Important Formulas of Physical Chemistry

THE SOLID STATE

1. Calculation of numer of particles / atoms / ions in a Unit Cell :

2.	Type of Unit Cell	Numer of particles per Unit Cell	Relationship between edge length (a) and radius (r) of atom/ion
	Simple cubic	1	a = 2r
	Body centred cubic	2	$a = \frac{4}{\sqrt{3}} r$
	Face centred cubic	4	a = _{2√2} r

3. Density of unit cell (d)

$$d = \frac{Z \times M}{a^3 \times N_A}$$

Where Z is rank of unit cell (no. of atoms per unit cell), m is molar mass/ atomic mass, 'a' is edge length of the cube, 'a³' is volume of cubic unit cell and N_A is Avogatro number.

4. Packing efficiency = $\frac{d \times N_A}{M} \times \frac{4}{3} \pi r^3 \times 100$

Here 'M' is molar mass 'r' is radius of atom, 'd' is density and N_A is Avogaotro's number (6.022 \times 10^{23} mol^-1).

Rank of unit cell can be computed by packing efficiency value

	5	XII – Chemistry
FCC	74%	4
BCC	68.%	2
SC	52.4%	1
Type of Unit Cell	Packing efficiency	Rank of Unit Cell

Solution

1. Mole fraction (x)

if the number of moles of A and B are $\rm n_A$ and $\rm n_B$ respectrively, the mole fraction of A and B will be

$$\mathbf{x}_{A} = \frac{\mathbf{x}}{\mathbf{n}_{A} + \mathbf{n}_{B}}, \text{ and } \mathbf{x}_{B} = \frac{\mathbf{n}_{B}}{\mathbf{n}_{A} + \mathbf{n}_{B}}$$

 $x_A + x_B = 1$

2. **Molarity (M)** = $\frac{\text{Moles of solute}}{\text{Volume of solution in litres}}$

3. Moality (m) = Moles of solute Mass of solvent in kilograms

4. Parts per million (ppm)

 $= \frac{\text{Number of parts of the component}}{\text{Total number of parts of all components of the solution}} \times 10^{6}$

5. Raoult's law for a solution of volatile solute in volatile solvent :

$$p_A = p_A^{\circ} x_A$$

 $p_B = p_B^{\circ} x_B$

Where p_A and p_B are partial vapour pressures of component 'A' and component 'B' in solution. $p_A{}^\circ$ and $p_B{}^\circ$ are vapour pressures of pure components 'A' and 'B' respectively.

6. Raoults law for a solution of non-volatile solute and volatile solvent :

$$\frac{p_{A}^{\circ} - p_{A}}{p_{A}^{\circ}} = i x_{B} \simeq i \frac{n_{B}}{N_{A}} = i \frac{W_{B} \times M_{A}}{M_{B} \times W_{A}}$$
 (for dilute solution)

Where x_B is mole fraction of solute, *i* is van't Hoff factor and $\frac{p_A^\circ - p_A}{p_A^\circ}$ is relative lowering of vapour pressure.

6

XII – Chemistry

7. Elevation in boiling point $(\Delta T_{\rm h})$ $\Delta T_{b} = i.K_{b} m$ $\Delta T_{b} = T_{b} - T_{b}^{\circ}$ where K_{h} = molal boiling point elevation constant m = molality of solution. 8. Depression in freezing point (ΔT_f) $\Delta T_f = i.K_f m$ where $\Delta T_f = T_f^{\circ} - T_f$ K_f = molal depression constant m = molality of solution. 9. Osmotic pressure (π) of a solution $\pi V = i n R T$ or $\pi = i C R T$ π = osmotic pressure in bar or atm where V = volume in litres i = Van't Hoff factor c = molar concentration in moles per litres n = number of molesT = Temperature on Kelvin Scale $R = 0.083 L bar mol^{-1} K^{-1}$ R = 0.0821 L atm mol⁻¹ K⁻¹ 10. Van't Hoff factor (i) Observed colligative property *i* = Theoretically calculated colligative property *i* = <u>Normal molar mass</u> Abnormal molar mass 7 XII – Chemistry

i > 1 For dissociation of molecules

- $\begin{cases} i < 1 & \text{For association of molecules} \\ i = 1 & \text{For ideal solution} \end{cases}$
- 11. Relationship between relative lowering in vapour prescure and elevation in b.p.

$$\frac{\Delta p}{{\sf p}_{\sf A}{}^{\circ}} = i \; \frac{\Delta {\sf T}_{\sf b}}{{\sf K}_{\sf b}} \; {\sf M}_{\sf A} \; \times \; 1000$$

Here

 Δp is lowering in vapour pressure, $p_A{}^\circ$ is vapour pressure of pure solvent, *i* is van't Hoff factor, ΔT_{b} is elevation in boiling point, K_{b} is molal elevation constant and M_A is molar mass of solvent

Electrochemistry

1. Conductivity (k)

$$\mathsf{K} = \frac{1}{\mathsf{P}} = \frac{1}{\mathsf{R}} \times \frac{l}{\mathsf{A}} = \mathsf{G} \times \mathsf{G}^*$$

Where R is resistance, $l/A = cell constant (G^*)$ and $\frac{1}{P}$ is resistivity.

2. Relationship between k and Λ_m

$$\Lambda_{\rm m} = \frac{1000 \times k}{\rm c}$$

Where Λ_{m} is molar conductance, k is conductivity and C is molar concentration.

Kohlrausch's law

(a) In general if an electrolyte on dissociation gives v_{+} cations and γ_{-} anions then, its limiting molar conductivity is given by

 $\Lambda^{\circ}_{m} = \gamma_{+} \lambda^{\circ}_{+} + \gamma_{-} \lambda^{\circ}_{-}$

Here λ_{\perp}° and λ°_{\perp} are the limiting molar conductivities of cation and anion respectively and v_{+} and v_{-} are the number of cations and anions furnished by one formula unit.

8

XII – Chemistry

(b) **Degree of dissociation** (α) is given by :

$$\alpha = \frac{\Lambda_{\rm m}^{\rm c}}{\Lambda_{\rm m}^{\rm o}}$$

Here Λ°_{m} is molar conductivity at the concentration C and Λ°_{m} is limiting molar conductivity of the electrolyte.

(c) Dissociation constant (K.) of weak electrolyte

$$K = \frac{C\alpha^2}{1-\alpha} = \frac{C\left(\frac{\Lambda_m^c}{\Lambda_m^o}\right)^2}{\left(1-\frac{\Lambda_m}{\Lambda_m^o}\right)}$$

3. Nernst Equation for electrode reaction : $M^{n+} + ne^- \rightarrow M$.

$$E = E^{\theta} - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{1}{[\text{M}^{n+}]}$$

For Cell potential of electrochemical reaction $aA : bB \xrightarrow{ne} cC + dD$

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{cell}}^{\theta} - \frac{2.303\mathsf{RT}}{\mathsf{nF}} \log \left[\mathsf{Q}_{\mathsf{C}}\right]$$

4. Relationship between E° cell and equilibrium constant (Kc)

$$E^{\theta} \text{ cell} = \frac{2.303 \text{RT}}{\text{nF}} \log \text{K}_{\text{c}}$$
$$E^{\theta} \text{ cell} = \frac{0.059 \text{v}}{\text{n}} \log \text{K}_{\text{c}}$$

5. $\Delta G^{\theta} = - nF E^{\theta} cell$

Where ΔG^{θ} = standard Gibbs energy change and nF is the amount of charge passed.

$$\Delta G^{\theta}$$
 = - 2.303 RT log K_c

9

XII – Chemistry

Chemical Kinetics

1. Integrated rate law equation for zero order reaction

(a)
$$k = \frac{[R]_{\circ} - [R]}{t}$$

Where k is rate constant and $[R]_0$ is initial molar concentration.

(b)
$$t_{\frac{1}{2}} = \frac{[R]_{\circ}}{2k}$$

 t_{γ_2} is half life period of zero order reaction.

2. Integrated rate law equation for first order reaction

(a)
$$k = \frac{2.303}{t} \log \frac{[R]_{\circ}}{[R]}$$

Where k is rate constant, $[R]_{\circ}$ is initial molar concentration and [R] is final concentration at time 't'.

(b) Half life period (t_{γ_2}) for first order reaction :

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

3. Anhenius epuation

(a) $k = A e^{-Ea/RT}$

Where 'A' is frequency factor, Ea is the energy of activation, R is universal gas contant and T is absolute temperature.

 $^{-\text{Ea}/}_{\text{RT}}$ gives the fraction of collisions having energy equal to or greater than Ea.

(b) log
$$\frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

Where k_1 is rate constant at temperature T_1 and k_2 is rate constant at temperature $T_2.$

10

XII - Chemistry