Important Points

[A] Important formulae:

1. \(\text{No.of moles} = \frac{\text{mass}}{\text{Molar mass}} \)

2. \(\text{No.of moles of gas} = \frac{\text{Volume at STP}}{22.4} \)

3. \(\text{No.of moles of Particles} = \frac{\text{No.of Particles}}{6.022 \times 10^{23}} \)

4. \(\text{No.of moles of solute} = \text{Molarity} \times \text{Vol(L)} \)

5. \(\text{Eq.wt. of a salt} = \frac{\text{M.W.of salt}}{\text{Total +ve charge of metal ion}} \)

6. \(\text{Eq.wt. of element} = \frac{\text{Atomic Weight}}{\text{Valency}} \)

7. \(\text{Avg.at.mass} = \frac{m \times a + n \times b}{m + n} \)

where, \(a + b \) are atomic masses and \(m + n \) are percentage.

8. \(\% \text{ of element in compound} = \frac{n \times (\text{at mass of element})}{\text{M.W. of compound}} \times 100 \)

where, \(n \) = No. of atoms of that element

9. \(\text{Molarity} = \frac{w \times 1000}{\text{M.W.} \times \text{V(ml)}} \)

10. \(\text{Normality} = \frac{w \times 1000}{\text{E.W.} \times \text{V(ml)}} \)

11. \(\text{Molality} = \frac{w \times 1000}{\text{MW} \times \text{Wo(g)}} \)

\(\text{Wo} = \) Weight of solvent

12. \(\text{Mole fraction} (X) = \frac{n}{n + N} \)

13. \(\%\text{W/W} = \frac{W \times 100}{W + W_o} \)

14. \(\text{ppm} = \frac{\text{weight(vol) of solute} \times 10^6}{\text{weight(vol) of solution}} \)
15. Molar mass = \(2 \times \) V.D.

16. Eq.wt of metal = \(\frac{\text{Wt of metal}}{\text{wt of } H_2 \text{ displaced}} \times 1.008 \)

17. Eq.wt of metal = \(\frac{\text{Wt of metal} \times 11200}{\text{Vol of } H_2 \text{ displaced at STP (mL)}} \)

18. Eq.wt of metal = \(\frac{\text{Wt of metal} \times 35.5}{\text{Wt of Chlorine combined}} \)

19. Eq.wt of metal = \(\frac{\text{Wt of metal} \times 11200}{\text{Vol of } Cl_2 \text{ combined at STP (mL)}} \)

20. Eq.wt of metal = \(\frac{\text{Wt of metal} \times 8}{\text{Wt of oxygen combined}} \)

21. Eq.wt of metal = \(\frac{\text{Wt of metal} \times 5600}{\text{Vol of } O_2 \text{ displaced at STP (mL)}} \)

22. Molarity = \(\frac{\% \text{W/W} \times \text{density} \times 10}{\text{Molecular weight}} \)

23. \(M_1 V_1 = M_2 V_2 \) (Molarity equation)

24. \(N_1 V_1 = N_2 V_2 \) (Normality equation)

25. \(n = \frac{\text{Molecular weight}}{\text{Empirical formula Weight}} \)

26. \(^0F = \frac{9}{5} (^0C) + 32 \)

27. \(K = ^0C + 273.15 \)

28. \(1 \text{ L} = 1 \text{ dm}^3, 1 \text{ mL} = 1 \text{ cm}^3 \)

[B] Important Facts:

1. Antoine Lavoisier - Law of conservation of mass
2. Joseph proust - Law of definite proportions
3. John Dalton - Law of Multiple proportions
6. 1 amu = 1.6605 \(\times 10^{-24} \) gram
7. Mass of \(^{12}\text{C atom} = 1.9926 \times 10^{-23} \text{ gram} \)
8. Avogadro number\((N_A) = 6.022 \times 10^{23} \)
9. AZT = Azido thymidine, drug used for aids victims.
10. The limiting reagent is the reagent that is entirely consumed when a reaction goes to completion. Its amount limits the amount of the product formed.
The term precision refers to the closeness of the set of values obtained from identical measurements of a quantity. Accuracy refers to the closeness of a single measurement to its true value. Let us take an example to illustrate this. Three students were asked to determine the mass of a piece of metal where mass is known to be 0.520g. Data obtained by each Student are recorded in table below

<table>
<thead>
<tr>
<th>Student</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.521</td>
<td>0.515</td>
<td>0509</td>
<td>0.515</td>
</tr>
<tr>
<td>B</td>
<td>0.516</td>
<td>0.515</td>
<td>0514</td>
<td>0.515</td>
</tr>
<tr>
<td>C</td>
<td>0.521</td>
<td>0.500</td>
<td>0520</td>
<td>0.520</td>
</tr>
</tbody>
</table>

The data for student A are neither, precise nor accurate. The data for student B are precise but not accurate. The data for student C are both precise and accurate.

M.C.Q.

1. Identify the wrong statement in the following (AIEEE 2008).
 (a) CFCs are responsible for ozone layer depletion.
 (b) Greenhouse effect is responsible for global warming.
 (c) Ozone layer does not permit I.R. radiation from the sun to reach the earth.
 (d) Acid rain is mostly because of oxides of ‘N’ and ‘S’.

2. In the reaction
 \[2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_2(g)\] (AIEEE 2007)
 (a) 6L $HCl(aq)$ is consumed for every 3L, $H_2(g)$ produced.
 (b) 33.6L $H_2(g)$ is produced regardless of temperature and pressure for every mole of Al that reacts.
 (c) 67.2L $H_2(g)$ at STP, is produced for every mole Al that reacts.
 (d) 11.2L $H_2(g)$ at STP, is produced for every mole $HCl(aq)$ consumed.

3. Consider a titration of potassium dichromate solution with acidified Mohr’s salt solution using diphenyl amine as indicator. The number of moles of Mohr’s salt required per mole of dichromate is (IIT JEE 2007)
 (a) 3 (b) 4 (c) 5 (d) 6

4. Which has maximum number of atoms ? (IIT JEE 2003)
 (a) 24g of C (12) (b) 56g of Fe(56) (c) 27g of Al (27) (d) 108g of Ag (108)

5. What volume of hydrogen gas at 273K and 1 atm pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass = 10.8) form the reduction of boron trichloride by hydrogen (AIEEE 2003)
 (a) 89.6L (b) 67.2L (c) 44.8L (d) 22.4L

6. In an organic compound of molar mass 108g/mol, C,H and N atoms are present in 9:1:3.5 by weight Molecular formula can be (AIEEE 2002)
 (a) $C_6H_8N_2$ (b) $C_6H_{10}N$
 (c) $C_7H_8N_3$ (d) $C_6H_{18}N_3$
7. Number of atoms in 560 g of Fe (atomic mass = 56) is (AIEEE 2002)
 (a) twice that of 70 g N. (b) half that of 20 g H
 (c) both (a) and (b) (d) None of these

8. In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by iodometry, the equivalent weight of $K_2Cr_2O_7$ is
 (IIT JEE 2001)
 \[
 \frac{Molar \ mass}{2} \quad \frac{Molar \ mass}{6} \quad \frac{Molar \ mass}{3} \quad \text{(d) same as molar mass}
 \]

9. Mixture X=0.02 mole of $[\text{Co(NH}_3\text{)}_5\text{SO}_4]\text{Br}$ and 0.02 mole of$[\text{Co(NH}_3\text{)}_5\text{Br}]\text{SO}_4$ was prepared in 2L of
 Solution

 \[1L \text{ of mixture } X \text{ excess } \text{AgNO}_3 \rightarrow Y\]

 \[1L \text{ of mixture } X \text{ excess } \text{BaCl}_2 \rightarrow Z\]

 Number of mole of Y and Z are (IIT JEE 2003)
 (a) 0.01, 0.01 (b) 0.02, 0.01
 (c) 0.01,0.02 (d) 0.02, 0.02

 \[6.023 \times 10^{23} \quad \frac{1}{9.108} \times 10^{31} \quad \frac{6.023}{9.108} \times 10^{54} \quad \frac{1}{9.108 \times 6.023} \times 10^6\]

11. An Oxide of metal contains 60% of the metal. What will be the equivalent weight of the metal?

 (a) 12 (b) 40 (c) 24 (d) 48

12. A container is filled with 2L of water. What will be the volume of water in m³?

 (a) 2×10^3 (b) 1×10^3 (c) 2×10^{-3} (d) 1×10^{-3}

13. The mass of carbon -12 atom considered in the definition of a mole is

 (a) 0.012Kg (b) 0.12g (c) 120 mg (d) None of these

14. The drug which is used for treating AIDS victims is

 (a) Azidothymidine (b) Cis- platin
 (c) Taxol (d) All of these

15. Chose the incorrect statement .

 (a) The constituents of a compound cannot be separated into simpler substances by physical methods.
 (b) An element is consists of only one type of particles and these particles may be atoms or molecules.
 (c) The properties of a compound are same as its constituent elements.
 (d) Atoms of different elements are different in nature.
16. Which of the following is a pair of physical and chemical property respectively of a substance?
(a) acidity & combustibility
(b) colour & density
(c) basicity & colour
(d) density & acidity.

17. What is the symbol of S.I. unit for the amount of substance?
(a) N_A
(b) n
(c) mole
(d) mol

18. What is the symbol of a multiple 10^n?
(a) G
(b) E
(c) n
(d) Z

19. Find the correct relation.
(a) $^\circ F = \frac{9}{5} (^\circ C) - 32$
(b) $^\circ C = \frac{5}{9} (^\circ F + 32)$
(c) Both & (a) and (b)
(d) Neither (a) nor (b)

20. In chemistry a number is represented in the form $N \times 10^n$. This method of expressing the number is called scientific notation. What is the value of ‘N’ here.
(a) 1 to 10
(b) 0.1 to 9.99
(c) 10 to 100
(d) Any value can be taken

21. What is the correct scientific notation for 0.00016 ?
(a) 1.6×10^{-4}
(b) 16×10^{-5}
(c) 0.16×10^{-4}
(d) cannot be determined.

22. How many significant digits are there in 0.25 ?
(a) 1
(b) 2
(c) 3
(d) cannot be determined.

23. Which of the following number contains three significant digits?
(a) 0.200
(b) 0.030
(c) 0.0052
(d) 0.002

24. What is the number of neutrons in Zn^{2+} ion (Atomic mass number = 70) (IITJEE 1979)
(a) 34
(b) 36
(c) 38
(d) 40

25. The same amount of Zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide.
What will be the ratio of volumes of hydrogen evolved? (IITJEE 1979)
(a) 1 : 1
(b) 1 : 2
(c) 2 : 1
(d) 9 : 4

26. 2.76g of silver carbonate on being strongly heated yields a residue weighing (IITJEE 1979)
(a) 2.16g
(b) 2.48 g
(c) 2.32 g
(d) 2.64 g

27. Find the total number of electrons in one molecule of carbon dioxide.
(a) 22
(b) 44
(c) 66
(d) 88

28. A gaseous mixture contains oxygen and nitrogen in the ratio of 1 : 4 by weight. Therefore, the ratio of their number of molecules is
(a) 1 : 4
(b) 1 : 8
(c) 7 : 32
(d) 3 : 16

29. Identify the incorrect unit conversion factor.
(a) $\frac{1cm^3}{1mL}$
(b) $\frac{1cm}{10mm}$
(c) $\frac{60s}{1min}$
(d) None of these
30. 90 g KClO₃ on heating gives 2.96g KCl and 1.92g oxygen. Which of the following laws is illustrated by this statement?
(a) Law of definite proportion (b) Law of mass conservation
(c) Law of multiple proportion (d) Avogadro’s law.

31. Match the following property.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Law of Multiple proportions.</td>
<td>(p) Richter</td>
</tr>
<tr>
<td>ii</td>
<td>Law of Combining volumes</td>
<td>(q) Proust</td>
</tr>
<tr>
<td>iii</td>
<td>Law of Reciprocal proportions.</td>
<td>(r) GayLussac</td>
</tr>
<tr>
<td>iv</td>
<td>Law of Constant composition.</td>
<td>(s) Dalton</td>
</tr>
<tr>
<td>(a)</td>
<td>i - s, ii - p, iii - r, iv - q</td>
<td>(b) i - s, ii - r, iii - p, iv - q</td>
</tr>
<tr>
<td>(c)</td>
<td>i - s, ii - r, iii - q, iv - p</td>
<td>(d) i - q, ii - r, iii - p, iv - s</td>
</tr>
</tbody>
</table>

32. Two oxides of a metal ‘M’ contain 27.6% and 30.0% of oxygen respectively. If the formula of the first oxide is M₃O₄, find that of the second.
(a) M₂O₃ (b) M₂O (c) MO₂ (d) M₃O₂

33. Naturally occurring Boron consists of two isotopes having atomic masses 10.01 and 11.01 respectively. Calculate the percentage of both the isotopes in natural Boron (Atomic mass of natural Boron = 10.81)
(a) 20% and 80% (b) 80% and 20% (c) 25% and 75% (d) 75% and 25%

34. Calculate the mass percent of Na and S in sodium sulphate.
(a) Na = 16.2%, S = 22.54% (b) Na = 32.39%, S = 11.26% (c) Na = 22.54%, S = 32.39% (d) Na = 32.39%, S = 22.54%

35. Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% oxygen by mass.
(a) FeO (b) Fe₂O₃ (c) Fe₃O₄ (d) Fe₃O₂

36. Calculate the amount of carbon dioxide that can be produced when 1 mole of carbon is burnt in 16 g of dioxygen.
(a) 44g (b) 22g (c) 88g (d) 11 g

37. Calculate the concentration of nitric acid in moles per litre which has a density, 1.41 g/mL. %w/w of nitric acid is
(a) 15.44M (b) 0.064M (c) 0.077M (d) 12.87M

38. In a reaction: N₂(g) + 3H₂(g) → 2NH₃(g), 2000 g N₂ reacts with 1000 g H₂. Which reactant will be left unreacted? How much?
(a) N₂, 2428g (b) H₂, 428.6g (c) N₂, 571.4g (d) H₂, 571.4g

39. Calculate the number of sulphate ions in 100mL of 0.001M ammonium sulphate solution.
(a) 6.022 × 10⁻¹⁹ (b) 6.022 × 10⁻¹⁹ (c) 6.022 × 10⁻²⁰ (d) 6.022 × 10⁻²⁰

40. Calculate the molarity of a solution of ethanol in water in which mole fraction of ethanol is 0.040.
(a) 2.31M (b) 0.213M (c) 0.0213M (d) 23.1M
41. Some statements are given below based on the pictures. Identify true and false statements.

(i) ‘P’ and ‘Q’ both indicates precision and accuracy.
(ii) ‘Q’ indicates precision and accuracy while ‘R’ indicates neither precision nor accuracy.
(iii) ‘P’ indicates precision but not accuracy.
(iv) ‘Q’ indicates both precision and accuracy

(a) FTTT (b) TTTT (c) TTFT (d)FTFT

42. The normality of 0.3M phosphorous acid is (IITJEE 1999)
(a) 0.1 (b) 0.9 (c) 0.3 (d) 0.6

43. An aqueous solution of 6.3g oxalic acid dihydrate is made upto 250 mL. The volume of 0.1 N NaOH required to completely neutralize 10 mL of this solution is
(a) 40 mL (b) 20 mL (c) 10 mL (d) 4 mL

44. The pair of the compounds in which both the metals are in the highest possible oxidation state is
(a) \(\left[Fe \left(CN \right)_6 \right]^{3-}, \left[Co \left(CN \right)_6 \right]^{3-} \) (b) \(CrO_2Cl_2 , MnO_4^- \)
(c) \(TiO_3 \), \(MnO_2 \) (d) \(\left[Co \left(CN \right)_6 \right]^{3-} , MnO_3 \)

45. In the analysis of 0.0500 g sample of feldspar, a mixture of the chlorides of sodium and potassium is obtained, which weighs 0.1180 g. Subsequent treatment of the mixed chlorides with silver nitrate gives 0.2451g of silver chloride. What is the percentage of sodium oxide and potassium oxide in feldspar?
(a) 10.62% \(Na_2O \), 3.58% \(K_2O \) (b) 3.58% \(Na_2O \), 10.62% \(K_2O \)
(c) 10.62% \(Na_2O \), 35.8% \(K_2O \) (d) 35.8% \(Na_2O \), 10.62% \(K_2O \)

46. 5.5 g of a mixture of FeSO\(_4\).7H\(_2\)O and Fe\(_2\)(SO\(_4\))\(_3\).9H\(_2\)O requires 5.4 mL of 0.1N KMnO\(_4\) solution for complete oxidation. Calculate the number of mole of Fe\(_2\)(SO\(_4\))\(_3\).9H\(_2\)O in the mixture.
(a) 0.0095 (b) 0.15 (c) 0.0952 (d) 1.52

47. A compound contains 28% of nitrogen and 72% of a metal by weight. Three atoms of the metal combine with two atoms of nitrogen. Find the equivalent weight of the metal.
(a) 12 (b) 24 (c) 36 (d) 48

48. The density of a 3M \(Na_2S_2O_3 \) solution is 1.25 g per mL. What is the molalities of \(Na^+ \) and \(S_2O_3^{2-} \)ions?
(a) 3.865, 7.732 (b) 7.732, 3.865 (c) 1.933, 7.732 (d) 7.732, 1.933
49. Haemoglobin present in blood contain 3.72% by mass iron. Calculate the number of iron atoms in 2.0g of haemoglobin.
 (a) 4.53 X 10^{26} (b) 4.53 X 10^{23} (c) 5.95 X 10^{19} (d) 8 X 10^{20}
50. How many moles of magnesium phosphate, Mg_3(PO_4)_2 will contain 0.25 mole of oxygen atoms (AIEEE 2006)
 (a) 0.02 (b) 3.125 x 10^{-2} (c) 1.25 x 10^{-2} (d) 2.5 x 10^{-2}
51. The unit J Pa^{-1} is equivalent to
 (a) m^3 (b) cm^3 (c) dm^3 (d) none of these
52. The density of Al metal is 2.7 gcm^{-3}. An irregularly shaped piece of aluminium weighing 40.0g is added to a 100mL graduated cylinder containing 50.0mL of water. upto what height the water level will rise in the cylinder?
 (a) 14.8mL (b) 79.6mL (c) 64.8mL (d) 50mL
53. A sample of clay after drying partially was found to contain 50% silica and 7% water. The original sample of clay had 12% water. What is the percentage of silica in the original sample?
 (a) 50% (b) 5% (c) 43% (d) 47%
54. In which of the following pairs percent composition of element is not same?
 (a) benzene and ethyne (b) But - 2 - ene and Cyclobutane
 (c) glucose and fructose (d) phenol and ethanol
55. What weight of CuO will be required to provide 200Kg copper
 (a) 200Kg (b) 79.5Kg (c) 250Kg (d) 100Kg
56. Choose the proper option after studying following statement (T = True, F = False)
 1. The percent composition of vinyl chloride and its polymer PVC are same.
 2. The percent composition of phosphorous trioxide (P_2O_3) is half than that of its dimer phosphorous hexoxide (P_4O_6) for each of the elements present in them.
 (a) T, F (b) F, T (c) T, T (d) F, F
57. Impure sample of ZnS contains 42.34% Zn. What is the percentage of pure ZnS in the sample?
 (a) 67% (b) 63% (c) 58% (d) 37%
58. If the atomic mass of carbon were set at 50 amu, what would be the value of Avogadro’s number?
 (a) 5.01 x 10^{24} (b) 6.022 x 10^{23} (c) 1.66 x 10^{24} (d) none of these
59. For which of the following compounds molecular weigh cannot be determined from atomic weights?
 (a) Fe_4[Fe(CN)_6] (b) TiO_2
 (c) TiO_{1.12} (d) none of these
60. Which one of the following contains greatest number of oxygen atoms?
 (a) 1.0g of O atoms (b) 1.0g of O_2
 (c) 1.0g of O_3 (d) All have same number of atoms
61. Which of the following chemical equation is incorrectly balanced?

(a) \(Sb_2S_3 + 12HCl \rightarrow 2H_2SbCl_6 + 3H_2S \)
(b) \(3IBr + 4NH_3 \rightarrow NI_3 + 3NH_4Br \)
(c) \(2KrF_2 + 2H_2O \rightarrow 2Kr + 2O_2 + 4HF \)
(d) \(PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl \)

62. Match the following

<table>
<thead>
<tr>
<th>Column -I</th>
<th>Column -II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (Cl_2O_3)</td>
<td>(P) basic anhydride</td>
</tr>
<tr>
<td>(ii) (Li_2O)</td>
<td>(Q) acid anhydride</td>
</tr>
<tr>
<td>(iii) (CO_2)</td>
<td>(R) base</td>
</tr>
</tbody>
</table>

(a) (i) - (q) (ii) - (p) (iii) - (q)
(b) (i) - (r) (ii) - (q) (iii) - (p)
(c) (i) - (p) (ii) - (q) (iii) - (r)
(d) (i) - (p) (ii) - (q) (iii) - (p)

63. How many g of NaOH can be obtained by reaction of 1 Kg of \(Na_2CO_3 \) with \(Ca(OH)_2 \)?

(a) 106 g (b) 850 g (c) 755 g (d) 943 g

64. How much calcium oxide (CaO) can be obtained by heating 200 Kg of lime stone that is 95% pure \(CaCO_3 \)?

(a) 56Kg (b) 190Kg (c) 170Kg (d) 107Kg

65. Calculate the amount of NaOH required to neutralize 100 mL 0.1M \(H_2SO_4 \).

(a) 40g (b) 0.4 g (c) 80 g (d) 0.8 g

66. 3g of an oxide of a metal is converted into chloride and it yielded 5g of chloride. Find the equivalent weight of the metal.

(a) 33.25 (b) 3.325 (c) 12 (d) 20

67. A compound contains two oxygen atoms, four carbon atoms and number of hydrogen atoms is double of carbon atoms. What is the density of vapour of this compound?

(a) 88 (b) 44 (c) 132 (d) 72

68. The number of molecules in 100 mL of each of \(O_2, NH_3 \) and \(CO_2 \) at STP are

(a) \(CO_2 < O_2 < NH_3 \) (b) \(NH_3 < O_2 < CO_2 \)
(c) \(NH_3 = CO_2 < O_2 \) (d) \(NH_3 = O_2 = CO_2 \)

69. Which of the following represents the formula of a compound which contains 26% nitrogen and 74% oxygen?

(a) \(N_2O \) (b) NO (c) \(NO_2 \) (d) \(N_2O_5 \)

70. NKg\(^{-1}\) is the unit of

(a) momentum (b) velocity (c) Pressure (d) acceleration
71. Which one of the following statements is incorrect?
 (a) All elements are homogeneous system
 (b) Compounds made up of a number of elements are heterogeneous.
 (c) A mixture is not always heterogeneous
 (d) Smoke is a heterogeneous mixture.

72. A balanced chemical equation is in accordance with
 (a) Avogadro’s law.
 (b) Law of constant proportions
 (c) Law of conservation of mass
 (d) Law of gaseous volumes.

73. The atomic weights of two elements X and Y are 20 and 40 respectively. If ‘a’ gm of X contains ‘b’ atoms, how many atoms are present in ‘2a’ gm of Y?
 (a) b (b) a (c) 2b (d) \(\frac{a}{2}\)

74. If the components of air are \(\text{N}_2, 78\%\), \(\text{O}_2, 21\%\); Ar, 0.9% and \(\text{CO}_2, 0.1\%\) by volume, what will be the molecular weight of air?
 (a) 28.9 (b) 32.4 (c) 16.4 (d) 14.5

75. Calculate the molarity of a solution obtained by mixing 50mL of 0.5M \(\text{H}_2\text{SO}_4\) and 75 mL of 0.25M \(\text{H}_2\text{SO}_4\).
 (a) 0.375M (b) 0.35M (c) 0.045M (d) 0.45M

76. Which of the following has the highest normality?
 (a) 1M \(\text{H}_2\text{SO}_4\) (b) 1M \(\text{H}_3\text{PO}_4\) (c) 1M \(\text{H}_3\text{PO}_4\) (d) 1M \(\text{HNO}_3\)

77. In an experiment, 4 gm of \(\text{M}_2\text{O}_x\) oxide was reduced to 2.8 gm of the metal. If the atomic mass of the metal is 56 gm/mol, the number of oxygen atoms in the oxide is (AFMC 2010)
 (a) 1 (b) 2 (c) 3 (d) 4

78. Match the following:
 Column - I Column - II
 (i) femto (P) \(10^9\)
 (ii) yotta (q) \(10^{-15}\)
 (iii) giga (r) \(10^{-18}\)
 (iv) atto (s) \(10^{24}\)
 (a) i - q, ii - p, iii - r, iv - s (b) i - s, ii - q, iii - p, iv - r
 (c) i - q, ii - s, iii - p, iv - r (d) i - r, ii - s, iii - p, iv - q

79. The total number of atoms of all elements present in mole of ammonium dichromate is
 (a) 19 (b) \(6.023 \times 10^{23}\) (c) \(114.47 \times 10^{23}\) (d) \(84 \times 10^{23}\)

80. 0.32 gm of a metal on treatment with an acid gave 112 mL of hydrogen at STP. Calculate the equivalent weight of the metal
 (a) 58 (b) 32 (c) 11.2 (d) 24
81. For a reaction A + 2B \rightarrow C, the amount of C formed by starting the reaction with 5 moles of A and 8 moles of B is
 (a) 5 moles (b) 8 moles (c) 16 moles (d) 4 moles

82. 100 mL of \text{PH}_3 on heating forms \text{P} and \text{H}_2. The volume change in the reaction is
 (a) an increase of 50 mL (b) an increase of 100 mL
 (c) an increase of 150 ml (d) a decrease of 50 mL

83. An organic compound made of C, H, and N contains 20% nitrogen. Its molecular weight is (WBJEE 2009)
 (a) 70 (b) 140 (c) 100 (d) 65

84. Volume occupied by one molecule of water (d = 1 gm cm\(^{-3}\)) is
 (a) 9 x 10\(^{-22}\)cm\(^3\) (b) 6.02 x 10\(^{-23}\)cm\(^3\) (c) 3 x 10\(^{-23}\)cm\(^3\) (d) 5.5 x 10\(^{-23}\)cm\(^3\)

85. Calculate the number of moles in 1 m\(^3\) gas at STP.
 (a) 4.46 (b) 44.6 (c) 446 (d) 4460

86. An ore contains 1.24% of the mineral argentite Ag\(_2\)S by mass. How many grams of this ore would have to be processed in order to obtain 1.0 g of pure solid silver?
 (a) 23.15 g (b) 69.45 g (c) 92.6 g (d) 46.3 g

87. Find the electric charge in coulombs of 9.0 gm of \text{Al}^{3+} ions.
 (a) 9.6 x 10\(^{4}\) (b) 6.9 x 10\(^{4}\) (c) 2.9 x 10\(^{5}\) (d) 4.80 x 10\(^{-19}\)

88. Which of the following is not a homogeneous mixture?
 (a) smoke (b) air (c) Brass (d) Aqueous solution of sugar

89. Which of the following has the largest number of atoms?
 (a) 0.5 g atom of Cu (b) 0.635 g of Cu
 (c) 0.25 moles of Cu atom (d) 1 g of Cu

90. 27 g of \text{Al} (at mass = 27) will react with oxygen equal to (IIT 1978)
 (a) 24 g (b) 8 g (c) 40 g (d) 10 g

91. Two containers P and Q of equal volumes contain 6 g of \text{O}_2 and \text{SO}_2 respectively at 300K and 1 atmosphere. Then
 (a) No. of molecules in P is less than that in Q
 (b) No. of molecules in Q is less than that in P
 (c) No. of molecules in P and Q are same.
 (d) cannot be determined

92. Which of the following pairs of substances illustrates the law of multiple proportions?
 (a) CO and CO\(_2\) (b) NaCl and NaBr
 (c) \text{H}_2\text{O} and \text{D}_2\text{O} (d) MgO and Mg(OH)$_2$
 \text{In each of the following questions, two statements are given, one is Assertion (A) and the other is Reason (R). Examine the statements carefully and mark the correct answer according to the instructions given below:}
 (a) If both A and R are correct and R is the correct explanation of A.
 (b) If both A and R are correct and R is not the correct explanation of A.
 (c) If A is correct R is wrong.
 (d) If both A and R are false.
93. A : Normality of 0.1 M HSO_4 is 0.2N.
R : HSO_4 is a dibasic acid.
94. A : 1 Gram molecule of sulphar also represents 1 gram atom of sulphur.
R : Atomicity of sulphur is one.
95. A : In the equation $\text{NH}_3 + \text{HCl} \rightarrow \text{NH}_4 \text{Cl}$, Gay-Lussac’s law is not applicable to NH_4Cl.
R : NH_4Cl is not a gas.
96. A : Atomic mass of sodium is 23 u.
R : An atom of sodium is 23 times heavier than an atom of ^{12}C.
97. A : Pure water, irrespective of its source always contain hydrogen and oxygen in the ratio 1 : 8 by mass.
R : Total mass of reactants and products remains constant during physical or chemical change.
98. A : Mass numbers of most of the elements are fractional.
R : Mass numbers are obtained by comparing with mass number of ^{12}C.
99. A : The mass of the products formed in a reaction depends upon the limiting reactant.
R : Limiting reactant reacts completely in the reaction.
100. A : Cinnabar is a chemical compound whereas brass is mixture.
R : Cinnabar always contain 6.25 times mercury than sulphur by weight. Brass can have any proportion of Cu and Zn.
101. A : 1 L of O2 and 1 L of O3 contains the same number of moles under identical conditions.
R : Under identical conditions, 1 L of O2 and 1 L of O3 contain the same number of oxygen atoms.
102. A : The standard unit for expressing atomic mass is amu.
R : Now a days amu is represented by ‘u’.

ANSWER KEY

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c</td>
<td>2</td>
<td>d</td>
<td>3</td>
<td>d</td>
<td>4</td>
<td>a</td>
<td>5</td>
<td>b</td>
<td>6</td>
<td>a</td>
<td>7</td>
<td>c</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>d</td>
<td>17</td>
<td>d</td>
<td>18</td>
<td>a</td>
<td>19</td>
<td>d</td>
<td>20</td>
<td>a</td>
<td>21</td>
<td>a</td>
<td>22</td>
<td>b</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>d</td>
<td>25</td>
<td>c</td>
<td>26</td>
<td>c</td>
<td>27</td>
<td>a</td>
<td>28</td>
<td>c</td>
<td>29</td>
<td>d</td>
<td>30</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>b</td>
<td>32</td>
<td>a</td>
<td>33</td>
<td>a</td>
<td>34</td>
<td>d</td>
<td>35</td>
<td>b</td>
<td>36</td>
<td>b</td>
<td>37</td>
<td>a</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>b</td>
<td>40</td>
<td>a</td>
<td>41</td>
<td>a</td>
<td>42</td>
<td>d</td>
<td>43</td>
<td>a</td>
<td>44</td>
<td>b</td>
<td>45</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>a</td>
<td>47</td>
<td>a</td>
<td>48</td>
<td>b</td>
<td>49</td>
<td>c</td>
<td>50</td>
<td>b</td>
<td>51</td>
<td>a</td>
<td>52</td>
<td>c</td>
<td>53</td>
</tr>
<tr>
<td>54</td>
<td>d</td>
<td>55</td>
<td>c</td>
<td>56</td>
<td>a</td>
<td>57</td>
<td>b</td>
<td>58</td>
<td>d</td>
<td>59</td>
<td>d</td>
<td>60</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>c</td>
<td>62</td>
<td>a</td>
<td>63</td>
<td>c</td>
<td>64</td>
<td>d</td>
<td>65</td>
<td>d</td>
<td>66</td>
<td>a</td>
<td>67</td>
<td>b</td>
<td>68</td>
</tr>
<tr>
<td>69</td>
<td>d</td>
<td>70</td>
<td>d</td>
<td>71</td>
<td>b</td>
<td>72</td>
<td>c</td>
<td>73</td>
<td>a</td>
<td>74</td>
<td>a</td>
<td>75</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>c</td>
<td>77</td>
<td>c</td>
<td>78</td>
<td>c</td>
<td>79</td>
<td>c</td>
<td>80</td>
<td>b</td>
<td>81</td>
<td>d</td>
<td>82</td>
<td>a</td>
<td>83</td>
</tr>
<tr>
<td>84</td>
<td>c</td>
<td>85</td>
<td>b</td>
<td>86</td>
<td>c</td>
<td>87</td>
<td>a</td>
<td>88</td>
<td>a</td>
<td>89</td>
<td>a</td>
<td>90</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>b</td>
<td>92</td>
<td>a</td>
<td>93</td>
<td>a</td>
<td>94</td>
<td>d</td>
<td>95</td>
<td>a</td>
<td>96</td>
<td>c</td>
<td>97</td>
<td>b</td>
<td>98</td>
</tr>
<tr>
<td>99</td>
<td>a</td>
<td>100</td>
<td>a</td>
<td>101</td>
<td>c</td>
<td>102</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. (d) The redox reaction between potassium dichromate and Mohr’s salt is:
 \[2Fe^{3+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \]

4. (a) Number of particles \(\propto \) Number of moles
 \[\text{No. of moles of carbon} = \frac{24}{12} = 2 \]

5. (b)
 \[2BC\ell_3 + 3H_2 \rightarrow 2B + 6HCl \]
 \[2 \text{ mol} \quad 3 \text{ mol} \quad 2 \text{ mol} \]
 \[= 21.6 \text{ g} \]
 \[V = \frac{nRT}{P} = \frac{3 \times 0.0821 \times 273}{1} = 67.2L \]

6. (a)
 \[\text{mass of carbon} = \frac{9}{13.5} \times 108 = 72g \]
 \[\therefore \text{No. of carbon atoms} = \frac{72}{12} = 6 \]
 \[\text{similarly, no of H and N atoms are 8 and 2 respectively.} \]

8. (b) During the reaction, \(Cr_2O_7^{2-} \) changes to \(Cr^{3+} \). Hence the change in oxidation number of Cr is 6.
 \[\therefore \text{Equivalent weight} = \frac{\text{Molar mass}}{6} \]

9. (a) In 2L solution, there are 0.02 mol \(Br^- \) ions and 0.02 mole \(SO_4^{2-} \)
 \[\therefore 1 \text{ L of mixture X contains 0.01 mol } Br^- \text{ and 0.01 mol } SO_4^{2-} \text{ ions.} \]
 \[\text{Hence, } Y = 0.01 \text{ mol Ag Br} \]
 \[Z = 0.01 \text{ mol BaSO}_4 \]

10 (d) Mass of an electron = \(9.108 \times 10^{-31} \) Kg
 \[\text{No. of electrons in 1 Kg} = \frac{1}{9.108 \times 10^{-31}} \]
 \[= \frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23} \text{ mol}^{-1}} \]
 \[= \frac{10^8}{9.108 \times 6.023} \text{ mol} \]
11. (a)
\[\text{mass of metal} = 60 \text{ g} \]
\[\therefore \text{mass of oxygen} = 40 \text{ g} \]
\[\text{mass of oxygen} = \text{mass of metal} \]
\[40 \text{ g} = 60 \text{ g} \]
\[8 \text{ g} = (?) \]
\[\frac{8 \times 60}{40} = 12 \]

25. (a)
(i) \[\text{Zn} + H_2SO_4 \rightarrow \text{ZnSO}_4 + H_2 \]
(ii) \[\text{Zn} + 2\text{NaOH} \rightarrow \text{Na}_2\text{ZnO}_2 + H_2 \]
26. (c)
\[\text{Ag}_2 \text{CO}_3 \xrightarrow{\Delta} \text{Ag}_2 \text{O} + \text{CO}_2 \]
1 mol \quad 1 \text{mol}
\[\therefore \text{0.01 mol} \quad \text{0.01 mol} \]
\[\text{Therefore mass of residue (Ag}_2\text{O)} = 0.01 \times \text{molarmass of Ag}_2\text{O} \]
\[= 0.01 \times 232 = 2.32 \text{ g} \]

28. (c)
\[\text{The ratio by weight} = \frac{1}{4} \]
\[\therefore \text{Ratio of moles} = \frac{1/28}{4/32} = \frac{28}{32} = \frac{7}{32} \]

32. (a)
\[\text{Let ‘x’ be the atomic mass of metal ‘M’} \]
\[\text{In the oxide } M_3O_4, \text{the mass of ‘M’} = 72.4 \text{ and that of ‘O’} = 27.6 \]
\[\therefore M = \frac{72.4}{3} O = \frac{27.6}{4} M_3O_4 \]
\[\therefore \frac{72.4}{x} : \frac{27.6}{16} = 3 : 4 \]
\[\therefore x = 56 \]
\[\text{For second oxide, the mass of ‘M’} = 70 \text{ and that of ‘O’} = 30 \]
\[\therefore M = \frac{70}{36} O = \frac{30}{16} \]
\[= M_{1.25} O_{1.875} \]
\[= M_1 O_{1.5} \quad \text{OR} \quad M_2 O_3 \]
33. (a)
\[\text{Let the } \% \text{ of isotope with atomic mass 10.01 be } 'x' \]
\[\therefore \% \text{ of isotope with atomic mass 11.01 = 100 - x} \]
\[\text{Avg at mass } = \frac{10.01x + (100 - x)11.01}{100} = 10.81 \text{(Given)} \]

37. (a)
\[69\% \text{ w/w means 100 g nitric acid solution contain 69 g of nitric acid by mass.} \]
\[\therefore \text{moles of } HNO_3 = \frac{69}{63} = 1.095 \]
\[\text{Vol. of 100 g nitric acid solution} = \frac{100}{1.41} = 0.07092 L \]
\[\therefore \text{moles per litre} = \frac{1.095}{0.07092} = 15.44 \]

38. (d)
\[N_2 + 3H_2 \rightarrow 2NH_3 \]
28 g \quad 6 g \quad 2000 g \quad (?) \]
\[= \frac{2000 \times 6}{28} = 428.6 g \]
\[\rightarrow \text{But we are given 1000 g } H_2 \text{ There fore 1000 - 4286 = 571.4 g } H_2 \text{ will left.} \]

39. 3(b)
\[\rightarrow \text{No of moles of (NH}_4)_2\text{SO}_4 = \text{molarity } \times \text{vol(L)} \]
\[= 0.001 \times 0.1 = 0.0001 \]
\[\therefore \text{No. of } SO_4^{2-} \text{ ions} = 0.0001 \times 6.022 \times 10^{23} = 6.022 \times 10^{19} \]

40. (a)
\[X_{E_{TOH}} = \frac{n_{(ETOH)}}{n_{(H_2O)} + n_{(H_2O)}} \therefore 0.04 = \frac{n_{(ETOH)}}{n_{(ETOH)} + 55.55} \]
\[\therefore n_{(ETOH)} = 2.31 \]

42 (d)
\[\rightarrow \text{phosphorous acid}(H_3PO_4) \text{ is a dibasic acid. Its structure is as follows:} \]
\[\rightarrow \text{Normality } = \text{basicity } \times \text{Molarity} \]
\[= 2 \times 0.3 = 0.6 \]

43. (a)
\[\rightarrow \text{Equivalents of } H_2C_2O_4 \cdot 2H_2O \text{ in 10ml = Equivalents of NaOH} \]
\[\therefore \frac{6.3 \times 1,0000}{63 \times 250 \times 0.1} = V \]
\[= 40 mL \]
44. (b) The oxidation states of various metals are:

(a) $Fe = +3, Co = +3$

(b) $Cr = +6, Mn = +7$

(c) $Ti = +6, Mn = +4$

(d) $Co = +3, Mn = +6$

45. (b) Suppose amount of NaCl in the mixture = ‘x’ g

\therefore The amount of KCl in the mixture = $(0.118 - x)$ g

\rightarrow NaCl + AgNO$_3$ → AgCl + NaNO$_3$

\[
\begin{align*}
58.5 & \quad 143.5 \\
x & \quad \frac{143.5 \times x}{58.5} \quad g \quad \text{..................................(i)}
\end{align*}
\]

Similarly AgCl obtained from KCl = $\frac{143.5 \times (0.118 - x)}{74.5} g \quad \text{..................................(ii)}$

\rightarrow But (i) + (ii) = 0.2451 g (Given)

\therefore Amount of NaCl = 0.0338 g

Amount of KCl = 0.0842 g

\rightarrow Now, $2NaCl = \frac{Na_2O}{117}$

$\quad \frac{0.0338 \times 62}{117} = 0.0179 \ g$

$\therefore \% \ of \ Na_2O = \frac{0.0179 \times 100}{0.5} = 3.58\% \$

46. (a) Weight of FeSO$_4 \cdot 7H_2O = \frac{5.4 \times 0.1 \times 278}{1000} = 0.150 \ g$

\rightarrow Moles of $Fe_2 \ (SO_4) \cdot 9H_2O = \frac{5.35}{562} = 0.0095$

47. (a) Equivalent weight = $\frac{\text{Atomic Weight}}{\text{Valency}}$

48. (b) $m = \frac{1000 \ M}{1000d - MM_s}$, \quad $M = Molarity \ of \ solution$

$\quad d = density \ of \ solution$

$\quad MM_s = Molar \ mass \ of \ solute$

$\quad M = \frac{1000 \times 3}{1000 \times 1.25 - 3 \times 158} = 3.865$
51. (a)
\[\frac{J}{Pa} = \frac{\text{Work}}{\text{Pressure}} = \frac{Nm}{Nm^{-2}} = \text{m}^3 \]

52. (c)
\[d = \frac{m}{v} \]
\[\therefore V = \frac{m}{d} = \frac{40}{2.7} = 14.8 \text{ cm}^3 \]
\[\rightarrow \text{Water level in cylinder} = 50 \times 14.8 = 64.8 \text{ mL} \]

65. (d)
\[0.1 \text{M} H_2SO_4 = 1000 \text{ mL} \text{ solution contains } 0.1 \text{ mol } H_2SO_4 \]
\[\therefore 100 \text{ mL solution contains } 0.01 \text{ mol } H_2SO_4 \]
\[\therefore \text{ mass of } H_2SO_4 = 0.01 \times 98 = 0.98 \text{ g} \]
\[2 \text{NaOH} + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O \]
\[2(40) \text{ g} \quad 98 \text{ g} \]
\[(?) \quad : 0.98 \text{ g} \]
\[= \frac{80 \times 0.98}{98} = 0.8 \text{ g} \]

66. (a)
\[\frac{\text{Wt. of metal oxide}}{\text{Wt. of metal Chloride}} = \frac{\text{Eq. wt. of metal} + \text{Eq. wt. of oxide}}{\text{Eq. wt. of metal} + \text{Eq. wt. of Chloride}} \]
\[\therefore \frac{3}{5} = \frac{E + 8}{E + 35.5} \quad \therefore E = 33.25 \]

67. (b)
\[M.F. C_4H_8O_2 \]
\[\therefore \text{ Molar mass} = 88 \]
\[\therefore \text{ Vapour density} = \frac{88}{2} = 44 \]

68. (b)
\[\text{ Equal volumes under identical conditions contain equal no. of molecules } \]

69. (d)
\[N_{\frac{26}{14}}O_{\frac{14}{16}} = N_{1.85}O_{4.625} \Rightarrow N_2O_5 \]

70. (d)
\[F = ma \]
\[a = \frac{f}{m} = \frac{N}{Kg} = NKg^{-1} \]
73. (a)
No of moles of X = \(\frac{a}{20} \)

\[\therefore \text{No. of atoms of } X = \frac{a}{20} \times N = b \text{(given)} \]

\[\therefore a = \frac{20b}{N} \]

No. of moles of Y = \(\frac{2a}{40} \)

\[\therefore \text{No. of atoms of } Y = \frac{2a}{40} \times N \]

\[= \frac{2}{40} \times \frac{20b}{N} \times N = b \]

74. (a)
Mol. wt. of air = \(\frac{78 \times 28 + 21 \times 32 + 0.9 \times 40 + 0.1 \times 44}{78 + 21 + 0.9 + 0.1} \)

75. (b)
\[\rightarrow \text{No. of moles of } 0.05L \text{ H}_2\text{SO}_4 = 0.5 \times 0.05 = 0.025 \]

\[\rightarrow \text{No. of moles of } 0.075L \text{ H}_2\text{SO}_4 = 0.25 \times 0.075 = 0.01875 \]

\[\therefore \text{Total no. of moles} = 0.025 + 0.01875 = 0.04375 \]

Total vol = 0.05L + 0.075L = 0.125L

\[\therefore \text{Molarity} = \frac{0.04375}{0.125} = 0.35M \]

77. (c)
\[\rightarrow 1 \text{ Mol M}_2\text{O}_x = (2 \times 56 + 16x) \text{ gm} \]

\[\rightarrow \text{Now, } (2 \times 56 + 16x) \text{ gm of oxide} = 112 \text{ gm metal} \]

\[\therefore 4 \text{ gm of oxide} = \frac{112 \times 4}{112 + 16x} \text{ gm metal} \]

\[\rightarrow \text{But } \frac{112 \times 4}{112 + 16x} = 2.8 \text{ (given)} \quad \therefore x = 3 \]

79. (c)
\[\rightarrow \text{Molecular formula of ammonium dichromate is} \]

\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7 \]

80. (b)
\[\text{Eq. wt of metal} = \frac{\text{wt of metal} \times 11200}{\text{vol. of } H_2 \text{ in ml displaced at STP}} \]
82. (a)
\[2PH_3(s) \rightarrow 2P(s) + 3H_2(g) \]

\[2mL \quad 3mL \]
\[\therefore 100ml \quad (?) \]
\[\frac{100 \times 3}{2} = 150ml \]
\[\therefore \text{Increase} = 50mL \]

85. (b)
\[1m^3 = 1000L \]
\[\text{At STP, } 22.4L = 1mol \]
\[\therefore 1000L = \frac{1000}{22.4} = 44.6 \]

86. (c)
\begin{align*}
\text{Ag}_2S & \quad \text{Ag} & \quad \text{ore} & \quad \text{Ag}_2S \\
248g & \quad 216g & \quad 100g & \quad 1.24g \\
(?) & \quad 1.0g & \quad (?) & \quad 1.148g \\
= 1.148g & \quad = 92.58 \approx 92.6g
\end{align*}

87. (a)
\[\text{No. of moles of } Al^{3+} = \frac{9}{27} = 0.33 \]
\[\therefore \text{No. of } Al^{3+} \text{ ions} = 0.33 \times 6.022 \times 10^{23} = 2 \times 10^{23} \]
\[\therefore \text{Electric charge} = 3 \times 1.602 \times 10^{-19} \times 2 \times 10^{23} = 9.6 \times 10^{-4} \text{ Coulomb} \]