y(x, t)=0.005 \cos (\alpha x-\beta t)$ compare it with standard equation

$$
\begin{equation*}
\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{A} \cos (\mathrm{kx}-\mathrm{wt})=\mathrm{A} \cos \left(\frac{2 \pi}{\lambda}=-\frac{2 \pi}{T} t\right) \quad \therefore \alpha=\frac{2 \pi}{\lambda} \text { and } \beta=\frac{2 \pi}{\mathrm{~T}} \tag{i}
\end{equation*}
$$

160 Given that the displacement of particle is $\mathrm{y}=\mathrm{A} \sin (\omega t-\mathrm{kx})$ \qquad
The particle velocity $v \mathrm{p}=\frac{\mathrm{dy}}{\mathrm{dt}}$. .(ii) \neq

Now, on diffrentiating eqn. 1 with respect to $\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{A} \omega \cos (\omega \mathrm{t}-\mathrm{kx})$
From eqn. (2 mental mode of the colsed pipe is
$\mathrm{f}_{1}=\frac{v}{4 \mathrm{~L}}=\frac{320}{4 \times 0.40}=200 \mathrm{~Hz}$
Since the beat frequency is 8 , the frequncy of the string vibrating in its first Overtone is 192 Hz or 208 Hz .

Where for 1 st Overtone frequency $\mathrm{f}_{1}{ }^{\prime}=\frac{1}{\ell} \sqrt{\frac{\mathrm{~T}}{\mathrm{~m}}}$.
It is given that the beat frequency decreases if the tension in the string is decreased.
$\therefore \mathrm{f}_{1}{ }^{\prime}>\mathrm{f}_{1}$ Hence $\mathrm{f}_{1}{ }^{\prime}=208 \mathrm{~Hz}$ and not 192 Hz
substituting the values of $\ell . m$ and f_{1}^{\prime} in equation 1 we get $\mathrm{T}=27.04 \mathrm{~N}$

$$
\frac{2 \pi}{\lambda}=2 \Rightarrow \lambda=\pi \mathrm{m}
$$

$\frac{2 \pi \mathrm{f}}{\lambda}=3 \pi \Rightarrow v=\frac{3 \lambda}{2} \mathrm{~ms}^{-1}$
176 Distance between two consecutive nodes $=\frac{\lambda}{2}=\frac{\pi}{2} m$
177 The resultant displacement is given by,
$y=0.1 \cos 2 x \sin 3 \pi t \quad$ Or $y=A \sin 3 \pi t$
Where A is the Amplitude of standing waves given by $0.1 \cos 2 x$
At $x=0.5 \mathrm{~m}, \cos 2 \mathrm{x}=\cos (1 \mathrm{rad})=\cos \left(\frac{\pi}{3.14}\right)=\cos 57.3^{\circ}=0.054 \mathrm{~m}$
Amplitude A at $(\mathrm{x}=0.5 \mathrm{~m})=0.1 \times 0.54=0.54 \mathrm{~m}$
178 Particle velocity $\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(0.1 \operatorname{Cos} 2 \mathrm{x} \sin 3 \pi \mathrm{t})=0.1 \times 3 \pi \cos 2 \mathrm{x} \sin 3 \pi \mathrm{t}$ at $x=0.25 \mathrm{~m}$ and $\mathrm{t}=0.5 \mathrm{~s}, v=0$

The two displacements can be written as

$$
y_{1}=A \quad \cos \quad\left(k_{1} x-\omega_{1} t\right)
$$

and $\quad y_{2}=A \quad \cos \left(k_{2} x-\omega_{2} t\right)$
compare this equation with given equation and get solution.
Beat frequncy $=\mathrm{f}_{1}-\mathrm{f}_{2}=\frac{\omega_{1}}{2 \pi}-\frac{\omega_{2}}{2 \pi}$
The resultant displacement is given by
$y=y_{1}+y_{2}$
$=\mathrm{A} \cos \left(\mathrm{k}_{1} \mathrm{x}-\omega_{1} \mathrm{t}\right)+\mathrm{A} \cos \left(\mathrm{k}_{2} \mathrm{x}-\omega_{2} \mathrm{t}\right)$ For $\mathrm{x}=0$ we have
$\mathrm{y}=\mathrm{A} \cos \omega_{1} \mathrm{t}+\mathrm{A} \cos \omega_{2} \mathrm{t}$
$\therefore y=0.10 \cos (96 \pi t) \cos (4 \pi t)$
Between $\mathrm{t}=0$ and $\mathrm{t}=1 \mathrm{~s}, \operatorname{Cos} 96 \pi \mathrm{t}$ becomes zero 96 times and $\cos 4 \pi \mathrm{t}$ becomes zero 4 times Hence the resultant displacement Y at $\mathrm{x}=0$ becomes zero 100 times between $\mathrm{t}=0$ and $\mathrm{t}=15$.
$y_{1}=A \sin (k x+\omega t)$
$y_{\mathrm{r}}=\mathrm{A} \sin (\mathrm{kx}-\omega \mathrm{t}) \Rightarrow \mathrm{y}=\mathrm{yi}+\mathrm{yr}$
$\therefore \mathrm{y}=2 \mathrm{~A} \sin \mathrm{kx} \cos \omega \mathrm{t}$ Here $2 \mathrm{~A}=10 \therefore \mathrm{~A}=5$

