Unit 15 Electromagnetic Waves

197

SI	UMMA	RY

Туре	Wavelength Range	Production	Detection
Radio	> 0.1 m	Rapid acceleration and decelerations of electrons in aerials.	Receiver's aerials (conducting wire)
Microwave	0.1 m to 1 mm	Klystron, magnetron valve, Gun diode.	Point contact diodes
Infra- red	1 mm to 700 nm	Vibration of atoms and molecules.	Thermopile, Bolometer, infrared photographic film
Visible Light	700 nm to 400 nm	Electrons in atoms emit light when they move from one energy level to a lower energy level.	The eye, photocells, photographic film, photo diode (LDR), light dependent resistor
Ultraviolet	400 nm to 1 nm	Inner shell electrons in atoms moving from one energy level to a lower level.	solar cell, Photocells, photographic film
X-rays	1 nm to 10 ⁻³ nm	X-ray tubes or inner shell electrons of atom	Photographic film, Geiger tubes, Ionization chamber,
Gamma rays	< 10 ⁻³ nm	Radioactive decay of the nucleus.	– do –

- The oscillating charges are responsible for the generation of periodically varying electric field in the space. Further, the oscillating charges generate varying electric current which in turn is responsible for the generation of periodically varying magnetic field. This way the electromagnetic waves are generated.
- The frequency of generated electromagnetic waves is equal to the frequency of oscillation of the electric charges. In case of electromagnetic waves
 c (Velocity) = λ (Wavelength) × f (Frequency)
- In the region closer to the oscillating charges, the phase difference between

 \vec{E} and \vec{B} fields is $\frac{\pi}{2}$, and their magnitude quickly decreases as $\frac{1}{r^3}$ (where r = distance from the source). These components of the transmitted waves (or fields) are called inductive components.

• At large distances from the source, \vec{E} and \vec{B} are in phase and the decrease in their magnitude is comparatively slower with distance, as per $\frac{1}{r}$. These components of electromagnetic radiation are called radiated components.

- Electromagnetic waves are self sustaining oscillations of electric and magnetic fields in free space, or vacuum. No material medium is associated with vibrations of the electric and magnetic fields.
- The velocity of electromagnetic waves in vacuum (free space) is

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.99792 \times 10^8 \text{ ms}^{-1}$$

• The velocity of the electromagnetic waves in any medium is given by $v = \frac{1}{\sqrt{\mu\varepsilon}}$

where μ = Permeability of the medium, and

 ε = Permittivity of the medium.

- The velocity of light depends on electric and magnetic properties of the medium.
- The refractive index of a medium is $n = \frac{c}{v} = \sqrt{\mu_r \varepsilon_r} = \sqrt{\mu_r K}$.
- Electromagnetic waves exert pressure on a surface when they are incident on it, called radiation pressure.
- If ΔU is the energy of electromagnetic waves incident on a surface of unit area per unit time normal to the direction of flow of energy, then assuming that the energy is completely absorbed, the momentum of the electromagnetic radiation transferred to the surface is $\Delta p = \frac{\Delta U}{c}$

which also represents radiation pressure (P_{g}) .

• The electromagnetic energy per unit volume (energy density) in a region is given by

$$\rho = \rho_{\rm E} + \rho_{\rm B} = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0} = \epsilon_0 E_{rms}^2$$

- The radiant energy passing through unit area normal to the direction of propagation in one second is called the intensity of radiation I.
- The energy of the electromagnetic waves is equal to the kinetic energy of the charges oscillating between the two spheres.

<u>MCQ</u>

For th	ne answer of the following q	juestions choose the corre	ct alternative from ar	nong the given ones.		
(1)	Who produced the ele	ectromagnetic waves f	irst ?			
	(A) Marconi	(B) Maxwell	(C) J.C. Bose	(D) Hertz		
(2)	The dimensional form	nula of $\ell_{o}E_{o}$ is				
	(A) $L^2 T^{-2}$	$(\mathbf{B}) L^{-2} T^2$	(C) $L^{1}T^{-1}$	$(\mathbf{D}) L^{-1} T^{1}$		
(3)	A plane electromagnet momentum P and ene	ic wave is incident on rgy E	a material surface.	The wave delivers		
	(A) $P=0, E \neq 0$	(B) $P \neq 0$, E=0	(C) $P \neq 0$, $E \neq 0$	(D) P=0, E=0		
(4)	If V_{γ} , V_x and V_m are the space, then	e velocity of the v rays	s, x rays, micro wa	ves respectively in		
	(A) $V_r < V_x < V_m$	$(\mathbf{B}) V_r = V_x = V_m$	(C) $V_r > V_x > V_m$	(D) $V_r > V_x < V_m$		
(5)	If λ_r, λ_x and λ_m are the vively in space then	wave lengths of the r-	rays, x rays and m	icro waves respec-		
	(A) $\lambda_r > \lambda_x > \lambda_m$	(B) $\lambda_r < \lambda_x < \lambda_m$	(C) $\lambda_r = \lambda_x = \lambda_m$	(D) $\lambda_r < \lambda_m < \lambda_x$		
(6)	According to Maxwel (A) emf	l, a changing electric (B) Electric current	field produces			
	(C) magnetic field	(D) radiation pressu	re			
(7)	An electromagnetic wa	ave going through vacc	oum is described by	$E = E_o \sin(kx - \omega t).$		
	Which of the following	ng is independent of th	e wavelength?			
	(A) ω	(B) k/ω	(C) k_{ω}	(D) k		
(8)	Which of the followin (A) Electric energy	g have zero average va (B) Magnetic energy	llue in a plane elec	tromagnetic wave?		
	(C) Electric field	(D) None of these.				
(9)	If the relative permeab	pility and dielectric con	nstant of a given m	edium are equal to		
	ℓ_r nd K respectively, then the refractive index of the medium is equal to					
	(A) $\sqrt{\ell_{\rm r} \rm K}$	(B) $\sqrt{\ell_{\rm r} {\rm E_o}}$	(C) $\sqrt{\ell_o E_o}$	(D) $1/\sqrt{\ell_r k}$		
(10)	Astraonomers have f continuously reaching	ound that electromaging the Earth's surface.	netic waves of wa Calculate the frequ	velength 21cm are nency of this radia-		
	tion. (c= 3×10^8 m/s)					
	(A) 14.28 GHz	(B) 1.428 kHz	(C) 1.428 MHz	(D) 1.428 GHz		
		200				

(11)	Electric field in an electric field way	electromagnetic wave ve is W	is given by E=50 /m ⁻²	$0 \sin \omega (t-x/c) N C^{-1}.$
	(A) 50	(B) 1.1×10^8	(C) 3.3	(D) 5.5×10^{-19}
(12)	The amplitude of the is	electric field in a para	llel beam of light	of intensity 2.0 Wm ⁻²
	(A) $38.8NC^{-1}$	$(B)_{19.4NC^{-1}}$	(C) $9.7NC^{-1}$	(D) None of these.
(13)	Speed of electromagn	netic wave is the sam	e	
	(A) for all wavelengt	hs	(B) in all media	a
	(C) for all intensities	5	(D) for all freq	uencies
(14)	The maximum electric is going in the x dire mum magnetic field	e field in a plane electric ection and the electric in the wave is	romagnetic wave i c field is in the y T	s $900NC^{-1}$. The wave direction. The maxi-
	$(A)_{3 \times 10^{-8}}$	(B) 3×10^{-6}	(C) 27×10^{-6}	(D) 27×10^{10}
(15)	Electromagnetic wav	es are produced by		
	(A) a static charge		(B) a moving c	harge
	(C) an accelerating c	harge	(D) chargeless	particles
(16)	Maxwells equations	are derived from the	laws of	
	(A) electricity		(B) magnetism	
	(C) both electricity a	nd magnetism	(D) mechanics	
(17)	Which of the followi	ng electromagnetic w	aves has the long	est wavelength?
	(A) Radio waves		(B) Infrared rac	liations
	(C) x rays		(D) visible rays	5
(18)	Which of the followi	ng electromagnetic w	aves has the high	est frequency?
	(A) radio waves	(B) micro waves	(C) r rays	(D) x rays
(19)	Which of the followi	ng electromagnetic w	vaves is used in te	elecommunication?
	(A) radio waves	(B) visible radiation	S	
	(C) ultraviolet rays	(D) micro waves		
(20)	The maximum value Vm^{-1} . The maximum	of \vec{E} in an electromagnetic value of \vec{B} is	gnetic waves in ai	r is equal to 6.0×10^{-4}
	(A) $1.8 \times 10^5 \mathrm{T}$	(B) 2.0×10 ⁴ T	(C) 2.0×10^{-12} T	(D) 1.8×10 ¹³ T
(21)	Dimensional formula	of intensity of radiat	tion is	
	(A) $M^{1}L^{2}T^{-2}$	(B) $M^{1}L^{0}T^{-2}$	(C) $M^{1}L^{2}T^{-3}$	(D) $M^{1}L^{0}T^{-3}$
		201		

(22)	The frequency of an el through a medium of	lectromagnetic wave in f relative permeability	the free space is 3MI $\epsilon_r = 4.0$, then its	Hz. When it passes frequency
	(A) becomes half		(B) become doub	oled
	(C) remain same		(D) become $\sqrt{2}$	times
(23)	The frequency of electr	romagnetic wave havin	g wavelength 25m	m is Hz
	(A) 1.2×10^{10}	(B) 7.5×10^5	(C) 1.2×10^8	(D) 7.5×10^6
(24)	Unit of energy densit	ty of electromagnetic	wave is	_
	(A) Jm^{-3}	(B) Jm^{-2}	(C) wm^{-2}	(D) None of these
(25)	What is the ratio of vevocum?	elocities of light rays of	of wavelengths 400	0° A and 8000° A in
	(A) 1:2	(B) 1:1		
	(C) 2:1	(D) cannot be determ	nined	
(26)	Which of the following	ng rays are not electro	omagnetic waves?	
	(A) \propto rays	(B) γ rays	(C) β rays	(D) heat rays
(27)	A new system of uni respectively. Then the	t is evolved in which he speed of light in thi	the values of ℓ_0 as system will be	and ε_0 are 2 and 8
	(A) 0.25	(B) 0.5	(C) 0.75	(D) 1
(28)	Our eyes respond to	wavelength ranging fi	om	
	(A) 400nm to 700nm	1	(B) $-\infty$ to $+\infty$	
	(C) 1mm to 700nm		(D)700nm to 800)nm
(29)	In microwave oven, magnetic waves in th	we use electromagnet e wavelength range	ic oscillators whic	h produce electro-
	(A) 1mm to 10m		(B) $0.7 \mu m$ to $1 \mathrm{m}$	m
	(C) 0.1m to 1mm		(D) $0.1 \mu m$ to 0.7	μm
(30)	What is the direction	of $\vec{E} \times \vec{B}$ in an electron	omagnetic wave?	
	(A) same as that of I	Ē		
	(B) same as that of I	B		
	(C) same as the direct	ction of propagation of	f electromagnetic	wave
	(D) none of these			
(31)	The wavelength of x	rays is of the order of	f	
	(A) 1cm	(B) 1m	(C) 1micron	(D)1angstrom
		202		

- (32) A plane electromagnetic wave of frequency 25MHz travels in free space along the x direction. At a particular point in space and time $\vec{E} = 6.3 \,\hat{j} \, Vm^{-1}$ then \vec{B} at this point is_____
 - (A) $2.1 \times 10^{-8} \hat{i}$ T (B) $2.1 \times 10^{-8} \hat{k}$ T (C) $1.89 \times 10^{9} \hat{k}$ T (D) $2.52 \times 10^{-7} \hat{k}$ T
- (33) The magnetic field in a plane electromagnetic wave is given $B_y =$
 - $2 \times 10^{-7} \sin (0.5 \times 10^3 x + 1.5 \times 10^{11} t)T$. The expression for electric field is
 - (A) $E_x = 60\sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t)Vm^{-1}$
 - (B) $E_z = 60\sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) Vm^{-1}$
 - (C) $E_z = 60\sin(1.5 \times 10^{11} x + 0.5 \times 10^3 t) Vm^{-1}$
 - (D) $E_z = 60 \times 10^{15} \sin(1.5 \times 10^{11} x + 0.5 \times 10^3 t) Vm^{-1}$
- (34) Light with an energy flux of w/m^3 or Wm^{-3} falls on a non-reflecting surface at normal to surface. If the surface has an area of $20m^2$. The average force exerted on the surface during 30 minutes is _____
 - (A) $6.48 \times 10^5 N$ (B) $3.60 \times 10^2 N$ (C) $1.2 \times 10^{-6} N$ (D) $2.16 \times 10^{-3} N$

(35) Energy density of an electromagnetic wave of intensity 0.02 Wm⁻² is _____

(A) $6.67 \times 10^{-11} Jm^{-3}$ (B) $6 \times 10^6 Jm^{-3}$ (C) $1.5 \times 10^{10} Jm^{-3}$ (D) none of the above

(36) The waves used in communication are generally called

- (A) γ rays (B) α rays (C) microwaves (D) radiowaves
- (37) For an electromagnetic wave, the phase difference between vectors \vec{E} and \vec{B} (far away from the source)
- (38) In an electromagnetic wave, if the amplitude of magnetic field is $3 \times 10^{-10} T$, the amplitude of the associated electric field will be_____
 - (A) $9 \times 10^{-2} Vm^{-1}$ (B) $3 \times 10^{-10} Vm^{-1}$ (C) $3 \times 10^{-2} Vm^{-1}$ (D) $1 \times 10^{-18} Vm^{-1}$
- (39) The electric and magnetic field of an electromagnetic wave are
 - (A) in phase and perpendicular to each other
 - (B) in phase and parallel to each other
 - (C) in opposite phase and perpendicular to each other
 - (D) in opposite phase and parallel to each other

Downloaded from www.studiestoday.com

(49)	The velocity of light	in vaccum can be cha	nged by changing_	
	(A) frequency	(B)wavelength	(C)amplitude	(D) none of these
(50)	An electromagnetic w then B=Bo sin(kx-a)	vave going through vac (t) then	ccum is described b	y E=Eo sin(kx-ωt)
	(A) $E_0 B_0 = \omega k$	(B) $E_0 k = B_0 \omega$	(C) $E_0 \omega = B_0 k$	(D)none of these
(51)	If the wavelength of l be	ight is 4000° A then th	e number of waves	in 1mm length will
	(A)2.5	(B)2500	(C)250	(D)25000
(52)	The SI unit of displa	cement current is		
	(A) coulomb	(B)henry	(C) ampere	(D)faraday
(53)	The electromagnetic	waves do not transpor	rt	
	(A) energy	(B) charge	(C)momentum	(D)information
(54)	An electric charge of electromagnetic wav	oscillating with a freques of wavelength	uency of 1kilo cy	cles/s can radiates
	(A) 100km	(B)200km	(C) 300km	(D)400km
(55)	The frequency 1057 hydrogen belongs to	MHz of radiation aris	sing from two clos	se energy levels in
	(A) radio waves	(B)infrared waves	(C)micro waves	(D) γ rays
(56)	Electromagnetic wave and relative permeal will be	es travelling in a mediu bility 2.14 speed of el	um which has relati lectromagnetic way	ve permeability 1.3 ves in this medium
	(A) $3.6 \times 10^8 m / s$	(B)1.8×10 ⁸ m/s	(C) $1.8 \times 10^6 m / s$	(D)13.6×10 ⁶ m/s
(57)	A plane electromagne ers momentum p and	etic wave is incident of l energy E, then	n a material surface	e. If the wave deliv-
	(A) p=0,E=0	(B) $p \neq 0, E \neq 0$	$(\mathbf{C})\mathbf{p}\neq0,\mathbf{E}=0$	(D) $p = 0, E \neq 0$
(58)	Maxwell's modified	form of Ampere's circ	cuital law is	
	(A) $\oint \vec{B} \cdot d\vec{S}$		(B) $\oint \vec{B} \cdot d\vec{S} = \mu_0 \vec{a}$	i
	$(\mathbf{C})\oint \vec{\mathbf{B}} \cdot d\vec{l} = \mu_{o}i + \mu_{o} \in$	$\equiv_o \frac{\mathrm{d}\phi_{\mathrm{E}}}{\mathrm{dt}}$	(D) $\oint \vec{B} \cdot d\vec{l} = \mu_0 \vec{i}$	$+ \frac{1}{\epsilon_o} \frac{d_q}{dt}$
(59)	The wavelength of x	rays is of the order o	f	
	(A) 10 ⁻³ m	(B) 10 ⁻⁵ m	(C) 10^{-10} m	(D) 10^{-12} m
(60)	A point source of elec The maximum value	ctromagnetic radiation of electric field at a	has an average outp distance of 4.0m f	put power of 800W. from the source is
	(A) $64.7Vm^{-1}$	(B) $57.8Vm^{-1}$	(C) $56.72 Vm^{-1}$	(D) $54.77 Vm^{-1}$
		205		
		_···/		

(61)	A plane electromagn of refractive index	$(6 \times 10^8 t + 4x) Vm^{-1}$ pt	opagate in a medium			
	(A)1.5	(B)2.0	(C)2.4	(D)4.0		
(62)	A plane electromagn area 20_{cm^2} , held per the mirror will be	netic wave of wave in erpendicular to the ap	tensity 10ωm ⁻² stri proaching wave. T	kes a small mirror of he radiation force on		
	(A) $6.6 \times 10^{-11} N$	(B)1.33×10 ⁻¹¹ N	$(C)1.33 \times 10^{-10} N$	(D) $6.6 \times 10^{-10} N$		
(63)	An observer is at 2m The rm.s value of is	n from an isotropic po electric due to the s	oint source of light source at the posi	emitting 40w power. tion of the observer		
	(A) $5.77 \times 10^{-8} Vm^{-1}$	$(B)_{17.3Vm^{-1}}$	(C) 57.7×10 ⁻⁸ Vn	n^{-1} (D)1.73 Vm^{-1}		
(64)	Electromagnetic wav	ves used in medicine	to destroy cancer	cells		
	(A) radio waves		(B)infrared ray	S		
	(C)gamma rays		(D)ultraviolet r	ays		
(65)	What is the name as	sociated with the equ	ation $\phi \vec{E} \cdot \vec{dt} = -\frac{d}{dt}$	$\frac{\phi\beta}{dt}$		
	(A) Gauss law for e(C) ampere's law	lectricity	(B) Gauss law for magnetism(D)faraday's law			
(66)	What oscillates in a	n electromagnetic wa	ve?			
	(A) \vec{E} and \vec{B}	(B) \vec{B}	$(C)\vec{E}$	(D)none of these		
(67)	Which of the follow	ving rays are not elec	tromagnetic waves	?		
	(A) α rays	(B) γ rays	(C) β rays	(D)heat rays		
(68)	The rms value of th The average tatal en	e electric field of the nergy density of the e	light coming from lectromagnetic wa	n the sun is 720 N/c. .ve is		
	(A) $4.58 \times 10^{-6} Jm^{-3}$	(B) $6.3 \times 10^{-9} Jm^{-3}$	$(C)_{81.35 \times 10^{-12}}$	J_m^{-3} (D) $3.3 \times 10^{-3} Jm^{-3}$		
(69)	What is the wave le	ngth of range of elect	romagnetic waves	?		
	(A) 10^{-8} m to 10^{15} m		(B) 10 ⁻¹⁵ m to 1	0 ⁸ m		
	(C) 10^{-15} m to 10^{15} m		(D) 10^8 m to 10) ¹⁵ m		
(70)	What is the waveleng	gth range of visible li	ght?			
	(A) 10° A to 100° A		(B) 4000° A to 7	$7000^{\circ} A$		
	$(C)8000^{\circ} A$ to 10000°	А	(D) 10000° A to 15000° A			

(71)	Unit of ℓ oC is same	as that of					
	(A)current	(B)resistance	(C)electric charg	e (D) velocity			
(72)	In electromagnetic sp	ectrum, the visible lig	ght lie between				
	(A) radiowaves and m	icrowaves					
	(B) ultraviolet rays and infrared rays						
	(C) ultraviolet rays an	nd x rays					
	(D) infrared rays and	microwaves					
(73)	Which of the following	ng statements is not tr	rue in case of electr	romagnetic waves?			
	(A) they are light way	/es	(B)theay are trans	sverse waves			
	(C) propagates throu	gh space	(D) they are long	itudinal waves			
(74)	far away from source	e are oriented along	vectors of an elec	tromagnetic waves			
(A) Mutually perpendicular direction and differ in phase by 90°							
	(B) Mutually perpendicalar and in same phase						
	(C) In same direction	n and in same phase					
	(D) In same divecfi o	n and differ in phasel	by 90°				
(75)	Which of the followincreasing frequency	wing option of elec ?	etromagnetic wave	es is in order of			
	(A) microwaves, ultra	violet rays, x rays					
	(B) gamma rays, ultra	violet rays, radiowave	es				
	(C) radiowaves, visib	le light, infrared rays					
	(D) gamma rays, visil	ole light, ultraviolet ra	ays				
(77)	The sum delivers 10^3 power that is inciden	Wm ⁻² of electromagn at on a roof of dimension	etic flux to earth's sion 8m x 20m wi	surface. The total			
	(A) $4 \times 10^5 W$	(B) $2.56 \times 10^4 w$	$(C)_{6.4 \times 10^5 W}$	(D) _{1.6×10⁵ w}			
(77)	Bolometer is used to	detect					
	(A) infrared rays	(B) ultraviolet rays	(C) x rays	(D) γ rays			
(78)	Range of frequency of	of microwaves is about	ıt				
	(A)530kHz to 1710kH	Ηz	(B)54MHz to 89	0MHz			
	(C) 3GHz to 300GHz	Z	(D) $4 \times 10^{14} Hz$ to $7 \times 10^{14} Hz$				
(79)	SI unit of displaceme	nt current is					
	(A) coulomb	(B)ampere	(C)faraday	(D)			
		\frown					
		—— 207 >					

(80)	The frequencies of x is then	rays, γ rays and ultrav	violet rays are resp	pectively p, q and r
	(A)p <q, q="">r</q,>	(B) p>q, q>r	(C)p>q, q <r< td=""><td>(D)p<q, q<r<="" td=""></q,></td></r<>	(D)p <q, q<r<="" td=""></q,>
(81)	At room temperature, permiability be 0.022	, if the relative permit 22 then the velocity of	ivity of water is 8 f light in water is	30 and the realtivem/s
	(A) 2.5×10^8	(B) 2.25×10^8	(C) 3.5×10^8	(D) 3×10^8
(82)	If the electric field ass	ociated with a radiation	n of frequency 10N	Hz is E=10sin(kx-
	$(\omega t)mV/m$ then its en	nergy density is	$_{Jm^{-3}}(\epsilon_{0}=8.85\times10^{-3})$	$0^{-12}C^2N^{-1}m^{-2}$)
	(A) 4.425×10^{-16}	(B) $_{6.26\times10^{-14}}$	$(C)_{8.85 \times 10^{-16}}$	$(D)_{8.85 \times 10^{-14}}$
(82)	In an electromagnetic	wave in free snace th	e direction of elec	etric field vector \vec{E}

(82) In an electromagnetic wave in free space, the direction of electric field vector \vec{E} is along y axis and magnetic field vector \vec{B} is along z axis then which of the following is true

$$(\mathbf{A})\left(\vec{\mathbf{E}}\times\vec{\mathbf{B}}\right)\times\vec{\mathbf{E}}=1 \tag{B} \left(\vec{\mathbf{E}}\times\vec{\mathbf{B}}\right)\times\vec{\mathbf{B}}=1$$

$$(C)(\vec{E} \times \vec{B}) \times \vec{B} = 0$$
 (D) none of these

(84) When a plane electromagnetic wave travels in vaccum, the average electric energy density is given by (Eo is the amplitude of the electric field)

(A)
$$\frac{1}{4}\varepsilon_o Eo^2$$
 (B) $\frac{1}{2}\varepsilon_o Eo^2$ (C) $2\varepsilon_o Eo^2$ (D) $4\varepsilon_o Eo^2$

(85) In a plane electromagnetic wave, the electric field oscillates sinusoidaly at a frequency of $2.0 \times 10^{10} Hz$. if the peak value of electric field is $60 Vm^{-1}$ the average energy density (in Jm⁻³) of the magnetic field of the wave will be (given $\mu o = 4\pi \times 10^{-7} \text{ Tm/A}$)

(A)
$$2\pi \times 10^{-7}$$
 (B) $\frac{1}{2\pi} \times 10^{-7}$ (C) $4\pi \times 10^{-7}$ (D) $\frac{1}{4\pi} \times 10^{-7}$

- (86) Which of the following pairs of the component of space and time varying $\vec{E} = (E_x\hat{i} + Ey\hat{j} + Ez\hat{k})$ and $\vec{B} = (B_x\hat{i} + By\hat{j} + Bz\hat{k})$ would generate a plane electromagnetic wave travelling in +ve y direction
 - (A) $B_x \hat{i}, E_z \hat{i}$ (B) $E_y \hat{i}, B_z \hat{i}$ (C) $E_x \hat{i}, B_x \hat{i}$ (D) $E_z \hat{i}, B_x \hat{i}$

(88)	Electromagnetic wave is produced by oscillating electric and magnetic fields \vec{E} and \vec{B} . Choose only the incorrect statement from the following				
	(A) \vec{E} is perpendicul	ar to \vec{B} .		0	
	(B) \vec{E} is perpendicul	ar to the direction of J	propagation of the	wave	
	(C) \vec{B} is perpendicul	ar to the direction of	propagation of the	wave	
	(D) \vec{E} is parallel to	B			
(89)	The potential differen	nce between the plates	of a parallel plate	capacitor is charg-	
	ing at the rate of 10 [°] the dielectric of the	⁶ <i>Vs</i> ⁻¹ . If the capatance capacitor will be	is $2\mu F$. The displ	acement current in	
	(A) 4A	(B)3A	(C)2A	(D)1A	
(90)	Which of the followi	ng electromagnetic wa	we has the least fr	requency?	
	(A) radiowave	(B) infrared radiation	n (C)microwave	(D)x rays	
(91)	Which of the followi	ng electromagnetic wa	we has the least w	avelength?	
	(A) rradiowave waves	(B)visible wave	(C) ultraviolet ra	ys (D) micro-	
(92)	Which of the followi	ng waves are not trans	sverse in nature?		
	(A) light emitted from	m a sodium lamp			
	(B) sound waves trav	elling in air			
	(C) xrays from an x i	ray machine			
	(D) microwaves used	l in radar			
(93)) An electromagnetic wave				
	(A) can be deflected by electric field				
	(B) can be deflected by magnetic field				
	(C) can be deflected by eboth electric and magnetic field				
	(D) none of these				
(94)	When an electromage wave has	netic wave encounters	a dielectric mediu	im, the transmitted	
	(A) same frquency but	ut different amplitude			
	(B) same amplitude b	out different frequency	,		
	(C) same frequency a	and amplitude			
	(D) different frequen	cy and amplitude			

Downloaded from www.studiestoday.com

(A) emf(B)radiation pressure(C) electric current(D)magnetic field(96)was the first to predict the existence of electromagnetic waves(A) Maxwel(B) Faraday(C)Ampere(D) hertz(97)If the earth were not having atmosphere, its temperature(A) would have been low(B) would have been high(C)would hav remain constant(D) none of these(98)is responsible for the green house effect(A) infrared rays(B)ultraviolet rays(C)(C)x raya(D)radiowaves(99)The dimensional formula of energy density is(A) $M^1L^0T^{-2}$ (B) $M^1L^1T^{-2}$ (C) $M^1L^1T^{-3}$ (D) $M^1L^0T^{-3}$	(95)	According to Maxwell, a changing electric field produces				
(C) electric current(D)magnetic field(96)was the first to predict the existence of electromagnetic waves(A) Maxwel(B) Faraday(C)Ampere(D) hertz(97)If the earth were not having atmosphere, its temperature(A) would have been low(B) would have been high(C)would hav remain constant(D) none of these(98)is responsible for the green house effect(A) infrared rays(B)ultraviolet rays(C)x raya(D)radiowaves(99)The dimensional formula of energy density is(A) $M^1L^0T^{-2}$ (B) $M^1L^{-1}T^{-2}$ (C) $M^1L^{-1}T^{-3}$ (D) $M^1L^0T^{-3}$		(A) emf	(B)radiation pressure			
(96)was the first to predict the existence of electromagnetic waves(A) Maxwel(B) Faraday(C)Ampere(D) hertz(97)If the earth were not having atmosphere, its temperature(A) would have been low(B) would have been high(C)would hav remain constant(D) none of these(98)is responsible for the green house effect(A) infrared rays(B)ultraviolet rays(C)x raya(D)radiowaves(99)The dimensional formula of energy density is(A) $M^1L^0T^{-2}$ (B) $M^1L^{-1}T^{-2}$ (C) $M^1L^{-1}T^{-3}$ (D) $M^1L^0T^{-3}$		(C) electric current	(D)magnetic field			
(A) Maxwel(B) Faraday(C)Ampere(D) hertz(97)If the earth were not having atmosphere, its temperature.(A) would have been low(B) would have been high(C)would hav remain constant(D) none of these(98)	(96)	was the first t	o predict the existenc	e of electromagne	tic waves	
(97) If the earth were not having atmosphere, its temperature(A) would have been low(B) would have been high(C)would hav remain constant(D) none of these(98)is responsible for the green house effect(A) infrared rays(B)ultraviolet rays(C)x raya(D)radiowaves(99)The dimensional formula of energy density is(A) $M^1L^0T^{-2}$ (B) $M^1L^{-1}T^{-2}$ (C) $M^1L^{-1}T^{-3}$ (D) $M^1L^0T^{-3}$		(A) Maxwel	(B) Faraday	(C)Ampere	(D) hertz	
(A) would have been low (C)would hav remain constant(B) would have been high (D) none of these(98)is responsible for the green house effect (A) infrared rays(B)ultraviolet rays(C)x raya(D)radiowaves(99)The dimensional formula of energy density is (A) $M^1L^0T^{-2}$ (B) $M^1L^{-1}T^{-2}$ (C) $M^1L^{-1}T^{-3}$ (D) $M^1L^0T^{-3}$	(97)	If the earth were not	having atmosphere, its	s temperature	·	
(98)is responsible for the green house effect(A) infrared rays(B)ultraviolet rays(C)x raya(D)radiowaves(99)The dimensional formula of energy density is(A) $M^1L^0T^{-2}$ (B) $M^1L^{-1}T^{-2}$ (C) $M^1L^{-1}T^{-3}$ (D) $M^1L^0T^{-3}$		(A) would have been low(C)would hav remain constant		(B) would have been high(D) none of these		
(A) infrared rays (B)ultraviolet rays (C)x raya (D)radiowaves (99) The dimensional formula of energy density is (A) $M^{1}L^{0}T^{-2}$ (B) $M^{1}L^{-1}T^{-2}$ (C) $M^{1}L^{-1}T^{-3}$ (D) $M^{1}L^{0}T^{-3}$	(98)	is respons	sible for the green ho	use effect		
(99) The dimensional formula of energy density is (A) $M^{1}L^{0}T^{-2}$ (B) $M^{1}L^{-1}T^{-2}$ (C) $M^{1}L^{-1}T^{-3}$ (D) $M^{1}L^{0}T^{-3}$		(A) infrared rays	(B)ultraviolet rays	(C)x raya	(D)radiowaves	
(A) $M^{1}L^{0}T^{-2}$ (B) $M^{1}L^{-1}T^{-2}$ (C) $M^{1}L^{-1}T^{-3}$ (D) $M^{1}L^{0}T^{-3}$	(99)	The dimensional form	nula of energy density	is		
		(A) $M^{1}L^{0}T^{-2}$	$(B)_{M^{1}L^{-1}T^{-2}}$	$(C)_{M^{1}L^{-1}T^{-3}}$	$(D)_{M^{1}L^{0}T^{-3}}$	

1	D	18	С	35	А	52	C	69	В	86	А
2	D	19	D	36	D	53	В	70	В	87	В
3	С	20	С	37	А	54	С	71	В	88	D
4	В	21	D	38	А	55	Α	72	В	89	С
5	В	22	С	39	А	56	В	73	D	90	А
6	С	23	А	40	В	57	В	74	В	91	С
7	В	24	А	41	С	58	C	75	А	92	В
8	С	25	В	42	D	59	C	76	D	93	D
9	А	26	С	43	А	60	D	77	А	94	Α
10	D	27	А	44	В	61	В	78	С	95	D
11	С	28	А	45	С	62	C	79	В	96	Α
12	А	29	С	46	В	63	В	80	А	97	Α
13	С	30	С	47	В	64	С	81	В	98	Α
14	В	31	D	48	А	65	D	82	А	99	В
15	С	32	В	49	D	66	Α	83	С		
16	С	33	В	50	В	67	С	84	А		
17	А	34	A	51	В	68	Α	85	В		

KEY NOTES