प्रायोगिक भूगोल कक्षा – 12

माध्यमिक शिक्षा बोर्ड राजस्थान, अजमेर राजकीय विद्यालयों में निःशुल्क वितरण हेतु

प्रकाशक

राजस्थान राज्य पाठ्यपुस्तक मण्डल, जयपुर

संस्करण	: 2017	सर्वाधिकार सुरक्षित
		 प्रकाशक की पूर्व अनुमति के बिना इस प्रकाशन के किसी भाग को छापना तथा इलैक्ट्रानिकी, मशीनी, फोटोप्रतिलिपि, रिकॉर्डिंग अथवा किसी अन्य विधि से पुनः प्रयोग पद्धति द्वारा उसका संग्रहण अथवा प्रसारण वर्जित है।
	शिक्षा बोर्ड राजस्थान, अजमेर ज्य पाठ्यपुस्तक मण्डल, जयपुर	 इस पुस्तक की बिक्री इस शर्त के साथ की गई है कि प्रकाशक की पूर्व अनुमति के बिना यह पुस्तक अपने मूल आवरण अथवा जिल्द के अलावा किसी अन्य प्रकार से व्यापार द्वारा उधारी पर, पुनर्विक्रय या किराए पर न दी जाएगी, न बेची जाऐगी।
मूल्य ः		 इस प्रकाशन का सही मूल्य इस पृष्ठ पर मुद्रित है। रबड़ की मुहर अथवा चिपकाई गई पर्ची (स्टिकर) या किसी अन्य विधि द्वारा अंकित कोई भी संशोधित मूल्य गलत है तथा मान्य नहीं होगा।
पेपर उपयोग	ः 80 जी.एस.एम. मैफलीथो पेपर आर.एस.टी.बी. वाटरमार्क	 किसी भी प्रकार का कोई परिवर्तन केवल प्रकाशक द्वारा ही किया जा सकेगा।
कवर पेपर	: 220 जी.एस.एम. इण्डियन आर्ट कार्ड कवर पेपर	
प्रकाशक	ः राजस्थान राज्य पाठ्यपुस्तक मण्डल 2–2 ए, झालाना डूंगरी, जयपुर	
मुद्रक	:	
मुद्रण संख्या	:	

पाठ्यपुस्तक निर्माण समिति पुस्तक : प्रायोगिक भूगोल कक्षा – 12

संयोजक :- डॉ. सतीश कुमार आचार्य, व्याख्याता भूगोल राजकीय मीरा कन्या महाविद्यालय, उदयपुर

- लेखकगण :-- 1. डॉ० कश्मीर कुमार भट्ट, व्याख्याता भूगोल मा.ला. वर्मा राजकीय महाविद्यालय, भीलवाड़ा
 - पन्नालाल शर्मा, प्रधानाचार्य राजकीय उच्च माध्यमिक विद्यालय, नारायणखेड़ा, झालावाड़

निःशुल्क वितरण हेतु

पाठ्यक्रम निर्माण समिति पुस्तक : प्रायोगिक भूगोल कक्षा – 12

- संयोजक :-- डॉ. ओ.पी. देवासी, व्याख्याता राजकीय महाविद्यालय, जोधपुर
- लेखकगण :-- 1. डॉ. नरपत सिंह राठौड़, प्राचार्य गुरुनानक कन्या महाविद्यालय, उदयपुर
 - डॉ. मिलन यादव, व्याख्याता सम्राट पृथ्वीराज चौहान राजकीय महाविद्यालय, अजमेर
 - डॉ. प्रमोद शर्मा, एसोसिएट प्रोफेसर ज. रा. रा. संस्कृत विश्वविद्यालय, जयपुर
 - डॉ. पंकज दीक्षित, प्रधानाचार्य राजकीय उ. मा. विद्यालय, मानसर खेड़ी, जयपुर
 - श्री ओमप्रकाश शर्मा, प्रधानाचार्य राजकीय उ. मा. विद्यालय, लबानिया सांगोद, कोटा
 - श्री पन्नालाल शर्मा, व्याख्याता आदर्श राजकीय उ. मा. विद्यालय, लबानिया सांगोद, कोटा

दो शब्द

विद्यार्थी के लिए पाठ्यपुस्तक क्रमबद्ध अध्ययन, पुष्टीकरण, समीक्षा और आगामी अध्ययन का आधार होती है। विषय-वस्तु और शिक्षण-विधि की दृष्टि से विद्यालयी पाठ्यपुस्तक का स्तर अत्यन्त महत्त्वपूर्ण हो जाता है। पाठ्यपुस्तकों को कभी जड़ या महिमामण्डित करने वाली नहीं बनने दी जानी चाहिए। पाठ्यपुस्तक आज भी शिक्षण-अधिगम-प्रक्रिया का एक अनिवार्य उपकरण बनी हुई है, जिसकी हम उपेक्षा नहीं कर सकते।

पिछले कुछ वर्षों में माध्यमिक शिक्षा बोर्ड के पाठ्यक्रम में राजस्थान की भाषागत एवं सांस्कृतिक स्थितियों के प्रतिनिधित्व का अभाव महसूस किया जा रहा था, इसे दृष्टिगत रखते हुए राज्य सरकार द्वारा कक्षा-9 से 12 के विद्यार्थियों के लिए माध्यमिक शिक्षा बोर्ड, राजस्थान द्वारा अपना पाठ्यक्रम लागू करने का निर्णय लिया गया है। इसी के अनुरूप बोर्ड द्वारा शिक्षण सत्र 2016-17 से कक्षा-9 व 11 तथा सत्र 2017-18 से कक्षा-10 व 12 की पाठ्यपुस्तकें बोर्ड के निर्धारित पाठ्यक्रम के आधार पर ही तैयार कराई गई हैं। आशा है कि ये पुस्तकें विद्यार्थियों में मौलिक सोच, चिंतन एवं अभिव्यक्ति के अवसर प्रदान करेंगी।

> प्रो. बी.एल. चौधरी अध्यक्ष माध्यमिक शिक्षा बोर्ड राजस्थान, अजमेर

निःशुल्क वितरण हेतु

पाठ्यक्रम

- 1. मानचित्र : अर्थ, महत्त्व, वर्गीकरण एवं मानचित्रांकन । थिमैटिक (विषयक) मानचित्र बिन्दु, वर्णमात्री, एवं समरेखा मानचित्र ।
- 2. आंकड़ों का निरूपण : आरेखों की रचना, दण्ड आरेख, चक्र आरेख व प्रवाह आरेख।
- 3. आंकड़ें और आंकडों का एकत्रीकरण, आंकड़ों का सारणीयन, माध्य, माध्यिका व बहुलक, विचलन, कोटि आकार सहसम्बन्ध की गणना।
- 4. भौगोलिक सूचना तंत्र व सूदूर संवेदन तकनीक का सामान्य परिचय।
- समपटल सर्वेक्षण : विकिरण एवं प्रतिच्छेदन विधि ।
- 6. क्षेत्रीय अध्ययन : स्थानीय सामाजिक, आर्थिक समस्याओं पर क्षेत्रीय अध्ययन (30 किमी से अधिक दूरी पर स्थित क्षेत्र)

प्रायोगिक परीक्षा में अंक विभाजन (कुल अंक–30)

1.	प्रायोगिक प्रश्न पत्र	= 12 अंक
2.	प्रायोगिक अभिलेख एवं मौखिक परीक्षा (4+2)	= 06 अंक
3.	समपटल सर्वेक्षण कार्य एवं मौखिक परीक्षा (4+2)	= 06 अंक
4.	क्षेत्रीय अध्ययन (4+2)	= 06 अंक

अनुक्रमणिका

अध्याय	विवरण	पृ. संख्या
1	मानचित्र ः वर्गीकरण एवं मानचित्रांकन मानचित्र का अर्थ एवं परिभाषा, मानचित्र का महत्त्व, उद्देश्य,	1—16
	वर्गीकरण, गुणात्मक मानचित्र, मात्रात्मक मानचित्र, विषयक	
	मानचित्र, मानचित्रांकन, अभ्यास प्रश्न	
2	आँकड़ों का एकत्रीकरण एवं विश्लेषण	17—36
	आँकड़ों के प्रकार एवं स्रोत, सांख्यिकीय विधिया, साख्कीय	
	श्रेणियां, बहुलक, मध्यका, समान्तर माध्य, सहसम्बन्ध, मानक	
	विचलन, अभ्यास प्रश्न	
3	सांख्यिकीय ऑकड़ों का निरूपण	37—50
	आरेखीय विधियां, आरेखों के लाभ, आरेखों के प्रकार, दण्ड	
	आरेख, पिरामिड आरेख, चक्र आरेख, परिवहन आरेख, अभ्यास प्रश्न	
4	सूदूर संवेदन एवं भौगोलिक सूचना तंत्र	51—59
	दूर संवेदन का अर्थ, लाभ, प्लेटफार्म, प्रक्रियाएं, भारत में दूर संवेद	
	कार्य, भौगोलिक सूचना तंत्र, अर्थ, परिभाषा, सूचना तंत्र का विकास,	
	उददे्श्य, प्रमुख घटक, स्थानीय आंकड़ा प्रारूप, जीआईएस का	
	उपयोग, अभ्यास प्रश्न	
5	समपटल सर्वेक्षण	60—67
	उपकरण, सर्वेक्षण प्रक्रिया, प्लेन टेबल की विधियाँ, प्रतिछेदन विधि,	
	विकिरण विधि, अभ्यास प्रश्न	
6	क्षेत्रीय अध्ययन	68—72
	क्रियाविधि, अध्ययन का उद्देश्य, अभ्यास प्रश्न	
निःशु	ल्क वितरण हेतु	

अध्याय 1 मानचित्र : वर्गीकरण एवं मानचित्रांकन (Map : Classification and Mapping)

मानचित्र का अर्थ एवं परिभाषा

मानचित्र के लिए अंग्रेजी भाषा में मेप (Map) शब्द का प्रयोग होता है। अंग्रेजी भाषा का Map शब्द लैटिन भाषा के शब्द मैप्पा (Mapp) से लिया गया है। मध्यकाल में यूरोप में बने विश्व के चक्र मानचित्रों को मैप्पा—मुण्डी (Mappa- Mundi) कहा जाता था। कपड़े पर बने इन मानचित्रों को इसी नाम से जाना जाता था। लैटिन भाषा का यही मैप्पा शब्द कालान्तर में अंग्रेजी में मेप शब्द में रूपान्तरित हो गया।

मानचित्र भूगोल अध्ययन के सबसे महत्त्वपूर्ण उपकरण के रूप में जाने जाते हैं। पृथ्वी तल की अनेकों विशेषताओं को सरल, बोधगम्य और आलेखी भाषा में समझाने का कार्य मानचित्रों के माध्यम से होता है। विश्व के अनेकों भूगोलवेत्ताओं ने इनको परिभाषित करने का कार्य किया है इनमें से कुछ महत्वपूर्ण परिभाषाएँ निम्न है–

इरविन रेज ''अपनी प्राथमिक संकल्पना में कोई भी मानचित्र धरातल के प्रतिरूप का ऊपर की ओर से देखा गया रूढ़ चित्र होता है, जिसमें पहचान के लिए अक्षर लिख दिये जाते हैं।''

एफ.जे. मॉकहाउस ''निश्चित मापनी के अनुसार धरातल के किसी भाग के लक्षणों के समतल सतह पर निरूपण को मानचित्र की संज्ञा दी जा सकती है।

आर.वी. मिश्रा एवं ए. रमेश ''समस्त पृथ्वी या उसके किसी भाग, किसी अन्य आकाशीय पिण्ड के दृश्य एवं विचारे गये अवस्थितिक व विवरणात्मक प्रतिरूपों का मापनी के अनुसार प्रतीकात्मक आरेखन मानचित्र कहलाता है।''

वास्तव में मानचित्र धरातलीय तत्वों के आलेखी निरूपण होते है।

उपर्युक्त परिभाषाओं से स्पष्ट है कि मानचित्र के पांच आधारभूत तत्त्व होते हैं (i) निश्चित मापक, (ii) मानचित्र—प्रक्षेप, (iii) द्विविमीय निरूपण, (iv) समतल सतह पर निरूपण, (v) प्रतीकात्मक निरूपण।

(i) निश्चित मापक : मानचित्र के द्वारा पृथ्वी अथवा उसके किसी एक भाग को छोटे आकार में प्रदर्शित किया जाता है अतः प्रत्येक मानचित्र हमेशा पहले से निश्चित की गई मापनी के अनुसार बनाया जाता है। मापनी के अभाव में मानचित्र पर अंकित किन्हीं भी दो बिन्दुओं के बीच की धरातल की वास्तविक दूरी ज्ञात करना असंभव होता है। मापनी या मापक का प्रयोग केवल अनुमान के आधार पर बनाये गये मानचित्र को रेखाचित्र कह सकते हैं। मापनी का चयन करते समय कागज के आकार और मानचित्र में प्रदर्शित किये जाने वाले विवरणों की मात्रा को ध्यान में रखकर किया जाता है। प्रत्येक मानचित्र पर उसके मापक को निरूपक भिन्न जैसे 1 : 1,00,000 या 1 सेमी = 1 किमी. लिखा जाता है।

रेखाचित्र 1.1 : मानचित्र के आधारभूत तत्त्व (ii) मानचित्र—प्रक्षेप : हमारी पृथ्वी का आकृति गोलाकार है। जिसे मानचित्रों के

Downloaded from https:// www.studiestoday.com

(1)

द्वारा सदैव किसी समतल सतह पर प्रदर्शित किया जाता है। अतः उसके किसी बड़े भाग का मानचित्र बनाने के लिए प्रकाश या गणितीय विधियों की सहायता से ग्लोब पर बने अक्षांश—देशान्तर रेखाओं के जाल को समतल सतह पर बनाते हैं, जिसे मानचित्र प्रक्षेप कहते हैं। बड़े भू—भागों के मानचित्र सदैव किसी पूर्व निश्चित प्रक्षेप पर बनाये जाते हैं मानचित्र प्रक्षेप अनेक प्रकार के होते हैं। कुछ ही प्रेक्षपों पर सम्पूर्ण पृथ्वी का मानचित्र बनाया जा सकता है।

(iii) द्विविमीय निरूपण : सभी मानचित्र पृथ्वी की त्रिविमीय आकृति को द्विविमीय रूप में बताते हैं। पृथ्वी एक ठोस गोलाकार पिण्ड है जिसमें लम्बाई, चौड़ाई व मोटाई तीनों प्रकार के विस्तार है। मानचित्र सदैव किसी समतल सतह पर बनाये जाते हैं। अतः उनमें केवल लम्बाई व चौड़ाई का निरूपण हो सकता है।

(iv) समतल सतह पर निरूपण : मानचित्र सदैव कागज, कपड़ा, दीवार, चादर, गत्ता आदि किसी भी प्रकार की समतल सतह पर बनाये जाते हैं। त्रिविमीय गोलाकार पृथ्वी को समतल सतह पर सपाट प्रदर्शित करने के इस गुण से सभी मानचित्र वास्तव में मूल रूप में दोष पूर्ण होते हैं, परन्तु मानचित्र पर विवरणों को अधिक विस्तार पूर्वक प्रदर्शित किया जा सकता है।

(v) प्रतीकात्मक निरूपण : मानचित्र पर धरातल पर पाये जाने वाले सभी प्रकार के प्रतिरूपों को प्रतीकों के माध्यम से प्रदर्शित करते हैं । इसीलिए मानचित्रों को धरातल का आलेखी निरूपण कहा जाता है । सभी लक्षणों को प्रदर्शित करने के लिए कई प्रकार के प्रतीक प्रयुक्त होते हैं । प्रत्येक मानचित्र पर अंकित प्रत्येक प्रतीक का अर्थ मानचित्र में संकेत के रूप में लिखा जाता है ।

इनमें से किसी भी एक तत्त्व की अनुपस्थिति में कोई भी मानचित्र अधूरा रहेगा, ऐसी स्थिति में हम उसे मानचित्र न कह कर केवल रेखाचित्र कहेंगे।

मानचित्र का महत्व

मानचित्र सूचनाओं को प्रमुख स्रोत होते हैं। यह पृथ्वी के प्राकृतिक एवं सांस्कृतिक लक्षणों को ठीक प्रकार से दर्शाते हैं। मानचित्र कला का इतिहास अत्यधिक प्राचीन है। मध्ययुग में विभिन्न देशों के मध्य युद्ध विजय की दृष्टि से मानचित्रों की उपयोगिता अत्यधिक रही है। हिटलर के कथन– ''मुझे किसी देश का विस्तृत मानचित्र दे दो और में उस पर विजय प्राप्त कर लूंगा।'' इस वाक्य में ही मानचित्रों का महत्त्व छुपा हुआ है। द्वितीय विश्व युद्ध में अमेरिका की सेना के मानचित्र सेवा विभाग ने चार लाख मानचित्र बनाये और लगभग 50 करोड़ प्रतियों का वितरण किया।

मानचित्रों के महत्त्व का अनुमान इसी बात से लगाया जा सकता है कि आज भूगोल के अलावा इतिहास, भू–विज्ञान, मौसम विज्ञान, वनस्पति विज्ञान, जल विज्ञान, खगोल विज्ञान, मृदा विज्ञान एवं मानव विज्ञान जैसे 25 से भी अधिक विषय मानचित्रों का प्रयोग बड़े पैमाने के लिए करते हैं।

भूगोलवेत्ता के लिए मानचित्र अत्यन्त आवश्यक है क्योंकि मानचित्रों के बिना भूगोल को समझना और समझाना असंभव है। मानचित्रों के बिना भूगोल का अस्तित्व भी गौण हो जायेगा। डॉ. एच.आर. निल ने कहा कि ''भूगोल में हमें यह एक सिद्धान्त मान लेना चाहिये कि जिसका मानचित्र नहीं बनाया जा सकता उसका वर्णन भी नहीं किया जा सकता।'' एक अच्छा मानचित्र सैकड़ों शब्दों की बचत करता है और तथ्यों को स्पष्ट रूप से प्रस्तुत करता है। मानचित्र न्यूनतम स्थान पर अधिकतम सूचना प्रस्तुत करते हैं। वास्तव में मानचित्र भूगोलवेत्ता की आशुलिपि है एवं उसकी अनुसंधान की प्रयोगशाला भी है। जहाँ वह अपने विषय का निष्कर्ष प्राप्त करता है।

भूगोल विषय के अध्ययन में मानचित्रों का सबसे अधिक प्रयोग होता है। मानचित्रों को एक स्थान से दूसरे स्थान पर लाने—ले जाने की सरलता, विवरणों की अधिकता समस्त पृथ्वी को एक साथ दृश्यमान होने के गुण के कारण इनका महत्व ग्लोब से अधिक है। वर्तमान में मानचित्रों का उपयोग सभी क्षेत्रों में प्रतिदिन बढ़ रहा है। धरातल के भौतिक, सांस्कृतिक, सामाजिक, आर्थिक, राजनैतिक लक्षणों के प्रतिरूपों को मानचित्रों के माध्यम से प्रदर्शित किया जा सकता है।

वर्तमान युग में मानचित्रों का उपयोग सामान्य मानव के दैनिक जीवन में भी बढ़ गया है। मानचित्र अपने महत्त्व एवं उपयोगिता के चलते जीवन का एक आवश्यक अंग बन गये हैं।

मानव ज्ञान को विकसित करने के लिए पत्र–पत्रिकाओं, पुस्तकों, आर्थिक योजनाओं, दिवारों, पर्यटन स्थलों, प्रशासनिक कार्यों, सैनिक उपयोग हेतु मानचित्रों का महत्त्व बढ़ गया है।

(2)

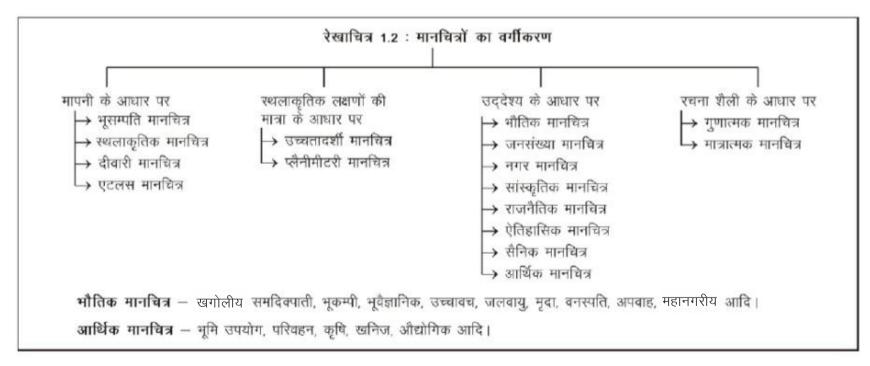
मानचित्रों का उद्देश्य

भूगोल की दृष्टि से मानचित्र बनाने के दो मुख्य उद्देश्य है–

(i) हमारी पृथ्वी का आकार इतना विशाल है कि उसके किसी एक भाग या सम्पूर्ण भाग को एक साथ आंखों से देखना असंभव है। मानचित्र पृथ्वी के इस विशाल आकार और आकृति को छोटा करके हमारे लिए समझने और बोधगम्य बनाने का कार्य करते हैं। भौगोलिक तथ्यों को स्पष्ट करना ही मानचित्रों का उद्देश्य है।

(ii) धरातल पर विभिन्न प्रकार के भौतिक, आर्थिक, सामाजिक, सांस्कृतिक, राजनैतिक सभी प्रकार के प्रतिरूप साथ–साथ विद्यमान रहते हैं, अतः अध्ययन के लिये आवश्यकतानुसार छांटे गये विवरणों को प्रदर्शित करने के लिए केवल मानचित्र ही महत्वपूर्ण साधन होते हैं।

मानचित्रों का वर्गीकरण


अपने व्यापक उपयोग के कारण हमें कई प्रकार के मानचित्र देखने को मिलते हैं। मानचित्रों के वर्गीकरण के चार मुख्य आधार होते हैं– (i) मापनी के अनुसार, (ii) खलाकृतिक लक्षणों की मात्रा के अनुसार, (iii) उद्देश्य के अनुसार एवं (iv) रचना शैली के अनुसार।

इन मुख्य आधारों पर मानचित्रों के प्रकार निर्धारित होते हैं जिन्हें इस रेखाचित्र 1.2 से स्पष्ट किया गया है।

रचना शैली के आधार पर

रचना शैली के आधार पर मानचित्रों को 2 मुख्य भागों में वर्गीकृत किया जाता है, (अ) गुणात्मक मानचित्र एवं (ब) मात्रात्मक मानचित्र।

प्रत्येक मानचित्र में किसी न किसी प्राकृतिक या सांस्कृतिक तत्त्व का वितरण

प्रदर्शित किया जाता है अतः इस अनुसार सभी प्रकार के मानचित्रों को वितरण मानचित्र भी कह सकते हैं। वितरण मानचित्रों का प्रयोग तेजी से बढ़ रहा है। वितरण मानचित्र लिखित विषय वस्तु को दृश्यता प्रदान करते हैं। अतः ये मानचित्र स्वयं व्याख्यात्मक मानचित्र कहलाते हैं। इन मानचित्रों को बनाने की विधियों के आधार पर ही इन मानचित्रों का नामकरण होता है। वितरण मानचित्र बनाने की निम्न विधियां है जिन्हें रेखाचित्र संख्या 1.3 में प्रदर्शित किया गया है।

(अ) गुणात्मक वितरण मानचित्र

अमात्रात्मक विधियों द्वारा बनाए गये वितरण मानचित्रों को गुण प्रधान या गुणात्मक मानचित्र कहते हैं। इन मानचित्रों में किसी तत्व या वस्तु का वितरण प्रदर्शित करते समय उसकी मात्रा या घनत्व पर कोई ध्यान नहीं दिया जाता है। इन मानचित्रों में वस्तुओं का क्षेत्रीय वितरण ही दिखाया जाता है। इनसे केवल, इसी बात का बोध होता है कि कौनसी वस्तु कहाँ पाई जाती है। इससे इस बात का पता नहीं चलता है कि वह वस्तु किसी क्षेत्र विशेष में कितनी उत्पन्न होती है। गुणात्मक मानचित्रों को बनाने की निम्नलिखित विधियाँ है—

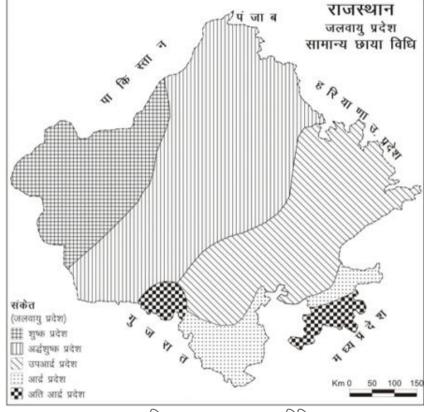
- (1) रंगारेख विधि
- (2) सामान्य छाया विधि
- (3) चित्रिय विधि

- (4) वर्ण प्रतीकी विधि
- (5) नामकरण विधि

(1) रंगारेख विधि : गुणात्मक वितरण मानचित्र बनाने की यह सरल और लोकप्रिय विधि है। इस विधि से बनाये गये वितरण मानचित्रों को रंगारेख मानचित्र, रंगक मानचित्र तथा कोरोक्रोमैटिक मानचित्र के नामों से जाना जाता है। रंगों के प्रयोग से ये मानचित्र आकर्षक होते हैं। प्रायः प्राकृतिक प्रदेशों, राजनैतिक एवं प्रशासनिक इकाईयों भूमि उपयोग के प्रकारों, प्राकृतिक वनस्पति एवं मृदा प्रकारों को दर्शाने के लिए इस विधि का प्रयोग किया जाता हैं। पृथ्वी तल पर पाए जाने वाले विभिन्न भौगोलिक तत्वों को प्रदर्शित करने की यह एक

गुणात्मक विधि है। कोरोक्रोमैटिक मानचित्र एकल प्रयोग मानचित्र होता है।

मानचित्र 1.1 ः रंगारेख विधि


Downloaded from https:// www.studiestoday.com

(4)

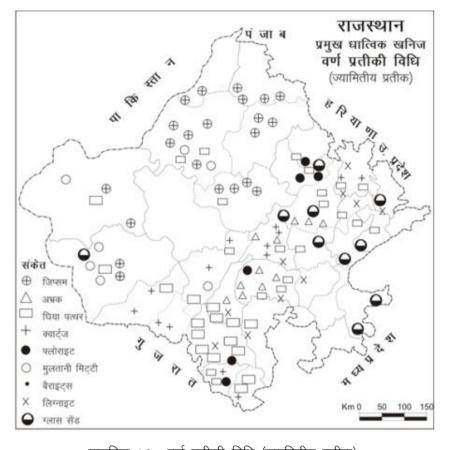
सामाजिक—आर्थिक तथ्यों को प्रदर्शित करने वाला गुणात्मक विषयक मानचित्र, जिस पर विभिन्न क्षेत्रों या प्रदेशों को दर्शाने या विभिन्न तत्वों गुणात्मक रूप में प्रदर्शित करने के लिए अलग—अलग रंगों की छायाओं का प्रयोग किया जाता है। इसे कोरोक्रोमेटिक मानचित्र कहा जाता है।

कोरोक्रोमैटिक विधि के मानचित्र में प्राकृतिक प्रदेशों, राजनीतिक एवं प्रशासनिक क्षेत्रों, भूमि उपयोग प्रकारों, भू—वैज्ञानिक क्षेत्रों तथा प्राकृतिक वनस्पति एवं मिट्टी के प्रकारों को प्रदर्शित करने की सर्वोत्तम विधि है। ऐसे मानचित्र बनाने के लिए कई प्रकार के रंगों का प्रयोग किया जाता है तथा कभी एक ही रंग के विभिन्न आयामों में प्रयोग किया जाता है। सामान्य पहाड़ी क्षेत्रों के लिए भूरा, वनों के लिए हरा, कृषि के लिए पीला, बस्तियों के लिए लाल तथा जलीय भागों के लिए नीले रंग का प्रयोग किया जाता है। इन मानचित्रों में विभिन्न स्तरीय रंग भर कर, इन्हें मात्रात्मक मानचित्र बनाया जा सकता है।

(2) सामान्य छाया विधि : यह विधि रंगारेख विधि के समान ही होती है परन्तु इसमें रंगों के स्थान पर काली स्याही से बनायी गयी छायाओं का प्रयोग होता है। इस विधि से बनाये गये छाया मानचित्र, वर्णामात्री विधि से बने छाया मानचित्रों से भिन्न होते हैं। रंगीन मानचित्रों का प्रकाशन खर्चीला होता है अतः पुस्तकों, पत्र–पत्रिकाओं में सामान्य छाया विधि से बने मानचित्रों का उपयोग किया जाता है। इस विधि से जलवायु–कटिबन्धों कृषि–पेटियों विभिन्न फसलों के क्षेत्र, मिट्टियों के प्रकार आदि का वितरण दर्शाया जाता है (मानचित्र 1.2)।

मानचित्र 1.2 : सामान्य छाया विधि

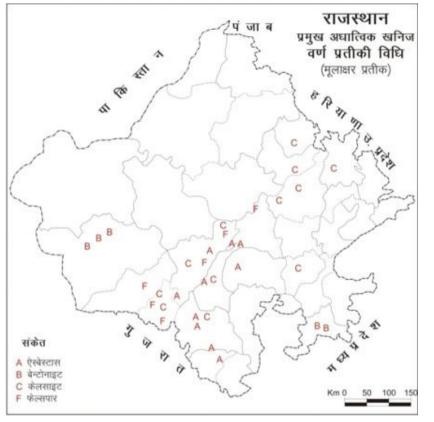
(3) चित्रीय विधि : विभिन्न चित्रों के माध्यम से मानचित्रों में वितरण प्रस्तुत करने की विधि को चित्रीय विधि कहते हैं। इस विधि में जिन वस्तुओं, स्थान क्षेत्र या वितरण बताना होता है, उनका वास्तविक चित्र या फोटो को मानचित्र में यथास्थान बना दिया जाता है। किसी स्थान, राज्य या नगर के दर्शनीय स्थलों, पर्यटन केन्द्रों, धार्मिक महत्व के स्थानों, जनजातियों, वेश—भूषा के प्रकारों, ऐतिहासिक स्थलों तथा सांस्कृतिक तत्वों को सामान्यतया इसी विधि से दर्शाया जाता है। चित्रीय विधि से बने मानचित्रों को बस स्टेशनों, रेलवे स्टेशनों, पर्यटन कार्यालयों, हवाईअड्डों, दर्शनीय स्थलों पर देखा जा सकता है।


(4) वर्ण प्रतीकी विधि : इसे प्रतीक विधि भी कहते हैं क्योंकि इस विधि में चिन्हों या प्रतीकों के माध्यम से वितरण प्रदर्शित किया जाता है। इसमें जिन वस्तुओं का वितरण प्रदर्शित करना होता है, उन सबके लिए अलग—अलग चिन्ह (प्रतीक) निश्चित करके उन्हें मानचित्र में यथा स्थान अंकित कर दिया जाता है। मानचित्र में प्रयुक्त प्रत्येक प्रतीक का संकेत में अर्थ लिखना आवश्यक होता है। इस विधि का प्रयोग करते समय प्रतीकों के आकार व आकृति की एक समरूपता का विशेष ध्यान रखना होता है। गुणात्मक वर्ण प्रतीकी मानचित्रों में प्रयोग किये जाने वाले सभी प्रतीकों को तीन वर्गों में रखा जा सकता है

(अ) ज्यामितीय प्रतीक– बिन्दु, क्रास, वृत्त, अर्द्ध वृत्त, त्रिभुज, आयत, वर्ग, घन, षटकोण, सरलरेखा, समानान्तर आदि (मानचित्र 1.3)।

(ब) चित्रमय प्रतीक— मक्का के लिए भुट्टे का, गेहूँ के लिए बाली का, चाय के लिए पत्ती का चित्रमय प्रतीक।

(स) मूलाक्षर प्रतीक– किसी वस्तु के प्रथम अक्षर का प्रयोग गेहूँ के लिए W, मक्का के लिए M, चावल के लिए R, कपास के लिए C, कॉफी के लिए Co, कोयले के लिए C, आदि (मानचित्र 1.4)।


इस विधि में मानचित्र में धरातल पर वितरित वस्तुओं को दर्शाने हेतु बिन्दु एवं क्षेत्रफल प्रतीकों का उपयोग किया जाता है। पृथ्वी के सामाजिक– आर्थिक तत्वों के अनगिनत लक्ष्णों को प्रदर्शित करने के लिए प्रत्येक बार मानचित्रकार को उनके लिए अनुकूल संकेतों को निश्चित करते समय गम्भीरता से सोचना पड़ता है।

मानचित्र 1.3 : वर्ण प्रतीकी विधि (ज्यामितीय प्रतीक) सामाजिक—आर्थिक आंकडों को प्रदर्शित करने वाला विषयक मानचित्र जिसमें तथ्यों के वितरण को चुने हुए विभिन्न चिन्हों अथवा संकेतों या वर्णों (अक्षरों) द्वारा प्रदर्शित किया जाता है। वर्ण प्रतीकी मानचित्र कहलाता है।

जब किसी वस्तु विशेष का, या एक से अधिक वस्तुओं का एक साथ वितरण प्रदर्शित करना हो तो उसके लिए चिन्ह / संकेत विधि विशेष उपयुक्त है। इस मानचित्र में उत्पत्ति स्थल पर वर्ण, चिन्ह विशेष आकृति से बनाकर दर्शाते है। इस मानचित्र में खनिज स्थलों एवं उत्पादन कृषि क्षेत्रों एवं उत्पादन उद्योग या इसी प्रकार के उच्च लक्षणों को प्रदर्शित किया जाता है।

(6)

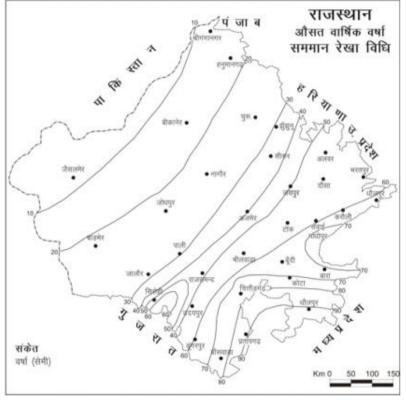
मानचित्र 1.4 : वर्ण प्रतीकी विधि (मुलाक्षर प्रतीक) (5) नामकरण विधि : इसे नामाकंन विधि भी कहते हैं। यह विधि मूलाक्षर प्रतीक विधि के समान है परन्तु इसमें मानचित्र पर यथास्थान पुरे नाम लिखे जाते हैं। छोटी कक्षाओं की भूगोल पुस्तकों में वितरण को समझाने में यह विधि उपयोगी है। इस विधि में जो वस्तु जहॉ उत्पादित होती है, वहाँ उसका नाम लिख दिया जाता है। उदाहरण– भारत में कृषि उत्पादों को नामकरण विधि से दिखाते समय पंजाब, हरियाणा तथा उत्तरप्रदेश में गेंहूँ, पश्चिमी बंगाल, बिहार तथा तटीय भागों में चावल तथा पश्चिमी बंगाल के उत्तरीय क्षेत्र व आसाम में चाय शब्द लिखा जायेगा (मानचित्र 1.5)।

पंजाब

राजस्थान

प्रदेशों के स्थानीय नाम

नामकरण विधि


मात्रात्मक वितरण मानचित्र (ब)

मात्रात्मक वितरण मानचित्र में तत्वों के वितरण के साथ–साथ उनकी मात्रा भी दिखायी जाती है। इसके अतिरिक्त इस विधि से घनत्व मूल्य तथा समय के साथ परिवर्तन उतार–चढाव भी दिखाया जा सकता है। इन्हें सांख्यिकीय मानचित्र भी कहा जाता है। इनमें वर्षा मानिचत्र, जनसंख्या मानचित्र, उत्पादन मानचित्र, मुख्य है। मात्रात्मक मानचित्रों को मात्रात्मक विधियों द्वारा बनाया जाता है। इन मात्रात्मक वितरण मानचित्रों में प्रयुक्त विधि के अनुसार ही मानचित्र का नामकरण होता है। इन्हें

बनाने की निम्न चार विधियाँ है–

- (1) सममान रेखा विधि
- (2) वर्णमात्री विधि
- (3) बिन्दु विधि
- (4) आलेखी विधि

(1) सममान रेखा विधि : सममान रेखा मानचित्र मात्रात्मक मानचित्रों की श्रेणी में आता है । सममान रेखा मानचित्र की रचना सममान रेखा विधि द्वारा होती है । सामान्य अर्थ में समान माप अथवा मान वाली रेखा को सममान रेखा कहते हैं ।

मानचित्र 1.6 : सममान रेखा विधि

मानचित्र पर किसी तत्व / वस्तु के समान मूल्य / घनत्व वाले स्थानों को मिलाकर खींची जाने वाली काल्पनिक रेखाएं सममान रेखाएं (आइसोप्लेथ) कहलाती है। इस समान रेखाओं को मानचित्र पर उसी प्रकार बनाते है, जैसे मानचित्र पर समोच्य रेखाओं को। भूगोल में समान रेखाओं का प्रयोग सर्वप्रथम हम्बोट ने 1817 में किया था, लेकिन भूगोल में सर्वव्यापी रूप में एफ.जे. मॉकहाउस ने 1952 में प्रयुक्त किया। प्रमुख सममान रेखाएँ जैसे समदाब रेखा, समलवण रेखा, समवर्षा, समोच्च रेखाएँ, समताप रेखाएँ आदि।

सममान रेखा मानचित्र बनाने के लिए सर्वप्रथम मानचित्र में किसी वस्तु की मात्रा या मूल्यों को यथा स्थान लिखते हैं। उसके बाद इन मूल्यों को किसी उचित अन्तराल पर अन्तर्वेशित करके मानचित्र में सममान रेखाएं खींच देते हैं। जलवायु के तत्वों— तापमान, वर्षा, वायुमण्डलीय दाब, पवन—वेग आदि के प्रदर्शन हेतु इस विधि का प्रयोग होता है। उदाहरण के लिए मानचित्र 1.3 में राजस्थान में औसत वार्षिक वर्षा को सममान रेखा विधि द्वारा प्रदर्शित किया गया है।

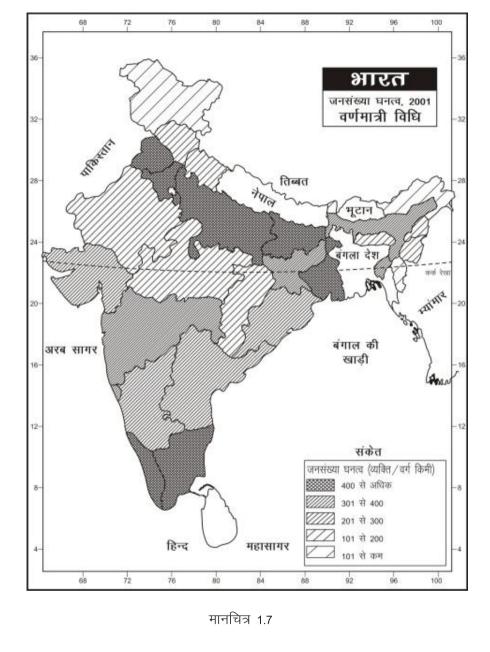
(2) वर्णमात्री विधि : यह एक प्रकार का मात्रात्मक विषयक मानचित्र है। जिस पर सामाजिक—आर्थिक तत्वों / घनत्व के वितरण को विभिन्न छायाओं द्वारा प्रदर्शित किया जाता है, वर्णमात्री मानचित्र कहलाता है। सामान्यतः न्यूनतम घनत्व वाले क्षेत्र को सबसे हल्की छाया से और बढ़ते घनत्व को क्रमशः गहरी छाया से प्रदर्शित किया जाता है।

वर्णमात्री शब्द का अंग्रेजी रूपान्तरण Choropleth शब्द है, जो ग्रीक भाषा के Choros (स्थान) + Plethos (माप) से मिलकर बना है। इसका अर्थ ''क्षेत्र में मात्रा'' होता है। वर्णमात्री मानचित्र में भिन्न–भिन्न घनत्व वाली छात्राओं के द्वारा किसी वस्तु की प्रति इकाई क्षेत्र औसत संख्या, मूल्य या घनत्व प्रदर्शित किया जाता है। प्रशासनिक इकाईयों के आधार पर सभी प्रकार के सांख्यिकीय आंकड़ों की प्राप्ति सरल होती है अतः वर्णमात्री विधि के मानचित्रों के लिए तहसील, जिला, राज्य की इकाईयों को चुना जाता है।

(i) वर्णमात्री मानचित्र बनाने के लिए सर्वप्रथम विभिन्न राज्यों के अनुसार दिए गए आंकड़ों को आरोही या अवरोही क्रम में व्यवस्थित करते हैं।

(8)

(ii) क्रम निश्चित कर लेने के बाद किसी उचित अन्तराल पर इन आंकड़ों को कुछ वर्गों में विभाजित किया जाता है। वर्गों की संख्या आवश्यकता व आंकड़ों की मात्रा पर निर्भर करती है, परन्तु वर्ग अन्तराल समान रहता है– जैसे 0 – 09, 10– 19, 20 – 29 या 0 – 10, 10 – 20, 20 – 30 आदि।


(iii) वर्गों की संख्या निश्चित होने के बाद प्रत्येक वर्ग में सम्मिलित राज्यों में एक जैसी छाया भरी जाती है।

(iv) इस विधि में यह ध्यान रखना आवश्यक है कि मूल्यों के बढ़ने के अनुसार छायाओं में भी भारीपन आना चाहिए जिससे मानचित्र को देखने मात्र से तुलनात्मक महत्व पता लगे। सबसे कम घनत्व के लिए हल्की छाया, उससे अधिक घनत्व के लिए अपेक्षाकृत भारी छाया का उपयोग होता है।

निम्नलिखित सारणी 1.1 के अनुसार भारत में जनसंख्या घनत्व दर्शाने के लिए एक वर्णमात्री मानचित्र 1.7 में दर्शााया गया है। (उदाहरण)

क्र.सं.	राज्य⁄केन्द्र शासित प्रदेश	घनत्व (प्रति व्यक्ति वर्ग किमी.)	क्र.सं.	राज्य⁄केन्द्र शासित प्रदेश	घनत्व (प्रति व्यक्ति वर्ग किमी.)
1.	पश्चिम बंगाल	903	15	गुजरात	258
2	बिहार	881	16	उडीसा	236
3	केरल	819	17	मध्यप्रदेश	196
4	उत्तरप्रदेश	690	18	राजस्थान	165
5	पंजाब	484	19.	उत्तराखण्ड	159
6.	तमिलनाडू	480	20.	छत्तीसगढ	154
7.	हरियाणा	478	21.	नागालैण्ड	120
8	गोवा	364	22.	हिमाचल प्रदेश	109
9.	असम	340	23.	मणिपुर	107
10.	झारखंड	338	24.	मेघालय	103
11.	महाराष्ट्र	315	25.	जम्मू–कश्मीर	100
12.	त्रिपुरा	305	26.	सिक्किम	76
13.	आंध्रप्रदेश	277	27.	मिजोरम	42
14.	कर्नाटक	276	28.	अरूणाचलप्रदेश	13

सारणी 1.1 : भारत में जनसंख्या घनत्व (2001)

(9)

क्र.सं.	जिले का नाम	जनसंख्या (व्यक्ति)	बिन्दुओं की संख्या	क्र.सं.	जिले का नाम	जनसंख्या	बिन्दुओं की संख्या	
1.	गंगानगर	1788487	36	17.	जालौर	1448486	29	
2.	हनुमानगढ	1517390	30	18.	सिरोही	850756	17	
3.	बीकानेर	1673562	33	19.	पाली	1819201	36	
4.	चुरू	1922908	38	20.	अजमेर	2180526	44	
5.	<u> झ</u> ुंझुनू	1913099	38	21.	टोंक	1211343	24	
6.	अलवर	2990862	60	22.	बूंदी	961269	19	
7.	भरतपुर	2098323	42	23.	भीलवाडा	2009516	40	
8.	धौलपुर	982815	20	24.	राजसमन्द	986269	20	
9.	करौली	1205631	24	25.	उदयपुर	2632210	53	
10.	सवाईमाधोपुर	1116031	22	26.	दूंगरपुर	1107037	22	
11.	दौसा	1316790	26	27.	बांसवाडा	1500420	30	
12.	जयपुर	5252388	101	28.	चित्तौडगढ	1802656	36	
13.	सीकर	2287229	46	29.	बाडमेर	1963758	36	
14.	नागौर	2773894	54	30.	कोटा	1568580	31	
15.	जोधपुर	2880777	57	31.	बारां	1022568	20	
16.	जैसलमेर	507999	10	32.	झालावाट	1180342	24	
	मापक : 1 बिन्दु = 50,000 व्यक्ति							

सारणी 1.2 : राजस्थान जनसंख्या वितरण 2001 (उदाहरण)

इन आंकड़ों को देखने से स्पष्ट है कि जनसंख्या का उच्चतम घनत्व पश्चिमी बंगाल में 903 व्यक्ति प्रति वर्ग किमी. तथा निम्नतम घनत्व अरूणाचल प्रदेश में 13 व्यक्ति प्रति वर्ग किमी. है। वर्णमात्री विधि से मानचित्र बनाने के लिए इन राज्यों को घनत्व के अनुसार अवरोही क्रम में जमाया गया है।यदि हम कुल पांच वर्गों में इन्हें विभाजित करें तो पहला 101 से कम जनसंख्या, दूसरा 101 से 200, तीसरा 201 से 300, चौथा 300 से 400 एवं पांचवा 400 से अधिक घनत्व वाले राज्यों के बनेंगें। निम्नतम घनत्व के लिये छाया का चयन करते समय यह ध्यान में रखा जायगा कि उससे कम मूल्य प्रदर्शित हो, उच्चतम घनत्व वाले राज्यों में जनघनत्व को प्रदर्शित करने वाली छाया अपेक्षाकृत अधिक गहरी या अधिक मूल्य को दर्शाने वाली होगी।

(3) बिन्दु विधि : वितरण मानचित्र बनाने की इस विधि में किसी वस्तु के वितरण के घनत्व को समान आकार व आवृति वाले बिन्दुओं के माध्यम से दर्शाया जाता है। वास्तव में कोई भी बिन्दु मानचित्र एक ऐसा वर्ण प्रतीकी मानचित्र है जिसमें एक ही प्रतीक अर्थात बिन्दु की पुनरावृत्ति होती है। इस मानचित्र में बिन्दुओं की कुल संख्या और प्रदर्शित मात्रा के मध्य निरपेक्ष अनुपात होता है। बिन्दु मानचित्र बनाने के लिए आंकड़ों की उच्चतम एवं न्यूनतम संख्या को ध्यान में रखकर एक बिन्दु का मान निर्धारित किया जाता है जैसे 1 बिन्दु = 5000 व्यक्ति, 1 बिन्दु = 1000 पशु आदि। इसके पश्चात् प्रत्येक प्रशासनिक इकाई जिसके अनुसार आंकड़े हैं उसी के अनुरूप सम्पूर्ण संख्या या मात्रा को प्रकट करने वाले बिन्दुओं की संख्या ज्ञात की जाती है। इसके बाद निर्धारित इकाई में निर्धारित संख्या के बिन्दुओं का अंकन किया जाता है।

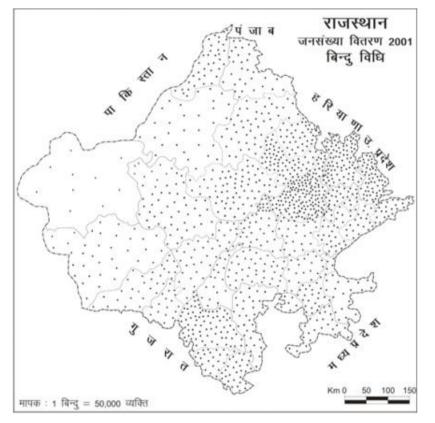
इस विधि को जनसंख्या, पशु, फसलों के प्रकार आदि के वितरण को दर्शाने के लिए प्रयोग में लेते हैं। चुनी हुयी मापनी के अनुसार एक ही आकार के बिन्दु वितरण प्रतिरूपों को दर्शाने के लिए दी हुयी प्रशासनिक इकाईयों पर अंकित किए जाते है। बिन्दु मानचित्र हेतु निम्न आवश्यकताएं रहती है।

 (अ) दिये हुए क्षेत्र का प्रशासनिक मानचित्र जिसमें राज्य / जिला / खंड की सीमाऐं दिखाई गई हो।

 (ब) चुनी हुयी प्रशासनिक इकाई के लिए चुने हुए विषय जैसे कुल जनसंख्या, पशु आदि के सांख्यिकीय आंकड़े।

(स) एक बिन्दु के मान को निश्चित करने के लिए मापनी का चुनाव।

(द) प्रदेश में भू–आकृतिक मानचित्र विशेषकर उच्चावच ओर जल प्रवाह मानचित्र।


इस विधि में दो बातों का ध्यान रखना जरूरी होता है –

(अ) विभिन्न प्रशानिक इकाईयों की सीमाओं को सीमांकित करने वाली रेखायें अत्यधिक घनी एवं मोटी न हो।

(10)

(ब) प्रत्येक बिन्दु का आकार समान होना चाहिए।

उदाहरण के लिए सन् 2001 की राजस्थान की जनसंख्या को बिन्दु मानचित्र 1.8 द्वारा प्रदर्शित किया गया है।

मानचित्र 1.8

(4) आरेखी विधि : इस विधि में आधार मानचित्र पर किसी वस्तु के वितरण को आरेख या आलेख बना कर प्रदर्शित किया जाता है। आरेखों व आलेखों के कई प्रकार है। लगभग प्रत्येक प्रकार के आरेख या आलेख को मानचित्र पर बनाया जा सकता है।

विषयक मानचित्र

प्रत्येक मानचित्र का कोई निश्चित उद्देश्य होता है। मानचित्रों के द्वारा अनेक

विषयों से सम्बन्धित तथ्यों का प्रदर्शन किया जाता है। विषयक मानचित्र एक विशेष उद्देश्य या तथ्य को ध्यान में रख कर बनाये जाते हैं। ये मानचित्र एक विषय विशेष एवं क्षेत्र या स्थान विशेष पर आधारित होते हैं।

एक विषयक मानचित्र सामान्य मानचित्रों से भिन्न होते हैं। भू–तल पर अनेक प्रकार की भौतिक, सामाजिक, आर्थिक, सांस्कृतिक एवं राजनैतिक विविधताएँ है। हम विषयक मानचित्रों द्वारा एक निश्चित क्षेत्र में एक निश्चित विषय को लेकर उनका निरूपण कर सकते हैं। जैसे– इतिहास विषयक मानचित्रों में हर्षवर्धन का साम्राज्य, सम्राट अशोक का साम्राज्य आदि।

प्रादेशिक वितरणों के प्रतिरूपों को समझने के लिए भी विविध मानचित्र बनाए जाते हें। ये मानचित्र वितरण मानचित्र कहलाते हैं जिनका विवरण दिया जा चुका है। सामान्यतः पृथ्वी तल पर पाये जाने वाले प्राकृतिक एवं सांस्कृतिक वातावरण की आर्थिक, सामाजिक व सांस्कृतिक दशाओं के एक तत्व का एक क्षेत्र विशेष में वितरण प्रदर्शित करने वाले मानचित्रों को विषयक (थिमेटिक) मानचित्र कहते हैं। ये गुणात्मक एवं मात्रात्मक दोनों प्रकार की विधियों से बनाए जा सकते हैं। इन मानचित्रों की विषयवस्तु असीमित होती है। फिर भी कुछ विषयक मानचित्रों के प्रकार निम्न हो सकते हैं (रेखाचित्र 1.4)।

(11)

मानचित्र 1.9 : विषयक मानचित्र

विषयक मानचित्रों में किसी एक तत्व की स्थानिक भिन्नता, वितरण उत्पादन, घनत्व को प्रदर्शित किया जाता है।

- सभी थिमेटिक मानचित्र मापनी आधारित होते हैं।
- कुछ मानचित्रों में वितरण दर्शाना है के लिए आंकड़ों व सूचनाओं के वर्गीकरण की आवश्यकता रहती है।
- इनकी रचना बहुत सावधानीपूर्वक की जाती है, जिसमें क्षेत्र का नाम, विषय का शीर्षक, आंकड़ों का वर्ष, संकेत चिन्ह, मापक जैसे घटक महत्वपूर्ण होते हैं।
- (12)

- विषयक मानचित्र बनाने के लिए उपयुक्त विधि का चयन सबसे महत्वपूर्ण होता है।
- विषयक मानचित्र के शीर्षक को देखने मात्र से उसका अर्थ स्पष्ट हो जाता है।
 उदाहरण के लिए राजस्थान के मानचित्र में मृदा वितरण को दर्शाया गया है, यह एक विषयक मानचित्र है।

मानचित्रांकन

मानचित्रांकला का सर्वाधिक विकास आधुनिक काल में हुआ है। मानचित्रों की मांग में वृद्धि, मानचित्रण की नवीन तकनीकों के कारण मानचित्रों का उपयोग एवं महत्व बढ़ता जा रहा हैं भूगोल की समस्त विषय—वस्तु को समझने व समझाने में मानचित्रों की महत्वपूर्ण भूमिका है। अतः भूगोल के विद्यार्थी के लिए मानचित्रांकन उसकी समस्त प्रक्रिया को समझना आवश्यक है।

वर्तमान में मानचित्रों के बनाने की प्रक्रिया में सर्वेक्षण से लेकर मानचित्रों के छप कर तैयार होने तक इतनी अधिक तकनीकें काम में आने लगी हैं कि मानचित्रांकन की तीन शाखाएं बन गयी है (अ) सर्वेक्षण, (ब) मानचित्रांकन या मानचित्रण, (स) मानचित्रों का मुद्रण व पुनरूत्पादन।

(अ) सर्वेक्षण

सर्वेक्षण के उपकरणों की सहायता से धरातल पर मापी गई क्षैतिज दूरियों, कोणों व ऊँचाइयों को किसी निश्चित विधि के अनुसार लघु मापक पर मानचित्र के रूप में प्रस्तुत करना सर्वेक्षण कहलाता है। सर्वेक्षण में तीन कार्य (अ) क्षेत्र अध्ययन, (ब) अभिकलन, (स) मानचित्रण सम्मिलित होते हैं। यह एक श्रमसाध्य कार्य है जिसमें कई प्रकार के उपकरण प्रयुक्त होते हैं जैसे– जरीब, फीता, समपटल, प्रिज्म कम्पास, आदि।

(ब) मानचित्रांकन

किसी भी मानचित्र के निर्माण या बनाने का समस्त कार्य छः चरणों में पूरा होता है। इन सबको समझना आवश्यक है। इनका संक्षिप्त विवरण इस प्रकार है–

 मापनी का चयन : प्रत्येक मानचित्र हमेशा किसी पूर्व निश्चित मापनी के आधार पर बनाया जाता है। मापक द्वारा मानचित्र में प्रदर्शित सभी स्थानों के मध्य वास्तविक दूरियों का सही ज्ञान होता है। इसके अभाव में मानचित्र अशुद्ध

2

रहेगा ।

- प्रक्षेप का चयन : गोलाकार पृथ्वी के किसी भाग का समतल सतह पर मानचित्र बनाने के लिए प्रक्षेप की आवश्यकता होती है। उदाहरण के लिए– ध्रुवीय प्रदेशों के लिए खमध्य प्रक्षेप, मध्य अक्षाशों के लिए शक्वांकार प्रक्षेप, भूमध्य रेखीय प्रदेशों के लिए बेलनाकार प्रक्षेप का प्रयोग होता है।
- मानचित्र संकलन : इसमें किसी क्षेत्र का रूपरेखा मानचित्र बनाकर आधार आंकड़ों का चयन एवं आंकड़ों का प्रदर्शन सम्मिलित होता है।
- मानचित्र संघटन : इसके अन्तर्गत मानचित्र का शीर्षक क्षेत्र का नाम, विषय—वस्तु, संकेत चिन्ह, मानचित्र का चोखटा, अक्षांश—देशान्तर रेखाएँ, दिशा आदि का प्रदर्शन सम्मिलित है।
- अक्षर लेखन : अक्षरों का प्रकार, आकार, लेखन–विधि, लेखन शैली, अक्षरों का स्थान आदि कार्य आते हैं।
- मानचित्र आरेखन : पहले पेन्सिल से मानचित्र की बाहरी सीमाएँ, तटरेखाएँ, नदियाँ, झीलें, रेलमार्ग, सड़क मार्ग, नगरों की सही–सही स्थितियां बनाने के बाद स्याही से पक्का किया जाता है।

(स) मानचित्रों का मुद्रण व पुनरूत्पादन।

प्राचीन समय में मुद्रण विधियों का ज्ञान न होने के कारण आवश्यकता होने पर किसी मानचित्र की प्रतियाँ हाथ से तैयार की जाती थी, जो एक कठिन कार्य था। 14वीं शताब्दी में ताम्बे की प्लेटों पर नक्काशी विधि का आविष्कार हुआ, जिससे मानचित्रों का पुर्नउत्पादन का कार्य कुछ सरल हो गया। 19वीं शताब्दी के आरम्भ तक इस विधि का प्रयोग होता रहा, बाद में फोटो उत्कीर्ण, मोम नक्काशी एवं लिथो विधियों का आविष्कार हुआ।

अभ्यास प्रश्न

1. मानचित्र की कोई दो परिभाषा लिखिए।

- 3. गुणात्मक मानचित्र बनाने की विधियाँ कौनसी है?

4. वर्ण प्रतिकी विधि के प्रतिकों को बताइए

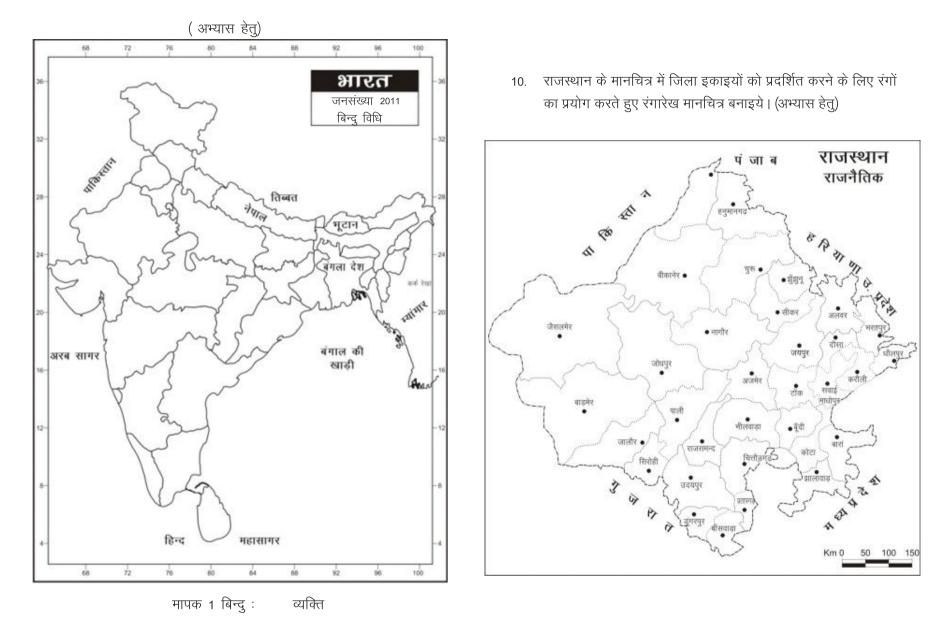
5. सममान रेखा विधि को समझाइए।

(13)

एक बिन्दु विधि द्वारा मानचित्र बनाइये। (अभ्यास हेतु)

6. विषयक मानचित्र क्या है?

 विषयक (थिमैटिक) मानचित्र की रचना हेतु ध्यान रखने योग्य तथ्य कौन–कौनसे हैं?


क्र.सं.	राज्य	जनसंख्या (व्यक्ति)	बिन्दुओं की संख्या	क्र.सं.	राज्य	जनसंख्या	बिन्दुओं की संख्या
1	जम्मू और कश्मीर	12541302		15	मेघालय	2966889	
2	हिमाचल प्रदेश	6864602		16	आसाम	31205576	
3	पंजाब	27743338		17	पं. बंगाल	91276115	
4	उत्तराखण्ड	10086292		18	झारखंड	32988134	
5	हरियाणा	25351462		19	उडीसा	41974218	
6	राजस्थान	68548437		20	छत्तीसगढ	25545198	
7	उत्तरप्रदेश	199812341		21	मध्यप्रदेश	72626809	
8	बिहार	104099452		22	गुजरात	60439692	
9	सिविकम	610577		23	महाराष्ट्र	112374333	
10	अरूणाचल प्रदेश	1383727		24	आन्धप्रदेश	84580777	
11	नागालँड	1978502		25	कर्नाटका	61095297	
12	मणिपुर	2570390		26	गोवा	1458545	
13	मिजोरम	1097206		27	केरल	33406061	
14	त्रिपुरा	3673917		28	तमिलनाडू	72147030	

भारत की जनसंख्या 2011 के अनुसार

8. मानचित्रों की रचना के लिए कौन–कौनसी मात्रात्मक विधियाँ अपनाई जाती है?

9. निम्नलिखित आंकडों के आधार पर भारत में जनसंख्या वितरण दर्शाने के लिए

(14)

(15)

					9119-2011		
क्र.सं.	जिला	जन	श्रेणी /	क्र.सं.	जिला	जन घनत्व	श्रेणी /
		घनत्व	वर्ग				वर्ग
1	श्रीगंगानगर	179		18	जालौर	172	
2	हनुमानगढ	184		19	सिरोही	202	
3	बीकानेर	78		20	पाली	164	
4	चूरू	147		21	अजमेर	305	
5	झुंझुनू	361		22	टोंक	198	
6	अलवर	438		23	बूंदी	192	
7	भरतपुर	503		24	भीलवाडा	230	
8	धौलपुर	398		25	राजसमंद	248	
9	करौली	264		26	डूंगरपुर	368	
10	सवाई	297		27	बाँसवाड़ा	397	
	माधोपुर						
11	दौसा	476		28	चित्तौडगढ	197	
12	जयपुर	595		29	कोटा	374	
13	सीकर	346		30	बारां	175	
14	नागौर	187		31	झालावाड	227	
15	जोधपुर	161		32	उदयपुर	262	
16	जैसलमेर	17		33	प्रतापगढ़	195	
17	बाड़मेर	92					

राजस्थान जनसंख्या घनत्व–2011

 निम्नलिखित आंकडों की सहायता से राजस्थान के जनसंख्या घनत्व को दर्शाने लिए एक वर्णमात्री मानचित्र बनाइये। (अभ्यास हेतु)

(16)

अध्याय 2 ऑकड़ों का एकत्रीकरण एवं विश्लेषण (Collection of Data and Analysis)

परिचय

पूर्व निर्धारित उद्देश्य की पूर्ति हेतु सुव्यवस्थित ढ़ंग से संग्रह कर गणितीय रूप में प्रदर्शित संख्याओं को हम आँकड़े कहते हैं। आँकड़ों के व्यवस्थित संकलन, वर्गीकरण एवं विश्लेषण के माध्यम से किसी भी विषय का अध्ययन करना एक नवीन वृत्ति बन चुका है। सांख्यिकीय आँकड़ों के विश्लेषण के माध्यम से किया गया अध्ययन वैज्ञानिक भी होता है और यथार्थ के निकट भी। इसी कारण वर्तमान में अधिकांश विज्ञान व मानविकी विषयों में सांख्यिकीय विश्लेषण की प्रवृत्ति बढ़ी है। भूगोल विषय भी इससे अछूता नहीं रहा है। बीसवीं सदी के पूर्वार्द्ध से ही भूगोल में मात्रात्मक क्रान्ति आयी परिणामत, गुणात्मक के साथ—साथ मात्रात्मक भूगोल का भी तीव्र विकास हुआ। प्रस्तुत अध्याय में हम आँकड़ों के प्रकार, स्त्रोत, संग्रहण व विश्लेषण का अध्ययन करेंगे।

आँकड़ों के प्रकार एवं स्त्रोत

आँकड़ों को उनकी प्राप्ति एवं स्त्रोत के आधार पर (अ) प्राथमिक एवं (ब) द्वितीयक वर्गों में विभाजित किया जाता है।

(अ) प्राथमिक आँकड़े – ऐसे आँकड़े जो अनुसंधानकर्ता व्यक्ति/संस्था द्वारा प्रथम बार संग्रहीत किये जाते हैं, प्राथमिक आँकड़े कहलाते हैं। ऐसे आँकड़े जो पहले से प्रकाशित अथवा अप्रकाशित रूप में विद्यमान नहीं होते अपितु सर्वेक्षण के विभिन्न माध्यमों द्वारा पहली बार प्राप्त किये जाते हैं, प्राथमिक आँकड़े कहलाते हैं। ये आँकड़े व्यक्तिगत प्रेक्षण, साक्षात्कार, प्रश्नावली के माध्यम से प्राप्त किये जाते हैं। प्राथमिक आँकड़ों को निम्न विधियों द्वारा प्राप्त करते हैं –

(i) व्यक्तिगत प्रेक्षण – संग्रहकर्त्ता के द्वारा स्वयं क्षेत्र में भ्रमण करके तथ्यों की

जानकारी प्राप्त की जाती है। इस प्रकार के प्रेक्षण मुख्यतया उच्चावच, मिट्टियाँ, प्राकृतिक वनस्पति, भूगर्भीय संरचना तथा सांस्कृतिक स्वरूप यथा अधिवास जैसे तथ्यों के लिये किये जाते हैं। व्यक्तिगत प्रेक्षण के द्वारा व्यावहारिक जानकारी प्राप्त होती है।

(ii) गहन साक्षात्कार – इस विधि के अन्तर्गत अनुसंधानकर्ता, सूचनादाता से व्यक्तिगत सम्पर्क स्थापित कर वार्तालाप के द्वारा किसी भी विषय से सम्बन्धित जानकारी / आँकड़े प्राप्त करता है। इस विधि में प्रश्नावली का प्रयोग नहीं होता। बात में से बात निकालते हुये गहन तथ्य प्राप्त किये जाते हैं।

(iii) प्रश्नावली — इस विधि में अध्ययनकर्ता शोध विषय से सम्बन्धित एक प्रश्नावली तैयार कर प्रश्नावली के माध्यम से आँकड़ों का संग्रह करता है। प्रश्नावली के साथ व्यक्तिगत सम्पर्क से भी और डाक द्वारा भी सूचनादाता से सम्पर्क कर जानकारी प्राप्त की जा सकती है।

(ब) द्वितीयक आँकड़े – ऐसे आँकड़े जिनका संग्रहण अनुसंधानकर्ता या संस्था स्वयं न करके प्रकाशित या अप्रकाशित स्त्रोत यथा सरकारी, गैर–सरकारी प्रशासन, निजी प्रशासन, पत्र–पत्रिकाओं, निजी अभिलेख के माध्यम से प्राप्त करता है, द्वितीयक आँकड़े कहलाते हैं। द्वितीयक आँकड़े प्रकाशित या अप्रकाशित स्त्रोत से प्राप्त होते हैं। प्रकाशित स्त्रोत में अन्तर्राष्ट्रीय, सरकारी, अर्द्धसरकारी निजी प्रकाशन आते हैं जबकि अप्रकाशित स्त्रोत में विभिन्न सरकारी व निजी अभिलेख आते हैं वे निम्न है–

(i) प्रकाशित स्त्रोत – इसके अन्तर्गत अन्तर्राष्ट्रीय, राष्ट्रीय अथवा स्थानीय स्तर पर प्रकाशित होने वाले सांख्यिकीय प्रतिवेदन, सांख्यिकीय सारांश एवं पुस्तकें आते हैं। (क) अन्तर्राष्ट्रीय प्रकाशन – संयुक्त राष्ट्र संघ के तत्वावधान में कार्यरत विभिन्न संस्थाएँ जैसे खाद्य एवं कृषि संगठन (FAO), अंतर्राष्ट्रीय श्रम कार्यालय (ILO), विश्व

(17)

स्वास्थ्य संगठन (WHO), अंतर्राष्ट्रीय मुद्रा कोष (IMF), संयुक्त राष्ट्र संघ जनसंख्या गतिविधि (UNFPA), विभिन्न देशों से प्राप्त आँकड़ों को समय–समय पर प्रकाशित करती है। दी यू.एन. स्टेटिस्टीकल इयर बुक' (The U.N. Statistical Year Book) इसी का एक उदाहरण है।

(ख) राष्ट्रीय प्रकाशन – केन्द्र व राज्य सरकारों के विभिन्न विभागों द्वारा प्रकाशित प्रतिवेदन, बुलेटिन इसके अन्तर्गत आते हैं। भारत की जनगणना से सम्बन्धित प्रकाशन, आर्थिक प्रगति को दर्शाने वाले आर्थिक सर्वेक्षण, आर्थिक समीक्षा आदि इसके उदाहरण हैं।

(ग) स्थानीय प्रकाशन – महानगरों के नगर निगम, नगरों की नगर परिषद्, नगर पालिकाओं, जिला परिषद् एवं इसी प्रकार के अन्य स्थानीय निकायों द्वारा प्रकाशित प्रतिवेदन, बुलेटिन इसके अन्तर्गत आते हैं।

(घ) निजी प्रकाशन – अनुसंधानकर्त्ता / संस्थाएँ अनेक बार अपने द्वारा एकत्रित प्राथमिक आँकड़ों को शोध प्रबन्ध / पुस्तक / शोधपत्र के रूप में प्रकाशित कर देते हैं, यहीं आँकड़ें अन्य अनुसंधानकर्ताओं द्वारा उपयोग करने पर द्वितीयक आँकड़े कहलाते हैं।

 (ii) अप्रकाशित स्त्रोत – अप्रकाशित स्त्रोतों के अन्तर्गत सरकारी व निजी अभिलेख, अप्रकाशित शोध प्रबन्ध आते हैं।

(क) सरकारी अभिलेख : केन्द्र व राज्य सरकारों के विभिन्न विभागों द्वारा प्रकाशित आँकड़े अभिलेख के रूप में भी उपलब्ध होते हैं।

(ख) निजी अभिलेख – विभिन्न कम्पनियों, व्यापार संघों एवं व्यापारियों के निजी उपयोग के लेखे इसके अन्तर्गत आते हैं।

सांख्यिकीय विधियाँ

सांख्यिकी शब्द का प्रयोग दो अर्थों में होता है, एक सांख्यिकी आंकड़ें जिन्हें समंक भी कहते हैं तथा सांख्यिकी विज्ञान।

आंकड़ें अनेक प्रकार के हो सकते हैं जैसे भूमि उपयोग के आंकड़े, किसी फसल या वस्तु के उत्पादन, उपभोग, वितरण एवं आयात–निर्यात के आंकड़े, जनसंख्या के आंकड़े, जलवायु सम्बन्धी आंकड़े, राष्ट्रीय आय व बजट से सम्बन्धित आंकड़े आदि–आदि। वास्तव में किसी एक तथ्य से सम्बन्धित संख्या आंकड़े नहीं कहलाती है, क्योंकि आंकड़े कहलाने वाले अंक किसी एक तथ्य से सम्बन्धित न होकर बहुत से तथ्यों से सम्बन्धित होते हैं तथा वे परस्पर तुलना के योग्य होते हैं। सांख्यिकीय विज्ञान में आंकड़ों के संकलन, वर्गीकरण, प्रस्तुतीकरण, तुलना, विश्लेषण एवं व्याख्या से सम्बन्धित सांख्यिकीय विधियों का अध्ययन किया जाता है। इस अध्याय में आंकड़ों का संकलन, वर्गीकरण एवं विश्लेषण से सम्बन्धित कुछ महत्वपूर्ण सांख्यिकीय विधियों का वर्णन आगे किया गया है।

सांख्यिकीय श्रेणीयाँ

आँकड़ों के व्यवस्थित क्रम को ही सांख्यिकीय श्रेणी या समंकमाला कहा जाता है। दिये गये आंकड़ों की तुलना करने या सांख्यिकीय विश्लेषण के द्वारा उनसे कोई निष्कर्ष प्राप्त करने के लिये समंकमाला बनाना आवश्यक होता है इन्हें सांख्यिकीय श्रेणियाँ भी कहते हैं इन श्रेणियों को निम्नानुसार विभाजित जाता है –

(1) गुण धर्म के अनुसार

(i) काल श्रेणी – समय के आधार पर आँकड़ों का व्यवस्थित क्रम काल श्रेणी कहलाता है।

(ii) स्थानिक श्रेणी – भौगोलिक अवस्थिति के आधार पर व्यवस्थित आँकड़ों की श्रेणी स्थानिक श्रेणी कहलाती है।

(iii) परिस्थिति श्रेणी – आँकड़ों की श्रेणी का निर्माण परिस्थिति के अनुसार हो तो ऐसी श्रेणी परिस्थिति श्रेणी कहलाती है। जैसे– आयु, व्यवसाय के अनुसार जनसंख्या।

(2) रचना विधि के अनुसार

(i) व्यक्तिगत श्रेणी – प्रत्येक इकाई से प्राप्त तथ्यों को उसी रूप में प्रदर्शित किया जाता है तो ऐसी श्रेणी व्यक्तिगत श्रेणी कहलाती है। इसमें प्रत्येक इकाई को व्यक्तिगत मूल्य दिया जाता है। उदाहरणार्थ कक्षा के प्रत्येक विद्यार्थी द्वारा प्राप्त प्राप्तांक, विभिन्न गाँवों का क्षेत्रफल।

(ii) खण्डित श्रेणी – खण्डित श्रेणी में मूल्य विभिन्न खण्ड़ों में प्रस्तुत किये जाते हैं अर्थात् यदि किन्हीं आँकड़ों में पुनरावृत्ति हो रही है तो बार–बार लिखने के स्थान पर

(18)

एक ही बार लिख दिया जाता है, साथ ही समंक जितनी बार आता है उसे आवृत्ति के रूप में लिख दिया जाता है इसे ही खण्डित श्रेणी कहते हैं। उदाहरणार्थ एक कक्षा में 7 अंक लाने वाले 12 विद्यार्थी हैं तो मूल रूप में 7 एवं आवृत्ति के रूप में 12 लिख दिया जाता है।

(iii) सतत (अखण्डित) श्रेणी – विभिन्न पदों के चर मूल्यों में एक निरन्तरता मिले, ऐसी श्रेणी को सतत श्रेणी कहा जाता है, इन चर मूल्यों को वर्गों में रखते हैं। वर्ग में सम्मिलित इकाईयों की संख्या को आवृत्ति के रूप में लिख देते हैं। उदाहरण के लिये

प्राप्तांक	विद्यार्थी
30-60	12
60-90	6

यहाँ प्राप्तांक वर्ग है और विद्यार्थियों की संख्या आवृत्ति

(iv) केन्द्रीय प्रवृति की माप – समंक माला (आँकड़ों की श्रेणी) की केन्द्रीय प्रवृत्ति को दर्शाने वाला मूल्य माध्य कहलाता है। यह मूल्य उस श्रेणी का प्रतिनिधित्व करता है। समानतर माध्य, मध्यका, बहुलक (भूयिष्ठक) इसके उदाहरण हैं।

बहुलक या भूयिष्ठक (Mode)

बहुलक किसी श्रेणी का वह मूल्य होता है जो समंकमाला में सबसे अधिक बार आता हो अर्थात् जिसकी आवृत्ति सबसे अधिक हो एवं जहाँ आवृत्तियों का सर्वाधिक जमाव हो। इस प्रकार बहुलक समंकमाला का सर्वाधिक सामान्य मूल्य होता है। यदि सांख्यिकीय श्रेणी में केवल एक बहुलक हो तो उसे एकल—बहुलक (Uni Mode) श्रेणी, 2 बहुलक होने पर द्विबहुलक (Bio Mode) श्रेणी एवं 2 से अधिक होने पर बहु—बहुलक (Multi-Mode) श्रेणी कहलायेगी। सांख्यिकी विज्ञान में इसे 'Z' अक्षर से व्यक्त करते हैं।

बहुलक का निर्धारण

(1) व्यक्तिगत श्रेणी में बहुलक का निर्धारण– व्यक्तिगत श्रेणी में बहुलक निम्न विधियों द्वारा निकाला जाता है–

(i) निरीक्षण द्वारा बहुलक का निर्धारण– बहुलक ज्ञात करने के लिए इस विधि में

मूल्यों को आरोही या अवरोही क्रम में व्यवस्थित करने पर जो मूल्य सबसे अधिक बार आयेगा, वहीं बहुलक कहलायेगा।

उदाहरणः निम्न पद मूल्यों से बहुलक ज्ञात कीजिए—

4, 6, 5, 8, 5, 4, 5, 6, 7, 2, 3, 8, 5, 7, 5, 2, 4, 5, 6, 9

बहुलक ज्ञात करने के लिए पद मूल्यों को एक क्रम में इस प्रकार रखा जाता है–

2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9

पद मूल्यों को एक क्रम से जमाने के बाद निरीक्षण से ज्ञात होता है कि 5 अंक सबसे अधिक बार आया है, अतः इन पद मूल्यों का बहुलक 5 होगा।

(ii) खण्डित श्रेणी में बदलकर – जब व्यक्तिगत श्रेणी में मूल्यों की संख्या अधिक हो तो उन्हें आरोही क्रम में रखकर उनकी आवृत्ति उनके सामने लिख दी जाती है। उसके बाद जिस मूल्य की आवृत्ति सबसे अधिक है उनका मूल्य बहुलक कहलाता है। उदाहरण– निम्न आँकडों की सहायता से बहुलक ज्ञात कीजिए

	पद मूल्य	2	3	4	5	6	7	8
Γ	आवृत्ति	2	2	3	6	3	2	2

निरीक्षण से स्पष्ट है कि सबसे अधिक आवृत्ति 6 बार हुई है जिसका पद—मूल्य 5 है, अतः यहाँ पद मूल्य 5 बहुलक होगा।

(2) खण्डित श्रेणी में बहुलक का निर्धारण –

(i) निरीक्षण विधि – यह रीति तब अपनाई जाती है जब खण्डित श्रेणी की आवृत्तियाँ नियमित हो, अर्थात् श्रेणी के आरम्भ से आवृत्तियाँ निरन्तर बढ़ती रहे, केन्द्र में अधिकतम तथा उसके बाद पुनः आवृत्तियाँ निरन्तर घटने लगे। ऐसी श्रेणी का मूल्य निरीक्षण द्वारा ज्ञात हो जाता है।

(ii) समूहन विधि – जब आवृत्तियों का क्रम अनियमित हो अथवा अधिकतम आवृत्तियाँ हो तो समूहन रीति का प्रयोग किया जाता है। इस विधि में आवृत्तियों के विभिन्न समूह बना लिये जाते हैं। तत्पश्चात् विश्लेषण सारणी बनाकर ज्ञात किया जाता है। समूहन के लिए 6 कालम की एक सारणी बनाई जाती है–

कॉलम 1 में उदाहरण में दी गई आवृत्तियों को यथावत् लिखा जाता है।

(19)

कॉलम 2 में आरम्भ से दो—दो आवृत्तियों के जोड़ लिखे जाते हैं।

कॉलम 3 में कॉलम 1 की सबसे पहली आवृत्ति को छोड़कर, दो—दो आवृत्तियों के जोड़ लिखे जाते हैं।

कॉलम 4 में कॉलम 1 की तीन—तीन आवृत्तियों के जोड़े लिखे जाते हैं।

कॉलम 5 में कॉलम 1 की प्रथम आवृत्ति को छोड़कर आगे की तीन–तीन आवृत्तियों के जोड़ लिखे जाते हैं।

कॉलम 6 में कॉलम 1 की प्रथम दो आवृत्तियों को छोड़कर तीन—तीन आवृत्तियों के जोड़ लिखे जाते हैं।

उदाहरण– निम्न आँकड़ों की सहायता से समूहन विधि द्वारा बहुलक का निर्धारण कीजिए।

वर्षा			अधिकतम आवृत्तियों की संख्या					
वषा (सेमी. में)	दिनों की संख्या (i)	(ii)	(iii)	(iv)	(v)	(vi)	ਟੇਜੀ	संख्या
22	1							&
23	2	3		10				&
24	7		9				Ι	1
25	9	16			18		ш	3
26	11		20	28		27	I INI	6
27	8	19			24		III	3
28	5		13			17	I	1
29	4	9						&

समूहन द्वारा बहुलक निर्धारण

आवृत्ति छः (6) सर्वाधिक है जिसका पद मूल्य 26 है। अतः बहुलक 26 सेमी. वर्षा होगा। ध्यान रहे कि बहुलक की गणना चाहे किसी भी रीति से की जाए उत्तर सदैव समान ही होगा। (3) अखण्डित या सतत् श्रेणी से बहुलक का निर्धारण – अखण्डित श्रेणी में बहुलक ज्ञात करने के लिए पहले निरीक्षण या समूहन रीति द्वारा बहुलक वर्ग निश्चित कर लिया जाता है। तत्पश्चात् बहुलक का मूल्य निर्धारित करने के लिए निम्न सूत्र का प्रयोग किया जाता है–

सूत्र –
$$Z = L_1 + \frac{f_1 - f_{\theta}}{2f_1 - f_0 - f_2} \times i$$

इस सूत्र में प्रयुक्त विभिन्न चिन्हों का अर्थ इस प्रकार है–

Z संकेत	=	बहुलक का मूल्य
Lıसंकेत	=	बहुलक वर्ग की निम्न सीमा
i संकेत	=	बहुलक वर्ग का वर्ग अन्तराल
\mathbf{f}_1 संकेत	=	बहुलक वर्ग की आवृत्ति
$\mathbf{f}_{_0}$ संकेत	=	बहुलक वर्ग के ठीक पहले आने वाली आवृत्ति
f_2 संकेत	=	बहुलक वर्ग के ठीक बाद आने वाली आवृत्ति
उदाहरण :	निम्न	आँकड़ों की सहायता से बहुलक परिकलित कीजिये।
निरीक्षण से	रे स्पष	ट है कि सबसे अधिक आवृत्ति 21 है, अतः बहुलक वर्ग 30–40

हुआ ।

प्राप्तांक	विद्यार्थी संख्या
10-20	9
20-30	13
30-40	21
40-50	20
50-60	15
60-70	8

$$Z = L_{1} + \frac{f_{1} - f_{\theta}}{2f_{1} - f_{0} - f_{2}} \times i$$

$$Z = 30 + \frac{21 - 13}{2 \times (21 - 13 - 20)} \times 10$$

(20)

$$Z = 30 + \frac{80}{9}$$

$$Z = 38.89$$

समूहन विधि द्वारा बहुलक निर्धारण

उदाहरणः निम्न सारणी में बहुलक ज्ञात कीजिये।

केन्द्रीय आकार	15	25	35	45	55	65	75	85
आवृत्तियाँ	5	9	13	21	20	15	8	3

हलः जब वर्ग—अन्तरालों के स्थान पर मध्य मूल्य दिये हो तो उनके अन्तर (10) को आधार करके (10 / 2) मध्य मूल्य में एक बार घटाते (15–5) तथा एक बार जोड़ते (15+5) है जिससे निम्न व ऊपरी सीमा प्राप्त हो जाती है।

पर्गान्तर कालर माप	दो–	चो के र	जोड़े	त्तीन-	तीन-तीन के जोड़े			आपृत्ति वाले र्ग
रोमी.	(i) (l)	(ii)	(iii)	(iv)	(v)	(vi)	निलान रेखाएँ	मिलान रेखाओं का योग
0 - 10	5	14						
10 - 20	9		22	27			I	1
20 - 30	13 f ₀	34			43		П	2
30 - 40	21 f _l		41	56		54	AUI	5
40 - 50	20 f ₂	35			43		лтí	5
50 - 60	15		23			26	111	3
60 - 70	8	11					1	1
70 - 80	3							

उपर्युक्त सारणी से यह ज्ञात होता है कि (30–40) तथा (40–50) दोनों वर्गों में अधिकतम मिलान रेखाएँ 5–5 आती है, अतः इन दोनों में से बहुलक–वर्ग छाँटने के लिए निम्न घनत्व परीक्षण का प्रयोग किया जायेगा।

वर्गान्तर	30-40	4050
बहुलक वर्ग की आवृत्ति (f1)	21	20
उससे पहले वर्ग की आवृत्ति (f ₀)	13	21
उसके बाद वाले वर्ग की आवृत्ति (f2)	20	15
योग	54	56

चूंकि 40–50 वर्गान्तर का योग सर्वाधिक है, अतः इसी वर्गान्तर को वास्तविक बहुलक वर्गान्तर माना जायेगा।

$$Z = L_1 + \frac{f_1 - f_{\theta}}{2f_1 - f_0 - f_2} \times i$$

= $40 + \frac{20 - 21}{(2 \times 20) - 21 - 15} \times 10$
= $40 + \frac{-1}{40 - 36} \times 10$
= $40 + \left(\frac{-1}{4}\right) \times 10$
= $40 + (-2.5)$
 $Z = 37.5$ कालर माप (सेमी में)

किन्तु 37.5, (40–50) वाले वर्ग के बाहर है अतः यह सही बहुलक नहीं है। अतः बहुलक मूल्य ज्ञात करने के लिए वैकल्पिक सूत्र (Alternative formula) का प्रयोग किया जायेगा।

$$Z = L_1 + \frac{f_2}{f_0 - f_2} \times i$$
$$= 40 + \frac{15}{21 + 15} \times 10$$

(21)

$$=40+\frac{15}{36}\times10$$

=40+4.166

Z = 44.166 कालरमाप (सेमी.)

मध्यका (Median)

किसी समंक श्रेणी को आरोही या अवरोही क्रम में व्यवस्थित करने के पश्चात् जो मूल्य श्रेणी के मध्य स्थित होता है, उसे श्रेणी का मध्यका मूल्य (Median value) कहते हैं। सांख्यिकी विज्ञान में इसे 'M' अक्षर से व्यक्त करते हैं। जैसे– एक कक्षा के 13 छात्रों को कद के अनुसार खड़ा किया जाये तो सातवें छात्र का कद मध्यका कहलायेगी।

मध्यका का निर्धारण : विभिन्न समंक मालाओं से मध्यका निकालने की विधियाँ इस प्रकार है–

(1) व्यक्तिगत श्रेणी में मध्यका की गणना – व्यक्तिगत श्रेणी में मध्यका की गणना के लिए निम्न प्रक्रिया अपनाई जाती है–

(i) मूल्यों को आरोही या अवरोही क्रम में व्यवस्थित कीजिये।

(ii) मूल्यों को क्रम संख्या प्रदान कीजिये।

(iii) व्यक्तिगत श्रेणी में मध्यका ज्ञात करने के लिए सूत्र का प्रयोग

$$M = \left(\frac{N+1}{2}\right)^{th} \text{ item or } M = \text{size of}\left(\frac{N+1}{2}\right)$$

वें पद का मान

इसमें, M = मध्यका मूल्य तथा N = पदों की संख्या

उदाहरणः निम्नांकित आँकड़ों से मध्यका मूल्य ज्ञात कीजिये – 25, 27, 33,

29, 25, 24, 23

(i) आरोही क्रम में निम्न प्रकार से इन मूल्यों का विन्यास किया जायेगा– 23,

24, 25, 25, 27, 29, 33

(ii) मूल्यों को क्रम संख्या प्रदान कीजिये—

हल : सूत्र के अनुसार –

क्रम संख्या	1	2	3	4	5	6	7	
आयु (वर्षो में)	23	24	25	25	27	29	33	N = 7

$$M = \left(\frac{N+1}{2}\right) \operatorname{ari} \operatorname{vq} = \left(\frac{7+1}{2}\right) \operatorname{ari} \operatorname{vq} = \frac{8}{2} \qquad M = 4 \quad \operatorname{ari} \operatorname{vq}$$

४ वें पद का मूल्य २५ है, अतः मध्यका २५ वर्ष आयु होगी।

उदाहरण : निम्न आँकड़ों की सहायता से मध्यका ज्ञात कीजिये– 10, 12, 24,

42, 29, 13, 18, 54, 48, 18

आरोही क्रम में रखने पर — 10, 12, 13, 18, 18, 24, 29, 42, 48, 54 हल : सूत्र के अनुसार

(2) खण्डित श्रेणी में मध्यका का निर्धारण : खण्डित श्रेणी में मध्यका ज्ञात करने के लिए निम्न प्रक्रिया अपनाई जाती है–

(i) मूल्यों को आरोही या अवरोही क्रम में व्यवस्थित करें ।
 (ii) आरोही या अवरोही श्रेणी से संचयी आवृत्ति (Cf) ज्ञात करें ।
 (iii) निम्नांकित सूत्र का प्रयोग करें–

M = size of
$$\left(\frac{N+1}{2}\right)^{th \text{ item}}$$

Downloaded from https:// www.studiestoday.com

(22)

$$or M = \left(\frac{N+1}{2}\right)^{\dot{d} \ vc}$$
 on subset

(iv) मध्यका की क्रम संख्या का मूल्य संचयी आवृत्ति की सहायता से ज्ञात कर लिया जाता है। जिस संचयी आवृत्ति में यह क्रम संख्या प्रथम बार सम्मिलित होती है, उसका मूल्य ही मध्यका मूल्य होता है।

उदाहरण : निम्न समंकश्रेणी में मध्यका मूल्य (Median) ज्ञात कीजिये ।

प्राप्तांक	28	30	32	34	36	38	40
विद्यार्थियों की संख्या	3	7	12	28	10	8	6

प्राप्तांक	विद्यार्थियों की संख्या (f)	संचयी आवृत्ति (cf)
28	3	3
30	7	10
32	12	22.
34	28	50
36	10	60
38	9	69
40	6	75
	$\sum \mathbf{f} = 75$	

$$\begin{split} \mathbf{M} = & \left(\frac{\mathbf{N}+1}{2}\right)^{\mathbf{\ddot{q}} \ \mathbf{q} \mathbf{c}} & \text{ का आका} \mathbf{v} \\ \mathbf{M} = & \left(\frac{75+1}{2}\right)^{\mathbf{\ddot{q}} \ \mathbf{q} \mathbf{c}} & \text{ an analysis} \\ \mathbf{M} = & \mathbf{38} \quad \mathbf{\ddot{q}} \ \mathbf{q} \mathbf{c} & \text{ an analysis} \\ \mathbf{M} = & \mathbf{34} \end{split}$$

 अतत् श्रेणी में मध्यका का निर्धारण – अविच्छिन्न समंकमाला में मध्यका का मूल्य निकालने के लिए निम्न प्रक्रिया अपनाई जाती है–

(i) सर्वप्रथम, संचयी आवृत्तियाँ ज्ञात की जाती है।

(ii) निम्न सूत्र द्वारा केन्द्रीय पद ज्ञात किया जाता है।

M = size of
$$\left(\frac{N}{2}\right)^{\text{th item}}$$
 or
मध्यका = $\left(\frac{N}{2}\right)^{\frac{1}{2}}$ पद का आकार

उपर्युक्त m के मान को cf में देखकर मध्यका वर्ग (Median class) का निर्धारण करते हैं । इसके पश्चात् निम्न सूत्र का प्रयोग कर मध्यका का निर्धारण किया जाएगा—

$$M = L_1 + \frac{i}{f}(m-c)\big)$$

इसमें–

- M मध्यका का मूल्य
- L1 मध्यका वर्ग की निम्न सीमा
- i मध्यका वर्ग का वर्ग—अन्तराल
- f मध्यका वर्ग की आवृत्ति
- m मध्यका संख्या
- c मध्यका वर्ग से ठीक पूर्व वाले संचयी आवृत्ति

उदाहरण : विद्यार्थियों के निम्नलिखित प्राप्तांकों की सहायता से मध्यका (Median) ज्ञात कीजिये।

(earan) and isner i		
	प्राप्तांक (x)	विद्यार्थियों की संख्या (f)	संचयी आवृत्ति (c.f.)
	10-20	15	15
	20-30	33	48
	30-40	63	111 C
	40-50	83 f	194
	50-60	100	294
		$\sum f = 294$	

(23)

हल :

$$m = \left(\frac{N}{2}\right)^{\text{th item}}$$
$$m = \frac{294}{2} = 147^{\text{ th item}}$$

१४७वां पद संचयी आवृत्ति १९४

147वां पद संचयी आवृत्ति 194 में प्रथम बार सम्मिलित हुआ है, जिसका वर्गान्तर 40–50 मध्यका वर्ग है, मध्यका मूल्य निश्चित करने के लिए निम्न सूत्र का प्रयोग होगा–

$$M = L_1 + \frac{1}{f}(m-c)$$

= 40 + $\frac{10}{83}(147 - 111)$
= 40 + $\frac{10}{83}(36)$
= 40 + 4.34
M = 44.34 Step

प्राप्ताकों की मध्य का मूल्य ४४.३७ अंक है।

समान्तर माध्य (Arithmatic Mean)

गणितीय माध्यों में सबसे अधिक महत्वपूर्ण और लोकप्रिय समान्तर माध्य है। समान्तर माध्य वह मूल्य है जो उस श्रेणी के सभी मूल्यों के योग को उनकी संख्या से भाग देने से प्राप्त होता है। सांख्यिकी विज्ञान में इसे X अक्षर से व्यक्त करते हैं। उदाहरण के रूप में 10 विद्यार्थियों के प्राप्तांक 25, 15, 20, 40, 30, 20, 15, 20, 30, 25 है तो उनका योग 240 होता है, उसमें 10 का भाग देने से प्राप्त मान 24 समान्तर माध्य कहलाता है।

समान्तर माध्य की विशेषताएं

 (i) समान्तर माध्य कुल पदों के मूल्यों के योग में पदों की संख्या का भाग देकर प्राप्त किया जाता है। (ii) इसमें समस्त पद मूल्यों को समान महत्व दिया जाता है।

(iii) इसमें पदों की आवृत्ति की तुलना में पद मूल्यों को अधिक महत्वपूर्ण समझा जाता है।

(iv) समान्तर माध्य ज्ञात करने के लिए प्रत्येक पद की गणना केवल एक बार ही की जाती है।

(v) समान्तर माध्य तथा पदों की संख्या ज्ञात होने पर दोनों के गुणा करने से कुल पदों का योग किया जा सकता है।

समान्तर माध्य का परिकलन : समान्तर माध्य ज्ञात करने की निम्न विधियाँ हैं–

(i) प्रत्यक्ष रीति द्वारा

(ii) लघु रीति द्वारा

(1) व्यक्तिगत श्रेणी में समान्तर माध्य की गणना : व्यक्तिगत श्रेणी में दो विधियों द्वारा समान्तर माध्य निकाला जाता है–

(i) प्रत्यक्ष रीति द्वारा : समंकमाला के समस्त पदों के मूल्यों को जोड़कर पदों की कुल संख्या से भाग देने पर प्राप्त मान समान्तर माध्य कहलाता है । इसके लिए निम्न सूत्र हैं–

$$\begin{split} \overline{X} &= \frac{X_1 + X_2 + X_3 \dots + X_n}{N} \\ \overline{X} &= \frac{\sum X}{N} \\ &= \overline{X} \\ &=$$

(24)

क्र.सं.	वर्षा (सेमी में)
1	165
2	163
3	178
4	172
5	174
6	176
7	190
8	175
9	167
10	170
N = 10	$\sum x = 1730$

(ii) लघु रीति : सर्वप्रथम समंक श्रेणी में से किसी एक पदमूल्य को कल्पित माध्य (लघु रीति से समान्तर माध्य ज्ञात करने के लिए निम्न प्रक्रिया अपनाई जाती है) माना जाता है।

(क) किसी श्रेणी के आँकड़ों को देखकर कल्पना से माध्य मान लेना कल्पित माध्य कहलाता है।

(ख) प्रत्येक व्यक्तिगत मूल्य (x) में से कल्पित माध्य (A) घटाकर विचलन ज्ञात कर लेना चाहिये | (dx = X – A)

(ग) विचलनों का योग निकाल लेना चाहिये (∑dx)

(घ) अन्त में निम्न सूत्र का प्रयोग किया जाता है–

$$\overline{X} = A + \left[\frac{\sum dx}{N}\right]$$

इसमें- X = समान्तर माध्य

A = कल्पित माध्य

dx = व्यक्तिगत मूल्य से विचलन

N = पदों की संख्या

i = अन्तराल

उदाहरण : उपरोक्त उदाहरण में लघु रीति द्वारा समान्तर माध्य ज्ञात कीजिये।

वर्षा स्टेशन	X (वर्षा सेमी में)	dx
A	165	- 5
В	163	- 7
С	178	+ 18
D	172	+ 02
E	174	+ 04
F	176	+ 06
G	190	+ 20
Н	175	+5
I	167	- 3
J	170	0
N = 7		$(\sum dx) = +45 - 15 = 30$

हल

$\overline{X} = A + \left[\frac{\sum dx}{N}\right]$
$=170 + \frac{30}{10}$
=170 + 3
$\overline{\mathbf{X}} = 173$ सेमी वर्षा

A = 170

(2) खण्डित श्रेणी में समान्तर माध्य की गणना :

 (i) प्रत्यक्ष रीति : प्रत्यक्ष रीति द्वारा खण्डित श्रेणी में समान्तर माध्य ज्ञात करने के लिए निम्न प्रक्रिया की जाती है–

(ii) सर्वप्रथम पद मूल्य (x) को आवृत्ति (f) से गुणा करते हैं | (fx)
(iii) सभी पदों के गुणनफल (fx) का योग करते हैं | (∑fx)
(iv) गुणनफल के योग (∑fx) में आवृत्तियों के योग (N) का भाग देते हैं | ∑fx

(25)

(v) इसके लिए निम्न सूत्र का प्रयोग किया जाता है–

सूत्र–
$$\overline{X} = \left(\frac{\sum fx}{N}\right)$$

X = समान्तर माध्य

N = आवृत्तियों का योग

 $\sum fx = पद मूल्यों और आवृत्तियों के गुणनफलों का योग$

उदाहरणः निम्नलिखित सारणी की सहायता से समान्तर माध्य ज्ञात कीजिए।

प्राप्तांक	8	9	10	11	12	13	14
ডার	4	5	9	20	18	8	6

हल

प्राप्तांक (x)	চ্চার (f)	मूल्यों व आवृत्तियों का गुणनफल (fx)
8	4	32
9	5	45
10	9	90
11	20	220
12	18	216
13	8	104
14	6	84

(ii) लघु रीति : खण्डित श्रेणी में लघु रीति द्वारा समान्तर माध्य ज्ञात करने के लिए
 निम्न प्रक्रिया की जाती है–

(क) पद मूल्यों में से किसी एक को कल्पित माध्य (A) मान लेते हैं।

(ख) पदमूल्यों में से कल्पित माध्य घटाकर विचलन ज्ञात करते हैं | (X-A) = dx

(ग) प्रत्येक विचलन (dx) को सम्बन्धित आवृत्ति (f) से गुणा करते हैं (∑fdx)।

(घ) गुणनफलों का योग (∑fdx) कर लेते हैं।

(य) अन्त में निम्न सूत्र का प्रयोग किया जाता है।

$$X = A + \frac{\sum f dx}{N}$$

उदाहरणः निम्नलिखित आँकड़ों की सहायता से समान्तर माध्य ज्ञात कीजिए।

प्राप्तांक	8	9	10	11	12	13	14
চ্চার	4	5	9	20	18	8	6
हल							

प्राप्तांक (x)	छात्रों की संख्या	A = 22	fdx
	(f)	dx (X-A)	
8	4	-3	-12
9	5	-2	-10
10	9	-1	-9
11	20	0	0
12	18	1	18
13	8	2	16
14	6	3	18

 $\overline{\mathbf{X}} = \left(\frac{\sum \mathbf{f} \mathbf{x}}{N}\right)$

 $\overline{X} = \frac{791}{70}$

X = 11.3 अंक होगा।

$$X = A + \frac{\sum f dx}{N}$$
$$X = 11 + \frac{21}{70}$$
$$X = 11.3 \quad \text{अंक होगा}$$

(26)

(3) सतत् श्रेणी में समान्तर माध्य की गणना : मध्य-मूल्य (x) को आवृत्तियों (f) से गुणा
 (fx) कर योग किया जाता है (∑fx)

गुणनफलों के योग (∑fx) में आवृत्तियों के योग (N) का भाग देते हैं।

इसके लिए निम्न सूत्र का प्रयोग किया जाता है–

$$X = \frac{\sum fx}{N}$$

उदाहरणः निम्न आँकड़ों की सहायता से समान्तर माध्य ज्ञात कीजिये।

जल की गहराई (मीटर)	5-15	15—25	25-35	35—45	45-55
कुओं की संख्या	5	9	15	10	6

हल :

जल की गहराई (मीटर में)	कुओं की संख्या (f)	मध्य मूल्य (x)	(fx)
5—15	5	10	50
15-25	9	20	180
25-35	15	30	450
35-45	10	40	400
45-55	6	50	300
	N = 45		$\sum fx = 1380$

$$X = \frac{\sum fx}{N}$$
$$X = \frac{1380}{45}$$
$$X = 30.67$$
मीटर

जल की गहराई का समान्तर माध्य 30.67 मीटर है।

(ii) लघु रीति :

(क) सर्वप्रथम वर्गान्तरों से मध्य मूल्य (x) निश्चित कर लिए जाते हैं।

(ख) मध्य मूल्यों में से किसी एक मूल्य को कल्पित माध्य (A) मान लेते हैं।

(ग) पद मूल्यों में से कल्पित माध्य (A) को घटाकर विचलन (dx) ज्ञात किया जाता है (X-A=dx) ।

(घ) घटाने से प्राप्त विचलन को (dx) आवृत्ति (f) से गुणा (fdx) करके गुणनफलों का योग (∑fdx) ज्ञात करते हैं।

(य) अन्त में निम्न सूत्र का प्रयोग करते हैं—

सूत्र –
$$\overline{X} = A + \left[\frac{\sum f dx}{N}\right]$$

उदाहरणः निम्न आँकड़ों के समान्तर माध्य की गणना कीजिए।

दैनिक मजदूरी (सं.)	3—5	6—8	9—11	12—14	15—17	18—20	21–23	24—26
श्रमिकों की संख्या	2	6	8	11	10	4	3	1

हल :

दैनिक मजदूरी (रूपयों में)	श्रमिकों की संख्या (f)	मध्य मूल्य (x)	विचलन dx(X-A) =16	fdx
3—5	2	4	-12	-24
6-8	6	7	-9	-54
9-11	8	10	-6	-48
12-14	11	13	-3	-33
15-17	10	16	0	0
18-20	4	19	+3	+12
21-23	3	22	+6	+18
24-26	1	25	+9	+9
	N = 45			∑fdx= - 159+39=-120

$$\overline{\mathbf{X}} = \mathbf{A} + \left[\frac{\sum \mathrm{fdx}}{\mathrm{N}}\right]$$
$$= 16 + \left[\frac{-120}{45}\right]$$
$$= 16 + [-2.67]$$
$$= 16 - 2.67$$

 $\overline{X} = 13.66$ में दैनिक मजदूरी

सह-सम्बन्ध (Correlation)

सांख्यिकी में सह—सम्बन्ध के अन्तर्गत यह ज्ञात किया जाता है कि दो या दो से अधिक समंक—श्रेणियों के चर—मूल्यों में कोई पारस्परिक सम्बन्ध है अथवा नहीं है और यदि कोई पारस्परिक सम्बंन्ध है तो उसकी दिशा व परिमाण क्या है। यदि दो समंक—श्रेणियों के चर—मूल्य स्वतन्त्र रूप से घटते बढ़ते हैं। यदि एक श्रेणी के चर—मूल्य का परिवर्तन दूसरी श्रेणी के चर—मूल्य को प्रभावित करता है तो वे दोनों

(28)

समंक–श्रेणियाँ सह–सम्बन्धित कही जाती है।

सह-सम्बन्ध दो प्रकार का होता है- (i) धनात्मक (positive) या प्रत्यक्ष सह-सम्बन्ध तथा (ii) ऋणात्मक (negative), विलोम (inverse) या अप्रत्यक्ष सह-सम्बन्ध। जब एक श्रेणी के चर-मूल्य में वृद्धि होने पर दूसरी श्रेणी के चर-मूल्य में भी वृद्धि होती है अथवा एक कमी आने पर दूसरे में भी कमी आती है तो चर-मूल्यों के इस सह-सम्बन्ध को धनात्मक कहा जायेगा। इसके विपरीत यदि वे चर-मूल्य इस प्रकार सम्बन्धित हैं कि एक चर-मूल्य में वृद्धि होने पर दूसरे चर-मूल्य में कमी होती है या एक चर-मूल्य में कमी होने पर दूसरे में वृद्धि होती है तो वे चर-मूल्य ऋणात्मक सह-सम्बंध वाले माने जायेंगे। धनात्मक व ऋणात्मक सह-सम्बंधों का अन्तर स्पष्ट करने के उद्देश्य से नीचे दो सारणियाँ दी गयी हैं।

धनात्मक सह–सम्बन्ध		ऋणात्मक सह–सम्बन्ध	
X श्रेणी	Y श्रेणी	X श्रेणी	Y श्रेणी
40	65	40	50
35	60	35	53
30	58	30	58
25	53	25	60
20	50	20	65

सह-सम्बन्ध के परिमाण को सह-सम्बन्ध गुणांक (coefficient of correlation) के द्वारा व्यक्त करते हैं। सह-सम्बन्ध होने पर इसका मान +1 तथा –1 के मध्य कोई भी मूल्य हो सकता है। सह-सम्बन्ध गुणांक का मान +1 होने की स्थिति में पूर्ण धनात्मक सह-सम्बन्ध (perfect positive correlation) तथा –1 होने की दशा में पूर्ण ऋणात्मक सह-सम्बन्ध (perfect negative correlation) माना जाता है।

सह—सम्बन्ध गुणांक के शाब्दिक विवेचन में 'उच्च', 'मध्यम' व 'निम्न' शब्दों का प्रयोग किया जाता है। उच्च स्तरीय धनात्मक सह—सम्बन्ध, मध्यम स्तरीय धनात्मक सह—सम्बन्ध तथा निम्न स्तरीय धनात्मक सह—सम्बन्ध उस दशा में कहे जाते हैं जब

सह—सम्बन्ध गुणांक का मान क्रमशः +0.75 से 1, +0.25 से +0+75 तथा 0 से अधिक व 0.25 से कम होता है। इसी प्रकार सह—सम्बन्ध गुणांक का मान –0.75 से –1, –0. 25 से –0.75 तथा 0 से –0.25 के मध्य होने की दशा में क्रमशः उच्च स्तरीय ऋणात्मक सह—सम्बन्ध, मध्यम स्तरीय ऋणात्मक सह—सम्बन्ध तथा निम्न स्तरीय ऋणात्मक सह—सम्बन्ध शब्दों का प्रयोग करते हैं।

(1) रिपयरमेन की कोटि-अन्तर विधि

(Spearman's rank difference method) स्पियरमेन नामक सांख्यिकी–विद् ने व्यक्तिगत समंक–श्रेणियों के विभिन्न पद–मूल्यों की कोटियों (rank) के आधार पर सह–सम्बन्ध गुणांक ज्ञात करने की एक सरल विधि प्रतिपादित की थी, जिसे उनके नाम पर स्पियरमेन की कोटि–अन्तर विधि कहते हैं। समंक–श्रेणी के विभिन्न पद–मूल्यों को, उनके आकार (size) या मान के अनुसार 1, 2, 3, 4, 5 आदि कोटियाँ प्रदान की जा सकती है। उदाहरणार्थ, यदि किसी समंक–श्रेणी में 10, 8, 3, 7 व 15 कोई पाँच पद–मूल्य हैं तो स्पष्ट है कि इन पद–मूल्यों की कोटियाँ क्रमशः 2, 3, 5, 4 व 1 होगी। स्पियरमेन की विधि के अनुसार निम्न प्रकार कोटि सह–सम्बन्ध गुणांक ज्ञात करते हैं :–

(i) सर्वप्रथम प्रत्येक समंक—श्रेणी के विभिन्न पद—मूल्यों को उनके आकार के अनुसार कोटियाँ (ranks) देते हैं।

(ii) X तथा Y श्रेणियों के तत्सम्बन्धी पद—मूल्यों को कोटियों का अन्तर (D) ज्ञात करते हैं। इसके लिये X श्रेणी की कोटि में तत्सम्बन्धी मूल्य की Y श्रेणी में लिखी कोटि को घटाया जाता है, अर्थात्

D=(X श्रेणी में कोटि – Y श्रेणी में कोटि)

(iii) इस प्रकार प्राप्त कोटि–अन्तर के मानों का वर्ग (D^2) करते हैं तथा इन वर्गों को जोड़कर $\sum D^2$ का मान निकाल लेते हैं ।

(iv) निम्नांकित सूत्र की सहायता से स्पियरमैन के कोटि सह–सम्बन्ध गुणांक की गणना की जाती है :

$$p = 1 - \frac{6[\sum D^2]}{N^3 - N}$$

इस सूत्र में ग्रीक वर्णमाला का p (rho) अक्षर कोटि सह—सम्बन्ध गुणांक को, ∑D2 कोटि अन्तर के वर्गों के योग को तथा N पद—युग्मों की संख्या को प्रकट करता है।

निम्नांकित आँकड़ों को कोटि–अन्तर विधि के द्वारा सह–सम्बन्ध गुणांक ज्ञात कीजिये–

X श्रेणी	Y श्रेणी
8	84
36	51
98	91
25	60
75	68
82	62
92	86
62	58
65	35
39	49

(29)

हल :

X	श्रेणी	Y श्रेणी			कोटिअन्तरों के		
मन्त्र	कोटि	मूल्य	कोटि	कोटि अन्तर	वर्ग		
मूल्य	Х		Y	X-Y = D	D ²		
8	10	84	3	7	49		
36	8	51	8	0	0		
98	1	91	1	0	0		
25	9	60	6	3	9		
75	4	68	4	0	0		
82	3	62	5	.2	4		
92	2	86	2	0	0		
62	6	58	7	.1	1		
65	5	35	10	.5	25		
39	7	49	9	.2	4		
N = 10					$\Sigma D^2 = 92$		

कोटि सह–सम्बन्ध की गणना

निम्नांकित सूचना से जनसंख्या के घनत्व एवं मृत्यु–दर में स्पियरमैन की कोटि—अन्तर विधि के द्वारा सह—सम्बन्ध गुणांक की गणना कीजिये:—

प्रदेश	घनत्य (वर्ग किमी)	मृत्यु दर (प्रति हजार)
A	300	22
В	350	26
с	450	25
D	325	23

कोटि सह–सम्बन्ध गुणांक की गणना

प्रदेश	क्षेत्रफल	X श्रेणी				कोटि–अ	कोटि–
	(वर्ग किमी)	प्रति वर्ग किमी घनत्व	कोटि	प्रति हजार मृत्यु—दर	कोटि	न्तर	अन्तर का वर्ग
Α	200	200	4	12	4	0	0
В	150	500	2	16	1	1	1
С	120	600	1	15	2	-1	1
D	80	250	3	14	3	0	0
N=4							$\sum D^2=2$

कोटि सह–सम्बन्ध गुणांक अथवा

$$p = 1 - \frac{6[\sum D^2]}{N^3 - N}$$
$$= 1 - \frac{6 \cdot 92}{(10)^3 - 10}$$
$$1 - \frac{552}{1000 - 10}$$
$$1 - \frac{552}{990} = 1 - 0.5576$$

$$p = +0.442$$

$$1 - \frac{552}{990} = 1 - 0.5576$$

$$\frac{552}{000} = 1 - 0.5576$$

चूंकि कोटि सह–सम्बन्ध गुणाक अथवा

$$p = 1 - \frac{6[\sum D^2]}{N^3 - N}$$
$$= 1 - \frac{6 \cdot 2}{(4)^3 - 4}$$
$$= 1 - \frac{12}{64 - 4}$$
$$= 1 - \frac{1}{5} = \frac{4}{5}$$
$$= +0.80$$

(30)

मानक विचलन (Standard Deviation)

केन्द्रीय प्रवृति के माप (माध्य, माध्यिका, बहुलक) से इकाईयों के विचलन को प्रकीर्णन कहा जाता है। प्रकीर्णन के मापन की निम्नलिखित विधियाँ हैं –

- विस्तार
- चतुर्थक विचलन
- माध्य विचलन
- मानक विचलन
- लॉरेंज वक्र

इनमें से सबसे अधिक प्रचलित माप मानक विचलन है। इसे विचलनों के वर्ग के औसत के वर्गमूल के रूप में परिभाषित किया जाता है। इसकी गणना सदैव माध्य से की जाती है। इसे ग्रीक अक्षर σ से प्रदर्शित किया जाता है।

मानक विचलन की गणना अवर्गीकृत श्रेणी में –

(1) सबसे पहले श्रेणी का माध्य ज्ञात किया जाता है।

(2) इसके पश्चात् प्रत्येक मूल्य में से माध्य घटाकर विचलन (d) ज्ञात किये जाते

हैं ।

- (3) विचलनों के वर्ग की गणना करते हैं।
- (4) विचलनों के वर्गों को जोड़ लेते हैं।

(5) विचलनों के वर्गों के योग में कुल पदों का भाग देते हैं और इस प्रकार ज्ञात मूल्य का वर्गमूल निकाल लेते हैं। यही मानक विचलन होता है।

सूत्र रूप में

$$\sigma = \sqrt{\frac{\sum d^2}{N}}$$

यहाँ d= माध्य — प्रत्येक पद मूल्य

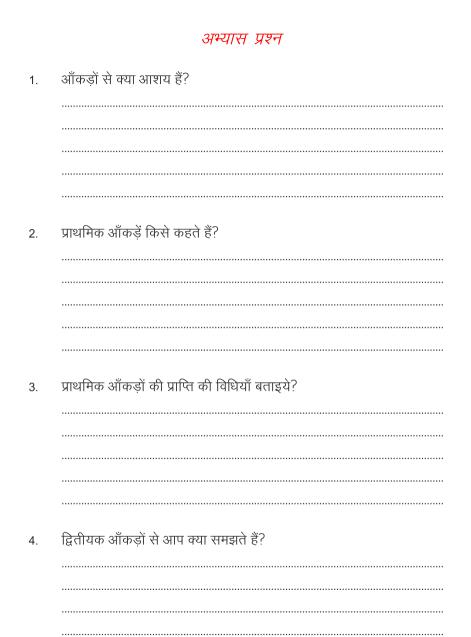
N= पदों की संख्या

सतत व खण्डित श्रेणी में मानक विचलन की गणना

सतत व खण्डित श्रेणी में मानक विचलन की गणना हेतु निम्न सूत्र का प्रयोग किया जाता है–

$$\sigma = \sqrt{\frac{\sum f d^2}{N}}$$

यहाँ f= आवृत्ति

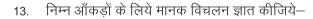

d= माध्य से पद मूल्य का विचलन

N= आवृत्तियों का योग

उदाहरण – निम्न आँकड़ों से मानक विचलन की गणना कीजिये –

वार्षिक वर्षा (cm)	वर्षों की संख्या
0 - 10	5
10 - 20	14
20 - 30	18
30 - 40	20
40 - 50	18
50 - 60	15
60 - 70	10

वार्षिक वर्षा (सेमी)	मध्य मूल्य	आवृत्ति	आवृत्ति व मध्य मुख्य का गुणन	विचलन	विचलन का वर्ग	आवृत्ति व विचलन के
(41.10)	<i>6</i> . 7		Sec. 211			वर्ग का गुणन
वर्गान्तर	х	f	fx	d	d ²	sd ²
0-10	5	5	25	-31.7	1004.89	5024.45
10-20	15	14	210	-21.7	470.89	6592.46
20-30	25	18	450	-11.7	136.89	2464.02
30-40	35	20	700	-1.7	2.89	57.80
40-50	45	18	810	+8.3	68.89	1240.02
50-60	55	15	825	+18.3	334.89	5023.35
60-70	65	10	650	+28.3	800.89	8008.90
		N=100	∑fx=3670			28411-00

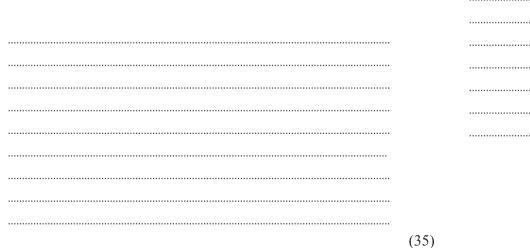

समान्तर माध्य या
$$\overline{X} = \frac{3670}{100} = 36.70$$

मानक विचलन या $\sigma = \sqrt{\frac{\sum fd^2}{N}}$
 $\sigma = \sqrt{\frac{28411}{100}}$
 $\sqrt{284.1}$ सेमी
= 16.86 cm

(32)

5.	द्वितीयक आँकड़ों की प्राप्ति के स्रोत बताइए ।			
		9.	सतत् श्रेणी किसे कहते हैं?	
6.	द्वितीयक आँकड़ों के प्रकाशित स्रोत बताइये ।			
		10.		
			प्राप्तांक	परीक्षार्थियों की संख्या
7.	द्वितीयक ऑकड़ों के अप्रकाशित स्रोत बताइये।		प्राप्तांक 0—10	परीक्षार्थियों की संख्या 16
7.	द्वितीयक ऑकड़ों के अप्रकाशित स्रोत बताइये ।			
7.	द्वितीयक आँकड़ों के अप्रकाशित स्रोत बताइये ।		0-10	16
7.			0-10 10-20	16 60
7.			0-10 10-20 20-30	16 60 80
7.		हल	0-10 10-20 20-30 30-40	16 60 80 24
8.		हल	0-10 10-20 20-30 30-40 40-50	16 60 80 24
		हल	0-10 10-20 20-30 30-40 40-50	16 60 80 24 20
	खण्डित श्रेणी क्या हैं?उदाहरण सहित स्पष्ट कीजिए ।	हल	0-10 10-20 20-30 30-40 40-50	16 60 80 24 20
	खण्डित श्रेणी क्या हैं?उदाहरण सहित स्पष्ट कीजिए ।	हल	0-10 10-20 20-30 30-40 40-50	16 60 80 24 20

(33)


निम्	नलिखित सारणी में दिये गये मूल्य	यों के आधार पर समान्तर र	नाध्य ज्ञात	
 करि				
чл т			12.	निम्न समंकों के लिये मानक विचलन ज्ञात कीजिये।
	सिंचित क्षेत्र (हेक्टेयर)	आवृत्ति		3, 5, 8, 12, 16, 13, 8, 4, 21, 10
- t				
	5-10	15	हल	
	5-10 10-15	15 25	हल	
			हल	
	10-15	25	हल 	
	10-15 15-20	25 30	हल	
	10-15 15-20 20-25	25 30 35	हल	
-	10-15 15-20 20-25 25-30	25 30 35 28	हल	
	10-15 15-20 20-25 25-30 30-35	25 30 35 28 20		
	10-15 15-20 20-25 25-30 30-35	25 30 35 28 20		
-	10-15 15-20 20-25 25-30 30-35	25 30 35 28 20	हल	
	10-15 15-20 20-25 25-30 30-35	25 30 35 28 20 17		
	10-15 15-20 20-25 25-30 30-35 35-40	25 30 35 28 20 17		

वर्ग	आवृत्ति
10-20	09
20-30	12
30-40	14
40-50	18
50-60	16
60-70	12
70-80	08

14. एक विद्यार्थी के सात प्रश्न पत्रों के प्राप्तांक 42, 48, 53, 62, 67, 70, 76 हैं तो उनका समान्तर माध्य प्रत्यक्ष व अप्रत्यक्ष विधी से ज्ञात कीजिये।

हल

Downloaded from https:// www.studiestoday.com

निम्न ऑकड़ों से माध्यिका ज्ञात कीजिये।
 7, 25, 52, 14, 1, 19, 39, 27, 9, 47, 66

हल

.....

प्र.16 निम्न आँकड़ों के लिये बहुलक ज्ञात कीजिये।

प्र.17 निम्न श्रेणियों में स्पियमेन की कोटि अंतर विधी से सह सम्बन्ध ज्ञात करिये।

प्राप्तांक	विद्यार्थी संख्या		X श्रेणी	Y श्रेणी	
10-20	7		15	80	
20-30	12		16	75	
30-40	19		17	60	
40-50	14		18	40	
50-60	6		19	30	
			20	15	

.....

.....

.....

(36)

अध्याय ३ सांख्यिकीय आंकड़ों का निरूपण (Representation of Statistical Data)

परिचय

भूगोल के अलावा अनेक विषयों में विभिन्न तथ्यों की पुष्टि के लिए सांख्यिकीय आंकड़ों का प्रयोग होता है। आंकड़ों को समझने, उनका सही विश्लेषण करके उचित निष्कर्ष निकालने में अनुभव, अध्ययन, समय व परिश्रम की जरूरत होती है। इन सब कारणों से सामान्य व्यक्ति का सांख्यिकीय आंकड़ों के प्रति कोई रूचि नहीं रहती है। यदि इन्हीं आंकड़ों को दृश्यमान विधियों द्वारा आकर्षक ढंग से निरूपित कर दिया जाये तो वे अत्यन्त सरल व बोधगम्य हो जाते हैं। चाक्षुष विधियों के द्वारा जटिल आंकड़ों को सरल रूप में अवलोकन किया जा सकता है। इन आंकड़ों के निरूपण या प्रदर्शन की चार मुख्य विधियां है (i) आरेख, (ii) आलेख, (iii) वितरण मानचित्र तथा (iv) मानारेख। प्रस्तुत अध्याय में आरेखों के सम्बन्ध में विस्तार से वर्णन किया गया है जबकि वितरण मानचित्रों से सम्बन्धित विधियों को पूर्व में अध्याय एक में स्पष्ट किया जा चुका है।

आरेखीय विधियाँ

सभी प्रकार के सांख्यिकीय आंकड़ों को आरेखीय और आलेखीय विधियों से प्रदर्शित किया जा सकता है। भूगोल में जनसंख्या, कृषि, उद्योग तथा यातायात सम्बन्धी आंकड़ों को विभिन्न आरेखों द्वारा प्रदर्शित किया जाता है। इनको प्रदर्शित करने से पूर्व आंकडों का संकलन, वर्गीकरण एवं सारणीयन कर लिया जाता है।

आरेखीय निरूपण द्वारा आंकड़ों में अर्न्तनिहित भाव को अच्छी तरह से प्रकट किया जा सकता है। इस विधि से आंकड़े चित्रमय होकर सरल बन जाते हैं और पाठक के मस्तिष्क में लम्बे समय तक प्रभाव बना रहता है।

आरेखों के लाभ

सांख्यिकीय आंकड़ों का निरूपण वर्तमान में समाचार—पत्रों, विज्ञापनों, पत्र—पत्रिकाओं और पुस्तकों में होने लगा है। आज आरेखों के प्रयोग से जटिल आंकड़ों को विभिन्न आकर्षण तरीकों से प्रदर्शित किया जा रहा है। आरेखों के निर्माण में स्तम्भों, किरणों और खण्डों का प्रयोग होता है। इनके निर्माण के कई लाभ है—

- (i) इनके द्वारा जटिल आंकड़ों का सरल एवं बोधगम्य प्रस्तुतीकरण होता है।
- (ii) आरेखों में नीरसता नहीं होती है।
- (iii) आरेख आकर्षक एवं प्रभावशील होते हैं।
- (iv) इनके माध्यम से तुलनात्मक विश्लेषण सम्भव है।
- (v) आरेखीय निरूपण द्वारा विश्लेषण से पूर्वानुमान में सहायता मिलती है।

आरेख रचना के सामान्य नियम

आरेख बनाना एक विशिष्ट कला है। इसमें आंकड़ों के विभिन्न रूपों में निरूपण या प्रदर्शन के लिए बनाये गये नियमों का अनुसरण करना आवश्यक होता है।

- (i) आंकड़ों की प्रकृति, मूल्यों के प्रसरण के आधार पर उपयुक्त आरेख का चयन करना होता है।
- (ii) सभी प्रकार के आरेख मापनी के अनुसार बनाए जाते हैं।
- (iii) प्रत्येक आरेख का शीर्षक संक्षिप्त व स्पष्ट होना चाहिए।
- (iv) आरेख के लिए उपयुक्त मापनी का चयन आवश्यक है।
- (v) आरेख के आकार व शुद्धता का ध्यान रखना जरूरी होता है।
- (vi) संकेतों का प्रयोग उपयुक्त स्थान पर होना चाहिए।
- (vii) आरेख आकर्षक व सरल होने चाहिए।

(37)

आरेखों के प्रकार

सांख्यिकीय आंकड़ों को प्रदर्शित करने के लिए बनाये जाने वाले आरेखों में अधिकतम तीन आयामों (i) लम्बाई या ऊँचाई, (ii) चौड़ाई या मोटाई, (iii) आयतन का प्रदर्शन या गणना की जाती है। इन्हीं पर आधारित होने के कारण आरेखों की तीन प्रकारों में विभाजित किया जाता है।

(i) एक विमीय : सांख्यिकीय आँकड़ों के निरूपण के लिये जब एक विमा (दिशा) अर्थात् लम्बाई या चौड़ाई का प्रयोग किया जाता है तो ऐसे आरेखों को एक विमीय आरेख कहा जाता है जैसे– दण्ड आरेख, पिरामिड आरेख।

(ii) द्विविमीय आरेख : आँकड़ों के निरूपण के लिये जब दो विमाओ (दिशाओं) लम्बाई तथा चौड़ाई का प्रयोग किया जाता है तो उसे द्विविमीय आरेख कहा जाता है। जैसे– आयत आरेख, वर्ग आरेख, चक्र आरेख।

(iii) त्रिविमीय आरेख : सांख्यिकीय आँकड़ों के निरूपण हेतु जब तीन विमाओं, लम्बाई, चौड़ाई एवं ऊँचाई का प्रयोग किया जाता है तो ऐसे आरेख त्रिविमीय आरेख कहलाते हैं । जैसे– घनारेख, गोलीय तथा ब्लॉक पूंज आरेख ।

इस अध्याय में दण्ड आरेख, चक्र आरेख एवं प्रवाह आरेखों के निर्माण विधि को समझ कर उसका अभ्यास करेंगे।

दण्ड़ आरेख (Bar Diagram)

यह एक विम आरेखों में सबसे सरल लोकप्रिय आरेख है। इसमें भौगोलिक आंकड़ों को उर्ध्वाधार या क्षैतिज स्तम्भों के द्वारा प्रदर्शित किया जाता है। दण्ड आरेख द्वारा उत्पादन सम्बन्धी, जनसंख्या सम्बन्धी, प्रति व्यक्ति आय, देशों के आयात–निर्यात सम्बन्धी आंकड़ों का प्रदर्शन किया जाता है।

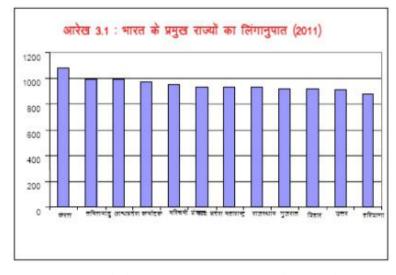
इस प्रकार के आरेख में पद मूल्यों का प्रदर्शन क्षैतिजीय या उर्ध्वाधर दण्डों / स्तम्भों के माध्यम से किया जाता है। इन दण्ड़ों का निर्माण करते समय निम्न बातों का ध्यान रखना आवश्यक होता है ताकि दण्ड आरेख सुंदर, आकर्षक व व्यवस्थित लगे।

(i) सभी दण्डों की मोटाई समान होनी चाहिये।

(ii) दण्ड़ों की मोटाई इतनी होनी चाहिये कि आरेख सुन्दर लगे।

(iii) दण्ड़ों के मध्य थोड़ा अन्तराल होना चाहिये।

(iv) दण्डों को आकर्षक बनाने के लिये उनमें किसी रंग अथवा आभा का प्रयोग कर सकते हैं।

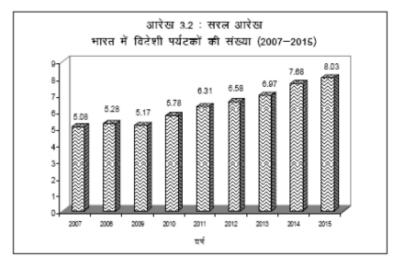

विभिन्न प्रकार के पद मूल्यों के उचित प्रदर्शन हेतु हम भिन्न–भिन्न प्रकार के दण्ड आरेखों का प्रयोग करते हैं उदाहरणार्थ– सरल दण्ड आरेख, मिश्रित दण्ड आरेख, बहुदण्ड आरेख, द्विदिशा दण्ड आरेख।

(1) सरल दण्ड़ आरेख

इस प्रकार के आरेखों में पद मूल्यों का प्रदर्शन सरल दण्डों के द्वारा करते हैं। सरल दण्ड—आरेख के द्वारा पदमाला में दिये गये मूल्यों के किसी एक गुण को प्रदर्शित किया जाता है। यदि पदमाला के सभी मूल्य एक ही समय के हों तो आरेख बनाने से पूर्व इन पद—मूल्यों को आरोही या अवरोही क्रम में व्यवस्थित कर लेना चाहिए जिससे आरेख में दण्डों की ऊँचाई एक ओर से दूसरी ओर को निरन्तर बढ़ती या घटती जाये।

(38)

ऐसा करने से पद—मूल्यों की तुलना करने में सरलता हो जाती है। इसके विपरीत यदि पदमाला में आँकड़े समय या किसी अन्य महत्वपूर्ण क्रम में लिखे गये हैं तो उपरोक्त बात पर कोई ध्यान नहीं दिया जाता है तथा दण्डों को उसी क्रम में बनाते हैं जिस क्रम में उनके मूल्यों को पदमाला में दिया गया है। भारत के प्रमुख राज्यों में लिंगानुपात 2011 को एक सरल दण्ड आरेख 3.1 द्वारा प्रदर्शित किया गया है।



उदा. निम्न आंकड़ों के आधार पर एक सरल दण्ड आरेख 3.2 को प्रस्तुत किया गया है।

भारत में विदेशी पर्यटकों की संख्या (2006–2015)

वर्ष	2007	2008	2009	2010	2011	2012	2013	2014	2015
संख्या लाखों में	5.08	5.28	5.17	5.78	6.31	6.58	6.97	7.68	8.03

उपर्युक्त सारणी में आंकड़े एक ही वर्ष के न होकर विभिन्न वर्षों के अनुसार लिखे गये हैं इसलिए सरल दण्ड आरेख में अलग–अलग वर्षों के दण्डों को सारणी क्रम के अनुसार ही बनाना आवश्सक होगा।

(2) मिश्रित दण्ड़ आरेख

विभिन्न इकाईयों से सम्बन्धित भिन्न–भिन्न आँकड़ों को प्रदर्शित करने के लिये मिश्रित दण्ड आरेख की रचना की जाती है। संयुक्त या मिश्रित दण्डारेख का प्रयोग आंकड़ों के योग तथा उनके विभिन्न घटकों अथवा उपविभागों को प्रदर्शित करने के लिए किया जाता है। जैसे यदि भारत के सम्पूर्ण इस्पात उत्पादन को एक दण्डारेख द्वारा प्रदर्शित कर पुनः विभिन्न इस्पात संयंत्रों के उत्पादन को प्रदर्शित करने के लिए उनको विभाजित किया जाय तो यह एक मिश्रित दण्डारेख का उदाहरण होगा। इन आरेख के निर्माण में निम्न तथ्यों का ध्यान रखा जाता है–

सर्वप्रथम आंकड़ों को आरोही क्रम में लिखकर कुल योग ज्ञात कर लेते हैं।

(i) सरल दण्डारेख की भांति प्रत्येक इकाई के सम्पूर्ण योग के बराबर अलग—अलग दण्ड बना देते हैं।

(ii) प्रत्येक स्तम्भ को विभाजित करने के लिए उनके संचयी योग का सहारा लिया जाता है।

(iii) तत्पश्चात प्रत्येक घटक में संकेत के अनुसार रंग या छाया भर देते हैं।
 (iv) अधिकतम एवं न्यूनतम सांख्यिकी मानों को ध्यान में रखते हुए उचित

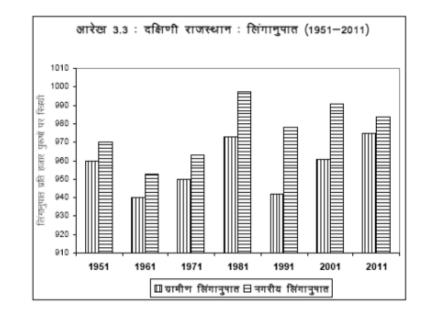
(39)

मापनी का चयन किया जाता है, इसके पश्चात् दिये गये आंकड़ों के दण्ड बनाये जाते हैं।

(v) अन्त में आरेख का शीर्षक, अन्तर्वस्तु, आंकड़ों का प्राप्ति वर्ष, मापनी, संकेतिका, आंकड़ों के प्राप्ति का स्त्रोत आदि अंकित कर देते हैं।

(vi) इस आरेख में दण्डों के उपविभागों का क्रम एक समान होना चाहिए जिससे विभिन्न स्तम्भों के खण्डों की सरलतापूर्वक तुलना की जा सके। एक ही स्तम्भ होने पर इसमें उपविभागों के मूल्यों को अवरोही क्रम में प्रदर्शित करना अच्छा माना जाता है।

(vii) इस आरेख के निर्माण में समान्तर मापनी का सहारा लिया जाता है।

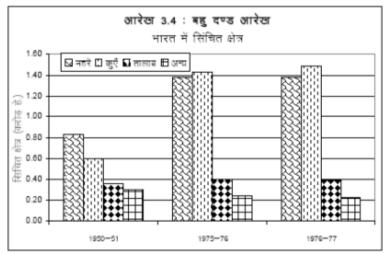

(viii) मिश्रित दण्डारेख को प्रतिशत में बनाया जा सकता है। इसके निर्माण में दो बातों पर विशेष ध्यान दिया जाता है–

(a) सम्पूर्ण योग के सन्दर्भ में प्रत्येक खण्ड में प्रतिशत अंश की गणना कर ली जाती है।

(b) पुनः 100 इकाई को प्रदर्शित करने वाला दण्ड बनाकर विभिन्न उपविभागों का प्रतिशत पृथक चिन्हों या रंगों द्वारा चित्रित कर देते हैं।

उदाहरण के लिये मिश्रित दण्ड आरेख में दक्षिणी राजस्थान के ग्रामीण एवं नगरीय लिंगानुपात के आंकड़ों को दर्शाया गया है।

वर्ष	ग्रामीण लिंगानुपात	नगरीय लिंगानुपात
1951	960	970
1961	940	953
1971	950	963
1981	973	997
1991	942	978
2001	961	991
2011	975	984


(3) बहुदण्ड आरेख

जब पदमाला में स्थान या समय के अनुसार दो या दो से अधिक वस्तुओं के आंकड़े दिये हों तो बहुदण्ड आरेख के द्वारा उनका तुलनात्मक चित्रण किया जा सकता है। इन आरेखों में एक समय या एक स्थान से सम्बन्धित विभिन्न वस्तुओं के स्तम्भों को एक दूसरे से सटाकर बनाते हैं फिर थोड़ा रिक्त स्थान छोड़कर उन वस्तुओं के दूसरे समय के आंकड़े प्रदर्शित करने वाले स्तम्भों को सटाकर बनाया जाता है। संक्षेप में, साधारण दण्ड–आरेख में प्रत्येक स्तम्भ अलग–अलग बनाया जाता है परन्तु बहुदण्ड आरेख में स्तम्भों को आवश्यकतानुसार संख्या में एक–दूसरे से मिलाकर बनाते हैं। दोनों प्रकार के आरेखों में स्तम्भों की ऊँचाई ज्ञात करने की विधि समान होती है। स्तम्भों को सटाकर बनाते समय दो बातें ध्यान में रखना आवश्यक है––प्रथम, सभी स्तम्भ–समूहों में भिन्न–भिन्न वस्तुओं को प्रदर्शित करने वाले स्तम्भों का क्रम समान होना चाहिए तथा द्वितीय, सभी समूहों के एक वस्तु से सम्बन्धित स्तम्भों में एक ही प्रकार की छाया या रंग होना चाहिए।

उदाहरण के लिए भारत वर्ष में सिंचित क्षेत्र एवं उसकी मात्रा को बहुदण्ड आरेख द्वारा प्रदर्शित किया गया है।

सिंचित क्षेत्र (करोड हेक्टेयर) वर्ष नहरें कुएँ तालाब अन्य 1950 - 510.83 0.60 0.30 0.36 1975-76 1.43 0.40 0.24 1.38 1976-77 1.38 1.48 0.39 0.23

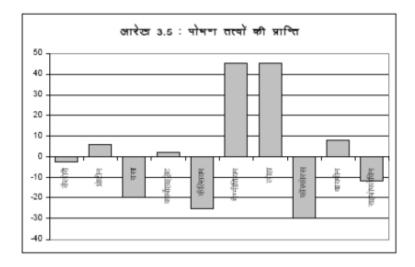
भारत में सिंचित क्षेत्र, 1950-51 से 1976-77

(4) द्विदिशा दण्ड–आरेख

जब पदमाला में धनात्मक दोनों प्रकार के पद—मूल्य दिये हों तो उन्हें द्विदिशा दण्ड—आरेख के द्वारा प्रदर्शित किया जा सकता है। इन आरेखों में आधार रेखा के ऊपर व नीचे दोनों ओर को स्तम्भ बनाये जाते हैं, अतः इन्हें द्विदिशा दण्ड—आरेख की संज्ञा देते हैं। आधार रेखा के ऊपर की ओर वाले स्तम्भ धनात्मक (+) मूल्यों को तथा नीचे की ओर को खींचे गये स्तम्भ ऋणात्मक (–) मूल्यों को प्रदर्शित करते हैं। यदि स्तम्भों को क्षैतिज बनाया गया है तो आधार रेखा ऊर्ध्वाधर होगी तथा इस रेखा के दायीं ओर धनात्मक मूल्यों के स्तम्भ व बायीं ओर ऋणात्मक मूल्यों के स्तम्भ बनाये जायेंगे।

(41)

आयात—निर्यात अथवा आय—व्यय आदि के शुद्ध अन्तरों को प्रदर्शित करने के लिये ये आरेख बहुत उपयोगी होते हैं।


उदाहरण के लिये निम्नलिखित आंकड़ों को द्विदिशा दण्ड–आरेख के द्वारा प्रकट किया गया है–

हापुड़ तहसील में पोषण तत्वों की प्राप्ति, 1980

(प्रति व्यक्ति दैनिक आवश्यकता का प्रतिशत)

पोषण तत्व	अधिशेष (+) या अभाव (–)
कैलोरी	() 2.5
प्रोटीन	(+) 5.8
वसा	() 20.0
कार्बोहाइड्रेट	(+) 2.0
कैल्सियम	() 25.0
मैग्नीशियम	(+) 45.0
लोहा	(+) 45.0
फॉस्फोरस	(-) 75.0
थायमीन	(+) 8.0
राइबोपलेयिन	(-) 12.0

चित्र के अनुसार आधार रेखा के बायें सिरे पर एक लम्बवत् रेखा के सहारे ऊपर की ओर धनात्मक मूल्यों की तथा नीचे की ओर ऋणात्मक मूल्यों की एक समान मापनी के चिन्ह लगायेगे। चूंकि प्रोटीन, कार्बोहाइड्रेट, मैग्नीशियम, लोहा व थायमीन के आंकड़ें धनात्मक हैं, अतः इनके स्तम्भ आधार रेखा के ऊपर की ओर होंगे तथा शेष आंकड़ों के स्तम्भ नीचे की ओर को बनाये जायेंगे। आरेख को अधिक उपयोगी एवं आकर्षक बनाने के उद्देश्य से उपरोक्त चित्र में धनात्मक व ऋणात्मक मूल्य वाले स्तम्भों को अलग—अलग तथा क्रमशः अवरोही व आरोही क्रम में व्यवस्थित किया गया है।

(5) पिरामिड आरेख

यह आरेख जिसकी आकृति पिरामिड के समान होती है, जिसमें मुख्यतः जनसंख्या संरचना सम्बन्धी आंकड़ों को प्रदर्शित किया जाता है। इसके अतिरिक्त किसी देश के आयात–निर्यात, आय–व्यय आदि आंकड़ों को विभिन्न सोपानों के रूप में प्रदर्शित किया जाता है। आधार पर सबसे बड़ा सोपान व शीर्ष पर छोटा सोपान बनाने के फलस्वरूप पिरामिड प्रकार का स्वरूप दिखाई देता है।

पिरामिड आरेख बनाने के विधियां : आंकड़ों के आधार पर पिरामिडों की रचना दो विधियों से की जाती है –

(1) निरपेक्ष विधि : इस विधि में दिये गये आंकड़ों के लिए मापनी चुनकर आरेख बनाते हैं।

(2) प्रतिशत या तुलना विधि : इस विधि में आयु समूहों को प्रतिशत में प्रदर्शित किया जाता है।

पिरामिड आरेख का महत्व : इस विधि में विभिन्न मानों के दण्डों को पिरामिड की भांति व्यवस्थित किया जाता है। इसके लिए समय के अतिरिक्त किसी भी लक्षण के दोहरे आंकड़ों की आवश्यकता रहती है। यह मुख्यतः जनसंख्या संरचना सम्बन्धी आंकड़ों के प्रदर्शन हेतु उपयोगी है। इसके द्वारा आयु रचना, लिंगानुपात, ग्रामीण, नगरीय जनसंख्या आदि का प्रदर्शन किया जाता है। सामान्यतया इसकी रचना स्त्री पुरूष समूह में आयु के आधार पर जनसंख्या के वितरण को प्रदर्शित करने में की जाती है। इसके अतिरिक्त किसी देश के आयात–निर्यात अथवा किसी वस्तु के उत्पादन आदि के आंकडें प्रदर्शित करने के लिए भी इस आरेख का प्रयोग किया जाता है।

पिरामिड आरेख के प्रकार : रचना विधि के आधार पर पिरामिड आरेख के निम्न

प्रकार होते हैं –

(i) सरल पिरामिड आरेख : पिरामिड आरेख जो किसी एक स्थान या एक वर्ग से सम्बन्धित होते हैं। इन आरेखों को बनाते समय पहले पद मूल्यों में दिये गये आयुवर्ग या आयात—निर्यात की संख्याओं को एक लम्बवत् स्तम्भ में नीचे से ऊपर की ओर आरोही क्रम में लिखते हैं। तत्पश्चात् दिये गये प्रत्येक आयुवर्ग के सामने एक ओर स्त्रियों की तथा दूसरी ओर पुरूषों की संख्या या प्रतिशत मानों को मापनी के अनुसार लम्बे क्षैतिज द्विदिशा स्तम्भ बनाकर प्रदर्शित करते हैं। इस पिरामिड आरेख में भिन्न—भिन्न आयु वर्गों के क्षैतिज स्तम्भों को समान दूरी के अन्तर पर अथवा एक दूसरे से सटाकर बनाते हैं।

महत्व : सरल पिरामिड़ विधि से बनाये गये आरेखों में इस भांति कई प्रकार की सूचनाएँ एक साथ होने से उनकी तुलना सरलता से की जा सकती है और सम्बन्धित तत्व जटिलता के स्वरूप को अधिक सरलता से समझा जा सकता है।

(ii) मिश्रित पिरामिड आरेख : इस विधि में, जिसमें कि साधारण दण्डों के स्थान पर मिश्रित दण्डों को पिरामिड से व्यवस्थित किया जाता है। आयु वर्ग व लिंग के अतिरिक्त जनसंख्या के लक्षणों की तुलना करने के लिए भी पिरामिड आरेख बनाये जा सकते हैं। मिश्रित पिरामिड आरेख इसी तरह का है। इस आरेख की आकृति सोपाननुमा होती है तथा आरेख के विभिन्न सोपान किसी स्थान या क्षेत्र की भिन्न–भिन्न वर्षों में कुल जनसंख्या को प्रकट करती है अर्थात् इनकी लम्बाईयों को जनसंख्या के अनुपात में पूर्व निश्चित मापनी के अनुसार ज्ञात करके बनाया जाता है। आरेख में प्रारम्भिक वर्ष की कुल जनसंख्या प्रकट करने वाले सोपान सबसे ऊपर, अगले वर्ष का सोपान उसके नीचे तथा सबसे अन्तिम वर्ष का सोपान सबसे नीचे बनाते हैं। इसके पश्चात् एक सोपान के कोनों को दूसरे सोपान के कोने से मिलाकर आरेख को सोपाननुमा पिरामिड का रूप प्रदान करते हैं। आरेख में सोपानों को मिश्रित दण्ड आरेख की भांति विभाजित करके उप विभागों को प्रदर्शित करते हैं। मिश्रित पिरामिड आरेख में प्रत्येक सोपान अपने नीचे स्थित सोपान की लम्बाई के ठीक मध्य में होनी चाहिए।

(iii) अध्यारोपित पिरामिड आरेख : अध्यारोपित पिरामिड आरेख का प्रयोग तब किया जाता है जब किन्हीं दो स्थानों अथवा एक ही स्थान पर विभिन्न वर्षों में आयु—वर्ग व लिंग के अनुसार जनसंख्या के आंकड़ों की तुलना करनी हो। इन आरेखों में किसी एक स्थान या वर्ष के सरल पिरामिड आरेख पर दूसरे स्थान या वर्ष के सरल पिरामिड आरेख को अध्यारोपित कर देते हैं तथा पहचान के लिए दोनों आरेखों में अलग—अलग प्रकार के रंग या छायाएँ भर देते हैं।

इस आरेख की रचना में निम्न तथ्य ध्यान में रखने चाहिए–

(i) दोनों स्थानों के आरेख एक ही मापनी पर बनाये जाने चाहिए।

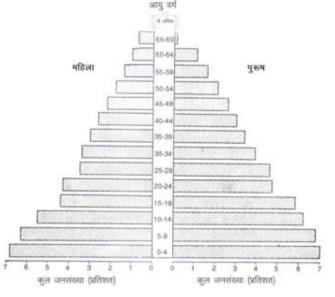
(ii) अध्यारोपण के पश्चात नीचे वाले आरेख में प्रत्येक स्तम्भ का थोड़ा बहुत भाग अवश्य दिखाई देना चाहिए इसके लिए या तो नीचे वाले आरेख के स्तम्भों को

(42)

अपेक्षाकृत कुछ अधिक चौड़ा बनाते हैं अथवा ऊपरी आरेखों को थोड़ा ऊपर या नीचे हटाकर निचले आरेख पर अध्यारोपित करते हैं।

पिरामिड आरेख के निर्माण में निम्न बातों का ध्यान रखा जाता है–

(i) सर्वप्रथम सारणी में दिये गये आयु वर्ग या अन्य तत्वों (सामाजिक, आर्थिक) को एक उर्ध्वाकार स्तम्भ (कोटि अक्ष या Y axis) में नीचे से ऊपर की ओर समान दूरी पर आरोही क्रम में लिख देते हैं।


(ii) इसके पश्चात् क्षैतिज अक्ष (भुजाक्ष पर उपयुक्त समान्तर मापनी के अनुसार जनसंख्या या अन्य तत्व को अंकित कर देते हैं। स्पष्ट है कि यह मापनी आयु वर्गों (या किन्हीं दो अन्य विभागों) के दोनों ओर समान होती है।

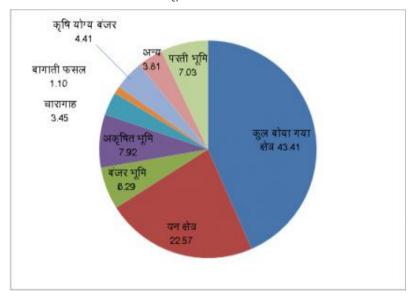
(iii) अन्त में एक और पुरूषों तथा दूसरी ओर स्त्रियों (या अन्य सामाजिक, आर्थिक तत्वों के विभाग) की संख्या या प्रदर्शित मूल्यों को मापनी के अनुसार क्षैतिज दण्डारेख बना देते हैं।

(iv) पिरामिड आरेख में क्षेत्र का नाम, अन्तर्वस्तु एवं आंकड़ों का वर्ष या अवधि, मापनी, संकेतिका एवं आंकडें प्राप्ति का स्त्रोत आदि अंकित कर दिये जाते हैं।

रचना विधि : इस पिरामिड आरेख को बनाने के लिए सर्वप्रथम दिये हुए आयु वर्गों को एक उर्ध्वाधर स्तम्भ में नीचे से ऊपर की ओर को समान दूरी के अन्तर पर आरोही क्रम में लिखिये। इसके पश्चात समंक श्रेणी के मूल्यों को ध्यान में रखते हुए लम्बवत् स्तम्भ के नीचे आधार रेखा पर दोनों ओर प्रतिशत में मापनी के चिन्ह अंकित कीजिए। अब प्रत्येक आयु वर्ग के सामने दायीं ओर को उस वर्ग के स्त्रियों के प्रतिशत मूल्य एवं बांयी ओर को उस वर्ग के पुरूषों के मूल्य के बराबर क्षैतिज स्तम्भ बनाये जाते हैं। इसके पश्चात् पिरामिड आरेख पर क्षेत्र का नाम, अन्तर्वस्तु, आंकड़ों का प्राप्ति वर्ष या अवधि, आंकड़ों का स्त्रोत, मापनी एवं आवश्यक हो तो संकेतिका अंकित की जाती है।

उदाहरण के लिये निम्नलिखित आंकड़ों के आधार पर सरल पिरामिड आरेख बनाया गया है।

आरेख 3.6 ः सरल पिरामिड आयु—वर्ग व लिंग के अनुसार लिंग के अनुसार जनसंख्या 2011 (कुल जनसंख्या का प्रतिशत)


आयु वर्ग	पुरूष	महिला
0 से 4	7.0	6.8
5 से 9	6.8	6.3
10 से 14	6.2	5.5
15 से 19	5.8	4.4
20 से 24	4.7	4.3
25 से 29	4.6	3.5
30 से 34	3.9	3.4
35 से 39	3.4	3.0
40 से 44	3.0	2.6
45 से 49	2.6	2.2
50 से 54	2.1	1.8
55 से 59	1.6	1.4
60 से 64	1.1	1.0
65 से 69	0.1	0.7
70 से अधिक	0.1	0.1

चक्र या वृत्तारेख

ये द्विविमीय आरेख का एक प्रकार है। इसमें वृत्त (चक्र) के माध्यम से आँकड़ों का निरूपण किया जाता है। चक्रारेख में संख्या का कुल योग प्रकट करने वाले किसी वृत्त के क्षेत्रफल को उस संख्या के विभिन्न उपविभागों या घटकों के मूल्यों के अनुपात में बाँट देते हैं, अतः इस आरेख को विभाजित वृत्त आरेख भी कहते हैं। इस आरेख में पहले एक वृत्त बनाते हैं, ये वृत्त पद मूल्यों के योग को प्रदर्शित करता है, उसके पश्चात् भिन्न–भिन्न पद मूल्यों के विभिन्न अंशों में मान निम्न सूत्र से निकाले जाते हैं

पद मूल्य का अंशों में मान = पदमूल्य का वास्तयिक मान X 360° संख्या का कुल योग

इस प्रकार विभिन्न पदमूल्यों को सम्बन्धित अंशों को वृत्त में प्रदर्शित किया जाता है। इन कोणों की रचना घड़ी की सुई की दिशा में अवरोही क्रम में की जाती है जिससे पद मूल्यों का तुलनात्मक अन्तर आसानी से दृष्टिगत हो जाता है। उदाहरण के लिये भारत में भूमि उपयोग को चक्र आरेख द्वारा प्रदर्शित किया गया है।

भारत में भूमि उपयोग – 2015

परिवहन मानारेख

परिवहन मानारेख दो शब्दों परिवहन एवं मानारेख से मिलकर बना है।

परिवहन दो शब्द परि (पार) एवं वहन (ले जाना) से मिलकर बना है। सामान्य अर्थ में व्यक्तियों, सामग्री तथा सन्देशों को एक स्थान से दूसरे स्थान पर ले जाने की प्रक्रिया परिवहन कहलाती है परिवहन में गति निहित होती है। गति या संचरण स्थानों के मध्य होता है अर्थात् परिवहन में गति, संरचरण तथा प्रतिक्रिया होती है जो संयोजन व वहन में निहित होती है।

परिवहन का महत्व : एक देश के आर्थिक, सामाजिक और राजनीतिक जीवन के सफल संचालन व विकास के लिए परिवहन संचार के साधन परम आवश्यक है। परिवहन व्यवस्था एक राष्ट्र की एकता, अखण्डता एवं सुरक्षा नीति के लिए ही नहीं अपितु इसके आर्थिक विकास के लिए भी आवश्यक है।

मानारेख : मानचित्र का चित्रात्मक प्रदर्शन जिसमें किसी तथ्य के वितरण को प्रभावी ढ़ंग से प्रदर्शित करने के उद्देश्य से मानचित्र की सीमाओं से सम्बन्धित क्षेत्र की मूल आकृति, मार्गों आदि को विकृत रूप में दिखाया जाता है। यह कुछ सीमा तक व्यंग्य चित्र ;बंतजववदद्ध के समान होता है, अतः इसे व्यंग्य चित्र मानारेख ;बंतजववद उंचद्ध भी कहते हैं।

यातायात मानारेख की परिभाषा : विभिन्न सामाजिक, आर्थिक तत्वों से सम्बन्धित आंकड़ों को रेखा प्रतीकों से मानचित्र करने की एक विधि जिसके द्वारा विभिन्न मार्गों पर माल, मनुष्य एवं सन्देशों के दैनिक, साप्ताहिक, मासिक, अर्द्धवार्षिक, वार्षिक परिवहन की संख्या या परिमाण को प्रदर्शित करने वाले मानारेख को यातायात परिमाण मानारेख कहते हैं।

यातायात परिमाण मानारेख में सर्वप्रथम परिवहन भूगोल के पिता एडवर्ड उल्मान ने 1957 में इसे बनाया था। इस प्रवाह मानचित्र को पदार्थ मानचित्र के रूप में निर्मित किया। इस मानारेख का संचालन मानचित्र भी कहा जाता है।

उद्देश्य : यातायात परिमाण मानारेख का मुख्य उद्देश्य विभिन्न केन्द्रों के मध्य में गतिशीलता एवं उनके बीच की सीधी दिशा को प्रदर्शित करना होता है।

महत्व : यातायात परिमाण मानारेख से विभिन्न क्षेत्रों का बढ़ता हुआ आर्थिक महत्व, परिवहन सुविधा एवं गतिशील और स्थानों के महत्व को आसानी से आंका जा सकता है।

आधार यातायात मानारेख के प्रमुख आधार निम्न हैं–

(i) परिवहन मानारेखों की रचना का आधार अभिष्ट क्षेत्र का मानचित्र जिसमें रेल या सड़कमार्ग तथा उन मार्गों पर एक निश्चित समय में चलने वाले यातायात साधनों की संख्या निश्चित होनी चाहिए।

(ii) फिर परिवहित किये जाने वाले माल की मात्रा या वजन या मूल्य या किराये के

(44)

सन्दर्भ में आवश्यक है |

(iii) मानचित्र में रेलवे अथवा बस परिवहन जाल एवं विभिन्न स्टेशन स्पष्ट रूप से अंकित होना चाहिए तथा विभिन्न स्टेशनों के मध्य चलने वाली रेलगाड़ियों या बसों की संख्या निश्चित होनी चाहिए।

परिवहन मानारेख को बनाने की विधियाँ

यातायात परिवहन मानारेख को बनाने की प्रमुख विधियाँ दो प्रकार की होती है– (1) प्रथम विधि– जिसमें परिवहन मार्गों को यातायात प्रवाह की मात्रा के अनुपात में मोटा, पतला, बना दिया जाता है।

(2) द्वितीय विधि– जिसमें परिवहन की मात्रा के अनुसार महिन रेखाएं खींच दी जाती है तथा उनकी संख्या के अनुपात में परिवहन के परिणाम को प्रदर्शित किया जाता है।

(1) प्रथम विधि— मार्गों को मोटा, पतला बनाना : प्रथम विधि के अनुसार मानारेख बनाने की प्रक्रिया निम्न चरणों में पूर्ण की जाती है—

(i) सर्वप्रथम अभिष्ट क्षेत्र का रूपरेखा मानचित्र की आवश्यकता होती है।

(ii) उस क्षेत्र के परिवहन मार्गों की स्थिति सम्बन्धी मानचित्र में अंकित होनी चाहिए।

(iii) मानारेख में प्रदर्शित माल, मनुष्यों एवं सन्देशों से सम्बन्धित सही–सही प्रामाणिक आंकड़ें।

(iv) यातायात प्रवाह मानारेख एक प्रतीकन जिसमें दो बिन्दुओं के बीच यातायात प्रवाह को निष्कोण द्वारा प्रदर्शित कर सकते हैं। इसमें यातायात प्रवाह में मूल और गन्तव्य बिन्दुओं को प्रदर्शित किया जाता है। जिसके लिए तीर के सीरे को प्रवाह रेखा के अन्त में दिखाते हैं।

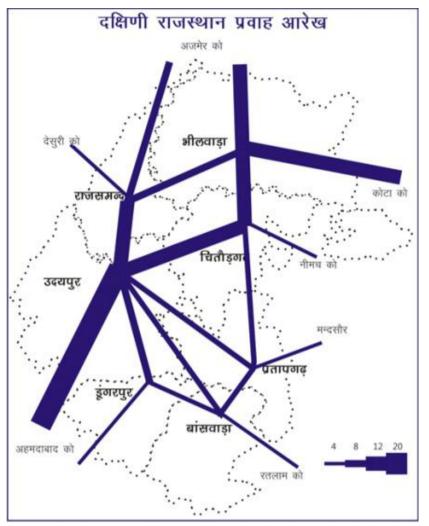
(v) मानारेख में आंकड़ों (माल, मनुष्य एवं सन्देशों से सम्बन्धित) के परिसर को ध्यान में रखकर मापनी निश्चित की जाती है।

(vi) मापनी निश्चित कर लेने के पश्चात वास्तविक मान में मापनी का भाग देकर मार्ग की चौड़ाई ज्ञात कर ली जाती है।

(vii) इसके बाद मानारेख में जिन केन्द्रों के मध्य वहन दिखाना है उनकी स्थिति सहायक मानचित्रों की सहायता से अंकित की जाती है और उन स्थानों को उस केन्द्र से मिला देते हैं जहां से वहन शुरू होता है। इस विभिन्न केन्द्रों को केवल सरल रेखाओं से मिला देते हैं।

(vi) अब दो केन्द्रों के बीच जितना वहन होता है उसी अनुपात में मार्ग की चौड़ाई को इस रेखा के दोनों ओर समान चौड़ाई में बनाते हैं, इस तरह इस चौड़ाई के बीच में काला रंग भर देते हैं। यह बना हुआ चौड़ा मार्ग उनके बीच वहन का परिमाण प्रदर्शित करेगा। इस प्रकार विभिन्न केन्द्रों के बीच मार्ग को मोटा, पतला बना देते हैं। (vii) तत्पश्चात इन विभिन्न केन्द्रों की स्थिति बताने के लिए बीच में छोटे खाली गोले बनाकर उनमें अंक अंकित कर देते हैं तथा उनका संकेत दे दिया जाता है। मार्ग का रूपरेखा मानचित्र की सीमा के बाहर की ओर जिस केन्द्र की ओर मार्ग जा रहा है उसका नाम लिख देते हैं जैसे– ग नगर को।

(viii) मार्गों को चौड़ाई मापनी बनाने के लिए सुविधानुसार एक क्षैतिज रेखा खींचते हैं तथा उसके बायीं किनारे पर एक लम्ब डालिये उस पर 1 मिलिमीटर, 5 मिलिमीटर, 10 मिलिमीटर, 20 मिलीमिटर आदि (जितना अधिकतम चौड़ाई मार्ग हो उतना लम्बा खींचिये) अंकित कर देते हैं तथा सबसे बड़ी रेखा 1 मिलीमीटर वाली उसके बाद आधी दूरी में मार्ग को चौड़ा करते जाइये। इसके बाद मापनी पर क्षैतिज रेखा के सामने 1 मिलीमीटर बराबर जितना परिमाण का वहन होता है वह मान लिख दिया जाता है।


(ix) मानारेख के अन्त में इसके शीर्षक में केन्द्र अथवा क्षेत्र का नाम, अन्तर्वस्तु, आंकड़े प्राप्ति वर्ष, संकेतिका, मापनी, आंकड़ों का प्राप्ति स्त्रोत आदि अंकित कर देते हैं।

इस विधि के अनुसार बनाये गये मानारेखों में परिवहन मार्गों का जाल मानव शरीर की शिरा–धमनी प्रणाली के समान प्रतीत होता है।

यातायात परिमाण मानारेख के दोष — यद्यपि इस प्रकार के मानारेख यातायात प्रवाह का स्पष्ट आकर्षक समीप चित्रण करते हैं। परन्तु उनमें मार्गों की मोटाईयों को सही—सही मापना एवं यातायात प्रवाह की वास्तविक संख्या या परिणाम या भार का ज्ञान प्राप्त करना कठिन होता है। यहां यह संकेत कर देना आवश्यक है कि यह यातायात परिमाण मानारेख वहन को प्रदर्शित करने की एक आलेखी विधि है, अतः यातायात परिमाण का प्रदर्शन शत—प्रतिशत शुद्ध होता नहीं है। यदि मार्गों की मोटाई को मापकर हम वहन की वास्तविक मात्रा ज्ञात करना चाहे तो पटरी की माप सीमा होने से वास्तविक मात्रा ज्ञात नहीं होती क्योंकि पटरी पर 1मिलिमीटर से कम दूरी को नहीं मापा जा सकता है।

उपरोक्त कमियां होने के बावजुद भी माल, मनुष्य एवं सन्देशों का वहन परिमाण प्रदर्शित करने में इस मानारेख का प्रयोग किया जाता है। उदाहरण के लिये दक्षिणी राजस्थान में रोड़वेज बस सेवाओं की सुविधाओं को संख्या के आधार पर प्रवाह आरेख में प्रदर्शित किया गया है।

(45)

	अभ्यास प्रश्न			
Я.1	आरेखों के प्रकार बताइये?			
प्र.2	आरेख बनाने के क्या लाभ हैं?			
Я.3	आरेख के निरूपण के सामान्य नियम कौनसे हैं?			
प्र.4	मिश्रित दंड आरेख व द्विदिशा दंड आरेख में अंतर बताइये।			
7.4				

(46)

प्र.5 वृत्त आरेख के निर्माण की प्रक्रिया बताइये।

प्र.6 दिये गये आँकड़ों से सरल दण्ड आरेख बनाइये— पश्चिमी राजस्थान में साक्षरता — 2001 (अभ्यास हेतु)

जिला	साक्षरता (प्रतिशत में)
गंगानगर	64.7
बीकानेर	56.9
हनुमानगढ़	63.1
चुरू	66.8
झुंझुनु	73.0
सीकर	70.5
नागौर	57.3
जोधपुर	56.7
जैसलमेर	51.0
बाड़मेर	59.0
जालोर	46.5
सिरोही	53.9

.....

(47)

प्र.7	दिये गये आँकड़ों की सहायता से मिश्रित दण्ड आरेख बनाइये।
	सड़कों की लम्बाई (किमी में) — 2015

	राजस्थान	गुजरात	मध्यप्रदेश
राष्ट्रीय राजमार्ग	3643	3245	3714
राज्य राजमार्ग	14544	19761	8728
मुख्य जिला सडक	21662	30019	19574

प्र.8 दिये गये आँकड़ों को प्रदर्शित करने के लिये एक मिश्रित दंड आरेख की रचना कीजिये–

> भारत में बिजली का उत्पादन (बिलियन किलोवाट में)

वर्ष	ऊष्मीय	जलीय	नाभिकीय	कुल
2001-02	424.4	73.5	19.5	517,4
2002-03	451.0	63.8	19.2	534.0
2003-04	472.1	75.2	17.8	565.1

(48)

निम्नलिखित आँकड़ों को द्विदिशा दण्ड आरेख के द्वारा दर्शाइये 9.

10.

अधिशेष (+) या अभाव (-) पोषक तत्व कैलोरी (-) 25 प्रोटीन (+) 5.8 (-) 53.0 वसा कार्बोहाइड्रेट (+) 2.0 लोहा (+) 45.0 थायमिन (+) 8.0

निम्न आँकड़ों की सहायता से वृत्त आरेख बनाइये– भारत में विभिन्न क्षेत्रों में कार्यरत कार्यशील जनसंख्या – 2015

कृषि	53 प्रतिशत
विनिर्माण उद्योग	22 प्रतिशत
व्यापार	9 प्रतिशत
परिवहन	4 प्रतिशत
शिक्षा	2 प्रतिशत
सरकारी सेवा	2 प्रतिशत
अन्य	8 प्रतिशत

(49)

12

11. निम्न आँकड़ों की सहायता से एक पिरामिड आरेख बनाइये–

क्रम संख्या	मार्ग	बसों की संख्या
1.	अ से क	20
2.	अ से ख	110
3.	अ से ग	60
4.	अ से घ	140
5.	अ से ड	50
6.	क से आगे	30
7.	ख से आगे	20
8.	ग से आगे	70
9.	घ से आगे	10

निम्न आँकड़ों की सहायता से यातायात प्रवाह आरेख बनाइये–

आयु वर्ग	कुल जनसंख्या का <mark>प</mark> ्रतिशत		
	पुरूष	महिला	
0—9	14.6	13.3	
10—19	10.6	10.0	
20—29	7.8	7.6	
30—39	6.8	6.5	
40—49	5.2	5.0	
50—59	3.7	3.2	
60—69	2.1	2.2	
70 व अधिक	0.2	0.2	

(50)

अध्याय 4 सुदूर संवेदन एवं भौगोलिक सूचना तंत्र (Remote Sensing and Geographical Information System)

परिचय

सुदूर संवेदन (Remote sensing) वर्तमान में कोई नया विषय नहीं है। सन् 1960 के बाद सुदूर संवेद की तकनीकों में इतना अधिक सुधार हुआ है कि कृत्रिम उपग्रहों के माध्यम से वैश्विक वातावरण भूमि उपयोग, प्राकृतिक संकट, विशेष क्षेत्र की भौगोलिक जानकारियों जैसे महत्त्वपूर्ण तथ्यों का अध्ययन आसानी से हो पा रहा है। भारत ने इस तकनीक के क्षेत्र में अल्प समय में महत्त्वपूर्ण व उल्लेखनीय प्रगति की है।

दूरसंवेद का अर्थ

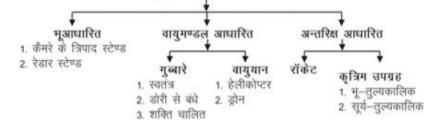
दूरसंवेद का शाब्दिक अर्थ दूर से सूचनाएँ प्राप्त करना होता है। किसी वस्तु को स्पर्श किये बिना उसके बारे में सूचनाएँ प्राप्त कर लेना सुदूर संवेदन कहलाता है। हम किसी वस्तु को आँख द्वारा दूर से देखकर भी उसकी पहचान कर लेते हैं। यहीं नियम दूर संवेद पर लागू होता है। कृत्रिम उपग्रह, वायुयान या अन्य किसी प्लेटफार्म पर रखे किसी संवेदक (Senser) द्वारा धरातल के प्रतिरूपों व अन्य सूचनाओं को प्राप्त करने, आंकड़े व चित्र तैयार करने, प्राप्त तथ्यों की व्याख्या करने की समस्त प्रक्रियाओं को दूर संवेदन में सम्मिलित किया जाता है।

दूर संवेद के लाभ : वायुमण्डल में स्थापित या अन्तरिक्ष आधारित संवेदकों की सहायता से प्राप्त किये गये तथ्यों की कुछ महत्वपूर्ण विशेषताएँ एवं लाभ इस प्रकार है—

(i) ये पृथ्वी के बहुत बड़े भाग का विहंगात्मक दृश्य प्रस्तुत करते हैं।

(ii) धरातल के सभी दृश्यमान लक्षण एक साथ अंकित हो जाते हैं।

(iii) धरातल की गतिक घटनाओं जैसे बाढ़, यातायात मौसम की दशा, वनों की आग, तेल के रिसाव के अध्ययन में बहुत उपयोगी सिद्ध हुए हैं।


(iv) ये प्रतिबिम्ब किसी समय विशेष की दशाओं, घटनाओं के स्थायी अभिलेख होते हैं जिनका भविष्य में भी कोई व्यक्ति अध्ययन कर सकता है।

(v) अन्तरिक्ष आधारित दूर संवेद एक महंगी तकनीक है परन्तु इसके अनुप्रयोग पर विचार करने पर सस्ती प्रतीत होती है।

दूरसंवेद के प्लेटफार्म

प्लेटफार्म शब्द का प्रयोग ऐसे किसी ऐसे स्थिर या गतिमान आधार उपकरण या वाहन के लिए किया जाता है जिस पर कैमरा या संवेदक को रखकर प्रयोग में लाया जाता है। सभी प्रकार के प्लेट फार्म को तीन वर्गों में विभाजित किया जा सकता है जिन्हें नीचे प्रदर्शित किया गया है।

दूरसंवेद की प्रक्रियाएँ

दूरसंवेद एक ऐसा विज्ञान व कला है जिसमें हम दूर स्थित किसी संवेदक के द्वारा ग्रहण किये गये परावर्तित प्रकाश के आवेगों का विश्लेषण करके आंकड़ों या प्रतिबिम्ब के द्वारा उस स्थान, वस्तु या घटना के सम्बन्ध में जानकारी प्राप्त करते हैं। वर्तमान में इस कार्य में किसी संवेदक जैसे– वायव कैमरा, मल्टीस्पेक्ट्रम, स्केनर, थर्मल इन्फ्रारेड लाइनर स्केनर का कृत्रिम उपग्रहों या अन्य प्लेटफार्म में रख कर प्रयोग में लाते हैं।

इन संवेदकों में पदार्थ द्वारा विद्युत—चुम्बकीय विकिरण (Electro magnetic radiation) के मध्य होने वाली अन्योन्य क्रिया (Interaction) को डिजिटल डेटा या इमेज रेकार्डिंग करने की क्षमता होती है। इस प्रक्रिया को आप इस प्रकार भी समझ सकते हैं कि आप इस पुस्तक को दूरसंवेद की सहायता से ही पढ़ रहे हैं—

(i) प्रस्तुत पृष्ठ को पढ़ते समय आपकी आँखें एक संवेदक (Sensor) का काम कर रही है।

(ii) ये संवेदक लिखे हुए या खाली स्थानों से परावर्तित प्रकाश या विद्युत चुम्बकीय विकिरण के आवेगों को ग्रहण कर रहे हैं।

(iii) ये आवेग आपके मस्तिष्क में पहुँच रहे हैं, जहाँ एक प्राकृतिक कम्प्यूटर में इनका अविश्लेषण भी साथ—साथ हो रहा है।

(iv) इस विश्लेषण से आपको ज्ञात हो रहा है कि काले भाग अक्षरों से बने शब्द एवं वाक्य है।

(v) इस प्रकार वाक्यों के अर्थ को समझ पा रहे हैं।

दूर संवेद की सभी प्रक्रियाओं को दो भागों में रखा जा सकता है–

(अ) सूचनाओं या आंकड़ों की प्राप्ति (Data acquisition)

(ब) प्राप्त सूचना, आंकड़ों का विश्लेषण (Data Analysis)

(अ) सूचनाओं या आंकड़ों की प्राप्ति (Data acquisition)

दूर संवेदन में विभिन्न विधियों से हम क्षेत्र के सम्बन्ध में सूचनाएँ (आंकड़े) एकत्रित करते हैं। हमें यह सूचनाएँ (data Product) दो रूपों में प्राप्त होती है (1) चित्रिय रूप में, (2) अंकित रूप में। इस प्रक्रिया की 6 अवस्थाएं हो सकती है।

(i) विद्युत—चुम्बकीय ऊर्जा के किसी स्रोत की प्राप्ति होना प्रथम आवश्यकता हैं। यह ऊर्जा हमें ऊष्मा (Heat) या प्रकाश (Light) के रूप में मिलती है।

(ii) सूर्य से विकिरित विद्युत चुम्बकीय ऊर्जा तरंगों (Waves) के रूप में संचरण करती है।

(iii) पृथ्वी पर पहुँचने वाली विद्युत चुम्बकीय ऊर्जा धरातल के पदार्थों से अन्योन्य क्रिया करती है। धरातल के किन्हीं भी दो वस्तुओं की यह क्रिया समान नहीं होती, इसी असमानता के कारण हम पदार्थों में भेद कर सकते हैं।

(iv) धरातल एवं आपतित ऊर्जा (incident energy) की अन्योन्य क्रिया से विद्युत—चुम्बकीय सवेग पैदा होते हैं। इन आवेगों को किसी संवेदक तक पहुँचने के लिए परावर्तित (reflected) प्रकाश के रूप में पुनः वायुमण्डल में पुनःसंचरण करना पड़ता है।

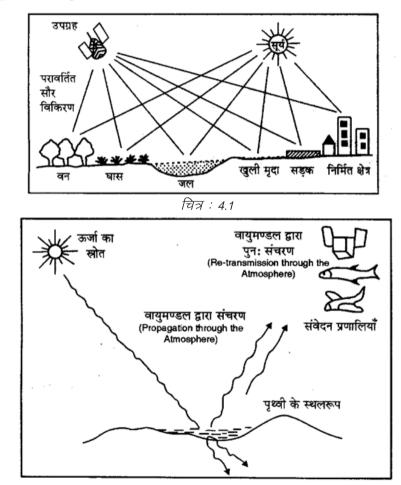
(v) धरातल से आने वाले विद्युत चुम्बकीय आवेगों को ग्रहण करने के लिए दूर संवेद में प्लेटफार्म चुने जाते हैं।

(vi) प्लेटफॉर्म पर स्थित संवेदक परावर्तित आवेगों को डिजिट के रूप में आलेखित करते हैं।

(vii) अंकों के रूप में भेजी गई सूचनाओं को भू–आधारित केन्द्रों में कम्प्यूटर रिकार्ड करते रहते हैं।

(ब) प्राप्त सूचना, आंकड़ों का विश्लेषण (Data Analysis)

वायुमण्डल या अन्तरिक्ष आधारित संवेदकों के द्वारा भेजी गई सूचनाओं में दृश्य–क्षेत्र के सभी विवरण अंकित होते हैं अतः इनको पहचानने और इच्छित जानकारी


(52)

प्राप्त करने के लिए पर्याप्त ज्ञान, अभ्यास व अनुभव की आवश्यकता होती है । (i) कम्प्यूटर टेप पर अंकित अंकीय सूचनाओं (digital data) को इलेक्ट्रोनिक

उपकरणों की सहायता से प्रतिबिम्बों (Image) में परिवर्तित कर लिया जाता है। (ii)विभिन्न उपकरणों– स्टीरियोस्कोप, स्टीरियोमीटर व अन्य तकनीकों से

इसका विश्लेषण करते हैं।

(iii) प्रतिबिम्बों के विश्लेषण एवं व्याख्या से प्राप्त सभी प्रकार की सूचनाओं को सुरक्षित रखा जाता है ताकि भविष्य में इनका उपयोग हो सके।

चित्र : 4.2

भारत में दूरसंवेद कार्यक्रम

आज भारत विश्व के कुछ गिने—चुने देशों में आता है जिनके पास विश्व स्तरीय तकनीक उपलब्ध है जो विदेशी उपग्रहों को अन्तरिक्ष में स्थापित करता है। इस दृष्टि से भारत का एक उज्जवल विकास का इतिहास संक्षेप में इस प्रकार रहा है।

(1) आज का भारत अपनी वर्तमानर दूरसंवेदन तकनीक के लिए होमी जहांगीर भाभा, विक्रम साराभाई, पी.रामा पिशरोतय, यू.आर. राव, सतीश धवन, कृष्णास्वामी कस्तुरीरंगन जैसे महान वैज्ञानिकों का सदैव ऋणी रहेगा, जिनके अथक प्रयसों से यह कार्य संभव हो सका।

(2) देश में दूरसंवेद तकनीक को सबसे पहले पी. रामा पिशरोतय ने नारीयल की खेती में लगने वाली विल्ट—रूट नामक बीमारी को शीघ्र पहचानने के लिए प्रयोग में लिया।

(3) 1960 के दशक में भारतीय अन्तरिक्ष अनुसंधान संगठन ISRO (Indian Space Research Organisation) ने वायुयानों का प्रयोग करते हुए विभिन्न संवेदकों से देश के कुछ भागों में कृषि भूमि उपयोग, वनों के प्रकार, मिट्टियों के प्रकार, प्रदूषण की जानकारियों के लिए हवाई—सर्वेक्षण किये।

(4) अन्तरिक्षीय दूर संवेद का प्रारम्भ सन् 1975 में हुआ, जब इसरो ने आर्यभट्ट नामक प्रथम उपग्रह को सोवियत रूस की भूमि से अन्तरिक्ष में स्थापित किया।

(5) इसरो ने जुलाई 1979 में भास्कर–1 और अप्रेल 1983 में भास्कर–2 को रूप के रॉकेट वाहकों द्वारा अन्तरिक्ष में भेजा। इन उपग्रहों से प्राप्त लघुतरंग आंकड़ों से महासागर एवं वायुमण्डलीय दशाओं के अध्ययन में मदद मिली।

(6) मई 1981 में इसरो ने रोहिणी श्रृंखला के RS-D1 तथा RS-D2 को धरातल से 4000 किमी ऊँची कक्षा में स्थापित कर दिया। इन प्रयोगात्मक उपग्रहों को श्री हरिकोटा से SLV-3 रॉकेट के द्वारा अन्तरिक्ष में भेजा गया। इस श्रृंखला के उपग्रह प्रत्येक दृष्टि से स्वदेशी थे क्योंकि इनकी कल्पना डिजाइन व भेजने का कार्य भारतीय वैज्ञानिकों द्वारा भारत की सीमाओं में किया गया।

(7) 19 जुलाई 1981 में भारत APPLE नामक प्रथम भू–तुल्यकालिक उपग्रह को फ्रेंन्च गायना के कोरू केन्द्र से अन्तरिक्ष में स्थापित किया गया। इनसे कई बड़े क्षेत्रों में टेलिविजन कार्यक्रमरों का सीधा प्रधारण संभव हुआ।

(8) भू–तुल्यकालिक से क्रियात्मक उपग्रह श्रृंखला का प्रथम उपग्रह इन्सेट-IA था जिसकी रचना ''फोर्ड ऐरोस्पेस एण्ड कम्यूनिकेशन कार्पोरेशन'' स.रा. अमेरिका के संस्थान ने की। इस उपग्रह को नासा के डेल्टा रॉकेट द्वारा स.रा. अमेरिका के केपकेनेरिल से 10 अप्रेल 1982 में इसकी पूर्व–निर्धारित भू– तुल्यकालिक कक्षा में स्थापित किया गया, परन्तु 147 दिन बाद इस उपग्रह ने काम करना बंद कर दिया।

(9) अगले उपग्रह इन्सेट—1B को 82° पूर्वी देशान्तर पर स्थित इस भू—तुल्यकालिक उपग्रह से देश के लगभग 220 टेलीविजन केन्द्र, मौसम विभाग के 75 केन्द्र और दूरसंचार के 8000 से भी अधिक टेलिफोन सर्किट जुड़े हुए हैं।

(10) इन्सेट 1C और इन्सेट 1D को भी कोरू केन्द्र फ्रेंच गुयाना से प्रेक्षित किया गया। इन्सेट–2 श्रृंखला के अन्तिम उपग्रह 2E को 3 अप्रेल 1999 को कोरू से ही भेजा गया। 83° पूर्वी देशान्तर पर स्थित यह उपग्रह आस्ट्रेलिया व न्यूजीलैण्ड से प. यूरोप तक के विशाल भू–भाग को कवर करता है। इससे दूरदर्शन व दूरसंचार के क्षेत्र में प्रगति हुई।

(11) 1988 से 26 मई 1999 तक की अवधि में इसरो ने अपने 7 उपग्रह ध्रुवीय एवं वृत्ताकार सूर्य–तुल्यकालिक कक्षाओं में स्थापित किये। इनमें 4 उपग्रह IRS-1 तथा उपग्रह IRS-P श्रृंखला के हैं।

(12) पृथ्वी के पर्यावरण के सम्बन्ध में नियमित रूप से सूचनाएं प्राप्त करने के उद्देश्य से दूसरो ने 1994 में सूर्य—तुल्यकालिक उपग्रहों की नवीन श्रृंखला के IRS-P प्रारम्भ की थी। 26 मई 1994 तक इस श्रृंखला के IRS-P2, IRS-P3 व IRS-P4 अन्तरिक्ष में भेजे जा चुके हैं।

26 मई 1999 में दूसरों ने अपनी स्वदेशी तकनीक से निर्मित PSLV-2C रॉकेट के द्वारा श्री हरिकोटा के शार केन्द्र से एक साथ तीन दूरसंवेद उपग्रहों (i) भारत का IRS-P4 (ii) कोरिया का KITSAT (iii) जर्मनी का TUBSAT को उनकी अपनी–अपनी सूर्य–तुल्यकालिक कक्षाओं में सफलतापूर्वक स्थापित कर विश्व प्रशंसनीय कार्य किया। पिछले 15 वर्षों से भारत ने इस क्षेत्र में अदभूत सफलताएं प्राप्त की है भारत के द्वारा

प्रेक्षित उपग्रहों, उनके उद्देश्यों को निम्न सारणी 4.1 में प्रस्तुत किया गया है। सारणी 4.1 : भारत के प्रमुख अन्तरिक्ष कार्यक्रमों का विवरण

उपग्रह	प्रेक्षण की तिधि	कार्यप्रणाली एवं उद्देश्य	प्रेक्षणयान
जी.सेट	18.04.2001	बहुउद्देशीय	जीएसएसलवी-डी1
टी.ई.एस. (भारत) वर्ड (जर्मनी). ग्रोबा (बेल्ज्श्म)	22.10.2001	सुदूर संवेदन	पीएसएलवी–सी3
इन्सेट-3सी	24.01.2002	संचार व्यवस्था	एरियन-4
कल्पना–1 (मेटसैट)	19.09.2002	मौसम सम्बन्धी	पीएसएलवी सी–4
इन्सेट-3ए	10.04.2003	बहुउद्देशीय	एरियन-5
जी सैट2	08.50.2003	संचार व्यवस्था	जीएसएलवीडी–2
इन्सेट–3ई	28.09.2003	सुदूर सवंदन	एरियन-5
रिसोर्ससैट	17.10.2003	बहुउद्देशीय	पीएसएलवी—सी5
एजुसैट	20.09.2004	बहुउद्देशीय	जीएसएलवी–01
कार्टोसेट	05.05.2005	सुदूद संवेदन	पीएसएलवी—सी6

(53)

हैमसेट	05.05.2005	संचार	पीएसएलवी-सी6
इन्सेट-4ए	22.10.2005	संचार	एरियल-5
इनसेट 4सी	10.07.2006	संचार	जीएसएलवी
कार्टोसेट-2	10.01.2007	स्थानिक चित्रण	पीएसएलवी—सी7
स्पेश कोसूल रिकवरी प्रयोग	10.01.2007	स्थानिक चित्रण	पीएसएलवी–सी7
इन्सेट 4बी	12.03.2007	संचार (DTH)	एरियल
इन्सेट 4सीआर	02.09.2007	संचार	पीएसएलवी-एफ4
काटोसेट-2ए	28.04.2007	रिमोट सेसिंग	पीएसएलवी-सी9
आईएमएस—1 (TW Sat)	28.04.2008	रिमोट सेसिंग	पीएसएलवी—सी9
चन्द्रयान–1	22.10.2008	चन्द्रमा पर शोध	पीएसएलवी-सी11
राईसेन्ट–2	22.04.2008	सीमान्त सुरक्षा. आंतकी सुरक्षा	पीएसएलवी–सी12
एजुसेट	22.04.2008		पीएसएलवी—सी13
ओशनसेट-2	23.09.2009	महासागरीय व तटीय सूचनाएँ	पीएसएलवी—सी14
जी सेट-4	15.04.2010		जीएसएलवी–डी3
कार्टोसेट'2बी	12.07.2010	पृथ्वी अवलोकन	पीएसएलवी–सी15
जी.सेट एसपी/इनसेट-4डी	25.12.2010	संचार	पीएसएलवी-एफ6
रिर्सोर्ससेट–2	20.04.2011	संसाधन प्रबन्धन	पीएसएलवी–सी16
जी सेट-8 (इनसेट4जी)	21.05.2011	संचार	एरियल
जी सेट—12	15.07.2011	संचार	पीएसएलवी–सी17
मेघ ट्रॉपिवस	12.10.2011	मौसमी व संचार	पीएसएलवी–सी18
राइसेट–1	24.04.2012	मौसमी व आपदा सूचना	पीएसएलवी–सी19
मंगलयान	05.11.2013		पीएसएलवी–सी25

भौगोलिक सूचना तंत्र (Geographical Information System) परिचय

भौगोलिक सूचना तंत्र धरातल की वास्तविकताओं से संबंधित विभिन्न प्रकार की सूचनाओं के संग्रहण, भण्डारण, विश्लेषण और मानचित्रण की तकनीक है, जिसके द्वारा किसी भी धरातलीय क्षेत्र के किसी भी तथ्य के बारे में सम्पूर्ण तथ्यों के बारें में शीघ्रताशीघ्र जानकारी प्राप्त की जा सकती है। सम्पूर्ण विश्व में 21 वीं शताब्दी को सूचना तकनीक की शताब्दी माना जा सकता है, जिसमें धरातल से लेकर अन्तरिक्ष तक फैले हुए कम्प्यूटर, कृत्रिम उपग्रह आदि के संजाल द्वारा सूचनाएं एकत्रित करके विश्लेषण किया जाता है और अपेक्षित परिणाम को प्राप्त किया जा सकता है। इस तरह सूचना प्रणाली अथवा सूचना तंत्र धरातलीय वास्तविकताओं के विभिन्न सूचनाओं, उनके प्रक्रमण हेतु आवश्यक यांत्रिक संजाल का तंत्र है। विभिन्न भौतिक और सामजिक सूचनाओं को आंकिक रूप में संग्रहीत करके इलेक्ट्रॉनिक माध्यमों से उनका विश्लेषण किया जाता है। इससे आंकड़ा आधार तैयार होता है और आवश्यकतानुसार उसमें से कोई भी आंकड़ा लेकर अपेक्षित विश्लेषण किया जा सकता है। ऐसे आंकडे वास्तविक रूप में हवाई छायाचित्रण अथवा दूर संवेदक द्वारा अभिलेखिय अथवा संगठित रूप में हो सकते है। इस प्रकार सूचना तंत्र का मुख्य उद्देश्य ही एक विस्तृत आंकड़ा आधार तैयार करना है।

भौगोलिक सूचना तंत्र का अर्थ

भौगोलिक सूचना तंत्र को संक्षेप में इसे जी.आई.एस. (GIS) कहा जाने लगा है। यह एक ऐसी प्रणाली है जिसमें सुदूर संवेदन तकनीक से प्राप्त आंकड़ों को विश्लेषित करके परिणाम तक पहुंचा जाता है। इसमें धरातलीय आंकड़ों की प्रविष्टी (entering), संग्रह (store), परिचाल (manipulation), विश्लेषण (analysis) तथा प्रदर्शित (displaying) का समस्त कार्य किया जाता है।

भौगोलिक सूचना तंत्र, सूचनाओं का अपार भण्डार है, जिसमें स्थानीय आंकड़ों, विशिष्ट सूचनाओं की स्थिति निर्धारण कर पृथ्वी से संदर्भित आंकड़ों के प्रग्रहण, भण्डारण, जांच, समन्वय हेर–फेर, विश्लेषण, प्रदर्शन आदि को सम्मिलित किया जाता है। यह कम्प्यूटर सहायक मानचित्र कला और सूचनाधारित प्रबंधन तंत्र का सम्मिश्रण है, जिसका उपयोग विभिन्न विज्ञानों जैसे भूगोल, कम्प्यूटर विज्ञान, भू–विज्ञान, जल विज्ञान, कृषि संसाधन प्रबंधन, पर्यावरण विज्ञान, लोक प्रशासन सांख्यिकी, मानचित्र कला, सुदूर संवेदन आदि में किया जाता है।

भौगोलिक सूचना तंत्र की परिभाषाए

भौगोलिक सूचना तंत्र की कोई सामान्य परिभाषा नहीं है | फिर भी अनेक विद्वानों ने अपने—अपने ढंग से परिभाषित किया है |

क्लार्क के अनुसार ''भौगोलिक सूचना तंत्र किसी संगठन के स्थानिक आंकड़ों की प्राप्ति, भण्डारण, विश्लेषण ओर प्रस्तुतीकरण का कम्प्यूटर आधारित तंत्र है।''

बुर्रो ने माना है कि ''वास्तविक धरातल से संबंधित स्थानिक सूचनाओं के

एकत्रीकरण, भण्डारण, रूपान्तरण और प्रस्तुतीकरण के लिए विभिन्न यंत्रों का शक्तिशाली तंत्र है।''

एरोनोफ ने कहा है कि 'GIS' कम्प्यूटर आधारित ऐसा तंत्र है जो भौगोलिक आंकडों के प्रदर्शन के चार प्रकार से सक्षम है– निवेश, आंकड़ों का प्रबन्धन, विश्लेष्ण एवं निर्गम।

पार्कर – ''कोई भी सूचना तकनीकी जो धरातलीय तथा अधरातलीय आँकड़ों का संग्रह, विश्लेष्पाण तथा प्रदर्शन करती है, उसे जी.आई.एस. कहते हैं।

गुड चाइल्ड – यह एक ऐसी प्रणाली है जो धरातलीय आंकड़ों के आधार पर उपयोग भौगोलिक स्वभाव के प्रश्न के उत्तर एवं पूछताछ के लिए उपलब्ध करता है।''

स्मिथ – ''एक ऐसी आंकड़ा आधार प्रणालों जिसमें अधिकतर आंकड़े धरातल से सम्बन्धित होता है तथा जिसका संचालन एक क्रिया विधि के सैट द्वारा किया जाता है। धरातलीय प्रविष्टियों के बारे में पूछे गए प्रश्नों का उत्तर देते हैं।''

डी.डी. चौनियाल– ''भौंगोलिक सूचना प्रणाली (GIS) भौगोलिक अथवा धरातलीय आंकड़ों की प्रविष्ट, संग्रह, परिचालन, विश्लेषण तथा प्रदर्शित करने वाली प्रणाली है।

इस तरह स्पष्ट होता है कि भौगोलिक सूचना तंत्र भौगोलिक क्षेत्र में स्थानिक आंकडों के एकत्रीकरण, प्रबन्धन विश्लेषण और अपेक्षित परिणाम प्राप्त करने की कम्प्यूटर आधारित तकनीक है। पार्कर के अनुसार – भौगोलिक सूचना तंत्र एक सूचना तकनीकी विज्ञान है। जो स्थानिक एवं अस्थानिक आंकड़ों के संग्रह, विश्लेषण और प्रस्तुतीकरण में सक्षम है।

भौगोलिक सूचना तंत्र को तकनीकी रूप में निम्न शब्दावलियों से व्यक्त किया जाता है –

- (1) G.I.S. (Geographical Information System)
- (2) G.S. (Geinformation System)
- (3) S.I.S. (Spatical Information System)
- (4) L.I.S. (Land Information System)

भौगोलिक सूचना तंत्र का विकास

भौगोलिक सूचना तंत्र के प्रारम्भिक स्वरूप को 1960 ई. में देखा जा सकता है। जब कम्प्यूटर आधारित भौगोलिक सूचना तंत्र की प्रक्रिया प्रयोग में लायी गयी थी।ऐसा कहा जाता है कि सबसे पहले संयुक्त राज्य अमेरिका के जनगणना विभाग, भौगिकीय सर्वेक्षण और हारवर्ड विश्वविद्यालय की प्रयोगशाला के भौगोलिक सूचना तंत्र का प्रयोग किया। इसी तरह कनाड़ा में कनाडियन भौगोलिक सूचना तंत्र का, ब्रिटेन में प्राकृतिक प्रायोगिक शोध केन्द्र, पर्यावरण विभाग को भी G.I.S. के विकास का श्रेय जाता है। हारवर्ड विश्वविद्यालय ने इस संदर्भ में महत्वपूर्ण कार्य किया। इस आधार पर अनेक व्यावसायिक संस्थाओं ने G.I.S. से संबंधित अनेक सोफ्टवेयर का विकास किया। 1970 ई. तक कम्प्यूटर आधारित आंकडा संजाल विकसित हो चुका था। इस समय भौगोलिक सूचना तंत्र मे टोपोलोजी और ग्राफ सिद्वान्त का प्रयोग बहुत सहायक सिद्वहुआ। यह प्रक्रिया 1980 ई. में व्यक्तिगत कम्प्यूटरों के विकास से आगे बढ़ी। 1990 ई. में कम्प्यूटर आधारित आंकडा आधार की कल्पना और भू–सूचना तकनीक का व्यावसायिक विकास हुआ और इस समय भू–विज्ञानों के अतिरिक्त बहुत से व्यावसायिक कार्यों में भौगोलिक सूचना तंत्र का व्यापक प्रयोग हो रहा है।

भारत में पिछले एक दशक से G.I.S. से संबंधित तकनीकी का तेजी से विकास हुआ है। भारतीय अंतरिक्ष विभाग द्वारा प्राकृतिक संसाधन प्रबंधन, प्राकृतिक संसाधन सूचना तंत्र, शाश्वत विकास हेतु समन्वित मिशन आदि क्षेत्रों में G.I.S. का प्रयोग बढ़ रहा है। भारतीय दूर संवेदन द्वारा भी G.I.S. के विकास को आगे बढ़ाया जा रहा है। वर्तमान समय में भारत में प्राकृतिक संसाधन प्रबंधन अवस्थाना विकास सुविधाओं के नियोजन और बहुत से व्यावसायिक कार्यो में G.I.S. का उपयोग बढ़ रहा है।

भौगोलिक सूचना तंत्र के उद्देश्य

भौगोलिक सूचना तंत्र आंकड़ा प्राप्ति से लेकर संग्रह, प्रक्रमण और विश्लेषण का कम्प्यूटर आधारित तंत्र है। इसलिए इसके विभिन्न उद्देश्यों को संक्षिप्त रूप में निम्न प्रकार से व्यक्त किया जा सकता है –

(1) विभिन्न प्रकार के नियोजन और निर्णय प्रक्रिया में समय और लागत के संदर्भ में मानवीय क्षमता को बढ़ाना।

(2) आंकड़ों के वितरण एवं प्रक्रिया के लिए सक्षम साधनों को प्रदान करना।

(3) आंकड़ों के प्रक्रियात्मक स्तर पर पुनरावृत्ति को कम से कम करना।

(4) विभिन्न स्त्रोतों से उपलब्ध सूचनाओं को समन्वित करने की क्षमता में वृद्विकरना।

(5) नई—नई सूचनाओं को प्राप्त करने के लिए भौगोलिक आकड़ों के मिश्रित स्वरूप का विश्लेषण करना।

इस प्रकार भौगोलिक सूचना तंत्र स्थानीय आंकडों की सहायता से किसी भी धरातलीय तथ्य के बारें में उसकी अवस्थिति, दशा, प्रवृत्ति और मॉडल प्रक्रिया को स्पष्ट करने में सक्षम है।

भौगोलिक सूचना के प्रकार एवं लाभ

भौगोलिक सूचना तंत्र से दो प्रकार के आंकडे प्राप्त होते है –

(1) स्थानीय आंकडे जिन्हें उनकी स्थिति, रेखा, क्षेत्रीकरण एवं बनावट के आधार पर दिखाया जाता है।

(2) गैर–स्थानीय आंकडे, जिनमें मात्रा, संख्या तथा विशेष विवरण होता है।

भौगोलिक सूचना तंत्र में गुण और उनकी मदें अथवा वर्ग होते है। बाई ओर गैर-स्थानिक आंकडे प्रदर्शित होते है, जबकि दाई ओर स्थानिक आंकडे जैसे राज्यों के

(55)

नाम, जनसंख्या, साक्षरता आदि को प्रदर्शित किया जाता है। भौगोलिक सूचनातंत्र में आंकडों के मान्य और समुचित रूप से परिभाषित निर्देशांक प्रणाली से ज्यामितीय रूप से पंजीकृत एवं कोडित किया जाता है। भौगोलिक सूचना तंत्र के कोड में जिन विधियों का प्रयोग होता है वे है –

- आंकडा आपूर्तिदाता से आंकिक रूप में आंकडें प्राप्त करना
- विद्यमान अनुरूप आंकडों का अंकीकरण।
- भौगोलिक सत्ताओं का स्वयं सर्वेक्षण करके।

भौगोलिक आंकडों के स्त्रोत का चयन वृहत् रूप से निम्नलिखित द्वारा निर्धारित होता है –

- स्वयं अनुप्रयोग क्षेत्र
- उपलब्ध बजट

आंकड़ा संरचना का प्रकार—संदिश (वेक्टर)
 चित्र रेखा पुंज (रेस्टर)

भौगोलिक सूचना तंत्र के लाभ

(1) प्रयोक्ता संबंधित स्थानीय लक्षणों के बारें में प्रश्न पूछ सकते हैं और संबंधित गुण–व्यास को प्रदर्शन और विश्लेषण हेतु निकाल सकते है।

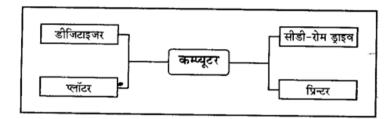
(2) सूचनाओं का विश्लेषण करके उन्हें मानचित्र पर प्रदर्शित किया जा सकता है।

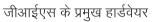
(3) स्थानिक प्रचालकों (बहुभुज अधिचित्र) का समन्वित सूचनाधार पर अनुप्रयोग कर नए समुच्चय विकसित किए जा सकते है।

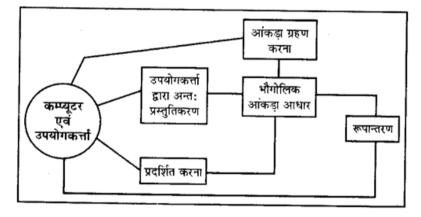
(4) विशेष आंकडों के विभिन्न आइटम एक–दूसरे के साथ समन्वित किए जा सकते हैं।

भौगोलिक सूचना तंत्र के घटक

भौगोलिक सूचना तंत्र के निम्नलिखित घटक होते हैं– (1) हार्डवेयर, (2) सॉफ्टवेयर, (3) आंकडे एवं (4) व्यक्ति।


(1) हार्डवेयर— इसमें हार्डवेयर के प्रक्रमण भंडार, प्रदर्शन और निवेश तथा बहिवेश उपतंत्र, आंकडा प्रविष्टि, संपादन, अनुरक्षण, विश्लेषण, रूपान्तरण हेरफेर आंकडा प्रदर्शन, और बहिवेंशो के लिए सॉफ्टवेयर मॉडयूल तथा सूचनाधार प्रबंधन तंत्र सम्मिलित है।


(2) सॉफ्टवेयर – भौगोलिक सूचना तंत्र व्यक्तिगत कम्प्यूटर से लेकर सुपर कम्प्यूटर तक पर व्यवस्थित किया जा सकता है। सभी में कुछ आवश्यक तत्व होते है, जो भौगोलिक सूचना तंत्र को प्रभावी बनाने में सहायक होते हैं।


(3) आंकडे – भौगोलिक सूचना तंत्र में स्थानिक (भौगोलिक आंकडो को

संभालने की व्यवस्था होती है । स्थानिक अपनी स्थिति, अन्य तत्वों से इनके संबंध तथा गैर–स्थानिक आंकडों के विवरण से संबंधित है ।

(4) व्यक्ति – कोई भी भौगोलिक सूचना तंत्र अपने आप काम नहीं करता। इसकी योजना बनाने, इसे क्रियान्वित करने तथा इसके तर्क संगत निष्कर्ष निकालने के लिए लोगों की आवश्यकता होती है। इसका प्रयोग करने वाले एक व्यक्ति से लेकर अंतर्राष्ट्रीय संस्थाएं होती हैं।

जीआईएस साफ्टवेयर के घटक

स्थानिक आंकडा प्रारूप

स्थानिक आंकडा प्रारूप का प्रदर्शन दो फार्मेटों द्वारा किया जाता है —

- 1. चित्र रेखा पुंज आंकडा फार्मेट (रैस्टर)
- 2. सदिश आंकड़ा प्रारूप (वैक्टर)

(1) चित्ररेखा पुंज आंकडा प्रारूप – इसमें आंकडे वर्गो के जाल के प्रारूप में ग्राफिक्स द्वारा प्रदर्शित किए जाते हैं। यह एक ग्राफ पेपर चित्र की तरह आंकडा फाइल

(56)

में प्रत्येक सेल को एक स्थान प्रदान किया जाता है और उस स्थान गुण के आधार पर एक मूल्य दिया जाता है। इसकी पंक्तियों और स्तम्भों में निर्देशांक किसी भी पिक्सेल (Pixel) की पहचान कर सकते है।

चित्ररेखा (Raster) संरचना के गुण -

- (i) सेलों के खुरदरेपन से छोटे-छोटे लक्षण छूट जाते हैं।
- (ii) मिश्रित सेलों की स्थिति में अशुद्वियाँ आ जाती है।
- (iii) नेटवर्क संबंधों को सुचारू रूप से प्रदर्शित नहीं किया जा सकता है।

(iv) आंकडों के भंडारण में उच्च कोटीय स्मृति व्यवस्था होती है और आंकडों के संपीडन की आवश्यकता होती है।

(v) प्रत्येक सेल केवल एक गुण का ही भंडारण करता है।

(2) सदिश आंकड़ा प्रारूप (वैक्टर) – एक सदिश (वैक्टर) आंकडा मॉडल अपने यथार्थ (पृथ्वी) द्वारा भंडारित बिन्दुओं का प्रयोग करता है। यहाँ रेखाओं और क्षेत्रों का निर्माण बिन्दुओं के अनुक्रम द्वारा होता है। रेखाओं की दिशा बिन्दुओं के क्रम के अनुरूप होती है। बहुभुजों का निर्माण बिन्दुओं या रेखाओं द्वारा होता है। सदिश (वैक्टर) संस्थिति के बारे में सूचना का भंडारण कर सकता है। सदिश (वैक्टर) आंकडों के निवेश के लिए हस्तेन अंकीकरण सर्वोत्तम विधि है।

सदिश (Vector) संरचना के गुण –

(i). यह सांस्कृतिक लक्षणों को प्रदर्शित करने के लिए अधिक उपयोगी है।

(ii) अधिकांश स्थानिक आंकडे चाहे वे स्थलाकृतिक मानचित्रों अथवा थिमेटिक मानचित्रों के रूप में हो, रेखा मानचित्रों के रूप में उपलब्ध होते है और आंकडों के परिवर्तन की आवश्यकता नहीं होती।

(iii) ग्लोबल पोजीशन सिस्टम GPS तथा टोटल स्टेशनों से आंकडे सीधे ही प्राप्त हो जाते है।

(iv) सदिश संरचना में भौगोलिक स्थितियों से संबंधित आंकडों को संजोया जाना है और ये आंकडे इतने सुनिश्चित होते है कि इनके साधारणीकरण की आवश्यकता नहीं होती और ग्राफ सौंदर्यपरक होता है।

- (v) इसमें कम स्मृति की आवश्यकता होती है।
- (vi) स्थलाकृतियों को दर्शाने तथा उनके विश्लेषण में अधिक शुद्धता होती है।

सदिश (Vector) संरचना के दोष —

- (i) इसकी प्रक्रिया जटिल है तथा इसको संशोधित करना भी मुश्किल है।
- (ii) आंकडो का विश्लेषण एवं गणना जटिल प्रक्रिया है।

(iii) ऊँचाईयाँ, कार्यक्षेत्र तथा स्थिति आदि निरंतर आंकडो को प्रभावशाली ढंग से नहीं दर्शाया जा सकता।

(iv) सदिश संरचना में अधिचित्रण (Overlaying) अथवा छानने की क्रिया को

प्रभावशाली ढंग से नहीं किया जा सकता।

(v) आंकडों के भण्डारण, विश्लेषण आदि के कारण उसमें सॉफ्टवेयर काफी महंगा होता है।

भौगोलिक सूचनाओं की क्रियाओं का अनुक्रम

समस्त भौगोलिक सूचना तंत्र की क्रियाओं का अनुक्रम निम्न प्रकार से होता है –

- (i) स्थानिक आंकडा निवेश (Spatial Data Input)
- (ii) गुण व्यास की प्रविष्टि (Entering of the Attribute Data)
- (iii) आंकडों का सत्यापन और संपादन (Data Verification and Editing)
- (iv) स्थानीय गुण व्यास आंकडो की सहलग्नतां (Spatial and Attribute Data

Linkager)

(v) स्थानिक विश्लेषण (Spatial Analysis)

जी.आई.एस. का उपयोग

भौगोलिक सूचना तंत्र का महत्व एवं उपयोग तीव्रता से बढ़ रहा है। इसका उपयोग संसाधनों के संरक्षण एवं क्षेत्रीय नियोजन में बढ़ रहा है कुछ क्षेत्रों का वर्णन इस प्रकार है।

- वन संसाधनों का संरक्षण एवं प्रबन्धन में
 - (i) वनाग्नि मानचित्र
 - (ii) जेव विविधता का संरक्षण
 - (iii) पर्यावरणीय प्रभावों का अध्ययन
 - (iv) वन आवरण मानचित्र
- 2. जल संसाधन संरक्षण एवं नियोजन में
 - (i) धरातलीय जल संसाधन का मानचित्रण
 - (ii) बाढ से हानि का मूल्यांकन
 - (iii) जलग्रहण प्राथमिकता
 - (iv) बाढ़ग्रस्त क्षेत्रों का मानचित्रण
- 3. मृदा संसाधन संरक्षण में
 - (i) मृदा मानचित्र
 - (ii) मृदानमर कस आकलन
 - (iii) लवणीय तथा क्षारीय मृदाओं का मानचित्र
 - (iv) भू–सिंचाई योग्यता मानचित्र
- 4. कृषि संसाधन संरक्षण
 - (i) फसल क्षेत्र व उत्पादन का आकलन
 - (ii) सूखे का मूल्यांकन
 - (iii) फेंसल उत्पादकता मॉडलों का विकास

Downloaded from https:// www.studiestoday.com

(57)

	(iv) वन्य जीव संरक्षण में (v) समुद्री संसाधनों के संरक्षण में (vi) खनिजों का आकलन व संरक्षण		
	अभ्यास प्रश्न		
1.	सुदूर संवेदन से आप क्या समझते हैं?		
2.	सुदूर संवेदन के वायुमण्डलीय प्लेट फार्म कौनसे हैं?		
3.	सुदूर संवेदन की प्रक्रियाओं को स्पष्ट कीजिए।		
		5.	भौगोलिक सूचना तंत्र क्या है?
4.	भारत में सुदूर संवेदन कार्यक्रम के प्रारम्भिक विकास पर लेख लिखिए।		
		6.	भौगोलिक सूचना तंत्र (GIS) की परिभाषा बताइये।
		7.	भौगोलिक सूचना तंत्र से क्या लाभ है?

(58)

		14.	भौगोलिक सूचना तंत्र की क्रियाओं का अनुक्रम बताइए ।
8.	भौगोलिक सूचना तंत्र के कौन–कौनसे प्रकार है?		
		15.	भौगोलिक सूचना तंत्र के उपयोग के क्षेत्र बताइये।
9.	चित्ररेखा पुंज (Raster) एवं सदिश (Vector) आंकडा मॉडल के मध्य कोई चार अन्तर बताइये।		
11.	भौगोलिक सूचना तंत्र के मुख्य घटक कौन—कौनसे है?		
12.	चित्ररेखा पुंज (Raster) संरचना के कोई दो गुण व दो दोष बताइए ।		
13.	सदिश (Vector) संरचना के कोई दो गुण व दो दोष बताइए ।		
		(50)	

(59)

^{अध्याय 5} समपटल सर्वेक्षण (Plane Table Surveying)

परिचय

समपटल (Plane Table) सर्वेक्षण करने की वह आलेखी विधी है, जिसमें सर्वेक्षण कार्य तथा प्लान की रचना दोनों प्रक्रियाएँ साथ–साथ सम्पन्न होती हैं। दूसरें शब्दों में, समपटल सर्वेक्षण में किसी क्षेत्र का प्लान बनाने के लिये जरीब, प्रिज्म कम्पास सर्वेक्षण की तरह क्षेत्र–पुस्तिका तैयार करने की आवश्यकता नहीं होती।

त्रिभुजन विधि के द्वारा पूर्व निश्चित स्टेशनों के मध्य सम्बन्धित क्षेत्र के सर्वेक्षण के लिये समपटल को सर्वाधिक उपयोगी एवं प्रामाणिक माना जाता है। इसके अतिरिक्त समपटल के द्वारा कुछ वर्ग किलोमीटर आकार वाले खुले क्षेत्रों का काफी सीमा तक सही–सही प्लान बनाये जा सकते हैं तथा इन प्लानों में क्षेत्र के सुदूर किन्तु दृश्य विवरणों को बिना किसी अतिरिक्त आलेखी रचना या त्रिकोणमितीय गणना के प्रदर्शित किया जा सकता है। प्लेनटेबल सर्वेक्षण में प्रयुक्त उपकरणों की बनावट जटिल न होने के कारण कोई सर्वेक्षक थोड़े अभ्यास के बाद भी उन्हें सरलतापूर्वक प्रयोग कर सकता हैं।

समपटल सर्वेक्षण के उपकरण

प्लेन टेबल सर्वेक्षण में निम्नलिखित उपकरणों की आवश्यकता होती है :

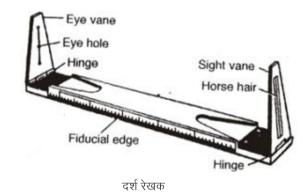
- (1) प्लेनटेबल तथा त्रिपाद-स्टैण्ड,
- (2) दर्शरेखक या ऐलीडेड,
- (3) स्पिरिट लेविल,
- (4) साहुल या साहुलपिण्ड,
- (5) साहुल काँटा,
- (6) ट्रफ कम्पास,
- (7) ज़रीब अथवा फीता,
- (8) सर्वेक्षण दण्ड,
- (9) ज़रीब के तीर,

- (10) ड्राइंग कागज,
- (11) ड्राइंग पिनें तथा आलपिन,
- (12) ड्राइंग उपकरण।

[I] प्लेन टेबल तथा त्रिपाद – स्टैण्ड

प्लेनटेबल इस सर्वेक्षण का प्रमुख उपकरण है, जिसके दो अंग होते हैं— (i) आरेख—पट्ट या ड्राइंग—बोर्ड (drawing board) तथा (ii) त्रिपाद—स्टैण्ड। चूँकि आरेख—पट्ट को त्रिपाद—स्टैण्ड पर रखकर क्षैतिज तल (horizontal plane) में घुमाया अथवा इच्छित स्थिति में स्थिर किया जा सकता है अतः इसे प्लेनटेबल की संज्ञा दी गई है। बनावट के विचार से प्लेनटेबल (आरेख—पट्ट तथा त्रिपाद—स्टैण्ड) तीन प्रकार की होते हैं — (i) साधारण या चंक्रमण टेबल, (ii) जॉनसन टेबल तथा (iii) तट—सर्वेक्षण टेबल। यहाँ हमारे उपयोग के साधारण टेबल का वर्णन किया जा रहा है।

साधारण टेबल (Simple or Traverse table)— छोटी मापनी वाले मानचित्रों के लिये किये गये सर्वेक्षणों में अथवा स्थलाकृतिक मानचित्रों में अपेक्षाकृत सुदूर विवरणों को अंकित करने के लिये अथवा सैन्य आधार रेखाचित्र बनाने के उद्देश्य से किये गये प्लेन टेबल सर्वेक्षणों में प्रायः साधारण या चंक्रमण टेबल को प्रयोग में लाया जाता है। इस टेबल को चीड़ की लकड़ी (pine wood) के लगभग 2.5 सेमी मोटे तख्तों को जोड़कर बनाया जाता है। ये पट्ट भिन्न—भिन्न आकर के होते हैं जैसे, 40 × 30 सेमी, 75 × 60 सेमी, 45 × 45 सेमी तथा 60 × 60 सेमी, आदि। मजबूती के लिये पट्ट की निचली सतह पर सागवान की लकड़ी (teak wood) की दो पट्टियाँ (battens) लगी होती हैं। इन पट्टियों तथा पट्ट की निचली सतह पर खाँचेदार (slotted)धारियाँ बनी होती हैं जिससे तापमान के परिवर्तन का पट्ट की ऊपरी सपाट सतह पर कोई प्रभाव न पड़ सके। आरेख–पट्ट के मध्य में नीचे की ओर पीतल या ऐलुमिनियम की एक गोल प्लेट होती है, जिसे धुराग्र प्लेट (pivot plate) कहते हैं।

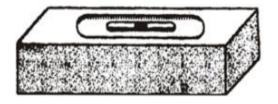

प्लेन टेबल एवं त्रिपाद स्टेण्ड

आरेख–पट्ट को लगभग 1.5 मीटर लम्बे त्रिपाद–स्टैण्ड पर कसकर प्रयोग में लाया जाता है। त्रिपाद–स्टैण्ड में तीन टॉगें होने के फलस्वरूप ऊँचे–नीचे धरातल पर भी आरेख–पट्ट को समतल किया जा सकता है। स्टैण्ड की टॉगें सागवान की दोहरी पट्टियों से निर्मित होती हैं तथा इनके ऊपरी सिरे फ्लाई–नटों (fly-nuts) के द्वारा पीतल या ऐलुमिनियम की एक प्लेट से जुड़े होते हैं, जिसे त्रिशाखी प्लेट (tribranch plate) कहते हैं। प्रत्येक टॉग के निचले सिरे पर लोहे के अतिरिक्त किसी अन्य धातु का नुकीला टुकड़ा या खोल होता है जो उसे धरातल पर फिसलने से रोकता है। आरेख–पट्ट को त्रिपाद–स्टैण्ड पर लगाने के लिये धुराग्र प्लेट के बॉस हैड (boss head) को त्रिशाखी प्लेट के छिद्र (tribanch hole) में डालकर, त्रिशाखी प्लेट में लगे बन्धन पेंच (clamping screw) को कस देते हैं।

[11] दर्शरेखक या ऐलीडेड

प्लेन टेबुल सर्वेक्षण में प्रयोग किये जाने वाला यह दूसरा महत्वपूर्ण उपकरण है। ऐलीडेड की सहायता से दो स्टेशनों के मध्य की दृष्टि रेखा (line of sight) की दिशा में ड्राइंग कागज पर रेखा या किरण खींचते हैं। बनावट के विचार से ऐलीडेड दो प्रकार के हो हैं – (i) साधारण या द्विवीक्षी ऐलीडेड तथा (ii) दूरदर्शीय ऐलीडेड। हमारे उपयोग में साधारण ऐलीडेड आता है।

साधारण या द्विवीक्षी ऐलीडेड – साधारण ऐलीडेड में पीतल या सागवान आदि किसी कठोर लकड़ी से निर्मित समान्तर किनारे वाली पटरी के दोनों सिरों पर स्थिर अथवा मोड़कर रखे जा सकने वाले दो लम्बवत् फलक होते हैं। एक फलक में ऊर्ध्वाधर महीन रेखा के समान कटी झिरी होती है जिसके सिरों पर एवं मध्य में गोल छिद्र या अवलोकन छिद्र (eye holes) होते हैं तथा दूसरे फलक की झिरी में एक महीन तार या धागा बंधा होता है। अवलोकन छिद्रों वाले फलक को नेत्र फलक (eye vane or sight) या दर्श फलक (sight vane) तथा तार वाले फलक को दृश्य वेधिका (object vane) कहते हैं। अवलोकन–छिद्र तथा दृश्य वेधिका के तार को मिलाने वाली कल्पित सरल रेखा (अर्थात् दृष्टि रेखा) पटरी के किनारों को पूर्णतया समांतर होती है अतः पटरी के किनारे के साथ ड्राइंग कागज पर खींची गई रेखा या किरण (ray) की दिशा दृष्टि रेखा की दिशा के समान होती है।

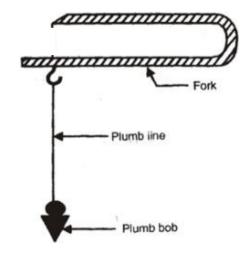


साधारण ऐलीडेड प्रायः 40 से 50 सेमी तक लम्बे होते हैं। उत्तम प्रकार के साधारण ऐलीडेड के ढ़ालू किनारे पर सेन्टीमीटर आदि में मापनी अंकित होती है तथा पटरी की ऊपरी सतह पर ट्रफ कम्पास तथा गोल आकृति वाला स्पिरिट लेविल लगा रहता है। ऐलीडेड से किरणें खींचने के लिये इसके कार्यकारी किनारे को प्लान में

टेबल की स्थिति इंगित करने वाले बिन्दु पर गड़े आलपिन से सटाकर रखते हुए अवलोकन—छिद्र के समीप आँख रखकर दृश्य वेधिका के तार को दूर खड़े सर्वेक्षण दण्ड की सीध में करते हैं तथा जब अवलोकन छिद्र, दृश्य वेधिका का तार तथा सर्वेक्षण दण्ड तीनों एक सरल रेखा में आ जाते हैं तो कार्यकारी किनारे के सहारे ड्राइंग कागज पर सर्वेक्षण दण्ड की ओर को किरण खींच देते हैं।

[III] *स्पिरिट लेविल*

यह एक साधारण उपकरण है जिसकी सहायता से त्रिपाद-स्टेण्ड पर लगे आरेख-पट्ट को समतल किया जाता है। स्पिरिट लेविल की काँच नली में स्पिरिट या ऐल्कोहॉल (alcohol) होता है। चूँकि इस नली में स्पिरिट या ऐल्कोहॉल भरते समय कुछ स्थान रिक्त छोड़ दिया जाता है, जिससे इसमें हवा का बुलबुला बन जाता है जो सदैव ऊँचाई की ओर को भागता है। नली के ऊपर उसके मध्यवर्ती बिन्दु से दोनों ओर को समान दूरी के अन्तर पर चिंह अंकित होते हैं। कुछ उपकरणों की काँच नलियों पर बीचों-बीच दो आड़ी रेखाएँ अंकित होती हैं। जब हवा का बुलबुला नली के ठीक मध्य में होता है अर्थात् इन आड़ी रेखाओं के बीच में आ जाता है तो आरेख-पट्ट समतल हो जाता है। स्पिरिट लेविल की नली लकड़ी, पीतल या ऐलुमिनियम के समतल आधार वाले प्रायः 10 से 15 सेमी लम्बे एवं 2 से 3 सेमी मोटे आयताकार खोल में लगी होती है जिससे उसे आरेख-पट् पर रखा जा सके।

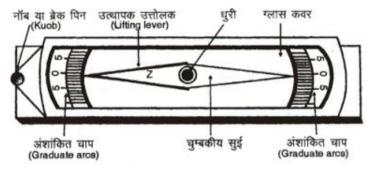


स्पिरिट लेवल

आरेख पट्ट को समतल करने के लिये उसके चारें। कानों तथा मध्य में स्पिरिट लेवल को रखते हैं तथा प्रत्येक स्थान पर जिस ओर को हवा का बुलबुला भागता है उसी ओर को त्रिपाद—स्टेण्ड आवश्यकतानुसार नीचा कर दिया जाता है जिससे हवा का बुलबुला नली के ठीक मध्य में स्थिर हो जाये।

[IV] साहुल काँटा और साहुलपिण्ड

धरातल के किसी बिन्दु की उसके ठीक ऊपर आरेख–पट्ट पर स्थिति ज्ञात करने अथवा आरेख–पट्ट पर लगे प्लान में किसी पूर्व अंकित बिन्दु को धरातल के सम्बन्धित स्टेशन (Corresponding station) के ठीक ऊपर रखने के लिये साहुल काँटा व साहुलपिण्ड उपकरणों का प्रयोग करते हैं। अर्थात् इन उपकरणों की सहायता से धरातल के किसी स्टेशन पर प्लेन टेबुल का केन्द्रण (centring) किया जाता है। साहुल काँटा लगभग 1 मीटर लम्बी, 2 सेमी चौड़ी तथा 2 मिलीमीटर मोटी पीतल या ऐलुमिनियम की पत्री को चिमटे से मिलती—जुलती आकृति में मोड़कर बनाया जाता है। काँटे की ऊपरी भुजा अपेक्षाकृत कुछ छोटी एवं नोंकदार सिरे वाली होती है।



इस नोंकदार सिरे से लम्बवत् दिशा में बड़ी भुजा की निचली सतह पर एक छोटा हुक लगा होता है जिसमें डोरी बाँधकर साहुलपिण्ड को लटकाते हैं। धरातल के किसी निर्दिष्ट स्टेशन पर प्लेन टेबुल का केन्द्रण करने के लिये काँटे की नोंकदार छोटी भुजा को आरेख—पट्ट के ऊपर रखकर काँटे को इस प्रकार आगे—पीछे या दायीं—बायी ओर को हटाते हैं कि डोरी में बंधे साहुलपिण्ड की नोंक धरातल के सम्बन्धित स्टेशन के ठीक ऊपर लम्बवत् सीध में आ जाये। इस क्रिया को पूर्ण कर लेने के पश्चात् आरेख—पट्ट के ड्राइंग कागज़ पर साहुल काँटे की नोंक से इंगित बिन्दु को पेन्सिल से अंकित कर देते हैं।

[V] ट्रफ कम्पास

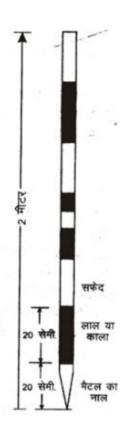
मानचित्र में उत्तर दिशा का विशेष महत्व होता है। सर्वेक्षण के प्रारम्भ में इस की सहायता से चुम्बकीय उत्तर का निर्धारण करते हैं। यंत्र का खोल एक अचुम्बकीय धातु का बना होता है। आंतरिक भाग में अर्द्ध मूल्यवान पत्थर एगेट की कठोर धुरी पर एक चुम्बकीय सुई घूर्णन करती हैं। इसमें चुम्बकीय सुई होने के कारण इसका सावधानी पूर्वक उपयोग किया जाता है। यह चुम्बक लोहे की तरफ आकर्षि होती है इसलिये ट्रफ

कम्पास के आसपास कोई लोहे की वस्तु यथा खम्भा, चाभी का गुच्छा, सर्वेक्षण दण्ड नहीं होना चाहिये।

[VI] फीता

सर्वेक्षण के दौरान दूरियों को मापने के लिये फीते की आवश्यकता होती है। ये फीते निर्माण सामग्री के अनुसार भिन्न–भिन्न होते हैं परन्तु सर्वाधिक उपयोग में धात्विक फीता आता है। धात्विक फीते को बनाने में संश्लेषित रेशों और धातु के तारों का प्रयोग किया जाता है। फीते विभिन्न लम्बाईयों के होते है परन्तु सामान्यतया 30 मीटर के फीते का उपयोग छोटे सर्वेक्षणों में अधिक किया जाता है।

[VII] सर्वेक्षण दण्ड


क्षेत्र में स्टेशन / लक्ष्य की सही अवस्थिति देखने के लिये सर्वेक्षण दण्ड अति उपयोगी होता है । इसे ध्वज दण्ड भी कहते हैं । यह आठ से दस फीट लम्बा होता है तथा एक–एक फीट की विपरीत रंगों वाली पट्टियों, सामान्यतया लाल–सफेद, काला–सफेद से रंगा होता है । दो बिन्दुओं के बीच की संक्षिप्त क्षितिजीय दूरी मापने के लिये इन पट्टियों से सुविधा रहती है । इस सर्वेक्षण दण्ड का निचला सिरा नुकीला होता है जिससे सर्वेक्षण दण्ड को स्थान विशेष पर गाड़ने में सुविधा रहती है ।

[VIII] तीर अथवा पिन

सर्वेक्षण के दौरान किसी बिन्दु की स्थिति सरलता से ढूँढी जा सके इसके हेतु लोहे की बनी इस पिनों को इच्छित स्थान पर लगा दिया जाता है। ज़रीब व फीता सर्वेक्षण में ज़रीब को अपने स्थान पर स्थिर रखने के लिये भी इन तीरों की उपयोगिता है।

इन सब सर्वे उपकरणों (Survey Equipments) के साथ—साथ आपको मानचित्रण के साधनों (Cartographic Tools) की उचित व्यवस्था भी करनी चाहिये। इसके लिये एक साफ ड्राइंग शीट, ड्राइंग पिन (Push Pins), बोर्ड क्लिप, ऑल पिन, पैन्सिल, रबर, स्केल, पैन व निब तथा एक साफ कपड़े की आवश्यकता पड़ सकती है। ड्राइंग पिन या पुश पिन बोर्ड पर ड्राइंग शीट को स्थिर तो रखती है किन्तु बार—बार पुश पिनों के लगने से शीट पर छेद हो जाते है। सर्वे करते समय ये ड्राइंग पिन एलीडेड को हिलाने डुलाने में भी बाधा डालती है। आजकल ड्राइंग पिन के स्थान पर क्लिप का उपयोग किया जाता है। धातु की पत्ती के बने यू आकार के ये

क्लिप ड्राइंग शीट को स्थिर भी रखते है और एलीडेड के संचालन को बाधित भी नहीं करते। अपने सर्वे और मानचित्रण के साधनों की सार–सम्भाल अच्छी तरह से करनी चाहिये तभी ये उपकरण कार्यशील स्थिति में रहते हैं।

सर्वेक्षण प्रक्रिया

प्लेनटेबल से सर्वेक्षण करने की कई विधियाँ होती हैं तथा प्रत्येक विधि में निम्नलिखित प्रक्रिया का अनुसरण किया जाता है :–

[I] आधार रेखाचित्र

वास्तविक सर्वेक्षण कार्य प्रारम्भ करने से पूर्व दिये गये क्षेत्र का भली-भाँति निरीक्षण करके दूर से दिखलाई न देने वाले क्षेत्र के आवश्यक विवरणों, जैसे सीमा रेखा के मोड़ आदि पर पहचान के लिये सर्वेक्षण दण्ड गाड़ दिये जाते हैं। इसके पश्चात् सर्वेक्षण में प्रयोग की गई विधि के अनुसार आधार रेखा अथवा स्टेशनों को निश्चित करते हैं। क्षेत्र के आवश्यक विवरणों एवं सर्वेक्षण स्टेशनों का चयन करने के उपरान्त उनकी अनुमानित स्थितियों को आधार रेखाचित्र में रूढ़ चिन्हों के द्वारा अथवा नाम लिखकर इंगित कर देते हैं। सामान्यतया किसी सर्वेक्षण स्टेशन की क्षेत्र में स्थिति की अंग्रेजी भाषा के बड़े अक्षर (जैसे A, B, C आदि) से इंगित करते हैं तथा उस स्टेशन की ड्राइंग कागज़ पर तद्नुरूपी स्थिति को अंग्रेजी भाषा के छोटे अक्षर (जैसे a, b, c आदि) से प्रकट करते हैं।

[11] प्लेनटेबल की स्थापना

आधार रेखाचित्र बना लेने के पश्चात् ड्राइंग कागज़ लगे आरेख पट्ट को त्रिपाद–स्टेण्ड पर कसकर प्लेन टेबल को क्षेत्र के प्रारम्भिक सर्वेक्षण स्टेशन पर सीने के बराबर ऊँचाई में स्थापित करते हैं। प्रारम्भिक स्टेशन पर प्लेन टेबल के स्थापन में दो क्रियाएँ – (i) समतलन एवं (ii) केन्द्रण, तथा किसी अगले स्टेशन पर प्लेन टेबल को स्थापित करने के लिये तीन क्रियाएँ – (i) समतलन, (ii) केन्द्रण एवं (iii) पूर्वाभिमुखीकरण, साथ–साथ सम्पन्न की जाती है।

(1) प्लेनटेबल को समतल करना – आरेख–पट्ट पर लगे ड्राइंग कागज़ पर किरणें खींचने से पूर्व प्लेनटेबल का क्षैतिज दशा में स्थापित करना आवश्यक है। जैसा कि पहले लिखा जा चुका है साधारण प्लेनटेबल में त्रिपाद–स्टैण्ड की टॉंगों को ऊँचा–नीचा करके आरेख–पट्ट को समतल करते हैं तथा जाँच के लिये स्पिरिट लेविल का प्रयोग करते हैं। प्लेन टेबल को समतल करने के लिये आरेख–पट्ट के प्रत्येक कोने एवं मध्य में स्पिरिट लेविल को रखकर उपरोक्त क्रिया की पुनरावृत्ति करते हैं।

(2) केन्द्रण – प्रारम्भिक सर्वेक्षण स्टेशन पर प्लेन टेबल के केन्द्रण से हमारा अभिप्रायः सर्वेक्षण स्टेशन की लम्बवत् दिशा में आरेख–पट्ट पर स्थिति ज्ञात करना है। इस कार्य के लिये आरेख–पट्ट में साहुल काँटा (plumbing fork) लगाकर काँटे को इस प्रकार इधर–उधर हटाते हैं कि उसमें लटके साहुलपिण्ड की नोंक सर्वेक्षण स्टेशन के ठीक ऊपर आ जाये। इसके पश्चात् आरेख–पट्ट पर काँटे की नोंक से इंगित बिन्दु को पेन्सिल से अंकित करके उस पर आलपिन गाड़ देते हैं तथा इस आलपिन के सहारे ऐलीडेड रखकर आधार रेखा के दूसरे सिरे पर गड़े सर्वेक्षण दण्ड एवं क्षेत्र के अन्य विवरणों को लक्ष्य करके किरणें खींच दी जाती है। प्रारम्भिक स्टेशन पर कार्य समाप्त हो जाने के पश्चात् प्लेन टेबल को उठाकर अगले सर्वेक्षण स्टेशन पर रखते हैं जिसकी स्थिति ड्राइंग कागज़ पर पहले से अंकित होती है। अतः यहाँ साहुल काँटे की नोंक को पूर्व अंकित बिन्दु पर स्थिर रखते हुए, समूची टेबुल को इधर–उधर हटाकर केन्द्रण किया जाता है। इस प्रक्रिया में आरेख–पट्ट की क्षेतिज दिशा में अन्तर आ सकता है, इसलिये केन्द्रण करने के पश्चात् आरेख–पट्ट को पुनः समतल कर लेना चाहिए। एक–दो बार प्रयत्न करने से प्लेन टेबुल का केन्द्रण एवं समतलन दोनों ठीक हो जाते हैं।

(3) पूर्वाभिमुखीकरण— आरेख—पट्ट पर अंकित रेखाओं को धरातल की तद्नुरूपी कल्पित रेखाओं के समान्तर रखने की क्रिया को पूर्वाभिमुखीकरण कहते हैं। प्रारम्भिक सर्वेक्षण स्टेशन के पश्चात् आगामी प्रत्येक सर्वेक्षण स्टेशन पर किरणें खींचने से पूर्व प्लेन टेबल का समतलन एवं केन्द्रण करने के साथ—साथ उसका पूर्वाभिमुखीकरण करना परम आवश्यक है अन्यथा प्लान में अंकित कोई भी विवरण अपनी वास्तविक स्थिति से भिन्न स्थिति में होगा। प्लेन टेबल का पूर्वाभिमुखीकरण करने की निम्नांकित दो प्रमुख विधियाँ हैं:

(i) ट्रफ कम्पास के द्वारा पूर्वाभिमुखीकरण – ट्रफ कम्पास की सहायता से किसी सर्वेक्षण स्टेशन पर प्लेन टेबल का पूर्वाभिमुखीकरण करने की विधि बहुत सरल है। इस विधि में जिस सर्वेक्षण स्टेशन पर प्लेन टेबल का पूर्वाभिमुखीकरण करना होता है उस स्टेशन पर, आरेख–पट्ट को त्रिपाद–स्टेण्ड पर ढीला कसकर, प्लेन टेबल का सही–सही समतलन एवं केन्द्रण करते हैं। इसके पश्चात् ड्राइंग कागज़ में प्रारम्भिक सर्वेक्षण स्टेशन पर खींची गई उत्तर–दक्षिण रेखा के सहारे ट्रफ कम्पास रखकर आरेख पट्ट को सुई के द्वारा इंगित चुम्बकीय उत्तर दिशा की ओर घुमाते हैं। जब ट्रफ कम्पास की सुई मध्य में स्थिर हो जाती है अर्थात् उसकी नोंक चाप के शून्यपर आ जाती है तो आरेख पट्ट को त्रिपाद – स्टेण्ड पर पूरी तरह कस देते हैं। इस प्रकार इस विधि से प्लेन टेबुल का पूर्वाभिमुखीकरण करने के लिए ड्राइंग कागज़ पर पहले से अंकित उत्तर–दक्षिण रेखा को दिशानुरूप स्थापित किया जाता है। पूर्वाभिमुखीकरण हो जाने के बाद प्लेन टेबल के केन्द्रण एवं समतलन की पूनः जाँच कर लेनी चाहिए।

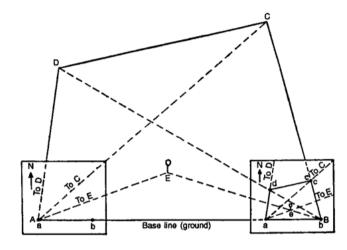
(ii) पश्चदृष्टिपात के द्वारा पूर्वाभिमुखीकरण – इस विधि में ड्राइंग कागज पर पहले से अंकित आधार रेखा के दोनों सिरों को धरातल पर स्थित तद्नुरूपी सर्वेक्षण स्टेशनों की दिशा में रखकर प्लेन टेबल का पूर्वाभिमुखीकरण किया जाता है। उदाहरणार्थ मान लीजिये, धरातल पर A तथा B दो सर्वेक्षण स्टेशन हैं जिनके मध्य की AB आधार रेखा ड्राइंग कागज पर ab रेखा से प्रकट है। अब B स्टेशन पर टेबुल का पूर्वाभिमुखीकरण करने के लिये A स्टेशन पर एक सर्वेक्षण दण्ड लगाते हैं तथा आरेख–पट्टे को त्रिपाद–स्टैण्ड पर ढीला कसकर B स्टेशन पर प्लेन टेबल का समतलन एवं सही केन्द्रण करते हैं। स्पष्ट है कि सही केन्द्रण हो जाने पर B तथा b बिन्दु एक लम्बवत् रेखा में होंगे। अब ऐलीडेड के कार्यकारी किनारे को ba रेखा के सहारे रखकर आरेख–पट्ट को इतना घुमाते हैं कि दृश्य वेधिका का तार A स्टेशन पर

गड़े सर्वेक्षण दण्ड की सीध में आ जाये। सीध मिल जाने के बाद आरेख–पट्ट को बंधन पेंच से पूरी तरह कस देते हैं। आरेख–पट्ट को घुमाते समय ऐलीडेड बिना हिले ba रेखा पर यथावत् स्थिर रहना चाहिए। आरेख पट्ट को घुमाने के फलस्वरूप यदि उसके समतलन अथवा केन्द्रण में कोई अन्तर आ गया है तो उसे दूर करके पूर्व स्टेशन (यहाँ A) पर पुनः पश्चदृष्टिपात करके पूर्वाभिमुखीकरण की शुद्धता को जाँच लेते है। पश्चदृष्टिपात के द्वारा प्लेन टेबल का पूर्वाभिमुखीकरण करने की विधि को अपेक्षाकृत अधिक विश्वसनीय एवं प्रामाणिक माना जाता है।

[III] किरणें खींचना

प्रारम्भिक सर्वेक्षण स्टेशन पर प्लेन टेबल का समतलन एवं केन्द्रण करने के पश्चात् तथा किसी आगामी स्टेशन पर समतलन, केन्द्रण एवं पूर्वाभिमुखीकरण तीनों क्रियाएँ पूर्ण कर लेने के बाद क्षेत्र के विवरणों तथा आगे बढ़ायी गई आधार रेखा के अगले स्टेशन पर गाड़े गये सर्वेक्षण दण्ड को ऐलीडेड से लक्ष्य करके सरल रेखाएँ खींचते हैं। इन सरल रेखाओं को किरणें कहा जाता है। इस कार्य के लिये आरेख—पट्ट पर प्लेन टेबुल के स्टेशन की स्थिति को प्रदर्शित करने वाले बिन्दु पर एक आलपिन गाड़ देते हैं तथा किसी विवरण को लक्ष्य करते समय ऐलीडेड के कार्यकारी किनारे को इस आलपिन से सटाकर रखते हैं। जैसा कि आगे समझाया जायेगा, विकिरण विधि में प्रत्येक किरण को पूर्व निश्चित मापनी के अनुसार लम्बा बनाया जाता है, जबकि प्रतिच्छेदन विधि में केवल आधार रेखा को मापनी के अनुसार बनाते हैं। प्लान की मापनी को निश्चित करते समय क्षेत्र की अधिकतम लम्बाई—चौड़ाई तथा ड्राइंग कागज़ के आकार को ध्यान में रखा जाता है। प्रारम्भिक स्टेशन पर किरणें खींचने से पूर्व ड्राइंग कागज़ के ऊपर की ओर कोने में ट्रफ कम्पास की सहायता से उत्तर—दक्षिण दिशा इंगित करने वाली एक रेखा अंकित कर देनी चाहिए।

[IV] प्लान को पूर्ण करना


क्षेत्र के सभी आवश्यक विवरणों एवं सीमा रेखा को बना लेने के पश्चात् प्लान के नीचे उसकी मापनी अंकित करना आवश्यक होता है। प्रत्येक प्लान पर सम्बन्धित क्षेत्र का नाम तथा उसके नीचे कोष्ठक में सर्वेक्षण की विधि का नाम लिख देना आवश्यक है।

प्लेनटेबलन की विधियाँ (Methods of Planetabling)

प्लेन टेबल के द्वारा सर्वेक्षण करने की चार विधियाँ हैं – (i) प्रतिच्छेदन विधि, (ii) विकिरण या अरीय रेखा विधि, (iii) चंक्रमण या मालारेखा विधि, तथा (iv) रेडियो–प्रगामी विधि। यहाँ हम प्रतिच्छेदन एवं विकिरण विधी का अध्ययन करेंगे।

[1] प्लेनटेबलन की प्रतिच्छेदन विधि

इस विधि में किसी विवरण को प्लान में अंकित करने के लिये क्षेत्र के किन्हीं दो सर्वेक्षण स्टेशनों से उस विवरण को लक्ष्य करके खींची गई किरणों का आरेख–पट्ट पर प्रतिच्छेदन बिन्दु ज्ञात करते हैं। जिन दो सर्वेक्षण स्टेशनों से किरणें खींची जाती हैं उन्हें मिलाने वाली सरल रेखा को आधार रेखा (Base line) कहते हैं। चूँकि प्रतिच्छेदन विधि में आधार रेखा के अतिरिक्त किसी अन्य दूरी को मापने की आवश्यकता नहीं होती अतः इस विधि को प्लेनटेबलन की त्रिभुजन विधि भी कहा जाता है। खुले क्षेत्रों के सुदूर स्थानों को प्लान में अंकित करने के लिये यह विधि विशेष रूप से उपयोगी है। इसके अतिरिक्त किसी क्षेत्र के प्लान में विवरण भरने के लिये तथा नदी तटों, कटी—फटी सीमा रेखाओं व निश्चित स्थलाकृतिक लक्षणों के मानचित्रण में भी प्रतिच्छेदन विधि का प्रयोग लाभदायक रहता है।

प्रतिच्छेदन विधि के द्वारा बनाये गये किसी क्षेत्र के प्लान की शुद्धता बहुत—कुछ आधार रेखा के सही—सही चयन पर निर्भर करती है। अतः आधार रेखा का चयन करते समय निम्नलिखित बातों को ध्यान में रखना चाहिए:

(1) आधार रेखा के दोनों सिरों से क्षेत्र का प्रत्येक विवरण स्पष्ट दिखाई देना चाहिए।

(2) आधार रेखा तथा किसी किरण के बीच का कोण अत्यधिक बड़ा अथवा अत्यधिक न्यून नहीं होना चाहिए। दूसरे शब्दों में, किरणों के प्रतिच्छेदन अत्यधिक तिरछे नहीं होने चाहिएँ।

(3) आधार रेखा यथासम्भव समतल एवं बाधा रहित धरातल पर चुनी जानी चाहिए जिससे उसे फीते को सहायता से सरलतापूर्वक सही—सही मापा जा सके।

(4) छोटे क्षेत्रों में आधार रेखा 10 से 20 मीटर लम्बी तथा बड़े क्षेत्रों में 30 से 50 मीटर लम्बी उपयुक्त रहती है।

कार्य–विधि (Procedure)

मान लोजिये ABCD कोई क्षेत्र है । प्रतिच्छेदन विधि के द्वारा इस क्षेत्र का सर्वेक्षण

(65)

एवं प्लान बनाने की प्रक्रिया को निम्नलिखित चरणों में पूरा किया जायेगा –

(1) दिये गये क्षेत्र का भली—भाँति निरीक्षण करके प्लान में प्रदर्शित किये जाने वाले विवरणों का चयन करते हैं तथा सीमारेखा के मोड़ों पर सर्वेक्षण दण्ड लगा देते हैं जिससे उनको ऐलीडेड से लक्ष्य किया जा सके।

(2) क्षेत्र में उपयुक्त आधार रेखा का चयन करते हैं तथा ज़रीब अथवा फीते से इस रेखा को मापते हैं।

(3) प्लेन टेबुल को A स्टेशन पर समतल स्थापित करके ड्राइंग कागज़ के ऊपर की ओर कोने में ट्रफ कम्पास की सहायता से चुम्बकीय उत्तर दिशा प्रदर्शित करते है।

(4) साहुलपिण्ड व काँटे के प्रयोग से A स्टेशन के ठीक ऊपर आरेख पट्ट पर a बिन्दु ज्ञात करके इस बिन्दु पर एक आलपिन लगा देते हैं।

(5) ऐलीडेड के कार्यकारी किनारे को आलपिन से सटाकर रखते हुए B स्टेशन पर गड़े सर्वेक्षण दण्ड को लक्ष्य करके एक किरण खींचते है। इस किरण में पूर्व निश्चित मापनी के अनुसार AB दूरी के बराबर ab रेखा काटते हैं जो प्लान के आधार रेखा को प्रकट करेगी।

(6) इसके पश्चात् क्षेत्र के अन्य विवरणों को बारी–बारी से लक्ष्य करते हुए उनकी तरफ a बिन्दु से किरणें खींचते हैं तथा पहचान के लिये प्रत्येक किरण पर सम्बन्धित विवरण का संकेत जैसे, To C, To D, To E आदि अंकित करेंगे।

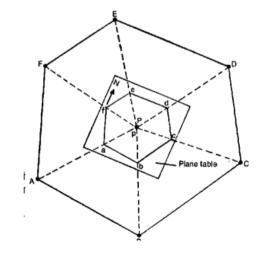
(7) A स्टेशन पर उपरोक्त क्रिया करने के बाद प्लेन टेबुल को B स्टेशन पर स्थानान्तरित करके पूर्व विधि के अनुसार उसका इस प्रकार समतलन, केन्द्रण एवं पूर्वाभिमुखीकरण करते हैं कि आरेख–पट्ट पर अंकित b बिन्दु B स्टेशन के ठीक ऊपर स्थित हो तथा ba रेखा के सहारे ऐलीडेड रखकर देखने पर दृष्टि रेखा A स्टेशन पर गड़े सर्वेक्षण दण्ड से होकर जाये।

(8) अब b बिन्दु पर आलपिन गाड़कर पहले की भाँति क्षेत्र के विवरणों को बारी–बारी से ऐलीडेड के द्वारा लक्ष्य करते हुए किरणें खींचेगें।

(9) दोनों स्टेशनों से किसी विवरण को लक्ष्य करके खींची गई किरणों का प्रतिच्छेदन बिन्दु प्लान में सम्बन्धित विवरण की स्थिति को प्रकट करेगा। अतः सम्बन्धित किरणों को पहचान कर प्लान में c, d, तथा e प्रतिच्छेदन बिन्दु अंकित करेंगे।

(10) विवरणों को अंकित करने के पश्चात् प्लान पर सम्बन्धित क्षेत्र का नाम तथा सर्वेक्षण विधि का नाम लिखकर मापनी व संकेत बनायेंगे।

(II) समपटल सर्वेक्षण की विकिरण या अरीय रेखा विधि


इस विधि में एक ही सर्वेक्षण केन्द्र से क्षेत्र के विभिन्न विवरणों की ओर को पूर्व निश्चित मापनी के अनुसार लम्बी किरणें खींचकर प्लान को पूर्ण कर लिया जाता है। अतः विकिरण विधि से प्लेनटेबलन करने के लिये प्रत्येक विवरण की प्लेन टेबल स्टेशन से दूरी मापना आवश्यक होता है। चूँकि इस विधि से बनाये गये प्लान में समस्त किरणें एक ही बिन्दु से विभिन्न दिशाओं की ओर विकिरित होती है, अतःइसे विकिरण या अरीय रेखा विधि कहते हैं। विकिरण विधि के द्वारा प्रायः खुले एवं समतल धरातल वाले छोटे–छोटे क्षेत्रों का सर्वेक्षण किया जाता है। इसके अतिरिक्त किसी अन्य विधि से किये गये सर्वेक्षण में प्लेनटेबल स्टेशन के समीप स्थित विवरणों को प्लान में अंकित करने के लिये यह विधि परम उपयोगी है।

कार्य–विधि – मान लीजिये ABCDEF कोई खुला समतल क्षेत्र है। इस क्षेत्र का विकिरण विधि के द्वारा निम्न प्रकार सर्वेक्षण किया जायेगाः–

(1) सर्वप्रथम क्षेत्र के मध्यवर्ती भाग में कोई ऐसा सर्वेक्षण स्टेशन (मान लीजिये
 P) चुनिये जहाँ से क्षेत्र के सभी आवश्यक विवरण स्पष्ट दिखलाई देते हों।

(2) ड्राइंग कागज़ के मध्यवर्ती भाग में कोई बिन्दु P अंकित करते हैं तथा साहुलपिण्ड एवं काँटे की सहायता से p बिन्दु को P स्टेशन के ठीक ऊपर रखते हुए, प्लेन टेबुल का सही केन्द्रण एवं समतलन करते हैं।

(3) ड्राइंग कागज़ के ऊपर की ओर कोने में ट्रफ कम्पास रखकर चुम्बकीय उत्तर दिशा को अंकित करेंगे।

(4) p बिन्दु पर एक आलपिन लगाते हैं तथा ऐलीडेड के कार्यकारी किनारे को इस आलपिन से सटाकर रखते हुए A, B, C, D, E तथा F पर गाड़े गये सर्वेक्षण दण्डों तथा क्षेत्र के भीतर स्थित अन्य विवरणों की ओर को किरणें

(66)

खींचते हैं।

(5) सीमा रेखा पर लगाये गये प्रत्येक सर्वेक्षण दण्ड (A, B, C, D आदि) की P स्टेशन से ज़रीब अथवा फीते से दूरी नापेंगे तथा इन दूरियों को पूर्व निश्चित मापनी के अनुसार आरेख–पट्ट की तदनुरूपी किरणों में काटकर ड्राइंग कागज़ में a, b, c, d, e तथा f बिन्दु अंकित करते हैं। इसी प्रकार क्षेत्र के भीतर की ओर स्थित विवरणों को अंकित किया जायेगा। सम्बन्धित विवरण की क्षेत्र में मापी गई दूरी को मापनी के अनुसार अंकित करते रहेंगे।

(6) आधार रेखाचित्र अथवा क्षेत्र में देखकर a, b, c, d, e तथा f बिन्दुओं को मिलाकर प्लान में सीमा रेखा पूर्ण कर लेंगे तथा प्लान पर क्षेत्र व सर्वेक्षण विधि का नाम लिखकर मापनी बना लेंगे।

नोट – विद्यालय में सर्वेक्षण की दोनों विधियों का अभ्यास आवश्यक रूप से करवाया जाये। प्रत्येक विधि के एक बैंच में अधिकतम सात व कम से कम चार विद्यार्थी हो सकते हैं। छात्रों का सभी उपकरणों का प्रत्यक्ष उपयोग करना व उनकी जानकारी आवश्यक है।

अभ्यास प्रश्न

1. समपटल सर्वेक्षण के उपकरणों के नाम लिखिए।

2. दर्शरेखक (एलिडेड) की संरचना समझाइए।

ट्रफ कम्पास का वर्णन कीजिए ।

3.

केन्द्रण की प्रक्रिया को स्पष्ट करिए। 4. विकिरण विधि का वर्णन कीजिए। 5. पश्च दृष्टिपात द्वारा पूर्वाभिमुखिकरण को वर्णन कीजिए। 6. आधार–रेखा के चयन में किन बातों का ध्यान रखना आवश्यक है? 7 प्रतिच्छेदन विधि की कार्य विधि समझाइए 8.

(67)

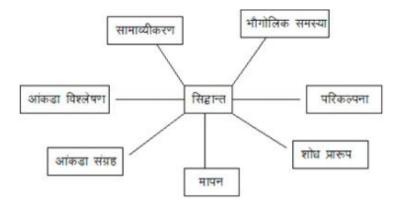
^{अध्याय 6} क्षेत्रीय अध्ययन (Field Study)

परिचय

पृथ्वी तल पर दो प्रकार की प्राकृतिक एवं सांस्कृतिक भू–दृश्यावलियॉ दिखाई देती है। जिसका स्वरूप निरन्तर परिवर्तित होता रहता है। भौगोलिक तत्वों के बारे में क्षेत्रीय अध्ययन करने की शुरूआत प्राचीनकाल से हो गयी थी।

भूगोल एक क्षेत्र विज्ञान है और क्षेत्र अध्ययन मनुष्य तथा उसके पर्यावरण के बीच जटिल संबंधों की जानकारी प्राप्त करने में हमारी सहायता करता है। प्रारम्भ से ही भूगोलवेत्ताओं ने पृथ्वी के विभिन्न भागों के प्राकृतिक तथा सांस्कृतिक पर्यावरण की जानकारी स्वयं के द्वारा क्षेत्रीय अध्ययन से प्राप्त की है। भूगोल का सही अध्ययन क्षेत्र विशेष में जाकर ही प्राप्त किया जा सकता है। जैसा कि कहा जाता है – यदि हम पुस्तकों को पढ़ते है तो हम जल्दी ही भूल जाते है।यदि हम किसी वस्तु को वास्तविक रूप में देखते है तो वह हमें याद रहती है। परन्तु यदि हम किसी काम को स्वयं करते है तो हमें उसकी सही समझ आती है।

भूगोल के संकल्पनात्मक इतिहास के अध्ययन से यह ज्ञात होता है कि क्षेत्रीय अध्ययन ही भूगोल की मूल संकल्पना को विकसित करने में सहायक रहा है। प्राचीनकाल से लेकर आधुनिक काल तक विश्व के विभिन्न क्षेत्रों का परिभ्रमण करके क्षेत्रीय वर्णन के द्वारा अनेकों वैज्ञानिकों, नाविकों आदि ने क्षेत्रीय अध्ययन की परम्परा को समृद्वकिया है। यूनानी भूगोलवेत्ता एवं मानचित्राकार टॉलमी का ज्याग्राफिया (Geographical) नामक ग्रन्थ क्षेत्रीय अध्ययनप का ही परिणाम है। डच मानचित्रकार मर्केटर ने तो क्षेत्रीय अध्ययन के आधार पर ही यूरोप का विस्तृत मानचित्र प्रस्तुत किया। इसी तरह 19 वीं शताब्दी में जर्मनी के भूगोलवेत्ताओं में रिटर, रिचथोपेन और अमेरिकन भूगोलवेत्ताओं में डेविस, हटन आदि ने क्षेत्रीय अध्ययन के वर्णनों द्वारा भूगोल के ज्ञान में संवंद्धि की।

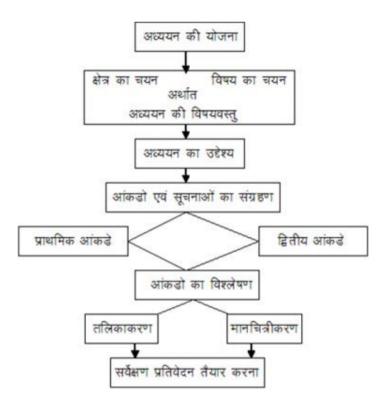

भारत में तो क्षेत्रीय अध्ययन की परम्परा अत्यन्त प्राचीन काल से ही विद्यमान रही है। प्राचीन काल में वेदों और विभिन्न महाकाव्यों में विभिन्न प्रदेशों का यथार्थपरक विश्लेषण वास्तव में गहन क्षेत्रीय अध्ययन के परिणाम है। इनमें केवल देश का ही नहीं अपितु अनेकों महाद्वीपों का वर्णन आज भी आश्चर्य जैसे– लगते है। क्योंकि तत्कालीन समय में आधुनिक काल की तरह सुविधाएं उपलब्ध नहीं थी। फिर भी विभिन्न ऋषियों, मुनियों एवं कवियों का क्षेत्रीय विश्लेषण, आधुनिक काल के क्षेत्रीय वर्णनों से कहीं कम नहीं है।

हम क्षेत्रीय अध्ययन के द्वारा ही विभिन्न स्थानों की अवस्थिति, विस्तार, संरचना और उनके क्रियात्मक अन्तर्सम्बन्धों की जानकारी प्राप्त कर सकते है। क्षेत्र विशेष में जाने पर ही विभिन्न भौतिक एवं सांस्कृतिक तथ्यों के बारे में यथार्थ जानकारी मिल सकती है। उदाहरणार्थ किसी ग्रामीण क्षेत्र में जाकर गांव की स्थिति, उसका आकार और क्षेत्रीय अन्तर्सम्बन्धों की भौगोलिक व्याख्या की जा सकती है। जैसे थार के मरूस्थल में ग्रामों की स्थिति, आकार, अवस्थिति, क्षेत्रीय अन्तर्सम्बन्ध भौतिक कारकों के साथ—साथ सामाजिक, सांस्कृतिक विशेषकर जातिगत संरचना पर आधारित है। क्षेत्रीय अध्ययन में इसका सूक्ष्म सर्वेक्षण, भौतिक सत्यापन करके इनके बारें में सामाव्यीकरण और संकल्पनाएं विकसित की जा सकती है। इसी तरह भू—उपयोग के अन्तर्गत ग्रामीण बसाव, केन्द्र से दूरी के आधार पर फसलों का वितरण, मिट्टी का प्रतिरूप पर्यावरण अन्तर्सम्बन्ध का अध्ययन अनेक संकल्पनाओं के निर्माण और परीक्षण की प्रयोगशाला के रूप में कार्य करता है।

भूगोल के विद्यार्थी को क्षेत्रीय अध्ययन की संकल्पना और क्रिया विधि को भली–भांति जानना आवश्यक है। प्रारम्भिक स्तर पर भौगोलिक तथ्यों की पारस्परिक जटिलताओं का अनुमान और भौगोलिक विश्लेषण एवं मानचित्रण के विषय में विद्यार्थी स्वयं सक्षम हो सकता है।

क्षेत्रीय अध्ययन की क्रियाविधि (Precedure for Field Study)

क्षेत्रीय अध्ययन की क्रियाविधि शोध—प्रतिरूप से संबंधित यह कई चरणों में सम्पन्न की जाती है। इसका सूत्रपात भौगोलिक समस्या से होता है। जिसके लिए कतिपय संकल्पनाओं का निर्माण किया जाता है। इन संकल्पनाओं के परीक्षण हेतु उपयुक्त शोध प्रतिरूप तैयार किया जाता है। क्रियाविधि को रेखा चित्र में प्रस्तुत किश गया है।



क्षेत्रीय अध्ययन का उद्देश्य और अध्ययन प्रतिवेदन

क्षेत्रीय अध्ययन की संकल्पना के अनुसार ही भूगोल में इसका महत्व एवं उद्देश्य निर्विवाद है। वास्तव में भूगोल का विद्यार्थी जो कुछ भी उपलब्ध मानचित्रों एवं पुस्तकों में पढ़ता है वह क्षेत्रीय अध्ययन द्वारा और अधिक संतुष्ट हो सकता है। इसलिए क्षेत्रीय अध्ययन भौगोलिक तथ्यों की यथार्थता जानने के लिए एक प्रयोगशाला का कार्य करता है।

क्षेत्रीय अध्ययन हेतु आंकडो के संग्रहण, वर्गीकरण विश्लेषण एवं मानचित्रण करने की आवश्यकता होती है। इसे अध्ययनकर्त्ता क्षेत्रीय अध्ययन के दौरान संकलित तथ्यों, चट्टानों खनिजों एवं मृदाओं के नमूनों के प्रयोगशाला में उपलब्ध निष्कर्षो के दौरान निर्मित मानचित्रों तथा रेखाचित्रों और संग्रही आंकडों के आधार पर तैयार करता है। इस प्रकार के प्रतिवेदन के लेखन में पुस्तकों, पूर्ववर्ती लेखकों द्वारा तैयार किये गये प्रतिवेदनों से मदद ली जा सकती है। क्षेत्र अध्ययन को बोधगम्य बनाने के लिए इसमें मानचित्रों एवं मौसम संबंधी आंकडों का उपयोग किया जा सकता है। इसी प्रकार आवागमन एवं संचार के साधनों, अधिवासों आदि को स्थलाकृतिक मानचित्र की सहायता से बनाया जा सकता है।

उपर्युक्त निर्देशों के आधार पर क्षेत्रीय अध्ययन प्रतिवेदन निम्न शीर्षकों के अंतर्गत तैयार करेगें –

- 1. क्षेत्र की अवस्थिति
- 2. क्षेत्र की भौतिक विशेषताएं (उच्चावच)
- 3. अपवाह तन्त्र
- 4. जलवायु
- 5. मृदा
- 6. खनिज
- 7. वनस्पति
- ८. पशु–सम्पदा
- 9. कृषि एवं भूमि उपयोग
- 10. उद्योग–धन्धे
- 11. व्यापार एवं वाणिज्य
- 12. यातायात एवं संचार के साधन
- 13. अधिवास

(69)

14. जनसंख्या

15. ग्रामीण विकास की नवीन योजनाएं

(1) क्षेत्र की अवस्थिति – भौगोलिक अध्ययन में किसी स्थान की स्थिति एवं अवस्थिति का ज्ञान आवश्यक और प्राथमिक पहलू है। अक्षांश व देशान्तर के संदर्भ में स्थिति का निर्धारण किया जाना चाहिए। अवस्थिति का निर्धारण देश, प्रदेश तथा निकटवर्ती क्षेत्र के संदर्भ में किया जाता है। इस शीर्षक के अन्तर्गत निम्न सूचनायें एकत्रित करते हैं। क्षेत्र की अक्षांशीय व देशान्तिक स्थिति। वहाँ प्रशासनिक स्थिति आस–पास के क्षेत्र, आवागमन के साधन, निकटवर्ती क्षेत्रों से दूरी व सम्पर्क सुविधा के आधार पर मानचित्र में अध्ययन क्षेत्र की स्थिति का निर्धारण करना चाहिए। उक्त जानकारियाँ स्थलाकृतिक पत्रक व स्थानीय निवासियों से प्राप्त की जा सकती है।

(2) भौगोलिक विशेषतायें (उच्चावच) — प्रत्येक स्थान के भौगोलिक व्यक्तित्व के निर्धारण में उच्चावच व स्थलाकृतियों का महत्वपूर्ण योगदान है। उच्चावच का जलवायु, अपवाह, वनस्पति, कृषि, आर्थिक विकास व सामाजिक जीवन पर गहरा प्रभाव पडता है। धरातल, समतल व मैदानी होने पर कृषि कार्य अधिक विकसित होते है। पर्वतीय या उबड़—खाबड़ क्षेत्रों में कृषि के विकास की सम्भावना अपेक्षाकृत कम होती है। समतल क्षेत्रों में जल निकास की समस्या हो सकती है। क्योंकि जल निकास के लिए ढाल की आवश्यकता होती है। इस प्रकार से क्षेत्रीय अध्ययन से वहाँ की समस्याओं व निराकरण के उपाय तलाश किये जा सकते है।

(3) अपवाह तंत्र – किसी भी क्षेत्र में धरातलीय स्वरूप, संरचना एवं वर्षा की मात्रा पर जल की उपलब्धि निर्भर करती है। तीव्र ढाल तथा कठोर शैले होने पर वर्षा की प्रचुरता के बाद वहाँ भूमिगत जल भण्डार न्यून होने की सम्भावना रहती है। क्योंकि कठोर शैलों के कारण उनमें जल प्रवेश नहीं कर पाता एवं वर्षा का अधिकांश जल बहकर चला जाता है। चयनित क्षेत्र में जल स्त्रोतों का अध्ययन करना भी आवश्यक है। ये स्त्रोत झील, तालाब, साधारण कुएँ, नलकूप आदि के रूप में हो सकते है। चयनित क्षेत्र में जल का अभाव की समस्या व निवारण हेतु उपाय संबंधी जानकारी दी जा सकती है।

(4) जलवायु – किसी भी क्षेत्र की जलवायु का, उस क्षेत्र को समझने में काफी योगदान रहता है। इसके अन्तर्गत तापमान, वायुदाब, पवनों की दिशा, वर्षा आदि के द्वारा उस क्षेत्र को समझने में काफी योगदान मिलता है। जलवायु उस क्षेत्र की कृषि, मानवजीवन क्रियाकलाप, रीति–रिवाज, वेशभूषा, भोजन की आदतें आदि को प्रभावित करता है। अतः जलवायु की जानकारी क्षेत्रीय अध्ययन के लिए अति आवश्यक है।

(5) मृदा – प्रत्येक क्षेत्र में कृषि–संपन्नता वहाँ की मिट्टियों की संरचना, रंग, बनावट, उपजाऊपन आदि कारकों पर निर्भर करती है। इसलिए छात्रों को चयनित क्षेत्र में जाकर वहाँ की मिट्टियों के बारे में किसानों से जानकारी प्राप्त करें, मिट्टी संबंधी समस्याओं के बारे में भी जानकारी प्राप्त करनी चाहिए। मृदा अपरदन, प्रदूषण, अनुपजाऊ, मृदा क्षरण आदि समस्याओं की जानकारी प्राप्त कर समस्याओं के निवारण हेतु सुझाव देने का प्रयास करना चाहिए।

(6) खनिज – अध्ययन क्षेत्र में कोई न कोई खनिज निश्चित रूप से जमीन से निकाला जाता होगा। वहाँ के व्यक्तियों से इस बारे में जानकारी प्राप्त करें। उपलब्ध खनिज भण्डार, स्थानीय खपत, निर्यात, खनन से सम्बन्धित समस्याऐं आदि की जानकारी प्राप्त कर, भविष्य में खनिज का दोहन किस प्रकार से करना चाहिए, जानकारी दें।

(7) वनस्पति – जलवायु व मिट्टी स्थाकृति वनस्पति को प्रभावित करती है। प्राकृतिक वनस्पति की सघनता, विशेषता, प्रकार, गुण आदि की जानकारी प्राप्त करके प्राकृतिक वनस्पति का वर्तमान जीवन शैली पर कितना प्रभाव पड़ रहा है व भविष्य के संदर्भ में वनस्पति के महत्व को रेखांकित करना। वनों की कटाई, मृदा अपरदन, भूमिगत जल स्तर का गिरना, यह सब समस्यायें प्राकृतिक वनस्पति के अन्धाधुन्ध दोहन से ही हो रही है। अतः वृक्षारोपण के महत्व पर क्षेत्रीय अध्ययन में प्रकाश डालना उपयोगी होगा।

(8) पशु सम्पदा – भारत में पशुपालन, मांस, चमड़ा, जैविक खाद, दूध, ऊन कृषि कार्य आदि के लिए किया जाता है। किसानों के लिए यह कृषि कार्य के साथ–साथ जीवन यापन का सहायक व्यवसाय है। पशु सम्पदा की दृष्टि से विश्व में भारत का प्रथम स्थान है। लेकिन उनसे उत्पादकता अन्य देशों की तुलना में न्यून है। अतः पशुओं की उपलब्धता, नस्ल सुधार, पशु चिकित्सालय, पशुचारण, जैविक खाद आदि के बारे में रिपोर्ट में सुझाव देना चाहिए।

(9) कृषि एवं भूमिं उपयोग – भारत कृषि प्रधान देश है। अतः भारत को कोई गाँव ऐसा नहीं जो कृषि से जुडा हुआ न हो। अतः क्षेत्रीय अध्ययन में कृषि सम्बन्धी जानकारी प्राप्त करना अति आवश्यक है। प्रमुख कृषि उपजें, खरीफ व रबी की फसलें, फसलों का क्रम, उत्पादकता, बाजार, बीज व खाद आदि की उपलब्धता व कृषि आधारित उद्योगों की जानकारी प्राप्त कर भविष्य में कृषि उत्थान के उपाय के बारे में जानकारी देना।

(10) उद्योग धन्धें – अध्ययन क्षेत्र में कृषि के अतिरिक्त अन्य व्यवसाय भी हो सकते है। ग्रामीण क्षेत्रों में आज भी कुटीर उद्योग प्रचलित है। वहाँ के निवासियों द्वारा अपने जीवनयापन के लिए जो भी व्यवसाय किए जाते है, उनकी रिपोर्ट में सम्मिलित करना चाहिए।

(11) व्यापार एवं वाणिज्य – व्यापार व वाणिज्य का यातायात के साधन व क्षेत्रीय विकास का अटूट संबंध है। यदि क्षेत्र विकसित है तो वहाँ व्यापार व वाणिज्य में तेज गति से हलचल नजर आयेगी। स्थानीय व्यक्तियों से जानकारी प्राप्त कर, अपने प्रतिवेदन में सुझाव लिखने चाहिए।

(12) यातायात एवं संचार के साधन – क्षेत्र का आर्थिक विकास आवागमन से साधनों व संचार के साधनों पर निर्भर करता है। जहाँ क्षेत्रीय अध्ययन करने के लिए गए वहाँ से कौन–कौनसे राजमार्ग व राष्ट्र मार्ग गुजर रहे है। क्या वहाँ रेल मार्ग की सुविधा

2.

है?इन सब बातों का उल्लेख करते हुए क्षेत्र का विकास व विकास न होने के कारण के बारे में सुझाव दिये जा सकते है।

(13) जनसंख्या एवं अधिवास – किसी भी स्थान के विकास में वहाँ की जनसंख्या का महत्वपूर्ण योगदान होता है। वहाँ की जनसंख्या संसाधनों को प्रभावित करती है। साक्षरता का अनुपात वहाँ की जागरूकता का परिचायक होता है। लिंग अनुपात वहाँ की व्यावसायिक संरचना को प्रभावित करता है। अतः जनसंख्या संबंधी आंकडे एकत्रित कर, क्षेत्र विकास के लिए सुझाव देना चाहिए।

(14) ग्रामीण विकास की नवीन योजनाएं – सम्पूर्ण क्षेत्र की जानकारी प्राप्त कर, क्षेत्रीय अध्ययन में उस क्षेत्र के विकास हेतु अपने सुझाव लिखने चाहिए ताकि वह क्षेत्र भविष्य में एक विकसित क्षेत्र के रूप में पहचान बना सके। इस प्रकार से सभी समस्याओं को सूचीबद्ध करके, प्रतिवेदन तैयार करना चाहिए।

विशेष — भूगोल शिक्षक उपयुक्त विषय एवं क्षेत्र का चुनाव कर क्षेत्रीय अध्ययन करायें। जिसमें प्रत्येक विद्यार्थी अनिवार्य रूप से भाग लें। कक्षा में विद्यार्थियों की संख्या के आधार पर चार—पॉच विद्यार्थियों को समूह में प्रश्नावली बनाकर प्राथमिक आंकडे एकत्रित करने के लिए कहें। सामान्य सूचनाएं सामूहिक रूप से एकत्रित करें। सर्वेक्षण पूर्ण होने पर इसका प्रतिवेदन तैयार कराये जो कम से कम 10 पृष्ठों में होना चाहिए। ताकि प्रायोगिक परीक्षा के समय इसका मूल्यांकन किया जा सकें।

अभ्यास प्रश्न

1. क्षेत्रीय अध्ययन को संक्षिप्त में समझाइये।

क्षेत्रीय अध्ययन भूगोल के विद्यार्थियों के लिए क्यों आवश्यक है?

3. क्षेत्रीय अध्ययन का चार्ट बनाइए।

4. क्षेत्रीय अध्ययन के पीछे क्या उद्देश्य छिपा हुआ है?

5. क्षेत्रीय प्रतिवेदन किसे कहते है?

6. क्षेत्रीय प्रतिवेदन के सोपान बताइये।

(71)

प्रश्नावली प्रारूप

.....

मुखिया का नाम	:	
पिता का नाम	:	:
 उम्र	:	
शिक्षा	:	
व्यवसाय	:	
वार्षिक आय	:	
परिवार के सदस्यों	ं की संख्य	ा ———— पुरूष ———— स्त्री ———— कुल
आवास का प्रकार	:	
आवास में सुविधाए	Ţ:	पेयजल / विद्युत / दूरभाष / शोचालय / रसोई
कृषि भूमि	:	
सिंचाई के साधन	:	
परिवहन सुविधा	:	
डाकघर	:	
सड़क	:	
चिकित्सा सुविधा	:	
अन्य सुविधाएं	:	
धरातल	:	
नदिया / झीलें / त	ालाब	
खनिज की जानक	गरीः	
गांव का इतिहास	:	
समस्याएं एवं भावी	विकास व	हे सुझाव

(72)