ਰਸਾਇਣ ਵਿਗਿਆਨ

ਗਿਆਰ੍ਹਵੀਂ ਭਾਗ-II

© ਪੰਜਾਬ ਸਰਕਾਰ

ਪਹਿਲਾ ਐਡੀਸ਼ਨ : 2016..... 10,000 ਕਾਪੀਆਂ

[This book has been adopted with the kind permission of the National Council of Educational Research and Training, New Delhi] All rights including those of translation, reproduction and annotation etc., are reserved by the Punjab Government

> ਸੰਯੋਜਕ: ਉਪਨੀਤ ਕੌਰ ਗਰੇਵਾਲ (ਵਿਸ਼ਾ ਮਾਹਿਰ) ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਅਨੁਵਾਦਕ : ਸ਼੍ਰੀ ਸੱਤਪਾਲ ਸਿੰਘ

<mark>ਚਿੱਤਰਕਾਰ</mark> : ਮਨਜੀਤ ਸਿੰਘ ਢਿੱਲੋਂ

ਚੇਤਾਵਨੀ

- ਕੋਈ ਵੀ ਏਜੰਸੀ-ਹੋਲਡਰ ਵਾਧੂ ਪੈਸੇ ਵਸੂਲਣ ਦੇ ਮੰਤਵ ਨਾਲ ਪਾਠ-ਪੁਸਤਕਾਂ 'ਤੇ ਜਿਲਦ-ਸਾਜ਼ੀ ਨਹੀਂ ਕਰ ਸਕਦਾ।(ਏਜੰਸੀ-ਹੋਲਡਰਾਂ ਨਾਲ ਹੋਏ ਸਮਝੌਤੇ ਦੀ ਧਾਰਾ ਨੰ.7 ਅਨੁਸਾਰ)
- ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੁਆਰਾ ਛਪਵਾਈਆਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ਿਤ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਜਾਅਲੀ ਨਕਲੀ ਪ੍ਰਕਾਸ਼ਨਾਂ (ਪਾਠ ਪੁਸਤਕਾਂ) ਦੀ ਛਪਾਈ,ਪ੍ਰਕਾਸ਼ਨ, ਸਟਾਕ ਕਰਨਾ, ਜਮ੍ਹਾਂ ਖੋਰੀ ਜਾਂ ਵਿਕਰੀ ਆਦਿ ਕਰਨਾ ਭਾਰਤੀ ਦੰਡ ਪ੍ਰਣਾਲੀ ਦੇ ਅੰਤਰਗਤ ਫ਼ੌਜਦਾਰੀ ਜੁਰਮ ਹੈ। (ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਬੋਰਡ ਦੇ 'ਵਾਟਰ ਮਾਰਕ' ਵਾਲੇ ਕਾਗਜ਼ ਉੱਪਰ ਹੀ ਛਪਵਾਈਆ ਜਾਂਦੀਆਂ ਹਨ।)

ਮੁੱਲ : 116/- ਰੁਪਏ

ਸਕੱਤਰ, ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ, ਵਿੱਦਿਆ ਭਵਨ, ਫੇਜ਼–8 ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ–160062 ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ਿਤ ਅਤੇ ਮੈਸ. ਕਨਵਿਨੀਏਂਟ ਪ੍ਰਿੰਟਰ, ਜਲੰਧਰ ਰਾਹੀਂ ਛਾਪੀ ਗਈ।

ਦੋ ਸ਼ਬਦ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਨੂੰ ਸੋਧਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਕੰਮ ਵਿੱਚ ਜੁਟਿਆ ਹੋਇਆ ਹੈ।ਅੱਜ ਜਿਸ ਦੌਰ ਵਿੱਚੋਂ ਅਸੀਂ ਲੰਘ ਰਹੇ ਹਾਂ ਉਸ ਵਿੱਚ ਬੱਚਿਆਂ ਨੂੰ ਸਹੀ ਵਿੱਦਿਆ ਦੇਣਾ ਮਾਪਿਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੀ ਸਾਂਝੀ ਜ਼ਿੰਮੇਵਾਰੀ ਬਣਦੀ ਹੈ। ਇਸੇ ਜ਼ਿੰਮੇਵਾਰੀ ਅਤੇ ਵਿੱਦਿਅਕ ਜ਼ਰੂਰਤ ਨੂੰ ਸਮਝਦਿਆਂ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਵਿੱਚ ਨੈਸ਼ਨਲ ਕਰੀਕੁਲਮ ਫਰੇਮਵਾਰਕ 2005 ਅਨੁਸਾਰ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਵਰਤਨ ਕੀਤੇ ਗਏ ਹਨ।

ਸਕੂਲ ਕਰੀਕੁਲਮ ਵਿੱਚ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦਾ ਯੋਗਦਾਨ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ ਅਤੇ ਇਸਦੇ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਚੰਗੀ ਪਾਠ–ਪੁਸਤਕ ਦਾ ਹੋਣਾ ਪਹਿਲੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਲਈ ਇਸ ਪਾਠ–ਪੁਸਤਕ ਵਿੱਚ ਵਿਸ਼ਾ ਸਮੱਗਰੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਸ ਨਾਲ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਤਰਕ ਸ਼ਕਤੀ ਤਾਂ ਪ੍ਰਫ਼ੁਲਿਤ ਹੋਵੇਗੀ ਹੀ ਸਗੋਂ ਵਿਸ਼ੇ ਨੂੰ ਸਮਝਣ ਦੀ ਯੋਗਤਾ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੋਵੇਗਾ। ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਮਾਨਸਿਕ ਪੱਧਰ ਦੇ ਅਨੁਸਾਰ ਤਿਆਰ ਕੀਤੇ ਗਏ ਹਨ। ਇਹ ਪੁਸਤਕ ਰਾਸ਼ਟਰੀ ਵਿਦਿਆ ਖੋਜ ਅਤੇ ਸਿਖਲਾਈ ਸੰਸਥਾ (ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ.) ਵੱਲੋਂ ਗਿਆਰ੍ਹਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ ਤਿਆਰ ਕੀਤੀ ਗਈ ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀ ਪੁਸਤਕ ਦੀ ਅਨੁਸਾਰਤਾ ਕਰਦੀ ਹੈ। ਇਹ ਮਹੱਤਵਪੂਰਨ ਕਦਮ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਵਿੱਚ ਇਕਸਾਰਤਾ ਲਿਆਉਣ ਲਈ ਚੁੱਕਿਆ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਰਾਸ਼ਟਰੀ ਪੱਧਰ ਦੇ ਇਮਤਿਹਾਨ ਵਿੱਚ ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਔਕੜ ਨਾ ਆਵੇ।

ਇਸ ਪਾਠ−ਪੁਸਤਕ ਨੂੰ ਵਿਦਿਆਰਥੀਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਉਪਯੋਗੀ ਬਣਾਉਣ ਦਾ ਭਰਪੂਰ ਯਤਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਪੁਸਤਕ ਨੂੰ ਹੋਰ ਚੰਗੇਰਾ ਬਣਾਉਣ ਲਈ ਖੇਤਰ ਵਿੱਚੋਂ ਆਏ ਸੁਝਾਵਾਂ ਦਾ ਸਤਿਕਾਰ ਕੀਤਾ ਜਾਵੇਗਾ।

> <mark>ਚੇਅਰਪਰਸਨ</mark> ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਪਾਠ ਪੁਸਤਕ ਵਿਕਾਸ ਕਮੇਟੀ

ਪ੍ਰਧਾਨ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਪਾਠ ਪੁਸਤਕ ਕਮੇਟੀ ਜਗਤ ਵਿਸ਼ਨੂੰ ਨਾਰਲੀਕਰ, ਪ੍ਰੋਫੈਸਰ, ਅੰਤਰ ਯੂਨੀਵਰਸਿਟੀ ਕੇਂਦਰ, ਖਗੋਲ ਵਿਗਿਆਨ ਅਤੇ ਖਗੋਲ ਭੌਤਿਕੀ, ਪੂਨਾ ਯੂਨੀਵਰਸਿਟੀ, ਪੂਨਾ

ਮੁੱਖ ਸਲਾਹਕਾਰ

ਬੀ.ਐਲ. ਖੰਡੇਲਵਾਲ, ਪ੍ਰੋਫੈਸਰ (ਰਿਟਾਇਰਡ), ਇੰਡੀਅਨ ਇੰਸਟੀਚਿਊਟ ਆਫ ਟੈਕਨੋਲੋਜੀ, ਨਵੀਂ ਦਿੱਲੀ।

ਮੈਂਬਰ

ਅਲਕ ਮਿਹਰੋਤਰਾ, ਰੀਡਰ, ਡੀ. ਈ. ਐਸ. ਐਮ. ਐਨ.ਸੀ. ਈ.ਆਰ.ਟੀ। ਅੰਜਨੀ ਕੌਲ (ਬੁਲਾਰਾ) ਡੀ.ਈ. ਐਸ. ਐਮ. ਐਨ. ਐਨ.ਸੀ, ਈ.ਆਰ.ਟੀ। ਆਈ.ਆਈ.ਪੀ ਅਗਰਵਾਲ, ਪ੍ਰੋਫੈਸਰ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾਨ, ਐਨ.ਸੀ.ਈ. ਆਰ.ਟੀ. ਭੋਪਾਲ। ਏ.ਐਸ. ਬਰਾੜ, ਪ੍ਰੋਫੈਸਰ, ਇੰਡੀਅਨ, ਇਸੰਟੀਚਿਊਟ ਆਫ ਟੈਕਨੋਲੋਜੀ, ਨਵੀਂ ਦਿੱਲੀ। ਐਚ.ਓ.ਗੁਪਤਾ, ਪ੍ਰੋਫੈਸਰ, ਡੀ.ਈ.ਐਸ.ਐਮ, ਐਨ.ਸੀ. ਈ.ਆਰ ਟੀ. ਨਵੀਂ ਦਿੱਲੀ। ਐਸ. ਕੇ ਗੁਪਤਾ, ਰੀਡਰ, ਸਕੂਲ ਆਫ ਸਟੱਡੀਜ਼ ਇਨ ਕੈਮਿਸਟਰੀ, ਸ਼ਿਵਾਜੀ ਯੂਨੀਵਰਸੀਟੀ, ਗਵਾਲੀਅਰ। ਐਸ. ਕੇ. ਡੋਗਰਾ, ਪ੍ਰੋਫੈਸਰ, ਡਾ. ਬੀ.ਆਰ. ਅੰਬੇਦਕਰ, ਸੈਂਟਰ ਫਾਰ ਬਾਇਓਮੈਡੀਕਲ ਰੀਸਰਚ ਦਿੱਲੀ ਯੂਨੀ. ਦਿੱਲੀ। ਆਰ. ਕੇ. ਪਰਾਸ਼ਰ, ਬਲਾਰਾ, ਡੀ.ਈ. ਐਸ. ਐਮ. ਐਨ.ਸੀ.ਈ. ਆਰ ਟੀ, ਨਵੀਂ ਦਿੱਲੀ।

ਹਿੰਦੀ ਅਨੁਵਾਦ

ਆਰ.ਆਰ-ਗੋਇਲ, ਰੀਡਰ, ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿਭਾਗ, ਰਾਮਜੱਸ ਕਾਲਜ, ਦਿੱਲੀ ਯੂਨੀ, ਦਿੱਲੀ ਆਰ. ਕੇ ਉਪਾਧਿਆਇ, ਸੀਨੀ-ਬੁਲਾਰਾ, ਰਸਾਇਣ ਵਿਭਾਗ, ਰਾਜਕੀ ਮਹਾਂਵਿਦਿਆਲਾ, ਅਜਮੇਰ। ਆਲੋਕ ਚਤੁਰਵੇਦੀ, ਸੀਨੀ-ਬੁਲਾਰਾ, ਰਸਾਇਣ ਵਿਭਾਗ, ਰਾਜਕੀ ਮਹਾਂਵਿਦਿਆਲਾ, ਅਜਮੇਰ।

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਦੀ ਪਾਠ-ਪੁਸਤਕ ਦੀ ਸੋਧ ਕਮੇਟੀ

- 1. ਸ੍ਰੀ ਗੁਰਬਖਸ਼ੀਸ ਸਿੰਘ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਸੌਹੜਾ, (ਐਸ.ਏ.ਐਸ ਨਗਰ)।
- 2. ਸ਼੍ਰੀਮਤੀ ਅਨੂ ਰੌਲੀ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਬਾਕਰਪੁਰ, (ਐਸ.ਏ.ਐਸ. ਨਗਰ)।
- 3.ਸ਼੍ਰੀ ਮਤੀ ਪੁਸ਼ਪਿੰਦਰ ਕੌਰ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ, ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਸੋਹਾਣਾ, (ਐਸ.ਏ.ਐਸ. ਨਗਰ)।

ਵਿਸ਼ਾ-ਵਸਤੂ

ਭਾਗ-II

ਪਾਠ ਨੰ.		ਪਨਾ ਨੰ.
8.	ਲਘੂਆਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ	255
9.	ਹਾਈਡ੍ਰੋਜਨ	276
10.	S- ਬਲਾੱਕ ਤੱਤ	291
11.	P- ਬਲਾੱਕ ਤੱਤ	307
12.	ਕਾਰਬਨਿਕ ਰਸਾਇਣ : ਕੁੱਝ ਮੁੱਢਲੇ ਸਿਧਾਂਤ ਅਤੇ ਤਕਨੀਕਾਂ	326
13.	ਹਾਈਡ੍ਰੋਕਾਰਬਨ	365
14.	ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ	398
	ਕੁਝ ਚੁਣੇ ਹੋਏ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ	415
	Index	419

ਯੁਨਿਟ 8

ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ (REDOX REACTIONS)

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ-

- ਲਘੂਕਰਣ ਅਤੇ ਆੱਕਸੀਕਰਣ ਦੁਆਰਾ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਵਰਗ ਦੀ ਪਛਾਣ ਕਰ ਸਕੋਗੇ;
- ਆੱਕਸੀਕਰਣ, ਆੱਕਸੀਕਾਕਰਕ (ਆੱਕਸੀਡੈਂਟ) ਲਘੂਕਰਣ ਅਤੇ ਲਘੂਕਾਰਕ (ਰਿਡੱਕਟੈਂਟ) ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ;
- ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਦੁਆਰਾ ਲਘੂਆੱਕਸੀਕਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਕਾਰਜ ਵਿਧੀ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਯੋਗਿਕਾਂ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ ਆੱਕਸੀਕਾਰਕ ਜਾਂ ਲਘੂਕਾਰਕ ਦੀ ਪਛਾਣ ਕਰ ਸਕੋਗੇ;
- ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਾ ਵਰਗੀਕਰਣ, ਜੋੜਾਤਮਕ, ਅਪਘਟਨ, ਵਿਸਥਾਪਨ ਅਤੇ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰ ਸਕੋਗੇ;
- ਭਿੰਨ-ਭਿੰਨ ਲਘੂਕਾਰਕਾਂ ਅਤੇ ਆੱਕਸੀਕਾਰਕਾਂ ਦੇ ਤੁਲਨਾਤਮਕ ਕ੍ਰਮ ਦਾ ਨਿਰਧਾਰਣ ਕਰ ਸਕੋਗੇ;
- ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਨੂੰ (i) ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ (ii) ਅਰਧ ਪ੍ਰਤੀ ਕਿਰਿਆ ਜਾਂ ਆਇਨ ਇਲੈਕਟ੍ਰਾਨ ਵਿਧੀਆਂ ਦੁਆਰਾ ਸੰਤੁਲਿਤ ਕਰ ਸਕੋਗੇ;
- ਇਲੈਕੱਟ੍ਰਾਡ ਵਿਧੀ (ਪ੍ਰਕਰਮ) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਧਾਰਣਾ ਨੂੰ ਸਿੱਖ ਸਕੋਗੇ।

ੇ ਜਿੱਥੇ ਆਕਸੀਕਰਣ ਹੈ ਉੱਥੇ ਹਮੇਸ਼ਾ ਲਘੂਕਰਣ ਹੁੰਦਾ ਹੈ।ਰਸਾਇਣ ਵਿਗਿਆਨ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਕਰਮ ਦੇ ਅਧਿਐਨ ਦਾ ਵਿਗਿਆਨ ਹੈ।

ਭਿੰਨ-ਭਿੰਨ ਪਦਾਰਥਾਂ ਦਾ ਅਤੇ ਦੂਜੇ ਪਦਾਰਥਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਪਰਿਵਰਤਨ ਦਾ ਅਧਿਐਨ ਰਸਾਇਣ ਵਿਗਿਆਨ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਪਰਿਵਰਤਨ ਭਿੰਨ-ਭਿੰਨ ਪਤੀ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਹੁੰਦੇ ਹਨ। ਲਘੁਆੱਕਸੀਕਰਣ ਪਤੀ ਕਿਰਿਆਵਾਂ ਇਨ੍ਹਾਂ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਸਮੂਹ ਹੈ। ਅਨੇਕਾਂ ਭੌਤਿਕ ਅਤੇ ਜੈਵਿਕ ਪਰਿਘਟਨਾਵਾਂ ਲਘੁਆੱਕਸੀਕਰਣ ਪਤੀ ਕਿਰਿਆਵਾਂ ਨਾਲ ਸਬੰਧਿਤ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਮੈਡੀਕਲ ਸਾਇੰਸ, ਜੀਵ ਵਿਗਿਆਨ, ੳਦਯੋਗਿਕ ਖੇਤਰ, ਧਾਤਕਰਮ ਸਬੰਧੀ ਅਤੇ ਖੇਤੀਬਾੜੀ ਵਿਗਿਆਨ ਦੇ ਖੇਤਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦਾ ਮਹੱਤਵ ਇਸ ਗੱਲ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਹੇਠ ਲਿਖੇ ਖੇਤਰਾਂ ਵਿੱਚ ਲਘਆੱਕਸੀਕਰਣ ਪਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ, ਜਿਵੇਂ–ਘਰੇਲੂ, ਟਰਾਂਸਪੋਰਟ ਅਤੇ ਵਪਾਰਕ ਖੇਤਰਾਂ ਵਿੱਚ ਕਈ ਕਿਸਮ ਦੇ ਬਾਲਣ ਦੇ ਜਲਨ ਨਾਲ ਉਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ: ਬਿਜਲਈ ਰਸਾਇਣਿਕ ਪਕਰਮਾਂ ਆਦਿ ਵਿੱਚ: ਅਤਿਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਨਿਸ਼ਕਰਸ਼ਣ, ਧਾਤ-ਖੋਰ, ਰਸਾਇਣਿਕ ਯੋਗਿਕਾਂ (ਜਿਵੇਂ-ਕਲੋਰੀਨ ਅਤੇ ਕਾੱਸਟਿਕ ਸੋਡਾ) ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਅਤੇ ਖਸ਼ਕ ਅਤੇ ਸਿੱਲੀਆਂ ਬੈਟਰੀਆ ਦੇ ਚਾਲਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਅੱਜਕਲ ਹਾਈਡੋ਼ਜਨ ਅਰਥ ਪ੍ਰਬੰਧ (ਦਵ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ) ਅਤੇ ਉਜ਼ੋਨ ਛੇਕ ਵਰਗੇ ਵਾਤਾਵਰਣੀ ਵਿਸ਼ਿਆਂ ਵਿੱਚ ਵੀ ਲਘੁਆੱਕਸੀਕਰਣ ਪਤੀ ਕਿਰਿਆਵਾਂ ਨਜਰ ਆਉਂਦੀਆਂ ਹਨ।

8.1 ਲਘੁਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ

ਮੂਲ ਰੂਪ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਦੇ ਆੱਕਸੀਜਨ ਨਾਲ ਸੰਜੋਗ ਦੇ ਲਈ ਹੁੰਦੀ ਸੀ। ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਲਗਭਗ 20% ਡਾਈ– ਆੱਕਸੀਜਨ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਬਹੁਤ ਸਾਰੇ ਤੱਤ ਇਸ ਨਾਲ ਸੰਜੋਗ ਕਰ ਲੈਂਦੇ ਹਨ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਧਰਤੀ ਉੱਤੇ ਤੱਤ ਆਮ ਕਰਕੇ ਆੱਕਸਾਈਡ ਰੂਪ ਵਿੱਚ ਹੀ ਮਿਲਦੇ ਹਨ। ਆੱਕਸੀਕਰਣ ਦੀ ਇਸ ਸੀਮਿਤ ਪਰਿਭਾਸ਼ਾ ਦੇ ਮੁਤਾਭਿਕ ਹੇਠ ਲਿਖੀਆਂ ਪਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ–

$$2 \text{ Mg (s)} + \text{O}_2 (g) \rightarrow 2 \text{ MgO (s)}$$

$$(8.1)$$

 $S(s) + O_2(g) \rightarrow SO_2(g)$ (8.2)

256

ਪ੍ਤੀਕਿਰਿਆ (8.1) ਅਤੇ (8.2) ਵਿੱਚ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਸਲਫਰ ਤੱਤਾਂ ਦਾ ਆੱਕਸੀਜਨ ਨਾਲ ਮਿਲਕੇ ਆੱਕਸੀਕਰਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਆੱਕਸੀਜਨ ਨਾਲ ਸੰਜੋਗ ਦੇ ਕਾਰਣ ਮੀਥੇਨ ਦਾ ਆੱਕਸੀਕਰਣ ਹੋ ਜਾਂਦਾ ਹੈ।

$$CH_4 (g) + 2O_2 (g) \rightarrow CO_2 (g) + 2H_2O (l)$$
 (8.3)

ਜੇ ਧਿਆਨ ਨਾਲ ਵੇਖੀਏ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ (8.3) ਵਿੱਚ ਮੀਥੇਨ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਥਾਂ ਤੇ ਆੱਕਸੀਜਨ ਆ ਗਈ ਹੈ। ਇਸ ਤੋਂ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਪ੍ਰੇਰਣਾ ਮਿਲੀ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਨਿਸ਼ਕਾਸ਼ਣ ਨੂੰ ਆੱਕਸੀਕਰਣ ਕਿਹਾ ਜਾਏ। ਇਸ ਤਰ੍ਹਾਂ ਆੱਕਸੀਕਰਣ ਟਰਮ ਨੂੰ ਵਿਸਤਾਰਿਤ ਕਰਕੇ ਪਦਾਰਥ ਵਿੱਚੋਂ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਿਸ਼ਕਾਸ਼ਣ ਨੂੰ ਵੀ 'ਆੱਕਸੀਕਰਣ' ਕਹਿੰਦੇ ਹਨ। ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਵੀ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਨਿਸ਼ਕਾਸਣ ਆੱਕਸੀਕਰਣ ਦੀ ਉਦਾਹਰਣ ਹੈ—

$$2 H_2S(g) + O_2(g) \rightarrow 2 S(s) + 2 H_2O(l)$$
 (8.4)

ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਦੇ ਗਿਆਨ ਵਿੱਚ ਜਿਵੇਂ-ਜਿਵੇਂ ਵਾਧਾ ਹੋਇਆ, ਤਿਵੇਂ-ਤਿਵੇਂ ਉਨ੍ਹਾਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ 8.1 ਤੋਂ 8.4 ਦੇ ਵਾਂਗ ਆੱਕਸੀਜਨ ਤੋਂ ਇਲਾਵਾ ਹੇਠ ਇਲੈਕਟ੍ਰੋ ਨੈਗੇਟਿਵ ਤੱਤਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ, ਨੂੰ ਵੀ ਆੱਕਸੀਕਰਣ ਕਹਿਣ ਲੱਗ ਪਏ। ਮੈਗਨੀਸ਼ਿਅਮ ਦਾ ਆੱਕਸੀਕਰਣ ਫਲੋਰੀਨ, ਕਲੋਰੀਨ ਅਤੇ ਸਲਫਰ ਦੁਆਰਾ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ–

 $Mg(s) + F_2(g) \rightarrow MgF_2(s)$ (8.5)

 $Mg (s) + Cl_2 (g) \rightarrow MgCl_2 (s)$ (8.6)

$$Mg (s) + S (s) \rightarrow MgS (s)$$
(8.7)

8.5 ਤੋਂ 8.7 ਤੱਕ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਸਮੂਹ ਵਿੱਚ ਸ਼ਾਮਲ ਕਰਨ ਨੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕੀਤਾ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਵਰਗੇ ਹੋਰ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਤੱਤਾਂ ਦੇ ਨਿਸ਼ਕਾਸਣ ਨੂੰ ਵੀ ਆੱਕਸੀਕਰਣ ਕਿਹਾ ਜਾਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆ—

 $2K_4 [Fe(CN)_6](aq) + H_2O_2 (aq) \rightarrow 2K_3 [Fe(CN)_6](aq) + 2 KOH (aq)$

ਨੂੰ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਨ ਤੱਤ ਪੋਟਾਸ਼ੀਅਮ ਦੇ ਨਿਸ਼ਕਾਸਣ ਦੇ ਕਾਰਣ ਪੋਟਾਸ਼ਿਅਮ ਫੈਰੋਸਾਇਨਾਈਡ ਦਾ ਆੱਕਸੀਕਰਣ ਕਹਿ ਸਕਦੇ ਹਾਂ। ਸਾਰਾਂਸ਼ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਟਰਮ ਦੀ ਪਰਿਭਾਸ਼ਾ ਇਸ ਤਰ੍ਹਾਂ ਹੈ– ਕਿਸੇ ਪਦਾਰਥ ਵਿੱਚ ਆੱਕਸੀਜਨ/ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਦਾ ਜੋੜਨਾ ਜਾਂ ਹਾਈਡ੍ਰੋਜਨ/ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਤੱਤ ਦਾ ਨਿਸ਼ਕਾਸਣ ਆੱਕਸੀਕਰਣ ਅਖਵਾਉਂਦਾ ਹੈ।

ਪਹਿਲਾਂ ਕਿਸੇ ਯੋਗਿਕ ਵਿਚੋਂ ਆੱਕਸੀਜਨ ਦਾ ਨਿਸ਼ਕਾਸਣ ਲਘੂਕਰਣ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ, ਪਰ ਅੱਜਕਲ ਲਘੂਕਰਣ ਟਰਮ ਨੂੰ ਵਿਸਥਾਰਿਤ ਕਰਕੇ ਪਦਾਰਥ ਵਿੱ'ਚੋਂ ਆੱਕਸੀਜਨ/ ਇਲੈਕਟ੍ਰੋਨੈਗਟਿਵ ਤੱਤ ਦੇ ਨਿਸ਼ਕਾਸਣ ਨੂੰ ਜਾ ਹਾਈਡ੍ਰੋਜਨ/ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਤੱਤ ਦੇ ਜੋੜਨ ਨੂੰ ਲਘੂਕਰਣ ਕਹਿੰਦੇ ਹਨ।

ਉੱਪਰ ਦਿੱਤੀ ਪਰਿਭਾਸ਼ਾ ਮੁਤਾਬਿਕ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਲਘੂਕਰਣ ਪ੍ਕਰਮ ਦੀ ਉਦਾਹਰਣ ਹੈ–

2 HgO (s) $\stackrel{A}{\longrightarrow}$ 2 Hg (l) + O₂ (g) (8.8) (ਮਰਕਿਊਰਿਕ ਆੱਕਸਾਈਡ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦਾ ਨਿਸ਼ਕਾਸਣ) 2 FeCl₃ (aq) + H₂ (g) →2 FeCl₂ (aq) + 2 HCl(aq) (8.9)

(ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਕਲੋਰੀਨ ਦਾ ਫੈਰਿਕ ਕਲੋਰਾਈਡ ਵਿੱਚੋਂ ਨਿਸ਼ਕਾਸਣ)

 $CH_2 = CH_2$ (g) + H_2 (g) → $H_3C - CH_3$ (g) (8.10) (ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਜੋੜਨਾ)

 $\begin{array}{l} 2\mathrm{HgCl}_2\,(\mathrm{aq}) + \mathrm{SnCl}_2\,(\mathrm{aq}) \rightarrow \mathrm{Hg}_2\mathrm{Cl}_2\,(\mathrm{s}) + \mathrm{SnCl}_4\,(\mathrm{aq}) \\ (8.11) \end{array}$

(ਮਰਕਰੀ ਦਾ ਮਰਕਿਊਰਿਕਲੋਰਾਈਡ ਵਿੱਚ ਜੋੜਨਾ)

ਕਿਉਂਕਿ ਪ੍ਰਤੀਕਿਰਿਆ (8.11) ਵਿੱਚ ਸਟੇਨਸ ਕਲੋਰਾਈਡ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਨੈਗਟਿਵ ਤੱਤ ਕਲੋਰੀਨ ਦਾ ਜੋੜ ਹੋ ਰਿਹਾ ਹੈ, ਇਸ ਲਈ ਨਾਲ-ਨਾਲ ਸਟੈਨਿਕ ਕਲੋਰਾਈਡ ਦੇ ਰੂਪ ਵਿਚ ਇਸ ਦਾ ਆੱਕਸੀਕਰਣ ਵੀ ਰਿਹਾ ਹੈ। ਉਪਰ ਦਿੱਤੀਆਂ ਸਾਰੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖਣ ਤੇ ਝਟ ਇਸ ਗਲ ਦੀ ਜਾਣਕਾਰੀ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿ ਆੱਕਸੀਕਰਣ ਅਤੇ ਲਘੂਕਰਣ ਹਮੇਸ਼ਾ ਨਾਲ-ਨਾਲ ਵਾਪਰਦੇ ਹਨ। ਇਸੇ ਲਏ ਇਨ੍ਹਾਂ ਦੇ ਲਈ ਲਘੁਆੱਕਸੀਕਰਣ ਸ਼ਬਦ ਦਿੱਤਾ ਗਿਆ।

ਉਦਾਹਰਣ 8.1

ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚੋਂ ਪਛਾਣੋ ਕਿ ਕਿਸ ਦਾ ਆੱਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ ਅਤੇ ਕਿਸਦਾ ਲਘੂਕਰਣ (i) H₂S (g) + Cl₂ (g) → 2 HCl (g) + S (s)

(ii) $3\text{Fe}_3\text{O}_4$ (s) + 8 Al (s) \rightarrow 9 Fe (s) + $4\text{Al}_2\text{O}_3$ (s)

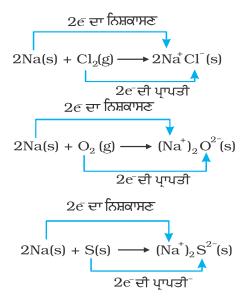
(iii) 2 Na (s) + H_2 (g) \rightarrow 2 NaH (s)

(i) H₂S ਦਾ ਆਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ, ਕਿਉਂਕਿ ਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਕਲੋਰੀਨ ਦਾ ਸੰਜੋਗ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਤੱਤ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਸਲਫਰ ਤੋਂ ਨਿਸ਼ਕਾਸਣ ਹੋ ਰਿਹਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸੰਜੋਗ ਦੇ ਕਾਰਣ ਕਲੋਰੀਨ ਦਾ ਲਘੁਕਰਣ ਹੋ ਰਿਹਾ ਹੈ।

(ii) ਆੱਕਸੀਜਨ ਦੇ ਸੰਜੋਗ ਦੇ ਕਾਰਣ ਐਲੂਮੀਨਿਅਮ ਦਾ ਆੱਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ। ਆੱਕਸੀਜਨ ਦੇ ਨਿਸ਼ਕਾਸਣ ਦੇ ਕਾਰਣ ਫੈਰਸਫਰਿਕ ਆੱਕਸਾਈਡ (Fe₃O₄) ਦਾ ਲਘੂਕਰਣ ਹੋ ਰਿਹਾ ਹੈ।

(iii) ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੀ ਧਾਰਣਾ ਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਵਰਤ ਕੇ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢਦੇ ਹਾਂ ਕਿ ਸੋਡੀਅਮ ਦਾ ਆਕਸੀਕਰਣ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਲਘੂਕਰਣ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ (iii) ਦੀ ਚੋਣ ਇੱਥੇ ਇਸ ਲਈ ਕੀਤੀ ਗਈ ਹੈ, ਤਾਂ ਜੋ ਅਸੀਂ ਲਘੂ ਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਵੱਖ ਤਰ੍ਹਾਂ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੀਏ।

8.2 ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲਘੂਆੱਕਸੀਕਰਣ ਕਿਰਿਆਵਾਂ


ਅਸੀਂ ਇਹ ਜਾਣ ਚੁਕੇ ਹਾਂ ਕਿ

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl (s)$ (8.12)

 $4Na(s) + O_2(g) \rightarrow 2Na_2O(s) \tag{8.13}$

 $2Na(s) + S(s) \rightarrow Na_2S(s)$ (8.14)

ਹੇਠ ਲਿਖੀਆਂ ਸਾਰੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਜਾਂ ਤਾਂ ਆੱਕਸੀਜਨ ਜਾਂ ਜਿਆਦਾ ਇਲੈਕਟੋਨੈਗੇਟਿਵ ਤੱਤ ਦੇ ਸੰਜੋਗ ਦੇ ਕਾਰਣ ਸੋਡੀਅਮ ਦਾ ਆੱਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ ਨਾਲ-ਨਾਲ ਕਲੋਰੀਨ, ਆੱਕਸੀਜਨ ਅਤੇ ਸਲਫਰ ਦਾ ਲਘੁਕਰਣ ਵੀ ਹੋ ਰਿਹਾ ਹੈ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਨਾਲ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਤੱਤ ਸੋਡੀਅਮ ਦਾ ਸੰਜੋਗ ਹੋ ਰਿਹਾ ਹੈ—ਹੇਠ ਲਿਖਿਆਂ ਗਈਆਂ ਪਤਿਕਿਰਿਆਵਾਂ ਵਿਚ ਜਾਂ ਤਾਂ ਆਕਸੀਜਨ ਜਾਂ ਜਿਆਦਾ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਤੱਤ ਦੇ ਸੰਜੋਗ ਦੇ ਕਾਰਣ ਸੋਡੀਅਮ ਦਾ ਆਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ ਨਾਲ-ਨਾਲ ਕਲੋਰੀਨ, ਆਕਸੀਜਨ ਅਤੇ ਸਲਫਰ ਦਾ ਲਘੁਕਰਣ ਵੀ ਹੋ ਰਿਹਾ ਹੈ ਕਿਉਂਕਿ ਇਹਨਾਂ ਤਤਾਂ ਨਾਲ ਇਲੈਕਟੋਪਾੱਜੋਟਿਵ ਤੱਤ ਸੋਡੀਅਮ ਦਾ ਸੰਜੋਗ ਹੋ ਰਿਹਾ ਹੈ। ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੇ ਨਿਯਮਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ, ਸੋਡੀਅਮ ਆੱਕਸਾਈਡ ਅਤੇ ਸੋਡੀਅਮ ਸਲਫਾਈਡ ਸਾਨੂੰ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ Na⁺Cl⁻ (s), (Na⁺)₂O^{2−}(s), ਅਤੇ (Na⁺)₂ S^{2−}(s) ਦੇ ਰੁਪ ਵਿੱਚ ਲਿਖਣਾ ਵਧੇਰੇ ਸਹੀ ਹੋਵੇਗਾ। ਬਿਜਲਈ ਚਾਰਜ ਪੈਦਾ ਹੋਣ ਦੇ ਕਾਰਣ

8.12 ਤੋਂ 8.14 ਤੱਕ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ—

ਸੁਵਿਧਾ ਦੇ ਲਈ ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਦੋ ਸਟੈਪਾਂ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਨਿਸ਼ਕਾਸਣ ਅਤੇ ਦੂਜੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਪ੍ਰਾਪਤੀ ਹੁੰਦੀ ਹੈ। ਦ੍ਰਿਸਟਾਂਤ ਰੂਪ ਵਿੱਚ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਬਣਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਲਿਖ ਸਕਦੇ ਹਾਂ—

 $2 \text{ Na(s)} \rightarrow 2 \text{ Na}^+(g) + 2e^-$

 $\operatorname{Cl}_2(g) + 2e^- \rightarrow 2 \operatorname{Cl}(g)$

ਉਪਰੋਕਤ ਦੋਵਾਂ ਸਟੈੱਪਾਂ ਨੂੰ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਭੂਮਿਕਾ ਸਾਫ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਦੋ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਜੋੜਨ ਤੇ ਇੱਕ ਪੂਰਣ ਪ੍ਤੀਕਿਰਿਆ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ–

 $2 \operatorname{Na}(s) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{Na}^+ \operatorname{Cl}^-(s) \text{ or } 2 \operatorname{Na}(s)$ 8.12 ਤੋਂ 8.14 ਤੱਕ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਨਿਸ਼ਕਾਸਣ ਵਾਲੀ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ 'ਆਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ' ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਨ ਵਾਲੀ ਅਰਧ ਪਤੀਕਿਰਿਆ ਨੂੰ 'ਲਘੁਕਰਣ ਪਤੀਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ। ਇੱਥੇ ਇਹ ਦੱਸਣਾ ਢੁਕਵਾਂ ਹੋਵੇਗਾ ਕਿ ਸਪੀਸ਼ੀਜ ਦੇ ਆਪਸੀ ਵਿਹਾਰ ਦੀ ਪਰੰਪਰਿਕ ਧਾਰਣਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਸਥਾਨ ਅੰਤਰਣ ਨੂੰ ਆਪਸ ਵਿੱਚ ਮਿਲਾਉਣ ਤੋਂ ਹੀ ਆੱਕਸੀਕਰਣ ਅਤੇ ਲਘੁਕਰਣ ਦੀ ਨਵੀਂ ਪਰਿਭਾਸ਼ਾ ਪ੍ਰਾਪਤ ਹੋਈ ਹੈ। 8.12 ਤੋਂ 8.14 ਤੱਕ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸੋਡੀਅਮ, ਜਿਸਦਾ ਆਕਸੀਕਰਣ ਹੁੰਦਾ ਹੈ, ਲਘੂਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਕਿਰਿਆ ਕਰਨ ਵਾਲੇ ਹਰ ਇੱਕ ਤੱਤ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਕੇ ਲਘੁਕਰਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਕਲੋਰੀਨ, ਆੱਕਸੀਜਨ ਅਤੇ ਸਲਫਰ ਲਘੂ ਕ੍ਰਿਤ ਹੋ ਰਹੇ ਹਨ ਅਤੇ ਆੱਕਸੀਕਾਰਕ ਦਾ ਕਾਰਜ ਕਰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਹ ਸੋਡੀਅਮ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਇਲੈਕਟ੍ਰਾਨ ਸਵੀਕਾਰ ਕਰਦੇ ਹਨ। ਸਾਰਾਂਸ਼ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ–

ਆੱਕਸੀਕਰਣ : ਕਿਸੇ ਸਪੀਸ਼ੀਜ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਨਿਸ਼ਕਾਸਣ

ਲਘੂਕਰਣ : ਕਿਸੇ ਸਪੀਸ਼ੀਜ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਗ੍ਰਹਿਣ ਅੱਕਸੀਕਾਰਕ : ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਨ ਵਾਲਾ ਪ੍ਤੀਕਾਰਕ ਲਘੁਕਾਰਕ : ਇਲੈਕਟ੍ਰਾੱਨ ਦਾਤਾ ਪ੍ਰਤੀਕਾਰਕ

ਉਦਾਹਰਣ 8.2 ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਇੱਕ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ, ਕਾਰਣ ਦੱਸੋ— 2 Na(s) + H₂(g) \rightarrow 2 NaH (s) ਹੱਲ ਕਿਉਂਕਿ ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਰਿਆ ਵਿੱਚ ਬਣਨ ਵਾਲਾ ਯੋਗਿਕ ਇੱਕ ਆਇਨਿਕ ਪਦਾਰਥ ਹੈ ਜਿਸ ਨੂੰ Na⁺H⁻ ਦੇ ਰੁਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੰਜ ਇਸ

2 Na (s) \rightarrow 2 Na⁺ + 2e⁻

ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗੀ–

Downloaded from https:// www.studiestoday.com

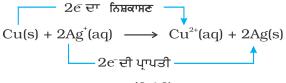
257

258

ਅਤੇ ਦੂਜੀ H₂ (g) + 2e⁻ → 2 H⁻(g)

ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਦੋ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵਿਭਾਜਨ, ਸੋਡੀਅਮ ਦੇ ਆੱਕਸੀਕਰਣ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਲਘੂਕਰਣ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ ਹੈ। ਇਸ ਪੂਰੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ।

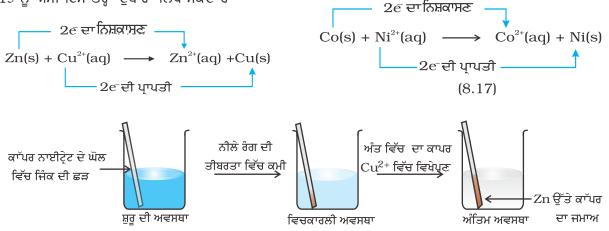
8.2.1 ਪ੍ਰਤੀਯੋਗੀ ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ


ਜਿਵੇਂ ਚਿੱਤਰ 8.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਜਿੰਕ ਧਾਤ ਦੀ ਇੱਕ ਪੱਟੀ ਨੂੰ ਇੱਕ ਘੰਟੇ ਦੇ ਲਈ ਕੱਾਪਰ ਨਾਈਟ੍ਰੇਟ ਦੇ ਜਲੀਘੋਲ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਜਿੰਕ ਧਾਤ ਦੀ ਪੱਟੀ ਉੱਤੇ ਕਾੱਪਰ ਧਾਤ ਦੀ ਲਾਲ ਰੰਗ ਦੀ ਪਰਤ ਜੰਮ ਜਾਂਦੀ ਹੈ ਅਤੇ ਘੋਲ ਦਾ ਨੀਲਾ ਰੰਗ ਗਾਇਬ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿੰਕ ਆਇਨ Zn^{2+} ਦਾ ਉਪਜ ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਨਾ Cu^{2+} ਦੇ ਰੰਗ ਦੇ ਖਤਮ ਹੋਣ ਤੋਂ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜੇ Zn^{2+} ਵਾਲੇ ਰੰਗਹੀਣ ਘੋਲ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਡ ਗੈਸ ਲੰਘਾਈਏ, ਤਾਂ ਜਿੰਕ ਸਲਫਾਈਡ ZnS ਅਵਖੇਪ ਦਾ ਸਫੇਦ ਰੰਗ ਅਮੋਨੀਅਮ ਦੁਆਰਾ ਘੋਲ ਨੂੰ ਖਾਰੀ ਕਰਕੇ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਜਿੰਕ ਧਾਂਤ ਅਤੇ ਕਾੱਪਰ ਨਾਈਟ੍ਰੇਟ ਦੇ ਜਲੀਘੋਲ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਹੇਠ ਲਿਖੀ ਹੈ–

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ (8.15)

ਪ੍ਰਤੀਕਿਰਿਆ (8.15) ਵਿੱਚ ਜਿੰਕ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਨਿਸ਼ਕਾਸਣ ਨਾਲ Zn²⁺ ਬਣਦਾ ਹੈ। ਇਸ ਲਈ ਜਿੰਕ ਦਾ ਆੱਕਸੀਕਰਣ ਹੁੰਦਾ ਹੈ। ਸਪਸ਼ਟ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨਾ ਦੇ ਨਿਸ਼ਕਾਸਣ ਨਾਲ ਜਿੰਕ ਦਾ ਆਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ, ਤਾਂ ਕਿਸੇ ਵਸਤੂ ਦਾ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਲਘੂਕਰਣ ਵੀ ਹੋ ਰਿਹਾ ਹੈ। ਜਿੰਕ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਇਲੈਕਟ੍ਰਾੱਨਾ ਦੀ ਪ੍ਰਾਪਤੀ ਨਾਲ ਕਾੱਪਰ ਆਇਨ ਲਘੂਕ੍ਰਿਤ ਹੋ ਰਿਹਾ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ 8.15 ਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੁਬਾਰਾ ਲਿਖ ਸਕਦੇ ਹਾਂ— ਹੁਣ ਅਸੀਂ ਸਮੀਕਰਣ 8.15 ਦੁਆਰਾ ਦਰਸਾਈ ਗਈ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਇਸ ਦੇ ਲਈ ਅਸੀਂ ਕਾੱਪਰ ਧਾਤ ਦੀ ਪੱਟੀ ਨੂੰ ਜਿੰਕ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਡੋਬ ਕੇ ਰੱਖਦੇ ਹਾਂ। ਕੋਈ ਵੀ ਪ੍ਤੀਕਿਆ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦੀ ਅਤੇ ਨਾ ਹੀ Cu²⁺ ਦਾ ਉਹ ਪ੍ਰੇਖਣ ਸਫਲ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਘੋਲ ਵਿੱਚੋਂ H₂S ਲੰਘਾਉਣ ਤੇ ਕਿਊਪਰਿਕ ਸਲਫਾਈਡ CuS ਅਵਖੇਪ ਦਾ ਕਾਲਾ ਰੰਗ ਮਿਲਦਾ ਹੈ। ਇਹ ਪ੍ਰੇਖਣ ਬਹੁਤ ਸੰਵੇਦਨਸ਼ੀਲ ਹੈ, ਪਰੰਤੂ ਫਿਰ ਵੀ Cu²⁺ ਆਇਨ ਦਾ ਬਣਨਾ ਨਹੀਂ ਵੇਖਿਆ ਜਾ ਸਕਦਾ। ਇਸ ਤੋਂ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢਦੇ ਹਾਂ ਕਿ ਪ੍ਰਤੀਕਿਰਿਆ 8.15 ਦੀ ਸੰਤੁਲਿਤ ਅਸੀਂ ਕਾੱਪਰ ਧਾਤ ਅਤੇ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਦੇ ਜਲੀ ਘੋਲ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਚਿੱਤਰ 8.2 ਵਿੱਚ ਵਿਖਾਈ ਗਈ ਵਿਵਸਥਾ ਦੇ ਅਨੁਸਾਰ ਘਟਿਤ ਕਰੀਏ।


Cu²⁺ ਬਣਨ ਦੇ ਕਾਰਣ ਘੋਲ ਦਾ ਰੰਗ ਨੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਕਾਰਣ ਹੈ—

ਇਥੇ Cu(s) ਦਾ Cu^{2+} ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਹੁੰਦਾ ਹੈ ਅਤੇ Ag⁺(aq) ਦਾ Ag(s) ਵਿੱਚ ਲਘੂਕਰਣ ਹੋ ਰਿਹਾ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ Cu^{2+} (aq) ਅਤੇ Ag(s) ਉਪਜਾਂ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਬਹੁੱਤ ਅਨੁਕੂਲ ਹੈ। ਬਿਖਮਤਾ ਵਜੋਂ ਨਿੱਕਲ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਰੱਖੀ ਗਈ ਕੋਬਾਲਟ ਧਾਤ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਿਰਿਆ ਦਾ ਤੁਲਨਾਤਮਕ ਅਧਿਐਨ ਕਰੀਏ। ਇੱਤੇ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਘਟਿਤ ਹੋ ਰਹੀ ਹੈ—

ਰਸਾਇਣਿਕ ਪ੍ਰੇਖਣਾਂ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ Ni²⁺(aq) ਅਤੇ Co²⁺(aq) ਦੋਵਾਂ ਦੀ ਸੰਘਣਤਾ

ਚਿੱਤਰ 8.1 ਬੀਕਰ ਵਿੱਚ ਰੱਖੇ ਕਾੱਪਰ ਨਾਈਟ੍ਰੇਟ ਅਤੇ ਜਿੰਕ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਲਘੁਆਕਸੀਕਰਣ ਪ੍ਰਤੀਰਿਆਿ

ਸੀਮਿਤ ਹੁੰਦੀ ਹੈ।ਇਹ ਪਰਿਸਥਿਤੀ ਨਾ ਤਾਂ ਪ੍ਰਤੀਕਾਰਕਾਂ [Co(s) ਨਾ Ni²⁺(aq)] ਨਾ ਹੀ ਉਪਜਾਂ [Co²⁺(aq) ਅਤੇ Ni (s)] ਦੇ ਪੱਖ ਵਿੱਚ ਹੈ।

ਇਲੈਕਟ੍ਰਾੱਨ ਲੈਣ ਲਈ ਇਹ ਪ੍ਰਤੀ ਯੋਗਤਾ ਸਾਨੂੰ ਤੇਜਾਬਾਂ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਪ੍ਰੋਟਾੱਨ ਨਿਸ਼ਕਾਸਣ ਦੀ ਪ੍ਰਤੀਯੋਗਤਾ ਦੀ ਯਾਦ ਦਿਵਾਉਂਦੀ ਹੈ। ਇਸ ਸਮਰੁਪਤਾ ਦੇ ਅਨੁਸਾਰ ਇਲੈਕਟ਼ਾੱਨ ਨਿਸ਼ਕਾਸਣ ਦੀ ਪ੍ਵਿਰਤੀ ਉੱਤੇ ਅਧਾਰਿਤ ਧਾਤਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਆਇਨਾਂ ਦੀ ਇੱਕ ਸੂਚੀ ਉਸੇ ਤਰ੍ਹਾਂ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਸ ਤਰ੍ਹਾਂ ਤੇਜਾਬਾਂ ਦੀ ਪ੍ਰਬਲਤਾ ਦੀ ਸੂਚੀ ਤਿਆਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਅਸੀਂ ਕੁਝ ਤੁਲਨਾਵਾਂ ਵੀ ਕੀਤੀਆਂ ਹਨ। ਅਸੀਂ ਇਹ ਜਾਣ ਗਏ ਹਾਂ ਕਿ ਜਿੰਕ ਕਾੱਪਰ ਨੂੰ ਅਤੇ ਕਾੱਪਰ ਸਿਲਵਰ ਨੂੰ ਇਲੈਕਟਾਨ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਸ਼ਕਾਸਨ ਸਮਰੱਥਾ ਦਾ ਕ੍ਰਮ Zn>Cu>Ag ਹੋਇਆ। ਅਸੀਂ ਇਸ ਕ੍ਰਮ ਨੂੰ ਵਿਸਥਾਰਿਤ ਕਰਨਾ ਚਾਹਾਂਗੇ, ਤਾਂਕਿ ਧਾਤ ਸਕਿਰਿਅਤਾ ਸੀਰੀਜ ਜਾਂ ਇਲੈਕਟ੍ਰੋ ਰਸਾਇਣਿਕ ਸੀਰੀਜ ਬਣ ਸਕੇ। ਭਿੰਨ-ਭਿੰਨ ਧਾਤਾਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟਾੱਨਾਂ ਦੀ ਪ੍ਰਤੀ ਯੋਗਤਾ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਸੀਂ ਅਜਿਹੇ ਸੈੱਲ (cells) ਬਣਾ ਸਕਦੇ ਹਾਂ ਜੋ ਬਿਜਲਈ ਉਰਜਾ ਦੇ ਸਰੋਤ ਹੋਣ। ਇਨ੍ਹਾਂ ਸੈੱਲਾਂ ਨੂੰ 'ਗੈਲਵੈਨਿਕ ਸੈੱਲ' ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਸੀਂ ਅਗਲੀ ਜਮਾਤ ਵਿੱਚ ਵਿਸਥਾਰ ਸਹਿਤ ਪੜ੍ਹਾਂਗੇ।

8.3 ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ

ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਆੱਕਸੀਜਨ ਨਾਲ ਸੰਯੋਜਨ ਕਰਕੇ ਪਾਣੀ ਬਣਦਾ ਹੈ, ਇਲੈਕਟ੍ਰਾਨ ਸਥਾਨ ਅੰਤਰਣ ਦੀ ਇੱਕ ਪਰਤੱਖ ਉਦਾਹਰਣ ਹੈ–

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$
 (8.18)

ਭਾਵੇਂ ਇਹ ਇੱਕ ਸਰਲ ਤਰੀਕਾਂ ਤਾਂ ਨਹੀਂ ਹੈ, ਫਿਰ ਵੀ ਅਸੀਂ ਇਹ ਸੋਚ ਸਕਦੇ ਹਾਂ ਕਿ H₂ ਅਣੂ ਵਿੱਚ H ਪਰਮਾਣੂ ਉਦਾਸੀਨ (ਸਿਫਰ) ਸਥਿਤੀ ਤੋਂ ਧਨ ਸਥਿਤੀ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਅੱਕਸੀਜਨ ਪਰਮਾਣੂ O₂ ਵਿੱਚ ਸਿਫਰ ਸਥਤੀ ਤੋਂ ਦੋ ਰਿਣੀ ਸਥਿਤੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਇਹ ਮੰਨਿਆ ਗਿਆ ਹੈ ਕਿ H ਤੋਂ O ਦੇ ਵੱਲ ਇਲੈਕਟ੍ਰਾਨ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਗਿਆ ਹੈ। ਸਿੱਟੇ ਵੱਜੋਂ H₂ ਦਾ ਆੱਕਸੀਕਰਣ ਅਤੇ O₂ ਦਾ ਲਘੂਕਰਣ ਹੋ ਗਿਆ ਹੈ। ਬਾਅਦ ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੇਖਾਂਗੇ ਕਿ ਇਹ ਚਾਰਜ ਸਥਾਨਅੰਤਰਣ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਹੀ ਹੁੰਦਾ ਹੈ। ਇਹ ਚੰਗਾ ਹੋਵੇਗਾ ਕਿ ਇਸ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ (ਸ਼ਿਫਟ) ਨਾਲ ਦਰਸਾਇਆ ਜਾਏ, ਨਾ ਕਿ H ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਨਿਸ਼ਕਾਸਨ ਅਤੇ O ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਪ੍ਰਾਪਤੀ। ਇੱਤੇ ਸਮੀਕਰਣ 8.18 ਦੇ ਬਾਰੇ ਵਿੱਚ ਜੋ ਕੁਝ ਕਿਹਾ ਗਿਆ ਹੈ, ਉਹੀ ਹੋਰ ਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕਾਂ ਵਾਲੀਆਂ ਹੋਰ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਦੋ ਉਦਾਹਰਣਾਂ ਹਨ—

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 (8.19)
ਅਤੇ,

 $\operatorname{CH}_4(g) + 4\operatorname{Cl}_2(g) \rightarrow \operatorname{CCl}_4(l) + 4\operatorname{HCl}(g)$ (8.20)

ਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਉਪਜਾਂ ਦੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਧੀ ਦਾ ਵਿਕਾਸ ਕੀਤਾ ਗਿਆ ਹੈ। ਤਾਂਕਿ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਾ ਰਿਕਾੱਰਡ ਰੱਖਿਆ ਜਾ ਸਕੇ। ਇਸ ਵਿਧੀ ਵਿੱਚ ਇਹ ਮੰਨਿਆ ਗਿਆ ਹੈ ਕਿ ਘਟ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਪਰਮਾਣੂ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਪਰਮਾਣੂ ਤੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਾਲ਼ ਹੋ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ 8.18 ਤੋਂ 8.20 ਤੱਕ ਦੇ ਸਮੀਕਰਣਾਂ ਨੂੰ ਅਸੀਂ ਦੋਬਾਰਾ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਾਂ। ਇੱਥੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਚਾਰਜ ਵੀ ਵਿਖਾਇਆ ਗਿਆ ਹੈ—

$$\begin{array}{ccc} 0 & 0 & +1 & -2 \\ 2H_2(g) + O_2(g) & \to & 2H_2O \ (l) \end{array}$$
 (8.21)

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \qquad (8.22)$$

$$\begin{array}{cccc} {}^{-4+1} & 0 & {}^{+4}-1 & {}^{+1}-1 \\ {\rm CH}_4({\rm g}) & + \, 4{\rm Cl}_2({\rm g}) \rightarrow & {\rm CCl}_4({\rm l}) & {}^{+4}{\rm HCl}({\rm g}) & (8.23) \end{array}$$

ਇਸ ਉੱਤੇ ਬਲ ਦਿੱਤਾ ਜਾਏ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਦੀ ਕਲਪਨਾ ਸਿਰਫ ਲੇਖਾ ਜੋਖਾ ਰੱਖਣ ਦੇ ਲਈ ਕੀਤੀ ਗਈ ਹੈ। ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅੱਗੇ ਚੱਲ ਕੇ ਸਪਸ਼ਟ ਹੋ ਜਾਵੇਗਾ ਕਿ ਇਹ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਸਰਲਤਾ ਨਾਲ ਦਰਸਾਉਂਦੀ ਹੈ।

260

ਕਿਸੇ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਉਸ ਦੀ ਆੱਕਸੀਕਰਣ ਦੀ ਸਥਿਤੀ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਇਸ ਨਿਯਮ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਸਹਿ ਸੰਯੋਜਕ ਬੰਧਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਕੇਵਲ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਵਲ ਹੁੰਦਾ ਹੈ।

ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ ਯਾਦ ਰੱਖਣਾ ਜਾਂ ਜਾਣ ਲੈਣਾ ਸੰਭਵ ਨਹੀਂ ਹੈ ਕਿ ਯੋਗਿਕ ਵਿੱਚ ਕਿਹੜਾ ਤੱਤ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਹੈ। ਇਸ ਲਈ ਯੋਗਿਕ/ਆਇਨ ਦੇ ਕਿਸੇ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦਾ ਮਾਨ ਜਾਣਨ ਦੇ ਲਈ ਕੁਝ ਨਿਯਮ ਬਣਾਏ ਗਏ ਹਨ। ਜੇ ਕਿਸੇ ਅਣੂ/ਆਇਨ ਵਿੱਚ ਕਿਸੇ ਤੱਤ ਦੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂ ਮੌਜੂਦ ਹੋਣ, (ਜਿਵੇਂ—Na₂S₂O₃/Cr₂O₇²⁻) ਤਾਂ ਉਸ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਉਸ ਦੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੀ ਔਸਤ ਹੋਵੇਗੀ। ਹੁਣ ਅਸੀਂ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਦੇ ਕਈ ਹੇਠ ਲਿਖੇ ਨਿਯਮ ਦੱਸਾਂਗੇ—

- ਤੱਤਾਂ ਵਿੱਚ ਸੁਤੰਤਰ ਜਾਂ ਅਣਸੰਯੁਕਤ ਦਸ਼ਾ ਵਿੱਚ ਹਰ ਇੱਕ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਸਿਫਰ ਹੁੰਦੀ ਹੈ। ਸਪਸ਼ਟ ਹੈ H₂, O₂, Cl₂, O₃, P₄, S₈, Na, Mg ਅਤੇ Al ਵਿੱਚ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਸਮਾਨ ਰੁਪ ਵਿੱਚ ਸਿਫਰ ਹੈ।
- 2. ਕੇਵਲ ਇੱਕ ਪਰਮਾਣੂ ਵਾਲੇ ਆਇਨਾਂ ਵਿੱਚ ਪਰਮਾਣੂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਉਸ ਆਇਨ ਉੱਤੇ ਸਥਿਤ ਚਾਰਜ ਦਾ ਮਾਨ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ Na⁺ ਆਇਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ +1, Mg²⁺ ਆਇਨ ਦੀ +2, Fe³⁺ ਆਇਨ ਦੀ +3, Cl⁻ ਆਇਨ ਦੀ –1 ਅਤੇ O²⁻ ਆਇਨ ਦੀ –2 ਹੈ। ਸਾਰੀਆਂ ਖਾਰ ਧਾਤਾਂ ਦੀ ਉਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ +1 ਹੁੰਦੀ ਹੈ ਅਤੇ ਸਾਰੀਆਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ +2 ਹੁੰਦੀ ਹੈ। ਐਲੂਮੀਨੀਅਮ ਦੀ ਉਸ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਆਮਤੌਰ ਤੇ +3 ਮੰਨੀ ਜਾਂਦੀ ਹੈ।
- ਵਧੇਰੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੀ ਆਕਸੀਕਰਣ ਸੰਖਿਆ –2 ਹੁੰਦੀ ਹੈ। ਸਾਨੂੰ ਦੋ ਕਿਸਮ ਦੇ ਅਪਵਾਦ ਮਿਲਦੇ ਹਨ। ਪਹਿਲਾ—ਪਰਆੱਕਸੀਆਡਾਂ ਅਤੇ ਸੁਪਰ ਆੱਕਸਾਈਡਾ ਵਿੱਚ ਅਤੇ ਉਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਜਿੱਥੇ ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਸਿੱਧੇ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਪਰ ਆੱਕਸਾਈਡਾਂ (ਜਿਵੇਂ—H₂O₂, Na₂O₂) ਵਿੱਚ ਹਰ ਇੱਕ

ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ –1 ਹੈ। ਸੁਪਰ–ਆੱਕਸਾਈਡ (ਜਿਵੇਂ— KO₂, RbO₂ ਵਿੱਚ ਹਰ ਇੱਕ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ –(½) ਨਿਰਧਾਰਿਤ ਕੀਤੀ ਗਈ ਹੈ। ਦੂਜੀ ਅਪਵਾਦ ਬਹੁਤ ਦੁਰਲਭ ਹੈ, ਜਿਸ ਵਿੱਚ ਆੱਕਸੀਜਨ ਡਾਈਫਲੋਰਾਈਡ (OF₂) ਅਤੇ ਡਾਈਆੱਕਸੀਜਨ ਡਾਈਫਲੋਰਾਈਡ (O₂F₂) ਵਰਗੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ +2 ਅਤੇ +1 ਹੈ।ਇਹ ਸੰਖਿਆ ਆੱਕਸੀਜਨ ਦੀ ਬੰਧਨ ਸਥਿਤੀ ਉਤੇ ਨਿਰਭਰ ਹੈ, ਪਰੰਤੂ ਇਹ ਹਮੇਸ਼ਾ ਧਨਾਤਮਕ ਹੀ ਹੋਵੇਗੀ।

- ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ +1 ਹੁੰਦੀ ਹੈ।ਕੇਵਲ ਉਸ ਦਸ਼ਾ ਨੂੰ ਛੱਡ ਕੇ ਜਿੱਥੇ ਧਾਤਾਂ ਇਸ ਨਾਲ ਦੋ ਅੰਗੀ (binary) ਯੋਗਿਕ ਬਣਾਉਂਦੀਆਂ ਹਨ (ਸਿਰਫ ਦੋ ਤੱਤਾਂ ਵਾਲੇ ਯੋਗਿਕਾ) ਉਦਾਹਰਣ ਵਜੋਂ—LiH, NaH, ਅਤੇ CaH₂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ –1 ਹੈ।
- 5. ਸਾਰੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਫਲੋਰੀਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ –1 ਹੰਦੀ ਹੈ। ਹੋਰ ਹੈਲੋਜਨਾਂ (Cl, Br ਅਤੇ I) ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ –1 ਹੈ, ਜਦੋਂ ਉਹ ਆਪਣੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹੇਲਾਈਡ ਆਇਨ ਵੱਜੋਂ ਵਿਚਰਦੇ ਹਨ। ਕਲੋਰੀਨ, ਬਰੋਮੀਨ ਅਤੇ ਆਇਓਡੀਨ ਜਦੋਂ ਆੱਕਸੀਜਨ ਨਾਲ ਸੰਯੋਜਿਤ ਹੁੰਦੇ ਹਨ ਤਾਂ ਇਨ੍ਹਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਆੱਕਸੀ ਤੇਜਾਬਾਂ ਅਤੇ ਆੱਕਸੀ ਐਨਾਇਨਾਂ ਵਿੱਚ।
- 6. ਇੱਕ ਯੋਗਿਕ ਵਿੱਚ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਮਿਫ਼ਰ ਹੀ ਹੁੰਦਾ ਹੈ। ਬਹੁਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਵਿੱਚ ਇਸ ਦੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦਾ ਜੋੜ ਉਸ ਆਇਨ ਦੇ ਚਾਰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ (CO₃)²⁻ ਵਿੱਚ ਤਿੰਨਾਂ ਆੱਕਸੀਜਨਾਂ ਅਤੇ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦਾ ਜੋੜ –2 ਹੀ ਹੋਵੇਗਾ।

ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਦੀ ਪਾਲਨਾ ਨਾਲ ਅਣੂ ਜਾਂ ਆਇਨ ਵਿੱਚ ਮੌਜੂਦ ਇਛੱਤ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਅਸੀਂ ਗਿਆਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਧਾਤਵੀ ਤੱਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ ਅਤੇ ਅਧਾਤਵੀ ਤੱਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਧਨਾਤਮਕ ਜਾਂ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਅੰਤਰਕਾਲੀ ਧਾਤ ਤੱਤ ਅਨੇਕ ਧਨਾਤਮਕ

ਗਰੁੱਪ	1	2	13	14	15	16	17
ਤੱਤ	Na	Mg	Al	Si	Р	S	C1
ਯੋਗਿਕ	NaCl	$MgSO_4$	AlF_3	SiCl ₄	P_4O_{10}	SF ₆	HClO ₄
ਤੱਤ ਦੀ ਅਧਿਕਤਮ ਗਰੁੱਪ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ/ਅਵਸਥਾ	+1	+2	+3	+4	+5	+6	+7

ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦਰਸਾਉਂਦੇ ਹਨ। ਪਹਿਲੇ ਦੋ ਗੁਰੱਪਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਦੀ ਗਰੁਪ ਸੰਖਿਆ ਹੀ ਉਨ੍ਹਾਂ ਦੀ ਉੱਚਤਮ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਹੋਵੇਗੀ। ਅਤੇ ਹੋਰ ਗੱਰੁਪਾਂ ਵਿੱਚ ਇਹ ਗਰੁੱਪ ਸੰਖਿਆ ਵਿਚੋਂ 10 ਘਟਾ ਕੇ ਹੋਵੇਗੀ। ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਕਿਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦੀ ਉੱਚਤਮ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਪੀਰੀਅਡ ਵਿੱਚ ਆਮ ਕਰਕੇ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਤੀਜੇ ਪੀਰੀਅਡ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ 1 ਤੋਂ 7 ਤੱਕ ਵਧਦੀ ਹੈ, ਜਿਵੇਂ ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੁਆਰਾ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੇ ਸਥਾਨ ਤੇ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਟਰਮ ਦੀ ਵਰਤੋਂ ਵੀ ਕਈ ਵਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਇੰਜ CO₂ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +4 ਹੈ, ਜੋ ਇਸ ਦੀ ਆਕਸੀਕਰਣ ਸੰਖਿਆ ਵੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਆੱਕਸੀਜਨ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ – 2 ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ੳਸ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਰਸਾਉਂਦੀ ਹੈ। ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਐਲਫਰੈਡ ਸਟਾੱਕ ਦੇ ਅਨੁਸਾਰ ਯੋਗਿਕਾਂ ਵਿੱਚ ਧਾਤ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਨੂੰ ਰੋਮਨ ਸੰਖਿਆ ਅੰਕ ਵਿੱਚ ਬਰੈਕਟ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਟਾੱਕ ਸੰਕੇਤਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਆੱਰਸ ਕਲੋਰਾਈਡ ਅਤੇ ਆੱਰਿਕ ਕਲੋਰਾਈਡ ਨੂੰ Au(I)Cl ਅਤੇ Au(III)Cl₃ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਸਟੇਨਸ ਕਲੋਰਾਈਡ ਅਤੇ ਸਟੇਨਿਕ ਕਲੋਰਾਈਡ ਨੂੰ $Sn(II)Cl_2$ ਅਤੇ $Sn(IV)Cl_4$ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪਰਿਵਰਤਨ ਦੇ ਰਪ ਵਿੱਚ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਇਹ ਪਛਾਣਨ ਵਿੱਚ ਵੀ ਸਹਾਇਤਾ ਦਿੰਦਾ ਹੈ ਕਿ ਸਪੀਸ਼ੀਜ ਆਕਸੀਕ੍ਰਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ ਜਾ ਲਘੁਕ੍ਰਿਤ ਅਵਸਥਾ ਵਿੱਚ। ਇਸ ਤਰ੍ਹਾਂ Hg₂(II)Cl₂ ਦੀ ਲਘਕ੍ਰਿਤ ਅਵਸਥਾ Hg(I) Cl₂ ਹੈ।

ਉਦਾਹਰਣ 8.3

ਸਟਾੱਕ ਸੰਕੇਤਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰੋ— HAuCl₄, Tl₂O, FeO, Fe₂O₃, CuI, CuO, MnO ਅਤੇ MnO₂.

ਹੱਲ

ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਨਿਯਮਾਂ ਦੇ ਅਨੁਸਾਰ ਹਰ ਇੱਕ ਧਾਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਇਸ ਤਰ੍ਹਾਂ ਹੈ–

$HAuCl_4$	\rightarrow	Au ਦੀ + 3
Tl_2O	\rightarrow	Tl ਦੀ + 1
FeO	\rightarrow	Fe ਦੀ + 2
Fe_2O_3	\rightarrow	Fe ਦੀ + 3
CuI	\rightarrow	Cu ਦੀ + 1

CuO	\rightarrow	Cu ਦੀ + 2			
MnO	\rightarrow	Mn ਦੀ + 2			
MnO_2	\rightarrow	Mn ਦੀ + 4			
ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦਾ ਨਿਰੂਪਣ ਇਸ ਤਰ੍ਹਾਂ ਹੈ–					
HAu(III)Cl ₄ , Tl ₂ (I)O, Fe(II)O, Fe ₂ (III)O ₃ , Cu(I)I, Cu(II)O, Mn(II)O, Mn(IV)O ₂ .					

ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੇ ਵਿਚਾਰ ਦੀ ਵਰਤੋਂ ਆੱਕਸੀਕਰਣ, ਲਘੂਕਰਣ, ਆੱਕਸੀਕਾਰਕ, ਲਘੂਕਾਰਕ ਅਤੇ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੇ ਲਈ ਹੁੰਦਾ ਹੈ। ਸੰਖੇਪ ਵਿੱਚ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ–

ਆੱਕਸੀਕਰਣ : ਦਿੱਤੇ ਗਏ ਪਦਾਰਥ ਵਿੱਚ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਚ ਵਾਧਾ।

ਲਘੂਕਰਣ : ਦਿੱਤੇ ਗਏ ਪਦਾਰਥ ਵਿੱਚ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਕਮੀ।

ਆੱਕਸੀਕਾਰਕ : ਉਹ ਪ੍ਰਤੀ ਕਾਰਕ, ਜੋ ਦਿੱਤੇ ਗਏ ਪਦਾਰਥ ਵਿੱਚ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ ਕਰੇ। ਆੱਕਸੀਕਾਰਕ ਨੂੰ 'ਆੱਕਸੀਡੈਂਟ' ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਲਘੂਕਾਰਕ : ਉਹ ਪ੍ਰਤੀਕਾਰਕ, ਜੋ ਦਿੱਤੇ ਗਏ ਪਦਾਰਥ ਵਿੱਚ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਕਮੀਂ ਕਰੇ। ਇਨ੍ਹਾਂ ਨੂੰ ਰਿਡਕਟੈਂਟ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਉਦਾਹਰਣ 8.4

ਸਿੱਧ ਕਰੋ ਕਿ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਤੀਕਿਰਿਆ ਹੈ—

 $2Cu_2O(s) + Cu_2S(s) \rightarrow 6Cu(s) + SO_2(g)$

ਉਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ ਦੀ ਪਛਾਣ ਕਰੋ ਜੋ ਆੱਕਸੀਕ੍ਰਿਤ ਅਤੇ ਲਘੂਕ੍ਰਿਤ ਹੋ ਰਹੇ ਹਨ, ਜੋ ਆੱਕਸੀਡੈਂਟ ਅਤੇ ਰਿਡਕਟੈਂਟ ਦੀ ਤਰ੍ਹਾਂ ਕਾਰਜ ਕਰ ਰਹੇ ਹਨ।

ਹੱਲ

ਆਓ ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸਾਰੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਲਿਖੀਏ, ਜਿਸ ਦੇ ਸਿੱਟੇ ਵੱਜੋਂ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ–

 $\begin{array}{c} +1 \quad -2 \\ 2Cu_2O(s) + Cu_2S(s) \\ \rightarrow \\ 6Cu(s) + SO_2 \end{array}$

ਇਸ ਤੋਂ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢਦੇ ਹਾਂ ਕਿ ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਕਾੱਪਰ ਦਾ +1 ਅਵਸਥਾ ਤੋਂ ਸਿਫਰ ਆੱਕਸੀਕਰਣ ਅਵਸਤਾ ਤਕ ਲਘੂਕਰਣ ਅਤੇ ਸਲਫਰ ਦਾ -2 ਤੋਂ +4 ਤੱਕ ਆੱਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ। ਇਸ ਲਈ ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ। ਇਸ ਦੇ ਨਾਲ Cu₂S ਵਿੱਚ ਸਲਫਰ

Downloaded from https:// www.studiestoday.com

261

262

ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਵਾਧੇ ਵਿੱਚ Cu₂O ਸਹਾਇਕ ਹੈ। ਇੰਜ Cu(I) ਆੱਕਸੀਡੈਂਟ ਹੋਇਆ ਅਤੇ Cu₂S ਦਾ ਸਲਫਰ ਖੁਦ Cu₂S ਅਤੇ Cu₂O ਵਿੱਚ ਕਾੱਪਰ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਕਮੀਂ ਵਿੱਚ ਸਹਾਇਕ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ Cu₂S ਦਾ ਸਲਫਰ ਰਿਡਕਟੈਂਟ ਹੋਇਆ।

8.3.1 ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀਆਂ ਕਿਸਮਾਂ

1. ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ

ਜੋੜਾਤਮਕ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ–

$$A + B \rightarrow C$$

ਅਜਿਹੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਣ ਦੇ ਲਈ A ਜਾਂ B ਵਿਚੋਂ ਇੱਕ ਨੂੰ ਜਾਂ ਦੋਵਾਂ ਨੂੰ ਤੱਤ ਰੂਪ ਵਿੱਚ ਹੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਸਾਰੀਆਂ ਬਲਣ ਕਿਰਿਆਵਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਤੱਤ ਰੂਪ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ ਅਤੇ ਅਜਿਹੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਡਾਈਆੱਕਸੀਜਨ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਤੱਤਾ ਦੀ ਵਰਤੋਂ ਹੋ ਰਹੀ ਹੋਵੇ 'ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ' ਅਖਵਾਉਂਦੀਆਂ ਹਨ। ਇਸ ਵਰਗ ਦੀਆਂ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਉਦਾਹਰਣਾ ਹਨ—

2. ਅਪਘਟਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ

ਅਪਘਟਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਸੰਯੋਜਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਉਲਟ ਹੁੰਦੀਆਂ ਹਨ। ਅਪਘਟਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਯੋਗਿਕ ਦੋ ਜਾਂ ਵਧੇਰੇ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਇੱਕ ਤੱਤ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਕਿਸਮ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ—

+1 -2		0	0	
2H ₂ O (l)	$\xrightarrow{\Delta}$	$2H_2$ (g) +	O ₂ (g)	(8.26)

 $\begin{array}{ccc} & +1 & -1 & 0 & 0 \\ & 2\text{NaH} \text{ (s)} & \stackrel{\Delta}{\longrightarrow} & 2\text{Na} \text{ (s)} + \text{H}_2(\text{g}) \end{array}$ (8.27)

 $\begin{array}{cccc} {}^{+1} {}^{+5} {}^{-2} & {}^{+1} {}^{-1} & 0 \\ 2 \mathrm{KClO}_3 \left(\mathrm{s} \right) & \stackrel{\Delta}{\longrightarrow} & 2 \mathrm{KCl} \left(\mathrm{s} \right) + 3 \mathrm{O}_2 (\mathrm{g}) \end{array}$

ਧਿਆਨ ਨਾਲ ਵੇਖਣ ਤੇ ਸਾਨੂੰ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਮੀਥੇਨ ਦੀ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਅਤੇ ਪ੍ਰਤੀਕਿਰਿਆ (8.28) ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਕਲੋਰੇਟ ਦੇ ਪੋਟਾਸ਼ਿਅਮ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ। ਇੱਥੇ ਇਹ ਗੱਲ ਵੀ ਧਿਆਨ ਦੇਣ ਯੋਗ ਹੈ ਕਿ ਸਾਰੀਆਂ ਅਪਘਟਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਵੇਂ—

 $\begin{array}{cccc} +2 & +4 & -2 & +2 & -2 & +4 & -2 \\ CaCO_3 (s) & \xrightarrow{\Delta} & CaO(s) & + & CO_2(g) \end{array}$

3. ਵਿਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ

ਵਿਸਥਾਪਨ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਯੋਗਿਕ ਦੇ ਆਇਨ (ਜਾਂ ਪਰਮਾਣੂ) ਦੂਜੇ ਤੱਤ ਦੇ ਆਇਨ (ਜਾਂ ਪਰਮਾਣੂ) ਦੁਆਰਾ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

 $X + YZ \rightarrow XZ + Y$

ਵਿਸਥਾਪਨ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੋ ਕਿਸਮਾਂ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ— ਧਾਤ ਵਿਸਥਾਪਨ ਅਤੇ ਅਧਾਤ ਵਿਸਥਾਪਨ।

(ੳ) ਧਾਤ ਵਿਸਥਾਪਨ: ਯੋਗਿਕ ਵਿੱਚ ਇੱਕ ਧਾਤ ਦੂਜੀ ਧਾਤ ਨੂੰ ਮੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੀ ਹੈ।ਭਾਗ 8.2.1 ਦੇ ਅੰਤਰਗਤ ਅਸੀਂ ਇਸ ਕਿਸਮ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦਾ ਅਧਿਐਨ ਕਰ ਚੁਕੇ ਹਾਂ। ਧਾਤ ਵਿਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਵਰਤੋਂ ਧਾਤਕਰਮ ਪ੍ਰਕਰਮਾਂ ਵਿੱਚ, ਕੱਚੀ ਧਾਤ ਵਿੱਚ ਯੋਗਿਕਾਂ ਤੋਂ ਸ਼ੁੱਧ ਧਾਤ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ—

+4 -1 0 0 +2 -1 TiCl₄ (l) + 2Mg (s) $\xrightarrow{\Delta}$ Ti (s) + 2 MgCl₂ (s) (8.31) +3 -2 0 +3 -2 0 Cr₂O₃ (s) + 2 Al (s) $\xrightarrow{\Delta}$ Al₂O₃ (s) + 2Cr(s)

ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਲਘੂਕਾਰਕ ਧਾਤ ਲਘੂਕ੍ਰਿਤ ਧਾਤ ਤੋਂ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਹੈ।ਜਿਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਸ਼ਕਾਸਨ ਸਮਰੱਥਾ ਲਘੂਕ੍ਰਿਤ ਧਾਤ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੈ।

(ਅ) ਅਧਾਤ ਵਿਸਥਾਪਨ : ਅਧਾਤ ਵਿਸਥਾਪਨ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਵਿਸਥਾਪਨ, ਆੱਕਸੀਜਨ ਵਿਸਥਾਪਨ ਆਦਿ ਦੁਰਲਭ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਸ਼ਾਮਲ ਹਨ।

ਸਾਰੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਕੁਝ ਖਾਰ ਮਿੱਟੀ ਧਾਤਾਂ (Ca, Sr, ਅਤੇ Ba) ਪ੍ਰਬਲ ਰਿਡਕਟੈਂਟ ਹਨ, ਜੋ ਠੰਡੇ ਪਾਣੀ ਵਿਚੋਂ ਹਾਈਡੋ਼ਜਨ ਦਾ ਵਿਸਥਾਪਨ ਕਰ ਦਿੰਦੀਆਂ ਹਨ।

ਮੈਗਨੀਸ਼ਿਅਮ, ਆਇਰਨ ਵਰਗੀਆਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਭਾਫ ਵਿੱਚੋਂ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦਿੰਦੀਆਂ ਹਨ।

ਕਈ ਧਾਤਾਂ ਜੋ ਠੰਡੇ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਤੇਜਾਬਾਂ ਵਿੱਚੋਂ ਹਾਈਡ੍ਰੋਜਨ ਨੂੰ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੀਆਂ ਹਨ। ਤੇਜਾਬਾਂ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਉਨ੍ਹਾਂ ਧਾਤਾਂ ਦੁਆਰਾ ਵੀ ਉਪਜਦੀ ਹੈ ਜੋ ਭਾਫ਼ ਨਾਲ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ। ਕੈਡਮਿਅਮ ਅਤੇ ਟਿਨ ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਧਾਤਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਤੇਜਾਬਾਂ ਵਿਚੋਂ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਵਿਸਥਾਪਨ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ–

(8.37) ਤੋਂ (8.39) ਤੱਕ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਲਾਭਦਾਇਕ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦੇ ਨਿਕਾਸ ਦੀ ਗਤੀ ਧਾਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੀ ਸੂਚਕ ਹੈ, ਜੋ Fe ਵਰਗੀ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਵਿੱਚ ਨਿਊਨਤਮ ਅਤੇ Mg ਵਰਗੀ ਅਤਿ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਵਿੱਚ ਉੱਚਤਮ ਹੁੰਦੀ ਹੈ। ਸਿਲਵਰ (Ag), ਗੋਲਡ (Au) ਆਦਿ ਧਾਤਾਂ, ਜੋ ਪ੍ਕਿਰਤੀ ਵਿੱਚ ਪਰਾਕ੍ਰਿਤ (native) ਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ, ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਨਾਲ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ।

ਭਾਗ 8.2.1 ਵਿੱਚ ਅਸੀਂ ਇਹ ਚਰਚਾ ਕਰ ਚੁਕੇ ਹਾਂ ਕਿ ਜਿੰਕ (Zn), ਕਾੱਪਰ (Cu) ਅਤੇ ਸਿਲਵਰ ਧਾਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਦੇਣ ਦੀ ਪ੍ਵਿਰਤੀ ਉਨ੍ਹਾਂ ਦਾ ਲਘੂਕਾਰਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਕ੍ਰਮ Zn> Cu>Ag ਦਰਸਾਉਂਦਾ ਹੈ। ਧਾਤਾਂ ਵਾਂਗ ਹੈਲੋਜਨਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਸੀਰੀਜ਼ ਵੀ ਹੁੰਦੀ ਹੈ। ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ 17ਵੇਂ ਗਰੁੱਪ ਵਿੱਚ ਫਲੋਰੀਨ ਤੋਂ ਆਇਓਡੀਨ ਤੱਕ ਹੇਠਾਂ ਜਾਣ ਤੇ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਅੱਕਸੀਕਾਰਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਇਸਦਾ ਅਰਥ ਇਹ ਹੋਇਆ ਕਿ ਫਲੋਰੀਨ ਐਨੀਂ ਕਿਰਿਆਸ਼ੀਲ ਹੈ ਕਿ ਇਹ ਘੋਲ ਵਿਚੋਂ ਕਲੋਰਾਈਡ, ਬ੍ਰੋਮਾਈਡ ਜਾਂ ਆਇਓਡਾਈਡ ਆਇਨ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੀ ਹੈ।ਅਸਲ ਵਿੱਚ ਫਲੋਰੀਨ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਐਨੀਂ ਜਿਆਦਾ ਹੈ ਕਿ ਇਹ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਉਸ ਵਿੱਚੋਂ ਆੱਕਸੀਜਨ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੀ ਹੈ।

^{+1 -2} 0 ^{+1 -1} 0 2H₂O (l) + 2F₂ (g) \rightarrow 4HF(aq) + O₂(g) (8.40)

ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਕਲੋਗੇਨ, ਬ੍ਰੋਮੀਨ ਅਤੇ ਆਇਓਡੀਨ ਦੀਆਂ ਫਲੋਗੇਨ ਦੁਆਰਾ ਵਿਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਆਮ ਕਰਕੇ ਜਲੀ ਘੋਲ ਵਿੱਚ ਘਟਿਤ ਨਹੀਂ ਕਰਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਬ੍ਰੋਮਾਈਡ ਅਤੇ ਆਇਓਡਾਈਡ ਆਇਨਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਜਲੀ ਘੋਲਾਂ ਵਿੱਚੋਂ ਕਲੋਗੇਨ ਇਸ ਤਰ੍ਹਾਂ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੀ ਹੈ–

ਬ੍ਰੋਮੀਨ ਅਤੇ ਆਇਓਡੀਨ ਦੇ ਰੰਗਦਾਰ ਹੋਣ ਅਤੇ CCl₄ ਵਿੱਚ ਘੁਲਣ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਨੂੰ ਘੋਲ ਦੇ ਰੰਗ ਦੁਆਰਾ ਅਸਾਨੀ ਨਾਲ ਪਛਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਆਇਨਿਕ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ—

0 $^{-1}$ $^{-1}$ $Cl_2(g) + 2Br^-(aq) \rightarrow 2Cl^-(aq) + Br_2(l)$ (8.41a) $^{-1}$ $^{-1}$ 0 $Cl_2(g) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(s)$ (8.42b) ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ Br⁻ ਅਤੇ I⁻ ਦੀ ਪ੍ਰੇਖਣ ਵਿਧੀ, ਜਿਸਦਾ ਪ੍ਰਚਲਤ ਨਾਮ 'ਪਰਤ ਪ੍ਰੇਖਣ' (Layer Test) ਹੈ, ਦਾ ਅਧਾਰ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ (8.41) ਅਤੇ (8.42) ਹਨ। ਇਹ ਦੱਸਣਾ ਅਣਢੁਕਵਾਂ ਨਹੀਂ ਹੋਵੇਗਾ ਕਿ ਇਸੇ ਤਰ੍ਹਾਂ ਘੋਲ ਵਿੱਚ ਬ੍ਰੋਮੀਨ ਆਇਓਡਾਈਡ ਆਇਨ ਦਾ ਵਿਸਥਾਪਨ ਕਰ ਸਕਦੀ ਹੈ। -1 $^{-1}$ Br_2 (l) + 2I⁻ (aq) \rightarrow 2Br⁻ (aq) + I₂ (s) (8.43)ਹੈਲੋਜਨ ਵਿਸਥਾਪਨ ਦੀਆਂ ਪਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਉਦਯੋਗਾਂ ਵਿੱਚ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ। ਹੇਲਾਈਡ ਤੋਂ ਹੈਲੋਜਨ ਦੀ ਪ੍ਰਾਪਤੀ ਦੇ ਲਈ ਆੱਕਸੀਕਰਣ ਵਿਧੀ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਨ– $2X^{-} \rightarrow X_2 + 2e^{-}$ (8.44)ਇਥੇ X ਹੈਲੋਜਨ ਤੱਤ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਭਾਵੇਂ ਰਸਾਇਣਿਕ ਸਾਧਨਾਂ ਦੁਆਰਾ Cl⁻, Br⁻ ਅਤੇ I⁻ ਨੂੰ

Downloaded from https:// www.studiestoday.com

263

264

ਆੱਕਸੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਬਲ ਪ੍ਰਤੀਕਾਰਕ ਫਲੋਰੀਨ ਉਪਲਬਧ ਹੈ, ਪਰੰਤੂ F⁻ ਨੂੰ F₂ ਵਿੱਚ ਬਦਲਣ ਦੇ ਲਈ ਕੋਈ ਵੀ ਰਸਾਇਣਿਕ ਸਾਧਨ ਸੰਭਵ ਨਹੀਂ ਹੈ। F⁻ ਤੋਂ F₂ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਬਿਜਲਈ ਅਪਘਟਨ ਦੁਆਰਾ ਆਕਸੀਕਰਣ ਹੀ ਇੱਕ ਸਾਧਨ ਹੈ, ਜਿਸ ਦਾ ਅਧਿਐਨ ਤੁਸੀਂ ਅੱਗੇ ਚੱਲ ਕੇ ਕਰੋਗੇ।

4. ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ

ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦੀਆਂ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਹਨ। ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਤੱਤ ਦੀ ਇੱਕ ਆੱਕਸੀਕਰਣ ਅਵਸੱਥਾ ਇਕੱਠੀ ਆਕਸੀਕ੍ਰਿਤ ਅਤੇ ਲਘੂਕ੍ਰਿਤ ਹੁੰਦੀ ਹੈ। ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਕਿਰਿਆਸ਼ੀਲ ਪਦਾਰਥ ਦਾ ਇੱਕ ਤੱਤ ਘੱਟ ਤੋਂ ਘੱਟ ਤਿੰਨ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦਾ ਹੈ। ਕਿਰਿਆਸ਼ੀਲ ਪਦਾਰਥ ਵਿੱਚ ਇਹ ਤੱਤ ਮੀਡੀਅਮ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਵਿੱਚ ਉਸ ਤੱਤ ਦੀ ਉੱਚੀ ਅਤੇ ਹੇਠਲੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਪਰਆਕਸਾਈਡ ਦਾ ਅਪਘਟਨ ਇੱਕ ਢੁਕਵੀਂ ਉਦਾਹਰਣ ਹੈ ਜਿੱਥੇ ਆੱਕਸੀਜਨ ਦਾ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਹੁੰਦਾ ਹੈ।

+1 -1 +1 -2 0

 $2H_2O_2 (aq) \rightarrow 2H_2O(l) + O_2(g)$ (8.45) ਇੱਥੇ ਪਰਆੱਕਸਾਈਡ ਵਾਲੀ ਆੱਕਸੀਜਨ, ਜੋ −1 ਅਵਸਥਾ ਵਿੱਚ ਹੈ, O_2 ਵਿੱਚ ਸਿਫਰ ਅਵਸਥਾ ਵਿੱਚ ਅਤੇ H_2O ਵਿੱਚ –2 ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਫਾੱਸਫੋਰਸ, ਸਲਫਰ ਅਤੇ ਕਲੋਰੀਨ ਦਾ ਖਾਰੀ ਮਾਧਿਅਮ ਵਿੱਚ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਹੁੰਦਾ ਹੈ– -3 +1 $P_4(s) + 3OH^{-}(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2^{-}$ (aq) (8.46)+2 $S_8(s) + 12 \text{ OH}^-(aq) \rightarrow 4S^{2-}(aq) + 2S_2O_3^{2-}(aq)$ $+ 6H_2O(l)$ (8.47) $^{-1}$ 0 +1 $Cl_2(g) + 2 OH^-(aq) \rightarrow ClO^-(aq) + Cl^-(aq) +$ $H_{2}O(l)$ (8.48)

ਪ੍ਰਤੀਕਿਰਿਆ (8.48) ਘਰੇਲੂ ਰੰਗਕਾਟ ਦੀ ਉਪਜ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਬਣਨ ਵਾਲਾ ਹਾਈਪੋਕਲੋਰਾਈਟ ਆਇਨ (ClO⁻) ਰੰਗੀਨ ਧੱਬਿਆਂ ਨੂੰ ਆਕਸੀਕ੍ਰਿਤ ਕਰਕੇ ਰੰਗਹੀਣ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ। ਇਹ ਦੱਸਣਾ ਦਿਲਚਸਪ ਹੋਵੇਗਾ ਕਿ ਬ੍ਰੋਮੀਨ ਅਤੇ ਆਇਓਡੀਨ ਦੁਆਰਾ ਉਹੀ ਪ੍ਰਕਿਰਤੀ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ ਜੋ ਕਲੋਰੀਨ ਦੁਆਰਾ ਪ੍ਰਤੀਕਿਰਿਆ (8.48) ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ, ਲੇਕਿਨ ਖਾਰ ਨਾਲ ਫਲੋਰੀਨ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਖਰੇ ਢੰਗ ਨਾਲ, ਅਰਥਾਤ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦੀ ਹੈ–

 $2 F_2(g) + 2OH^{-}(aq) \rightarrow 2 F^{-}(aq) + OF_2(g) + H_2O(l)$ (8.49)

ਇਹ ਧਿਆਨ ਦੇਣ ਵਾਲੀ ਗੱਲ ਹੈ ਕਿ ਪ੍ਰਤੀਕਿਰਿਆ (8.49) ਵਿੱਚ ਬਿਨਾਂ ਸ਼ਕ ਫਲੋਰੀਨ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਕੁਝ ਆੱਕਸੀਜਨ ਵੀ ਦਿੰਦੀ ਹੈ।ਫਲੋਰੀਨ ਦੁਆਰਾ ਵਿਖਾਇਆ ਗਿਆ ਭਿੰਨ ਵਿਹਾਰ ਹੈਰਾਨੀ ਵਾਲਾ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਸਾਨੂੰ ਪਤਾ ਹੈ ਫਲੋਰੀਨ ਸਭ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਹੋਣ ਦੇ ਕਾਰਣ ਧਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰ ਸਕਦੀ। ਇਸਦਾ ਨਤੀਜਾ ਇਹ ਹੋਇਆ ਕਿ ਹੈਲੋਜਨਾਂ ਵਿਚੋਂ ਫਲੋਰੀਨ ਅਸਮਾਨ ਅਨੁਪਾਤ ਪ੍ਵਿਰਤੀ ਨਹੀਂ ਦਰਸਾ ਸਕਦੀ।

ਉਦਾਹਰਣ 8.5

ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਕਿਹੜਾ ਸਪੀਸ਼ੀਜ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਪ੍ਵਿਰਤੀ ਨਹੀਂ ਦਰਸਾਉਂਦਾ ਅਤੇ ਕਿਉਂ ?

 ClO^-, ClO_2^-, ClO_3^- ਅਤੇ ClO_4^-

ਹੱਲ

ਕਲੋਰੀਨ ਦੇ ਉਪਰੋਕਤ ਆੱਕਸੀਜਨ ਆਇਨਾਂ ਵਿੱਚ ClO₄ ਅਸਮਾਨ ਅਨੁਪਾਤੀ ਨਹੀਂ ਦਰਸਾਉਂਦਾ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਆੱਕਸੋਐਨਾਇਨਾਂ ਵਿੱਚ ਕਲੋਰੀਕ ਆਪਣੀ ਉੱਚਤਰ ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਬਾਕੀ ਦੇ ਤਿੰਨੇ ਆੱਕਸੋਐਨਾਇਨਾਂ ਦੀਆਂ ਅਸਮਾਨ ਅਨੁਪਾਤੀ ਕਿਰਿਆਵਾਂ ਇਸ ਤਰ੍ਹਾਂ ਹਨ—

ਉਦਾਹਰਣ 8.6

ਹੇਠ ਲਿਖੀਆਂ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਵਰਗਿਤ ਕਰੋ–

- (Θ) N₂ (g) + O₂ (g) \rightarrow 2 NO (g)
- $\begin{array}{ll} (\mbox{\mathcal{M}}) & 2Pb(NO_3)_2(s) \ \to 2PbO(s) + 2 \ NO_2 \ (g) \\ & + \frac{1}{2} \ O_2 \ (g) \end{array}$
- $(\boldsymbol{\vartheta}) \quad \text{NaH(s)} + \text{H}_2\text{O(l)} \rightarrow \text{NaOH(aq)} + \text{H}_2 \text{ (g)}$
- (π) 2NO₂(g) + 2OH⁻(aq) \rightarrow NO₂(aq) + NO₃⁻ (aq)+H₂O(l)

ਹੱਲ

ਪ੍ਰਤੀਕਿਰਿਆ (ੳ) ਦਾ ਯੋਗਿਕ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਨ ਦੁਆਰਾ ਬਣਦਾ ਹੈ। ਇਹ ਸੰਯੋਜਨ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ (ਅ) ਵਿੱਚ ਲੈੱਡਨਾਈਟ੍ਰੇਟ ਤਿੰਨ ਭਾਗਾਂ ਵਿੱਚ ਅਪਘਟਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਕਿਰਿਆ ਨੂੰ ਅਪਘਟਨ ਕਿਰਿਆ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰਦੇ ਹਨ। ਪ੍ਰਤੀਕਿਰਿਆ (ੲ) ਵਿੱਚ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਹਾਈਡਰ੍ਰੋਜਨ ਦਾ ਵਿਸਥਾਪਨ ਹਾਈਡ੍ਰਾਈਡ ਆਇਨ ਦੁਆਰਾ ਹੋਣ ਦੇ ਫਲ ਸਰੂਪ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਬਣਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਵਿਸਥਾਪਨ ਪ੍ਤੀਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ। ਪ੍ਰਤੀਕਿਰਿਆ (ਸ) ਵਿੱਚ NO₂ (+4 ਅਵਸਥਾ) ਦਾ NO₂ (+3 ਅਵਸਥਾ) ਅਤੇ NO₃ (+5 ਅਵਸਥਾ) ਵਿੱਚ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਅਸਮਾਨ ਅਨੁਪਾਤ ਲਘੁਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ।

ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਰੋਧਾਭਾਸ

ਕਦੇ-ਕਦੇ ਸਾਨੂੰ ਕੁਝ ਅਜਿਹੋ ਯੋਗਿਕ ਵੀ ਮਿਲਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਤੱਤ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਭਿੰਨਾਤਮਕ ਹੁੰਦੀ ਹੈ।ਉਦਾਹਰਨ ਵਜੋਂ—

 $\mathrm{C_3O_2}$ [ਜਿੱਥੇ ਕਾਰਬਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ (4/3) ਹੈ]

Br₃O₈ [ਜਿੱਥੇ ਬ੍ਰੋਮੀਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ (16/3) ਹੈ]

ਅਤੇ $\mathrm{Na_2S_4O_6}$ (ਜਿੱਤੇ ਸਲਫਰ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ 5/2) ਹੈ]

ਸਾਨੂੰ ਇਹ ਗਿਆਤ ਹੈ ਕਿ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਸਵੀਕਾਰ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਸਹਿਭਾਜਨ/ਸਥਾਨ ਅੰਤਰਣ ਅੰਸ਼ਿਕ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਅਸਲ ਵਿੱਚ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰੇਖਿਤ ਕੀਤੇ ਜਾ ਰਹੇ ਤੱਤ ਦੀਆਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਦੀ ਔਸਤ ਹੈ ਅਤੇ ਰਚਨਾ ਪੈਰੀਮੀਟਰਾਂ ਤੋਂ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਉਹ ਤੱਤ, ਜਿਸ ਦੀ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸੱਥਾ ਹੁੰਦੀ ਹੈ, ਵੱਖ-ਵੱਖ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਮੌਜੂਦ ਹੈ। C₃O₂, Br₃O₈ ਅਤੇ S₄O₆²⁻ ਸਪੀਸ਼ੀਜ ਦੀਆਂ ਰਚਨਾਵਾਂ ਵਿਚ ਹੇਠ ਲਿਖੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਦਿੱਸਦੀਆਂ ਹਨ—

Br₃O₈ (ਟ੍ਰਾਈਬ੍ਰੋਮੋਆੱਕਟੋਕਸਾਈਡ) ਦੀ ਰਚਨਾ ਹੈ

S₄O₆²⁻ (ਟ੍ਰੈਟਰਾਥਾਇਓਨੇਟ ਆਇਨ) ਦੀ ਰਚਨਾ ਹੈ

ਹਰ ਇੱਕ ਸਪੀਸ਼ੀਜ ਦੇ ਸਟਾਰ ਵਾਲੇ ਪਰਮਾਣੂ ਉਸੇ ਤੱਤ ਦੇ ਹੋਰ ਪਰਮਾਣੂਆਂ ਨਾਲੋਂ ਵੱਖ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿਖਾਉਂਦੇ ਹਨ। ਇਸ ਤੋਂ ਇੰਜ ਲੱਗਦਾ ਹੈ ਕਿ C₃O₂ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਅਤੇ ਤੀਜਾ ਸਿਫਰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਹੈ ਅਤੇ ਇਸ ਦੀ ਔਸਤ ਸੰਖਿਆ 4/3 ਹੈ। ਅਸਲ ਵਿੱਚ ਸਿਰਿਆਂ ਵਾਲੇ ਦੋਵਾਂ ਕਾਰਬਨਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ +2 ਅਤੇ ਵਿੱਚ ਵਾਲੇ ਕਾਰਬਨ ਦੀ ਸਿਫਰ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ Br₃O₈ ਵਿੱਚ ਸਿਰਿਆਂ ਵਾਲੇ ਦੋਵਾਂ ਬ੍ਰੋਮੀਨ ਪਰਮਾਣੂਆਂ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +6 ਹੈ ਅਤੇ ਵਿੱਚ ਵਾਲੇ ਬ੍ਰੋਮੀਨ ਪਰਮਾਣੂ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +4 ਹੈ। ਇੱਕ ਵਾਰ ਫਿਰ ਔਸਤ ਸੰਖਿਆ 16/3 ਵਾਸਤਵਿਕਤਾ ਤੋਂ ਦੂਰ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ S₄O₆^{2–} ਵਿੱਚ ਸਿਰਿਆਂ ਵਾਲੇ ਦੋਵੇਂ ਸਲਫਰ +5 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਅਤੇ ਵਿੱਚ ਵਾਲੇ ਦੋਵੇਂ ਸਲਫਰ ਪਰਮਾਣੂ ਸਿਫਰ ਦਰਸਾਉਂਦੇ ਹਨ। ਚੌਹਾਂ ਸਲਫਰ ਪਰਮਾਣੂਆਂ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਾ ਔਸਤ 10/4 ਜਾਂ 5/2 ਹੋਵੇਗਾ, ਜਦ ਕਿ ਅਸਲ ਵਿੱਚ ਹਰ ਇੱਕ ਸਲਫਰ ਪਰਮਾਣੂ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ + 5,0,0 ਅਤੇ +5 ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਨੂੰ ਸਾਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਵਾਸਤਵਿਕ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਉਸਦੀ ਰਚਨਾ ਤੋਂ ਹੀ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ।ਇਸ ਦੇ ਇਲਾਵਾ ਜਦ ਵੀ ਅਸੀਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਤੱਤ ਦੀ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵੇਖੀਏ, ਤਾਂ ਸਾਨੂੰ ਸਮਝ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਹ ਸਿਰਫ ਔਸਤ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਹੈ।ਅਸਲ ਵਿੱਚ ਇਸ ਸਪੀਸ਼ੀਜ ਵਿਸ਼ੇਸ਼ ਵਿੱਚ ਇੱਕ ਤੋਂ ਵੱਧ ਪੂਰਣ ਅੰਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਹਨ (ਜੋ ਕੇਵਲ ਰਚਨਾ ਦੁਆਰਾ ਵਿਖਾਈਆਂ ਜਾਂ ਸਕਦੀਆਂ ਹਨ।) Fe₃O₄, Mn₃O₄, Pb₃O₄ ਕੁਝ ਹੋਰ ਅਜਿਹੇ ਯੋਗਿਕ ਹਨ, ਜੋ ਮਿਸ਼ਰਤ ਆੱਕਸਾਈਡ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਧਾਤ ਦੀ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। O₂⁺ ਅਤੇ O₂⁻ ਵਿੱਚ ਵੀ ਭਿੰਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਕ੍ਰਮਵਾਰ +½ ਅਤੇ –½ ਹੈ।

Downloaded from https:// www.studiestoday.com

265

ਉਦਾਹਰਣ 8.7

ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵੱਖਰੇ ਢੰਗ ਨਾਲ ਕਿਉਂ ਹੁੰਦੀਆਂ ਹਨ ?

 $Pb_3O_4 + 8HCl \rightarrow 3PbCl_2 + Cl_2 + 4H_2O$ ਅਤੇ $Pb_3O_4 + 4HNO_3 \rightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O$

ਹੱਲ

ਅਸਲ ਵਿੱਚ Pb₃O₄, 2 ਮੋਲ PbO ਅਤੇ 1 ਮੋਲ PbO₂ ਦਾ ਸਟੋਕਿਓਮੀਟਰਿਕ ਮਿਸ਼ਰਣ ਹੈ। PbO₂ ਵਿੱਚ ਲੈੱਡ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +4 ਹੈ ਜਦਕਿ PbO ਵਿੱਚ ਲੈੱਡ ਦੀ ਸਥਾਈ ਆਕਸੀਕਰਣ ਅਵਸਥਾ +2 ਹੈ। PbO₂ ਇਸ ਤਰ੍ਹਾਂ ਆੱਕਸੀਡੈਂਟ (ਆੱਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ) ਵਾਂਗ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ HCl ਦੇ ਕਲੋਰਾਈਡ ਆਇਨ ਨੂੰ ਕਲੋਰੀਨ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਕਰ ਸਕਦਾ ਹੈ। ਸਾਨੂੰ ਇਹ ਵੀ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ PbO ਇੱਕ ਖਾਰੀ ਆੱਕਸਾਈਡ ਹੈ। ਇਸ ਲਈ ਪ੍ਰਤੀਕਿਰਿਆ

$$Pb_{3}O_{4} + 8HCl \rightarrow 3PbCl_{2} + Cl_{2} + 4H_{2}O$$

ਨੂੰ ਦੋ ਹਿੱਸਿਆਂ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ। ਜਿਵੇਂ—

 $2PbO + 4HCl \rightarrow 2PbCl_2 + 2H_2O$

(ਤੇਜਾਬ ਖਾਰ ਪ੍ਰਤੀਕਿਰਿਆ)

+4 -1 +2 0 PbO₂ + 4HCl → PbCl₂ + Cl₂ +2H₂O (ਲਘੁਆੱਕਸੀਕਰਣ ਕਿਰਿਆ)

ਕਿਉਂਕਿ HNO₃ ਆਪ ਇੱਕ ਆੱਕਸੀਕਾਰਕ ਹੈ, ਇੰਜ PbO₂ ਅਤੇ HNO₃ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਕਿਰਿਆ ਤੇਜਾਬ ਖਾਰ ਪਤੀ ਕਿਰਿਆ ਹੈ—

 $2PbO + 4HNO_3 \rightarrow 2Pb(NO_3)_2 + 2H_2O$ ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ PbO_2 ਦੀ HNO_3 ਦੇ ਪ੍ਰਤੀ ਨਿਸ਼ਕਿਰਿਅਤਾ HCl ਨਾਲ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਤੋਂ ਵੱਖ ਹੰਦੀ ਹੈ।

8.3.2. ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦਾ ਸੰਤੁਲਨ

ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ ਦੋ ਵਿਧੀਆਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਵਿਧੀ ਲਘੂਕਾਰਕ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਪਰਿਵਰਤਨ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਦੂਜੀ ਵਿਧੀ ਵਿੱਚ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਦੋ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ– ਇੱਕ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਅਤੇ ਦੂਜੇ ਵਿੱਚ ਲਘੂਕਰਣ। ਦੋਵਾਂ ਵਿਧੀਆਂ ਨੂੰ ਵਰਤਿਆਂ ਜਾਂਦਾ ਹੈ ਅਤੇ ਵਿਅਕਤੀ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ। (ੳ) **ਅੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਧੀ :** ਹੋਰ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਾਂਗ ਆੱਕਸੀਕਰਣ ਲਘੂਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਅਤੇ ਬਣਨ ਵਾਲੀਆਂ ਉਪਜਾਂ ਦੇ ਸੂਤਰ ਪਤਾ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਸਟੈੱਪਾਂ ਦੁਆਰਾ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਧੀ ਨੂੰ ਅਸੀਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਾਂ—

ਸਟੈੱਪ 1 : ਸਾਰੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਸਹੀ ਸੂਤਰ ਲਿਖੋ। ਸਟੈੱਪ 2 : ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਨੂੰ ਲਿਖ ਕੇ ਉਨ੍ਹਾਂ ਪਰਮਾਣੂਆਂ ਨੂੰ ਪਛਾਣੋਂ ਜਿਨ੍ਹਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ।

ਸਟੈੱਪ 3: ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਅਤੇ ਪੂਰੇ ਅਣੂ/ਆਇਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ ਜਾਂ ਘਾਟੇ ਦੀ ਗਣਨਾ ਕਰੋ। ਜੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਨਾ ਹੋਵੇ ਤਾਂ ਢੁਕਵੀਂ ਸੰਖਿਆ ਨਾਲ ਗੁਣਾ ਕਰੋ ਤਾਂ ਕਿ ਇਹ ਸਮਾਨ ਹੋ ਜਾਣ (ਜੇ ਤੁਹਾਨੂੰ ਲੱਗੇ ਕਿ ਦੋ ਪਦਾਰਥ ਲਘੂਕ੍ਰਿਤ ਹੋ ਰਹੇ ਹਨ ਅਤੇ ਦੂਜਾ ਕੋਈ ਆੱਕਸੀਕ੍ਰਿਤ ਨਹੀਂ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਵਿਪਰੀਤ ਹੋ ਰਿਹਾ ਹੈ ਤਾਂ ਸਮਝ ਲਓ ਕੁਝ ਨਾ ਕੁਝ ਗੜਬੜ ਹੈ। ਜਾਂ ਤਾਂ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਸੂਤਰ ਵਿੱਚ ਗਲਤੀ ਹੈ ਜਾਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਠੀਕ ਤਰ੍ਹਾਂ ਨਾਲ ਨਿਰਧਾਰਿਤ ਨਹੀਂ ਕੀਤੀਆਂ ਗਈਆਂ।

ਸਟੈੱਪ 4 : ਇਹ ਵੀ ਨਿਸ਼ਚਿਤ ਕਰ ਲਓ ਕਿ ਜੇ ਪ੍ਰਤੀਕਿਰਿਆ ਜਲੀ ਮਾਧਿਅਮ ਵਿੱਚ ਹੋ ਰਹੀ ਹੈ ਤਾਂ, H⁺ ਜਾਂ OH⁻ ਆਇਨ ਉਚਿਤ ਥਾਂ ਤੇ ਜੋੜੋ ਤਾਂ ਕਿ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦਾ ਕੁੱਲ ਚਾਰਜ ਬਰਾਬਰ ਹੋਵੇ। ਜੇ ਪ੍ਰਤੀਕਿਰਿਆ ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ ਹੋ ਰਹੀ ਹੈ, ਤਾਂ H⁺ ਦੀ ਵਰਤੋਂ ਕਰੋ। ਜੇ ਖਾਰੀ ਮਾਧਿਅਮ ਹੋਵੇ ਤਾਂ, OH⁻ ਆਇਨ ਦੀ ਵਰਤੋਂ ਕਰੋ।

ਸਟੈੱਪ 5: ਪ੍ਰਤੀਕਾਰਕਾਂ ਜਾਂ ਉਪਜਾਂ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂ ਜੋੜ ਕੇ ਦੋਵਾਂ ਪਾਸੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਕਰ ਲਓ। ਹੁਣ ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਵੀ ਪਰਖ ਕਰ ਲਓ। ਜੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਵਿੱਚ (ਦੋਵਾਂ ਪਾਸੇ) ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ ਤਾਂ ਸਮੀਕਰਣ ਸੰਤੁਲਿਤ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਦਰਸਾਉਂਦਾ ਹੈ।

ਆਓ, ਅਸੀਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਨਾਲ ਇਨ੍ਹਾਂ ਸਟੈਪਾਂ ਨੂੰ ਸਮਝਾਈਏ—

ਉਦਾਹਰਣ 8.8

ਪੋਟਾਸ਼ਿਅਮ ਡਾਈਕਰੋਮੇਟ (VI), K₂Cr₂O₇ ਦੀ ਸੋਡੀਅਮ ਸਲਫਾਈਟ Na₂SO₃ ਨਾਲ ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ ਕਰੋਮੀਅਮ (III) ਆਇਨ ਅਤੇ ਸਲਫੇਟ ਆਇਨ ਦੇਣ ਵਾਲੀ ਨੈੱਟ ਆਇਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਲਿਖੋ।

267

ਹੱਲ

ਸਟੈੱਪ 1: ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਢਾਂਚਾ ਇਸ ਤਰ੍ਹਾਂ ਹੈ– $Cr_2O_7^{2-}(aq) + SO_3^{2-}(aq) \rightarrow Cr^{3+}(aq)$ $+ SO_4^{2-}(aq)$ ਸਟੈੱਪ 2 : Cr ਅਤੇ S ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਲਿਖੋ– $^{+6} -^2 +^{4} -^2 +^{3} +^{6} -^2$ $Cr_2O_7^{2-}(aq) + SO_3^{2-}(aq) \rightarrow Cr(aq) + SO_4^{2-}(aq)$ ਇਹ ਇਸ ਗੱਲ ਦਾ ਸੂਚਕ ਹੈ ਕਿ ਡਾਈਕਰੋਮੇਟ ਆਇਨ ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਸਲਫਾਈਟ ਆਇਨ ਲਘੂਕਾਰਕ ਹੈ। ਸਟੈੱਪ 3 : ਆੱਕਸੀਕਰਣ ਸੰਖਿਆਵਾਂ ਦੇ ਵਾਧੇ ਅਤੇ ਘਾਟੇ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਬਰਾਬਰ ਬਣਾਓ–

$$\begin{array}{ccc} {}^{+6} {}^{-2} & {}^{+4} {}^{-2} & {}^{+3} \\ {\rm Cr}_2 {\rm O}_7 {}^{2\text{-}} ({\rm aq}) + {}^{+} {\rm 3SO}_3 {}^{2\text{-}} ({\rm aq}) & \rightarrow {\rm 2Cr}^{3\text{+}} ({\rm aq}) + \\ {}^{+6\text{-}2} & {}^{+6\text{-}2} \\ {}^{-2} {\rm 3SO}_4 {}^{2\text{-}} ({\rm aq}) \end{array}$$

ਸਟੈੱਪ 4 : ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ ਹੋ ਰਹੀ ਹੈ ਅਤੇ ਦੋਵਾਂ ਪਾਸਿਆਂ ਤੇ ਚਾਰਜ ਬਰਾਬਰ ਨਹੀਂ ਹਨ। ਇਸ ਲਈ ਖੱਬੇ ਪਾਸੇ 8H⁺ ਜੋੜੋ ਜਿਸ ਨਾਲ ਆਇਨਿਕ ਚਾਰਜ ਬਰਾਬਰ ਹੋ ਜਾਵੇਗਾ—

 $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}(\operatorname{aq}) + 3\operatorname{SO}_{3}^{2-}(\operatorname{aq}) + 8\operatorname{H}^{+} \rightarrow 2\operatorname{Cr}^{3+}(\operatorname{aq}) + 3\operatorname{SO}_{4}^{2-}(\operatorname{aq})$

ਸਟੈੱਪ 5 : ਅੰਤ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਗਣਨਾ ਕਰੋ। ਸੰਤੁਲਿਤ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਸੱਜੇ ਪਾਸੇ ਲੋੜੀਂਦੀ ਸੰਖਿਆ ਵਿੱਚ H₂O ਦੇ ਅਣੂਆਂ (ਭਾਵ 4H₂O) ਨੂੰ ਜੋੜੋ

 $\begin{array}{l} {\rm Cr_2O_7^{2-} \,(aq)+3SO_3^{2-} \,(aq)+8H^+ \to} \\ {\rm 2Cr^{^{3+}} \,(aq)+3SO_4^{^{-2-}} \,(aq)+4H_2O \,(l)} \end{array}$

ਉਦਾਹਰਣ 8.9

ਖਾਰੀ ਮਾਧਿਅਮ ਵਿੱਚ ਪਰਮੈਂਗਨੇਟ ਆਇਨ ਬ੍ਰੋਮਾਈਡ ਆਇਨ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਮੈਗਨੀਜ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਬ੍ਰੋਮੇਟ ਆਇਨ ਦਿੰਦਾ ਹੈ। ਇਸਦੀ ਸੰਤੁਲਿਤ ਆਇਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਸਮੀਕਰਣ ਲਿਖੋ।

ਹੱਲ

ਸਟੈੱਪ 1 : ਸਮੀਕਰਣ ਦਾ ਢਾਂਚਾ ਇਸ ਪ੍ਰਕਾਰ ਹੈ–

 $MnO_4^-(aq) + Br^-(aq) \rightarrow MnO_2(s) + BrO_3^-(aq)$ ਸਟੈੱਪ **2** : Mn ਅਤੇ Br ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਲਿਖੋ—

⁺⁷ -1 +4 +5 MnO₄⁻(aq) + Br⁻(aq) →MnO₂ (s) + BrO₃⁻ (aq) ਇਹ ਇਸ ਗੱਲ ਦਾ ਸੂਚਕ ਹੈ ਕਿ ਪਰਮੈਂਗਨੇਟ ਆਇਨ ਆੱਕਸੀਕਾਰਕ ਹੈ ਅਤੇ ਬ੍ਰਮਾਈਡ ਆਇਨ ਲਘੂਕਾਰਕ ਹੈ। ਸਟੈੱਪ 3 : ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਚ ਵਾਧੇ ਅਤੇ ਘਾਟੇ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਵਾਧੇ ਅਤੇ ਘਾਟੇ ਨੂੰ ਬਰਾਬਰ ਬਣਾਓ।

+7 -1 +4 +5 2MnO₄⁻(aq)+Br⁻(aq) \rightarrow 2MnO₂(s)+BrO₃⁻(aq) **ਸਟੈੱਪ 4 :** ਕਿਉਂਕਿ ਪ੍ਤੀਕਿਰਿਆ ਖਾਰੇ ਮਾਧਿਅਮ ਵਿੱਚ ਹੋ ਰਹੀ ਹੈ ਅਤੇ ਆਇਨਿਕ ਚਾਰਜ ਬਰਾਬਰ ਨਹੀਂ ਹਨ, ਇਸ ਲਈ ਆਇਨਿਕ ਚਾਰਜ ਬਰਾਬਰ ਕਰਨ ਦੇ ਲਈ ਸੱਜੇ ਪਾਸੇ 2 OH⁻ ਜੋੜੋ—

 $2MnO_{4}^{-}$ (aq) + Br⁻ (aq) $\rightarrow 2MnO_{2}(s)$ +

 $BrO_{3}(aq) + 2OH(aq)$

ਸਟੈੱਪ 5 : ਅੰਤ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਲੋੜੀਂਦੀ ਸੰਖਿਆ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂਆਂ (ਭਾਵ ਇੱਕ H₂O ਅਣੂ) ਜੋੜੋ, ਜਿਸ ਨਾਲ ਸੰਤੁਲਿਤ ਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਪ੍ਰਾਪਤ ਹੋ ਜਾਏ—

 $2MnO_{4}^{-}(aq) + Br^{-}(aq) + H_{2}O(l) \rightarrow 2MnO_{2}(s)$ $+ BrO_{3}^{-}(aq) + 2OH^{-}(aq)$

(ਅ) ਅਰਧ-ਪ੍ਰਤੀਕਿਰਿਆ ਵਿਧੀ : ਇਸ ਵਿਧੀ ਦੁਆਰਾ ਦੋਵਾਂ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਬਾਅਦ ਵਿੱਚ ਦੋਵਾਂ ਨੂੰ ਜੋੜ ਕੇ ਸੰਤੁਲਿਤ ਪ੍ਰਤੀਕਿਰਿਆ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।

ਮੰਨ ਲਓ ਕਿ ਸਾਨੂੰ Fe²⁺ ਤੋਂ Fe³⁺ ਆਇਨ ਵਿੱਚ ਡਾਈਕਰੋਮੇਟ ਆਇਨ (Cr₂O₇)²⁻ ਦੁਆਰਾ ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਕਿਰਿਆ ਸੰਤੁਲਿਤ ਕਰਨੀ ਹੈ, ਜਿਸ ਵਿੱਚ Cr₂O₇²⁻ ਆਇਨਾਂ ਦਾ Cr³⁺ ਆਇਨ ਵਿੱਚ ਲਘੂਕਰਣ ਹੋਵੇਗਾ। ਇਸ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਸਟੈੱਪ ਕਰਦੇ ਹਾਂ।

ਸਟੈੱਪ 1 : ਅਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਨੂੰ ਆਇਨਿਕ ਰੂਪ ਵਿੱਚ ਲਿਖੋ–

 $\operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq}) \to \operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{Cr}^{3+}(\operatorname{aq})$ (8.50)

<mark>ਸਟੈੱਪ 2 :</mark> ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਦੋ ਅਰਧ−ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵੰਡੋ—

ਆੱਕਸੀਕਰਣ ਅਰਧ : Fe²⁺ (aq) → Fe³⁺(aq) (8.51)

 $^{+6}_{-2}$ $^{+3}_{-3}$ ਲਘੂਕਰਣ ਅਰਧ : $\operatorname{Cr}_2^{2-}(\operatorname{aq}) \to \operatorname{Cr}^{3+}(\operatorname{aq})$ (8.52)

ਸਟੈੱਪ 3: ਹਰ ਇੱਕ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ O ਅਤੇ H ਤੋਂ ਇਲਾਵਾ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰੋ।ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਬਾਕੀ ਦੇ ਅਣੂਆਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਦੇ ਲਈ Cr³⁺ ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ। ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ Fe ਪਰਮਾਣੂ ਪਹਿਲਾਂ ਹੀ ਸੰਤੁਲਿਤ ਹੈ।

268

$$Cr_2 O_7^{2-}(aq) \rightarrow 2 Cr^{3+}(aq)$$
 (8.53)

ਸਟੈੱਪ 4 : ਤੇਜਾਬੀ ਮਧਿਅਮ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ O ਪਰਮਾਣੂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ H₂O ਅਤੇ H ਪਰਮਾਣੂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ H⁺ ਜੋੜੋ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਲਦੀ ਹੈ–

$$\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq}) + 14\operatorname{H}^+(\operatorname{aq}) \to 2\operatorname{Cr}^{3+}(\operatorname{aq}) + 7\operatorname{H}_2\operatorname{O}(\operatorname{I})$$

(8.54)

ਸਟੈੱਪ 5 : ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਚਾਰਜਾਂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ ਇਲੈਕਾਟ੍ਰਾੱਨ ਜੋੜੋ। ਦੋਵਾਂ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਇਕੋ ਜਿਹੀ ਰੱਖਣ ਦੇ ਲਈ ਲੋੜ ਅਨੁਸਾਰ ਕਿਸੇ ਇੱਕ ਨੂੰ ਜਾਂ ਦੋਵਾਂ ਨੂੰ ਢੁਕਵੀਂ ਸੰਖਿਆ ਨਾਲ ਗੁਣਾ ਕਰੋ।

ਚਾਰਜ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹੋਏ ਆੱਕਸੀਕਰਣ ਨੂੰ ਦੋਬਾਰਾ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਾਂ—

$$Fe^{2+} (aq) \rightarrow Fe^{3+} (aq) + e^{-}$$
 (8.55)

ਹੁਣ ਲਘੂਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਖੱਬੇ ਪਾਸ 12 ਧਨ ਚਾਰਜ ਹੈ, 6 ਇਲੈਕਟ੍ਰਾੱਨ ਜੋੜ ਦਿੰਦੇ ਹਾਂ—

$$Cr_2O_7^{2-}$$
 (aq) + 14H⁺ (aq) + 6e⁻ $\rightarrow 2Cr^{3+}$ (aq) +
7H₂O (l) (8.56)

ਦੋਵਾਂ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਕਰਨ ਦੇ ਲਈ ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ 6 ਨਾਲ ਗੁਣਾਂ ਕਰਕੇ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਾਂ—

$$6Fe^{2+} (aq) \rightarrow 6Fe^{3+} (aq) + 6e^{-}$$
 (8.57)

ਸਟੈੱਪ 6 : ਦੋਵਾਂ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਜੋੜਨ ਤੇ ਅਸੀਂ ਪੂਰਣ ਪ੍ਤੀਕਿਰਿਆ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਅਤੇ ਦੋਵਾਂ ਪਾਸਿਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਖਤਮ ਕਰ ਦਿੰਦੇ ਹਾਂ।

$$\begin{aligned} 6\mathrm{Fe}^{2*}(\mathrm{aq}) + \mathrm{Cr}_2\mathrm{O}_7^{2-}(\mathrm{aq}) + 14\mathrm{H}^*(\mathrm{aq}) &\to 6\,\mathrm{Fe}^{3*}(\mathrm{aq}) + \\ & 2\mathrm{Cr}^{3*}(\mathrm{aq}) + 7\mathrm{H}_2\mathrm{O}(\mathrm{l}) \end{aligned} (8.58)$$

ਸਟੈੱਪ 7 : ਵੇਖ ਲਓ ਕਿ ਸਮੀਕਰਣ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਚਾਰਜ ਬਰਾਬਰ ਹਨ। ਇਹ ਅੰਤਿਮ ਪਰੀਖਣ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸਮੀਕਰਣ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਚਾਰਜ ਦਾ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸੰਤੁਲਨ ਹੈ।

ਖਾਰੀ ਮਧਿਅਮ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਸ਼ੁਰੂ ਤੋਂ ਉਸੇ ਤਰ੍ਹਾਂ ਸੰਤੁਲਿਤ ਕਰੋ, ਜਿਵੇਂ ਤੇਜਾਬੀ ਮਧਿਅਮ ਵਿੱਚ ਕਰਦੇ ਹਨ। ਬਾਅਦ ਵਿੱਚ ਸਮੀਕਰਣ ਦੇ ਦੋਵਾਂ ਪਾਸਿਆਂ ਤੇ H⁺ ਆਇਨ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ OH⁻ ਜੋੜ ਦਿਓ। ਜਿੱਥੇ H⁺ ਅਤੇ OH⁻ ਸਮੀਕਰਣ ਵਿੱਚ ਇੱਕੋ ਪਾਸੇ ਹੋਣ, ਉੱਥੇ ਉਨ੍ਹਾਂ ਨੂੰ ਜੋੜ ਕੇ H₂O ਲਿਖ ਦਿਓ।

ਉਦਾਹਰਣ **8.10**

ਪਰਮੈਂਗਨੇਟ (VII) ਅਇਨ ਖਾਰੇ ਅਧਿਅਮ ਵਿੱਚ ਆਇਓਡਾਈਡ ਅਇਨ I⁻ ਨੂੰ ਅਣਵੀਂ ਆਇਓਡੀਨ ਅਤੇ ਮੈਂਗਨੀਜ (IV) ਆੱਕਸਾਈਡ MnO₂ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਕਰਦਾ ਹੈ। ਇਸ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀ ਸੰਤੁਲਿਤ ਆਇਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਲਿਖੋ।

ਹੱਲ

ਸਟੈੱਪ 1 : ਪਹਿਲਾਂ ਅਸੀਂ ਢਾਂਚਾ ਸਮੀਕਰਣ ਲਿਖਦੇ ਹਾਂ— MnO₄ (aq) + I⁻ (aq) → MnO₂(s) + I₂(s) ਸਟੈੱਪ 2 : ਦੋ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਇਸ ਪ੍ਰਕਾਰ ਹਨ— ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆ :

$$^{-1}$$
 0 $\mathrm{I}^{-}(\mathrm{aq})$ $ightarrow$ I_{2} (s) ਲਘੂਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ :

$$MnO_4(aq) \rightarrow MnO_2(s)$$

ਸਟੈੱਪ 3 : ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ I ਪਰਮਾਣੂ ਦਾ ਸੰਤੁਲਨ ਕਰਨ ਤੇ ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ—

$$2I^{-}(aq) \rightarrow I_{2}(s)$$

ਸਟੈੱਪ 4 : O ਪਰਮਾਣੂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ ਅਸੀਂ ਲਘੂਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ 2 ਪਾਣੀ ਦੇ ਅਣੂ ਜੋੜੇਦ ਹਾਂ—

 MnO_4^- (aq) $\rightarrow MnO_2$ (s) + 2 H₂O (l)

H ਪਰਮਾਣੂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਲਈ ਅਸੀਂ ਖੱਬੇ ਪਾਸੇ 4 H⁺ ਆਇਨ ਜੋੜ ਦਿੰਦੇ ਹਾਂ।

MnO₄⁻(aq) + 4 H⁺(aq) → MnO₂(s) + 2H₂O (l) ਕਿਉਂਕਿ ਪ੍ਰਤੀਕਿਰਿਆ ਖਾਰੇ ਅਧਿਅਮ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ 4H⁺ ਦੇ ਲਈ ਸਮੀਕਰਣ ਦੇ ਦੋਵਾਂ ਪਾਸੇ ਅਸੀਂ 4OH⁻ ਅਇਨ ਜੋੜ ਦਿੰਦੇ ਹਾਂ।

 $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) + 4\mathrm{H}^{+}(\mathrm{aq}) + 4\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$

 MnO_2 (s) + 2 $H_2O(l)$ + 4OH⁻ (aq) H⁺ ਅਇਨ ਅਤੇ OH⁻ ਦੇ ਜੋੜ ਤੋਂ H_2O ਵਿੱਚ ਬਦਲਨ ਨਾਲ ਪਰਿਣਾਮੀ ਸਮੀਕਰਣ ਬਣਿਆ—

 $MnO_{4}^{-}(aq) + 2H_{2}O(l) \rightarrow MnO_{2}(s) + 4 OH^{-}(aq)$ **ਸਟੈੱਪ 5 :** ਇਸ ਸਟੈੱਪ ਵਿੱਚ ਅਸੀਂ ਦੋਵਾਂ ਅਰਧ-ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਚਾਰਜ ਦਾ ਸੰਤੁਲਨ ਦਰਸਾਈ ਗਈ ਵਿਧੀ ਦੁਆਰਾ ਕਰਦੇ ਹਾਂ—

 $2I^{-}(aq) \rightarrow I_{2}(s) + 2e^{-}$ MnO₄(aq) + 2H₂O(l) + 3e⁻ \rightarrow MnO₂(s)

+ 4OH (aq) ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਕਰਨ ਦੇ ਲਈ ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ 3 ਨਾਲ ਅਤੇ ਲਘੁਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ।

 $6I(aq) \rightarrow 3I_2(s) + 6e$

 $\begin{array}{c} 2 \ \text{MnO}_{4}^{-} \ (\text{aq}) + 4\text{H}_{2}\text{O} \ (\text{l}) + 6\text{e}^{-} \rightarrow 2\text{MnO}_{2}(\text{s}) \\ + 8\text{OH}^{-} \ (\text{aq}) \end{array}$

ਸਟੈੱਪ 6 : ਦੋਵਾਂ ਅਰਧ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਜੋੜ ਕੇ ਦੋਵਾਂ ਪਾਸਿਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਕੱਟ ਕੇ ਇਹ ਸਮੀਕਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ–

 $6I^{-}(aq) + 2MnO_{4}^{-}(aq) + 4H_{2}O(l) \rightarrow 3I_{2}(s) + 2MnO_{2}(s) + 8 \text{ OH}^{-}(aq)$

ਸਟੈੱਪ 7 : ਅੰਤਿਮ ਪੜਤਾਲ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਦੋਵਾਂ ਪਾਸਿਆਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਚਾਰਜ ਪੱਖੋਂ ਸਮੀਕਰਣ ਸੰਤੁਲਿਤ ਹੈ।

8.3.3 ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਟਾਈਟ੍ਰੇਸ਼ਨ

ਤੇਜਾਬ ਖਾਰ ਸਿਸਟਮ ਵਿੱਚ ਅਸੀਂ ਅਜਿਹੀ ਟਾਈਟ੍ਰੇਸ਼ਨ ਵਿਧੀ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੇ ਹਾਂ ਜਿਸ ਨਾਲ ਇੱਕ ਘੋਲ ਦੀ ਪ੍ਰਬਲਤਾ pH ਸੰਵੇਦਨਸ਼ੀਲ ਸੰਸੂਚਕ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਦੂਜੇ ਘੋਲ ਤੋਂ ਗਿਆਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਆਮਤੌਰ ਤੇ ਲਘੂਆੱਕਸੀਕਰਣ ਸਿਸਟਮ ਵਿੱਚ ਟਾਈਟ੍ਰੇਸ਼ਨ ਵਿਧੀ ਅਪਨਾਈ ਜਾ ਸਕਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਲਘੂਆੱਕਸੀਕਰਣ ਸੰਵੇਦਨਸ਼ੀਲ ਸੰਸੂਚਕ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਰਿਡਕਟੈਂਟ/ਆੱਕਸੀਡੈਂਟ ਦੀ ਪ੍ਰਬਲਤਾ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਲਘੂਆੱਕਸੀਕਰਣ ਟਾਈਟ੍ਰੇਸ਼ਨ ਵਿੱਚ ਸੰਸੂਚਕ (Indicators) ਦੀ ਵਰਤੋਂ ਨੂੰ ਹੇਠ ਲਿਖੀ ਉਦਾਹਰਣ ਦੁਆਰਾ ਨਿਰੁਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ—

- (i) ਜੇ ਕੋਈ ਪ੍ਰਤੀਕਾਰਕ (ਜੋ ਆਪ ਕਿਸੇ ਗੂੜ੍ਹੇ ਰੰਗ ਦਾ ਹੋਵੇ– ਜਿਵੇਂ ਪਰਮੈਂਗਨੇਟ ਆਇਨ, MnO₄) ਖੁਦ ਸੂਚਕ (self indicator) ਵਾਂਗ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਲਘੂਕਾਰਕ (Fe²⁺ ਜਾਂ C₂O₄²⁻) ਦਾ ਅੰਤਿਮ ਭਾਗ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਚੁਕਿਆ ਹੋਵੇ, ਤਾਂ ਅੰਤ ਬਿੰਦੂ (end point) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। MnO₄⁻ ਆਇਨ ਦੀ ਸੰਘਣਤਾ 10⁻⁶ mol dm⁻³ (10⁻⁶ mol L⁻¹) ਤੋਂ ਘੱਟ ਹੋਣ ਤੇ ਵੀ ਗੁਲਾਬੀ ਰੰਗ ਦੀ ਪਹਿਲੀ ਸਥਾਈ ਝਲਕ ਦਿੱਸਦੀ ਹੈ। ਇਸ ਨਾਲ ਅੰਤ ਬਿੰਦੂ ਉੱਤੇ ਰੰਗ ਥੋੜੇ ਤੋਂ ਗੂੜ੍ਹਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਲਘੂਕਾਰਕ ਅਤੇ ਆੱਕਸੀਕਾਰਕ ਆਪਣੀ ਮੋਲਸਟੋਕਿਓਮੀਟਰੀ ਦੇ ਅਨੁਸਾਰ ਸਮਾਨ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।
- (ii) ਜਿਵੇਂ MnO₄⁻ ਦੀ ਟਾਈਟ੍ਰੇਸ਼ਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੇ ਉਸੇ ਤਰ੍ਹਾਂ ਕੋਈ ਰੰਗ ਪਰਿਵਰਤਨ ਖੁਦ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਅਜਿਹੇ ਵੀ ਸੂਚਕ ਹਨ, ਜੋ ਲਘੂਕਾਰਕ ਦੇ ਅੰਤਿਮ ਭਾਗ ਦੇ ਵਰਤੇ ਜਾਣ ਤੇ ਖੁਦ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਕੇ ਨਾਟਕੀ ਢੰਗਨ ਨਾਲ ਰੰਗ ਪਰਿਵਰਤਿਤ ਕਰਦੇ ਹਨ। ਇਸ ਦਾ ਸਭ ਤੋਂ ਚੰਗਾ ਉਦਾਹਰਣ Cr₂O₇²⁻ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਖੁਦ ਸੂਚਕ ਨਹੀ ਹੈ ਲੇਕਿਨ ਤੁੱਲ ਬਿੰਦੂ ਦੇ ਬਾਅਦ ਇਹ ਡਾਈਫੀਨਾਈਲ ਐਮੀਨ ਸੂਚਕ ਨੂੰ ਆੱਕਸੀਕ੍ਰਿਤ ਕਰਕੇ ਗੂੜ੍ਹਾ ਨੀਲਾ ਰੰਗ ਦਿੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਅੰਤ ਬਿੰਦੂ ਦਾ ਸੂਚਕ ਹੁੰਦਾ ਹੈ।

(iii) ਇੱਕ ਹੋਰ ਵਿਧੀ ਦੀ ਉਪਲਬਧ ਹੈ, ਜੋ ਦਿਲਚਸਪ ਅਤੇ ਸਧਾਰਣ ਵੀ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਸਿਰਫ ਉਨ੍ਹਾਂ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਤੱਕ ਸੀਮਿਤ ਹੈ ਜੋ I ਂ ਆਇਨਾਂ ਨੂੰ ਆੱਕਸੀਕ੍ਰਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ—

 $2Cu^{2+}(aq) + 4I(aq) \rightarrow Cu_2I_2(s) + I_2(aq)$ (8.59)

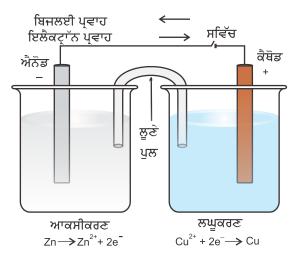
ਇਸ ਵਿਧੀ ਦਾ ਅਧਾਰ ਆਇਓਡੀਨ ਦਾ ਸਟਾਰਚ ਦੇ ਨਾਲ ਗੂੜ੍ਹਾ ਨੀਲਾ ਰੰਗ ਦੇਣਾ ਅਤੇ ਆਇਓਡੀਨ ਦੀ ਥਾਇਓਸਲਫੇਟ ਆਇਨ ਨਾਲ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ, ਜੋ ਲਘੂਆੱਕਸੀਕਰਣ ਕਿਰਿਆ ਵੀ ਹੈ।

 $I_2(aq) + 2 S_2 O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4 O_6^{-2-}(aq) (8.60)$

ਭਾਵੇਂ I_2 ਪਾਣੀ ਵਿੱਚ ਅਘੁਲਣਸ਼ੀਲ ਹੈ, KI ਦੇ ਘੋਲ ਵਿੱਚ KI_3 ਦੇ ਰੂਪ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੈ।

ਅੰਤ ਬਿੰਦੂ ਨੂੰ ਸਟਾਰਚ ਪਾ ਕੇ ਪਛਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਬਾਕੀ ਸਟੋਕਿਓਮੀਟਰਿਕ ਗਣਨਾਵਾਂ ਹੀ ਹਨ।

8.3.4 ਆੱਕਸੀਕਰਣ ਅੰਕ ਧਾਰਣਾ ਦੀਆਂ ਸੀਮਾਵਾਂ


ਜੇ ਜਿੰਕ ਦੀ ਗੱਡ ਨੂੰ ਕਾੱਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਡੋਬੀਏ, ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ (8.15) ਦੇ ਅਨੁਸਾਰ ਸੰਗਤ ਪ੍ਰਯੋਗ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਘੁਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਦੌਰਾਨ ਜਿੰਕ ਤੋਂ ਕਾੱਪਰ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਪ੍ਰਤੱਖ ਸਥਾਨ ਅੰਤਰਣ ਦੁਆਰਾ ਜ਼ਿੰਕ ਦਾ ਆੱਕਸੀਕਰਣ ਜਿੰਕ ਆਇਨ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਾੱਪਰ ਆਇਨਾਂ ਦਾ ਲਘੁਕਰਣ ਕਾੱਪਰ ਧਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਤਾਪ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਤਾਪ ਬਿਜਲਈ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਲਈ ਕਾੱਪਰ ਸਲਫੇਟ ਘੋਲ ਵਿੱਚ ਜਿੰਕ ਧਾਤ ਦਾ ਵੱਖ ਕਰਨਾ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਕਾੱਪਰ ਸਲਫੇਟ ਘੋਲ ਨੂੰ ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਰੱਖਦੇ ਹਾਂ, ਕਾਪਰ ਦੀ ਛੜ ਜਾਂ ਪੱਤੀ ਨੂੰ ਇਸ ਵਿੱਚ ਰੱਖ ਦਿੰਦੇ ਹਾਂ। ਇੱਕ ਦੂਜੇ ਬੀਕਰ ਵਿੱਚ ਜਿੰਕ ਸਲਫੇਟ ਘੋਲ ਲੈਂਦੇ ਹਾਂ ਅਤੇ ਜਿੰਕ ਦੀ ਛੜ ਜਾਂ ਪੱਤੀ ਇਸ ਵਿੱਚ ਰੱਖਦੇ ਹਾਂ। ਕਿਸੇ ਵੀ ਬੀਕਰ ਵਿੱਚ ਕੋਈ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਦੋਵਾਂ ਬੀਕਰਾਂ ਵਿੱਚ ਧਾਤ ਅਤੇ ਉਸ ਦੇ ਲੁਣ ਦੇ ਘੋਲ ਦੇ ਇੰਟਰਫੇਸ ਉੱਤੇ ਇੱਕ ਹੀ ਰਸਾਇਣ ਦੇ ਲਘੁਕ੍ਰਿਤ ਅਤੇ ਆਕਸੀਕ੍ਰਿਤ ਰੂਪ ਇਕੱਠੇ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਹ ਲਘੂਕਰਣ ਅਤੇ ਆੱਕਸੀਕਰਣ ਅਰਧ ਪ੍ਰਤੀਕਿਰਿਆਂ ਵਿੱਚ ਮੌਜੂਦ ਸਪੀਸੀਜ਼ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਆੱਕਸੀਕਰਣ ਅਤੇ ਲਘੁਕਰਣ ਪਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਹਿੱਸਾ ਲੈ ਰਹੇ ਪਦਾਰਥਾਂ ਦੇ ਆਕਸੀਕਰਣ ਅਤੇ ਲਘੁਕ੍ਰਿਤ ਸਰੂਪਾਂ ਦੀ ਇਕੱਠੀ ਮੌਜੂਦਗੀ ਤੋਂ ਰੀਡਾੱਕਸ ਯੂਗਮ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਇਸ ਆਕਸੀਕ੍ਰਿਤ ਸਰੂਪ ਨੂੰ ਲਘੂਕ੍ਰਿਤ ਸਰੂਪ ਨਾਲ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਜਾਂ ਤਿਰਛੀ ਰੇਖਾ ਦੁਆਰਾ ਵੱਖ ਕਰਨਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਜੋ ਇੰਟਰਫੇਸ (ਜਿਵੇਂ—ਠੋਸ/ਘੋਲ) ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਇਸ ਵਿੱਚ ਦੋ ਰੀਡਾੱਕਸ ਯੁਗਮਾਂ ਨੂੰ Zn²⁺/

270

Zn ਅਤੇ Cu²⁺/Cu ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਦੋਵਾਂ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਸਰੂਪ ਨੂੰ ਲਘੂਕ੍ਰਿਤ ਸਰੂਪ ਤੋਂ ਪਹਿਲਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਕਾੱਪਰ ਸਲਫੇਟ ਘੋਲ ਵਾਲੇ ਬੀਕਰ ਨੂੰ ਜਿੰਕ ਸਲਫੇਟ ਘੋਲ ਵਾਲੇ ਬੀਕਰ ਦੇ ਕੋਲ ਰੱਖਦੇ ਹਾਂ (ਚਿੱਤਰ 8.3)। ਦੋਵਾਂ ਬੀਕਰਾਂ ਦੇ ਘੋਲਾਂ ਨੂੰ ਲੁਣ-ਪੁਲ (ਸਾਲਟ-ਬਰਿੱਜ) ਦੁਆਰਾ ਜੋੜਦੇ ਹਾਂ (ਲੂਣ ਪੁਲ U ਅਕ੍ਰਿਤੀ ਦੀ ਇੱਕ ਟਿਊਬ ਹੈ ਜਿਸ ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਜਾਂ ਅਮੋਨਿਅਮ ਨਾਈਟ੍ਰੇਟ ਦੇ ਘੋਲ ਨੂੰ 'ਅਗੱਰ-ਅਗੱਰ' ਦੇ ਨਾਲ ਉਬਾਲ ਕੇ U ਟਿਊਬ ਵਿੱਚ ਭਰ ਕੇ ਠੰਡਾ ਕਰਕੇ ਜੈਲੀ ਬਣਾ ਦਿੰਦੇ ਹਨ)। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਘੋਲਾਂ ਨੂੰ ਬਿਨਾਂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲਾਏ ਹੋਏ ਬਿਜਲਈ ਸੰਪਰਕ ਪ੍ਰਦਾਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਿੰਕ ਅਤੇ ਕਾੱਪਰ ਦੀਆਂ ਛੜਾਂ ਨੂੰ ਐਮ ਮੀਟਰ ਅਤੇ ਸਵਿੱਚ ਦੁਆਰਾ ਧਾਤ ਦੀ ਤਾਰ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ (8.3) ਵਿੱਚ ਦਰਸਾਈ ਗਈ ਵਿਵਸਥਾ ਨੂੰ 'ਡੇਨੀਅਲ ਸੈੱਲ' ਕਹਿੰਦੇ ਹਨ। ਜਦ ਸਵਿੱਚ ਆੱਫ (ਬੰਦ) ਸਥਿਤੀ ਵਿੱਚ ਹੰਦਾ ਹੈ ਤਾਂ ਕਿਸੇ ਬੀਕਰ ਵਿੱਚ ਕੋਈ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ। ਸਵਿੱਚ ਨੂੰ ਆੱਨ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ–

 Zn ਤੋਂ Cu²⁺ ਤੱਕ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਪ੍ਰਤੱਖ ਰੂਪ ਵਿੱਚ ਨਾ ਹੋ ਕੇ ਦੋਵਾਂ ਛੜਾਂ ਨੂੰ ਜੋੜਨ ਵਾਲੀ ਧਾਤਵੀ ਤਾਰ ਦੇ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਜੋ ਤੀਰ ਦੁਆਰਾ ਬਿਜਲਈ ਧਾਰਾ ਵਿੱਚ ਪ੍ਰਵਾਹ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 8.3 ਡੇਨੀਅਲ ਸੈੱਲ ਬਣਾਉਨਾ। ਐਨੋਡ ਉੱਤੇ Zn ਦੇ ਆੱਕਸੀਕਰਣ ਦੁਆਰਾ ਉਪਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਬਾਹਰੀ ਸਰਕਟ ਤੋਂ ਕੌਥੋਡ ਤੱਕ ਪਹੁੰਚਦੇ ਹਨ। ਸੈੱਲ ਦੇ ਅੰਦਰ ਦਾ ਸਰਕਟ ਲੂਮ ਪੁਲ ਦੇ ਅਧਿਅਮ ਨਾਲ ਆਇਨਾਂ ਦੇ ਵਿਸਥਾਪਨ ਦੁਆਰਾ ਪੂਰਾ ਹੁੰਦਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਬਿਜਲਈ ਪ੍ਵਾਹ ਦੀ ਦਿਸ਼ਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਹੈ। 2. ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਰੱਖੇ ਘੋਲ ਤੋਂ ਦੂਜੇ ਬੀਕਰ ਦੇ ਘੋਲ ਦੇ ਵੱਲ ਲੂਣ ਪੁਲ (salt bridge) ਦੇ ਮਾਧਿਅਮ ਰਾਹੀਂ ਆਇਨਾਂ ਦੀ ਗਤੀ ਦੁਆਰਾ ਬਿਜਲੀ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ।ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਾੱਪਰ ਅਤੇ ਜਿੰਕ ਦੀਆਂ ਛੜ੍ਹਾਂ ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਡ ਕਹਿੰਦੇ ਹਨ ਵਿੱਚ ਪੋਟੈਂਸਲ ਅੰਤਰ ਹੋਣ ਤੇ ਹੀ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਪ੍ਰਵਾਹ ਸੰਭਵ ਹੈ।

ਹਰ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਡ ਦੇ ਪੋਟੈਂਸਲ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸਲ ਕਹਿੰਦੇ ਹਨ। ਜੇ ਇਲੈਕਟ੍ਰਾੱਡ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਹਿੱਸਾ ਲੈਣ ਵਾਲੇ ਸਾਰੇ ਸਪੀਸ਼ੀਜ ਦੀ ਇਕਾਈ ਸੰਘਣਤਾ ਹੋਵੇ (ਜੇ ਇਲੈਕਟਾੱਡ ਪਤੀਕਿਰਿਆ ਵਿੱਚ ਕੋਈ ਗੈਸ ਨਿਕਲਦੀ ਹੈ, ਤਾਂ ਉਸ ਨੂੰ ਇਕ ਵਾਯਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਅਤੇ ਪਤੀਕਿਰਿਆ 298K ਉੱਤੇ ਹੁੰਦੀ ਹੋਵੇ, ਤਾਂ ਹਰ ਇੱਕ ਇਲੈਕਟ਼ਾੱਡ ਉੱਤੇ ਪੋਟੈਂਸਲ ਨੂੰ ਸਟੈਂਡਰਡ ਇਲੈਕਟੋਡ ਪੋਟੈਂਸਲ ਕਹਿੰਦੇ ਹਨ। ਮਾਨਤਾਵਾਂ ਦੇ ਅਨੁਸਾਰ, ਹਾਈਡ੍ਰੋਜ ਦੀ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸਲ 0.00 ਵੋਲਟ ਹੁੰਦੀ ਹੈ। ਹਰ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਡ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟਾਂਸਲ ਦਾ ਮਾਨ ਕਿਰਿਆਸ਼ੀਲ ਸਪੀਸ਼ੀਜ ਦੇ ਆੱਕਸੀਕਿ਼ਤ/ਲਘਕਿ਼ਤ ਅਵਸਥਾ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦਾ ਮਾਪ ਹੈ। E^e ਦੇ ਰਿਣਾਤਮਕ ਹੋਣ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਰੀਡੌਕਸ ਯੁਗਮ $\mathrm{H}^{ op}/\mathrm{H}_2$ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਰਬਲ ਲਘੁਕਾਰਕ ਹੈ। ਧਨਾਤਮਕ $\operatorname{E}^{\scriptscriptstyle \ominus}$ ਦਾ ਅਰਥ ਹੈ ਕਿ ਰੀਡੌਕਸ ਯੁਗਮ H⁺/H₂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਇੱਕ ਦੁਰਬਲ ਲਘੁਕਰਾਕ ਹੈ। ਸਟੈਂਡਰਡ ਇਲੈਕਟ਼ਾੱਡ ਪੋਟੈਂਸ਼ਲ ਬਹੁਤ ਮਹੱਤਵ ਪੁਰਣ ਹੈ। ਇਨ੍ਹਾਂ ਤੋਂ ਸਾਨੰ ਬਹਤ ਸਾਰੀਆਂ ਹੋਰ ਜਾਣਕਾਰੀਆਂ ਵੀ ਮਿਲਦੀਆਂ ਹਨ। ਕੁਝ ਚੁਣੀਆਂ ਹੋਈਆਂ ਇਲੈਕਟਾੱਡ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ (ਲਘੁਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ) ਦੀਆਂ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸ਼ਲ ਦੇ ਮਾਨ ਸਾਰਣੀ 8.1 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਲੈਕਟ਼ਾੱਡ ਪਤੀਕਿਰਿਆਵਾਂ ਅਤੇ ਸੈੱਲਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੋਰ ਵਿਸਥਾਰ ਨਾਲ ਤੁਸੀਂ ਅਗਲੀ ਜਮਾਤ ਵਿੱਚ ਪੜੋਗੇ।

271

		ਤੇ s ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ	1	
	ਪ੍ਰਤੀਕਿਰਿਆ (ਆੱਕਸੀਕ੍ਰਿਤ ਸਰੂਪ + ne⁻	→ਲਘੂਕ੍ਰਿਤ ਸਰੂਪ)		\mathbf{E}^{\ominus} / V
A	$F_2(g) + 2e^-$	$ ightarrow 2 F^{-}$	1	2.87
	Co ³⁺ + e ⁻	$\rightarrow \mathrm{Co}^{2+}$		1.81
	$H_2O_2 + 2H^+ + 2e^-$	$\rightarrow 2H_2O$		1.78
	$MnO_4^- + 8H^+ + 5e^-$	\rightarrow Mn ²⁺ + 4H ₂ O		1.51
	Au ³⁺ + 3e ⁻	\rightarrow Au(s)		1.40
	$Cl_2(g) + 2e^-$	$\rightarrow 2 \mathrm{Cl}^{-}$		1.36
	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	$ ightarrow 2 \mathrm{Cr}^{\scriptscriptstyle 3+}$ + 7 $\mathrm{H}_2\mathrm{O}$		1.33
	$O_2(g) + 4H^+ + 4e^-$	$\rightarrow 2H_2O$		1.23
	$MnO_2(s) + 4H^+ + 2e^-$	ightarrow Mn ²⁺ + 2H ₂ O		1.23
I	$Br_2 + 2e^-$	$\rightarrow 2 \mathrm{Br}^{-}$	I	1.09
	NO ₃ ⁻ + 4H ⁺ + 3e ⁻	\rightarrow NO(g) + 2H ₂ O		0.97
h	2Hg ²⁺ + 2e ⁻	\rightarrow Hg ₂ ²⁺	ha a	0.92
आव	Ag⁺ + e⁻	\rightarrow Ag(s)	0	0.80
ਦੀ "	$Fe^{3+} + e^{-}$	\rightarrow Fe ²⁺	य ल	0.77
ਆੱਕਸੀਕਾਰਕ ਦੀ ਵਧਦੀ ਤਾਕਤ	$O_2(g) + 2H^+ + 2e^-$	\rightarrow H ₂ O ₂	ਲਘੂਕਾਰਕ ਦੀ ਵਧਦੀ ਤਾਕਤ	0.68
र सु	$I_2(s) + 2e^-$	$\rightarrow 2I^{-}$	ਦੀ	0.54
	Cu⁺ + e⁻	\rightarrow Cu(s)	वेल	0.52
भ्री	Cu ²⁺ + 2e ⁻	\rightarrow Cu(s)	শ্ব	0.34
کٹی	AgCl(s) + e⁻	\rightarrow Ag(s) + Cl ⁻	34	0.22
	AgBr(s) + e⁻	\rightarrow Ag(s) + Br ⁻		0.10
	2H⁺ + 2e ⁻	ightarrow H ₂ (g)		0.00
	$Pb^{2+} + 2e^{-}$	\rightarrow Pb(s)		-0.13
1	Sn^{2+} + 2e ⁻	\rightarrow Sn(s)		-0.14
	$Ni^{2+} + 2e^-$	\rightarrow Ni(s)		-0.25
	Fe^{2+} + $2\mathrm{e}^{-}$	\rightarrow Fe(s)		-0.44
	Cr ³⁺ + 3e ⁻	\rightarrow Cr(s)		-0.74
	$Zn^{2+} + 2e^{-}$	\rightarrow Zn(s)		-0.76
	$2H_2O + 2e^-$	\rightarrow H ₂ (g) + 2OH ⁻		-0.83
	Al ³⁺ + 3e ⁻	\rightarrow Al(s)		-1.66
	$Mg^{2+} + 2e^{-}$	\rightarrow Mg(s)		-2.36
	Na⁺ + e⁻	\rightarrow Na(s)		-2.71
	Ca ²⁺ + 2e ⁻	\rightarrow Ca(s)		-2.87
	K ⁺ + e ⁻	\rightarrow K(s)		-2.93
	Li⁺ + e⁻	\rightarrow Li(s)	*	-3.05

ਸਾਰਣੀ 8.1 298 K ਉੱਤੇ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾਂਡ ਪੋਟੈਂਸਲ ਆਇਨ ਜਲੀ ਸਪੀਸ਼ੀਜ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਪਾਣੀ ਦ੍ਰਵ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹਨ ; ਗੈਸ ਅਤੇ ਨੋਸ ਨੂੰ 9 ਅਤੇ 5 ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

1. ਰਿਣਾਤਮਕ E° ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਰੀਡੌਕਸ ਯੁਗਮ $\mathrm{H}^*/\mathrm{H}_2$ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਹੈ।

2. ਧਨਾਤਮਕ E° ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਰੀਡੌਕਸ ਯੁੰਗਮ $\mathrm{H}^{+}/\mathrm{H_{2}}^{-}$ ਦੀ ਤੁੱਲਨਾ ਵਿੱਚ ਦੁਰਬਲ ਲੰਘੂਕਾਰਕ ਹੈ।

ਸਾਰਾਂਸ਼

ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਵਰਗ ਲਘੂਆੱਕਸੀਕਰਣ ਕਿਰਿਆ ਹੈ, ਜਿਸ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਅਤੇ ਲਘੂਕਰਣ ਨਾਲ-ਨਾਲ ਹੁੰਦੇ ਹਨ। ਇਸ ਯੂਨਿਟ ਵਿੱਚ ਤਿੰਨ ਕਿਸਮ ਦੇ ਸੰਕਲਪ ਵਿਸਥਾਰ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ— ਕਲਾਸੀਕਲ, ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਅਤੇ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ। ਇਨ੍ਹਾਂ ਸੰਕਲਪਾਂ ਦੇ ਅਧਾਰ ਤੇ ਆੱਕਸੀਕਰਣ, ਲਘੂਕਰਣ, ਆੱਕਸੀਕਾਰਕ (ਆੱਕਸੀਡੈਂਟ) ਅਤੇ ਲਘੂਕਾਰਕ (ਰਿਡਕਟੈਂਟ) ਨੂੰ ਸਮਝਾਇਆ ਗਿਆ ਹੈ।ਸੰਗਤ ਨਿਯਮਾਂ ਦੇ ਅੰਤਰਗਤ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦਾ ਨਿਰਧਾਰਣ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹ ਦੋਵੇਂ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਅਤੇ ਆਇਨ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਧੀਆਂ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਸਮੀਕਰਣ ਲਿਖਣ ਵਿੱਚ ਲਾਭਦਾਇਕ ਹਨ। ਲਘੂ ਆੱਕਸੀਕਰਣ ਕਿਰਿਆਵਾਂ ਨੂੰ ਚਾਰ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ— ਜੋੜਾਤਮਕ, ਅਪਘਟਨ, ਵਿਸਥਾਪਨ ਅਤੇ ਅਸਮਾਨ ਅਨੁਪਾਤ। ਗੀਡਾੱਕਸ ਯੁਗਮ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਡ ਪ੍ਰਕਰਮ ਦੀ ਧਾਰਣਾ ਨੂੰ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਹੈ। ਗੀਡਾੱਕਸ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾੱਡ ਪ੍ਰਕਰਮਾ ਅਤੇ ਸੈੱਲਾਂ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਬਹੁਤ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ।

ਅਭਿਆਸ

8.1	ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ੀਜ ਵਿੱਚ ਹਰ ਇੱਕ ਰੇਖਾ ਅੰਕਿਤ ਤੱਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਨਿਰਧਾਰਣ ਕਰੋ।
	(ੳ) $\operatorname{NaH}_2\underline{PO}_4$ (ਅ) $\operatorname{NaH}\underline{SO}_4$ (ੲ) $\operatorname{H}_4\underline{P}_2O_7$ (用) $\operatorname{K}_2\underline{Mn}O_4$
	$(\overline{\mathbf{J}}) \operatorname{Ca}\underline{O}_2 \qquad (\overline{\mathbf{a}}) \operatorname{Na}\underline{B}\underline{H}_4 \qquad (\underline{4}) \operatorname{H}_2\underline{S}_2\underline{O}_7 \qquad (\overline{\mathbf{d}}) \operatorname{KAl}(\underline{SO}_4)_2 \cdot 12 \operatorname{H}_2O$
8.2	ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਰੇਖਾ—ਅੰਕਿਤ ਤੱਤਾਂ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਕੀ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਨੂੰ ਤੁਸੀਂ ਕਿਵੇਂ ਪ੍ਰਾਪਤ
	ਕਰਦੇ ਹੋ ?
	$(\boldsymbol{\vartheta}) \mathrm{KI}_{3} (\boldsymbol{\mathfrak{M}}) \mathrm{H}_{2}\underline{\mathrm{S}}_{4}\mathrm{O}_{6} (\boldsymbol{\mathfrak{T}}) \underline{\mathrm{Fe}}_{3}\mathrm{O}_{4} (\boldsymbol{\mathfrak{T}}) \underline{\mathrm{CH}}_{3}\underline{\mathrm{CH}}_{2}\mathrm{OH} (\boldsymbol{\mathfrak{J}}) \underline{\mathrm{CH}}_{3}\underline{\mathrm{COOH}}$
8.3	ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦਾ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਉਚਿਤ ਠਹਿਰਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼
	ਕਰੋ—
	$(\boldsymbol{\vartheta}) \qquad \operatorname{CuO}(\mathbf{s}) + \operatorname{H}_2(\mathbf{g}) \to \operatorname{Cu}(\mathbf{s}) + \operatorname{H}_2\operatorname{O}(\mathbf{g})$
	(\mathfrak{M}) $\operatorname{Fe}_2O_3(s) + 3CO(g) \rightarrow 2\operatorname{Fe}(s) + 3CO_2(g)$
	$({\bf E}) \qquad 4\mathrm{BCl}_3({\bf g}) \ + \ 3\mathrm{LiAlH}_4({\bf s}) \ \rightarrow 2\mathrm{B}_2\mathrm{H}_6({\bf g}) \ + \ 3\mathrm{LiCl}({\bf s}) \ + \ 3\mathrm{AlCl}_3({\bf s})$
	$(\mathbf{F}) \qquad 2\mathbf{K}(\mathbf{s}) + \mathbf{F}_2(\mathbf{g}) \rightarrow 2\mathbf{K}^+ \mathbf{F}^-(\mathbf{s})$
	$(\overline{\mathbf{J}}) \qquad 4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{NO}(g) + 6 \text{H}_2\text{O}(g)$
8.4	ਫਲੋਰੀਨ ਬਰਫ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ ਇਹ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦੀ ਹੈ—
	$H_2O(s) + F_2(g) \rightarrow HF(g) + HOF(g)$
	ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਦਾ ਲਘੂਆੱਕਸੀਕਰਣ ਉਚਿਤ ਠਹਿਰਾਓ।
8.5	H₂SO₅, Cr₂O7 ²⁻ ਅਤੇ NO₃ ਵਿੱਚ ਸਲਫਰ, ਕਰੋਮੀਅਮ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
	ਨਾਲ ਹੀ ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦੀ ਰਚਨਾ ਦੱਸੋ ਅਤੇ ਇਸ ਵਿੱਚ ਤਰਕਹੀਣਤਾ (Fallacy) ਦਾ ਸਪਸ਼ਟੀਕਰਣ ਦਿਓ।
8.6	ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸੂਤਰ ਲਿਖੋ—
	(ੳ) ਮਰਕਰੀ (II) ਕਲੋਰਾਈਡ (ਅ) ਨਿੱਕਲ (II) ਸਲਫੇਟ
	(ੲ) ਟਿਨ (IV) ਆੱਕਸਾਈਡ (ਸ) ਥੈਲਿਅਮ (I) ਸਲਫੇਟ
	(ਹ) ਆਇਰਨ (III) ਸਲਫੇਟ (ਕ) ਕਰੋਮਿਅਮ (III) ਆੱਕਸਾਈਡ
8.7	ਉਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਦੀ ਸੂਚੀ ਤਿਆਰ ਕਰੋ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕਾਰਬਨ –4 ਤੋਂ +4 ਤਕ ਦੀ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ –3 ਤੋਂ +5 ਤੱਕ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
8.8	ਆਪਣੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆਕਸਾਈਡ ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਲਘੂਕਾਰਕ
	ਦੋਵਾਂ ਹੀ ਰੂਪਾਂ ਵਿੱਚ ਕਿਰਿਆ ਕਰਦੇ ਹਨ, ਜਦ ਕਿ ਓਜ਼ੋਨ ਅਤੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਕੇਵਲ ਆੱਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ।

Downloaded from https:// www.studiestoday.com

ਕਿਓਂ ?

ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਵੇਖੋ— 8.9 (Θ) 6 CO₂(g) + 6H₂O(l) \rightarrow C₆ H₁₂ O₆(aq) + 6O₂(g) (\mathcal{M}) O₃(g) + H₂O₂(l) → H₂O(l) + 2O₂(g) ਦੱਸੋ ਕਿ ਇਨਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਲਿਖਣਾ ਵਧੇਰੇ ਉਚਿਤ ਕਿਉਂ ਹੈ ? $(\textcircled{P}) = 6CO_2(g) + 12H_2O(l) \rightarrow C_6 H_{12} O_6(aq) + 6H_2O(l) + 6O_2(g)$ $(\mathcal{M}) \quad O_{3}(g) + H_{2}O_{2}(l) \rightarrow H_{2}O(l) + O_{2}(g) + O_{2}(g)$ AgF, ਇੱਕ ਅਸਥਿਰ ਯੋਗਿਕ ਹੈ।ਜੇ ਇਹ ਬਣ ਜਾਏ, ਤਾਂ ਇਹ ਯੋਗਿਕ ਇੱਕ ਅਤਿ ਸ਼ਕਤੀਸ਼ਾਲੀ ਆੱਕਸੀਕਾਰਕ ਵਾਂਗ 8.10 ਕਾਰਜ ਕਰਦਾ ਹੈ। ਕਿਉਂ ? 8.11 ''ਜਦ ਵੀ ਇੱਕ ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਲਘੁਕਾਰਕ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਪੂਰੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਲਘੁਕਾਰਕ ਦਾ ਘੱਟ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਾ ਯੋਗਿਕ ਅਤੇ ਆੱਕਸੀਕਾਰਕ ਦਾ ਵੱਧ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਾ ਯੋਗਿਕ ਬਣਦਾ ਹੈ।'' ਇਸ ਕਥਨ ਦੀ ੳਚਿਤਤਾ ਭਿੰਨ ੳਦਾਹਰਨਾਂ ਦੇ ਕੇ ਦਿਓ। ਇਨ੍ਹਾਂ ਪੇਖਣਾਂ ਦੀ ਅਨੁਕੁਲਤਾ ਨੂੰ ਕਿਵੇਂ ਸਮਝਾਓਗੇ ? 8.12 (ੳ) ਭਾਵੇਂ ਖਾਰੀ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਅਤੇ ਤੇਜਾਬੀ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਦੋਵੇਂ ਹੀ ਆੱਕਸੀਕਾਰਕ ਹਨ। ਫਿਰ ਵੀ ਟੌਲੂਈਨ ਤੋਂ ਬੈਨਜ਼ੋਇਕ ਐਸਿਡ ਬਣਾਓਨ ਦੇ ਲਈ ਅਸੀਂ ਐਲਕੋਹਲਿਕ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਦੀ ਵਰਤੋਂ ਆੱਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਕਰਦੇ ਹਾਂ ? ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਲਘੁਆੱਕਸੀਕਰਣ ਸਮੀਕਰਣ ਦਿਓ। (ਅ)ਕਲੋਰਾਈਡ ਯਕਤ ਅਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਗਾੜਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਪਾਉਣ ਤੇ ਸਾਨੰ ਤਿੱਖੀ ਗੰਧ ਵਾਲੀ HCl ਗੈਸ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਜੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਬ੍ਰੋਮਾਈਡ ਮੌਜੂਦ ਹੋਵੇ ਤਾਂ ਸਾਨੂੰ ਬ੍ਰੋਮੀਨ ਦੇ ਨਾਲ ਵਾਸ਼ਪ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਕਿਉਂ ? ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ, ਲਘੁਕ੍ਰਿਤ, ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਲਘੁਕਾਰਕ ਪਦਾਰਥ ਪਛਾਣੋ— 8.13 (P) 2AgBr (s) + C₆H₆O₂(aq) \rightarrow 2Ag(s) + 2HBr (aq) + C₆H₄O₂(aq) (\mathfrak{M}) HCHO(l) + 2[Ag (NH₂)₂]⁺(aq) + 3OH⁻(aq) \rightarrow 2Ag(s) + HCOO⁻(aq) + 4NH₂(aq) $+ 2H_{2}O(l)$ (\mathfrak{F}) HCHO (l) + 2 Cu²⁺(aq) + 5 OH⁻(aq) \rightarrow Cu₂O(s) + HCOO⁻(aq) + 3H₂O(l) $(\pi) \operatorname{N_2H_4(l)} + \operatorname{2H_2O_2(l)} \rightarrow \operatorname{N_2(g)} + \operatorname{4H_2O(l)}$ $(\overline{J}) \operatorname{Pb}(s) + \operatorname{PbO}_2(s) + 2\operatorname{H}_2\operatorname{SO}_4(\operatorname{aq}) \rightarrow 2\operatorname{PbSO}_4(s) + 2\operatorname{H}_2O(l)$ ਹੇਠ ਲਿਖੀਆਂ ਪਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇੱਕ ਹੀ ਲਘਕਾਰਕ ਥਾਇਓਸਲਫੇਟ, ਆਇਓਡੀਨ ਅਤੇ ਬੋਮੀਨ ਨਾਲ ਵੱਖ-ਵੱਖ 8.14 ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਿਉਂ ਕਰਦਾ ਹੈ ? $2 S_2 O_3^{2-}(aq) + I_2(s) \rightarrow S_4 O_6^{2-}(aq) + 2I^{-}(aq)$ $S_2O_3^{2-}(aq) + 2Br_2(l) + 5 H_2O(l) \rightarrow 2SO_4^{2-}(aq) + 4Br(aq) + 10H(aq)$ ਪਤੀਕਿਰਿਆ ਦਿੰਦੇ ਹੋਏ ਸਿੱਧ ਕਰੋ ਕਿ ਹੈਲੋਜਨਾਂ ਵਿਚੋਂ ਫਲੋਰੀਨ ਸਭ ਤੋਂ ਉਤੱਮ ਆੱਕਸੀਕਾਰਕ ਹੈ ਅਤੇ ਹਾਈਡੋਹੈਲਿਕ 8.15 ਯੋਗਿਕਾਂ ਵਿੱਚੋਂ ਹਾਈਡ੍ਰੋਆਇਓਡਿਕ ਐਸਿਡ ਉੱਤਮ ਲਘੁਕਾਰਕ ਹੈ। ਹੇਠ ਲਿਖੀਆਂ ਪਤੀਕਿਰਿਆਵਾਂ ਕਿਉਂ ਹੰਦੀਆਂ ਹਨ-8.16 XeO_6^{4-} (aq) + 2F⁻ (aq) + 6H⁺(aq) $\rightarrow XeO_3(g)$ + F₂(g) + 3H₂O(l) ਯੋਗਿਕ Na₄XeO₆ (ਜਿਸ ਦਾ ਇੱਕ ਭਾਗ XeO₆⁴⁻ ਹੈ) ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਕੀ ਨਿਸ਼ਕਰਸ਼ ਕੱਢ ਸਕਦੇ ਹੋ ? ਹੇਠ ਲਿਖੀਆਂ ਪਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ— 8.17 (\mathfrak{P}) H₃PO₂(aq) + 4 AgNO₃(aq) + 2 H₂O(l) \rightarrow H₃PO₄(aq) + 4Ag(s) + 4HNO₃(aq) $(\mathcal{H}) H_3PO_2(aq) + 2CuSO_4(aq) + 2 H_2O(l) \rightarrow H_3PO_4(aq) + 2Cu(s) + H_2SO_4(aq)$ (\mathfrak{F}) C₆H₅CHO(l) + 2[Ag (NH₃)₂]⁺(aq) + 3OH⁻(aq) \rightarrow C₆H₅COO⁻(aq) + 2Ag(s) + $4NH_3$ (aq) + 2 H₂O(l) (ਸ) $C_{e}H_{5}CHO(l) + 2Cu^{2+}(aq) + 5OH^{-}(aq) \rightarrow ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ |$ ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਤੋਂ Ag⁺ ਅਤੇ Cu²⁺ ਦੇ ਵਿਹਾਰ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਨਿਸ਼ਕਰਸ਼ ਕਢੋ।

Downloaded from https:// www.studiestoday.com

273

274

8.18	ਆਇਨ ਇਲੈਕਟ੍ਰਾਨ ਵਿਧੀ ਦੁਆਰਾ ਹੇਠ ਲਿਖੀਆਂ ਰੀਡਾੱਕਸ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰੋ—
	$(\Theta) \text{ MnO}_4^-(\text{aq}) + I^-(\text{aq}) \rightarrow \text{ MnO}_2^-(\text{s}) + I_2(\text{s})$ (ਖਾਰੀ ਅਧਿਅਮ)
	(ਅ) MnO₄ (aq) + SO₂ (g) → Mn ²⁺ (aq) + HSO₄ (aq) (ਤੇਜਾਬੀ ਅਧਿਅਮ)
	(ੲ) H_2O_2 (aq) + Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq) + H_2O (l) (उंनगधी अपिਅਮ)
	(ਸ) Cr ₂ O ₇ ²⁻ (aq) + SO ₂ (g) → Cr ³⁺ (aq) + SO ₄ ²⁻ (aq) (Эंਜਾਬੀ ਅਧਿਅਮ)
8.19	ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਸਮੀਕਰਣਾਂ ਨੂੰ ਅਇਨ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਆੱਕਸੀਕਰਣ ਸੰਖਿਆ ਵਿਧੀ (ਖਾਰੀ ਅਧਿਅਮ ਵਿੱਚ) ਦੁਆਰਾ ਸੰਤੁਲਿਤ ਕਰੋ ਅਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਲਘੂਕਾਰਕ ਦੀ ਪਛਾਣ ਕਰੋ।
	$\langle \Theta \rangle P_4(s) + OH^{-}(aq) \rightarrow PH_3(g) + HPO_2^{-}(aq)$
	(ਅ) $N_2H_4(l) + ClO_3(aq) \rightarrow NO(g) + Cl(g)$
	$(\mathfrak{E}) \operatorname{Cl}_2\operatorname{O}_7(\mathfrak{g}) + \operatorname{H}_2\operatorname{O}_2(\mathfrak{aq}) \rightarrow \operatorname{ClO}_2^-(\mathfrak{aq}) + \operatorname{O}_2(\mathfrak{g}) + \operatorname{H}^+(\mathfrak{aq})$
8.20	ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕਿਹੜੀਆਂ ਸੂਚਨਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ—
	$(CN)_2(g) + 2OH^{-}(aq) \rightarrow CN^{-}(aq) + CNO^{-}(aq) + H_2O(l)$
8.21	Mn ^{³+} ਆਇਨ ਘੋਲ ਵਿੱਚ ਅਸਥਾਈ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਦੁਆਰਾ Mn ²⁺ , MnO₂ ਅਤੇ H ⁺ ਦਿੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਆਇਨਿਕ ਸਮੀਕਰਣ ਲਿਖੋ।
8.22	Cs, Ne, I ਅਤੇ F ਵਿਚੋਂ ਅਜਿਹੇ ਤੱਤ ਦੀ ਪਛਾਣ ਕਰੋ, ਜੋ
	(ੳ) ਸਿਰਫ ਰਿਣਾਤਮਕ ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।
	(ਅ) ਸਿਰਫ ਧਨਾਤਮਕ ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।
	(ੲ) ਰਿਣਾਤਮਕ ਅਤੇ ਧਨਾਤਮਕ ਦੋਵੇਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।
8.23	(ਸ) ਨਾ ਰਿਣਾਤਮਕ ਅਤੇ ਨਾ ਹੀ ਧਨਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਪਾਣੀ ਦੀ ਸ਼ੁਧੀਕਰਣ ਵਿੱਚ ਕਲੋਰੀਨ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਕਲੋਰੀਨ ਬਹੁਤ ਜਿਆਦਾ ਹਾਨੀਕਾਰਕ ਹੁੰਦੀ ਹੈ। ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਤੋਂ ਹਾਨੀ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਪਾਣੀ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਇਸ ਲਘੂਆੱਕਸੀਕਰਣ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਲਿਖੋ।
8.24	ਇਸ ਪੁਸਤਕ ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਅਵਰਤੀ ਸਾਰਣੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾ ਦੇ ਉੱਤਰ ਦਿਓ—
	(ੳ) ਉਨ੍ਹਾਂ ਸੰਭਵ ਅਧਾਤਾਂ ਦੇ ਨਾਮ ਦਿਓ, ਜੋ ਅਸਮਾਨ ਅਨੁਪਾਤਨ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੀਆਂ ਹੋਣ।
	(ਅ) ਕੋਈ ਤਿੰਨ ਧਾਤਾਂ ਦੇ ਨਾਮ ਦਿਓ, ਜੋ ਅਸਮਾਨ ਅਨੁਪਾਤ ਪ੍ਰਤੀਕਿਰਿਆ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੀਆਂ ਹੋਣ।
8.25	ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਦੀ ਅੋਸਟਵਾਲਡ ਵਿਧੀ ਦੇ ਪਹਿਲੇ ਸਟੈੱਪ ਵਿੱਚ ਅਮੋਨੀਆ ਗੈਸ ਦੇ ਆੱਕਸੀਜਨ ਗੈਸ ਦੇ ਆੱਕਸੀਕਰਣ ਨਾਲ ਨਾਇਟ੍ਰਿਕ ਆੱਕਸਾਈਡ ਅਤੇ ਜਲਵਾਸ਼ਪ ਬਣਦਾ ਹੈ। 10.00 ਗ੍ਰਾਮ ਅਮੋਨੀਆ ਅਤੇ 20.00 ਗ੍ਰਾਮ ਆੱਕਸੀਜਨ ਦੁਆਰਾ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ ਦੀ ਕਿੰਨੀ ਅਧਿਕਤਮ ਮਾਤਰਾ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦੀ ਹੈ ?
8.26	ਸਾਰਣੀ 8.1 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਸਟੈਂਡਰਡ ਪੋਟੈਂਸ਼ਲਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਨੁਮਾਨ ਲਾਓ ਕਿ ਕੀ ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਸੰਭਵ ਹੈ ?
	(ੳ) Fe ³⁺ (aq) ਅਤੇ I ⁻ (aq)
	(ਅ) Ag⁺(aq) ਅਤੇ Cu(s)
	(ੲ) Fe ³⁺ (aq) ਅਤੇ Cu(s)
	(ਸ) Ag(s) ਅਤੇ Fe ³⁺ (aq)
	(\mathbf{J}) $\mathrm{Br}_2(\mathrm{aq})$ ਅਤੇ $\mathrm{Fe}^{2*}(\mathrm{aq}).$

0.07	ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਤੋਂ ਪ੍ਰਾਪਤ ਉਪਜਾਂ ਦਾ ਨਾਮ ਦਸੋ—
8.27	`
	(i) ਸਿਲਵਰ ਇਲੈਕਟ੍ਰਾੱਡ ਦੇ ਨਾਲ $ m AgNO_3$ ਦਾ ਜਲੀ ਘੋਲ
	(ii) ਪਲੈਟੀਨਮ ਇਲੈਕਟ੍ਰਾੱਡ ਦੇ ਨਾਲ ${ m AgNO}_{_3}$ ਦਾ ਜਲੀ ਘੋਲ
	(iii) ਪਲੈਟੀਨਮ ਇਲੈਕਟ੍ਰਾੱਡ ਦੇ ਨਾਲ $ m H_2SO_4$ ਦਾ ਹਲਕਾ ਘੋਲ
	(iv) ਪਲੈਟੀਨਮ ਇਲੈਕਟ੍ਰਾੱਡ ਦੇ ਨਾਲ ${ m CuCl}_2$ ਦਾ ਜਲੀ ਘੋਲ।
8.28	ਹੇਠ ਲਿਖੀਆਂ ਧਾਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਲੂਣਾਂ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਵਿਸਥਾਪਨ ਦੀ ਸਮਰਥਾ ਦਾ ਕ੍ਰਮ ਲਿਖੋ—
	Al, Cu, Fe, Mg ਅਤੇ Zn.
8.29	ਹੇਠ ਦਿੱਤੀਆਂ ਗਈਆਂ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸ਼ਲ ਦੇ ਅਧਾਰ ਤੇ ਧਾਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਵਧਦੀ ਲਘੁਕਰਣ ਸਮਰਥਾ ਦੇ ਕ੍ਰਮ
	ਵਿੱਚ ਲਿਖੋ–
	$K^{+}/K = -2.93V, Ag^{+}/Ag = 0.80V,$
	$Hg^{2+}/Hg = 0.79V$
	$Mg^{2+}/Mg = -2.37V. Cr^{3+}/Cr = -0.74V$
8.30	ਉਸ ਗੈਲਵੈਨੀ ਸੈੱਲ ਨੂੰ ਚਿਤਰਤ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ–
	$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$
	ਹੁਣ ਦੱਸੋ ਕਿ–
	(ੳ) ਕਿਹੜੀ ਇਲੈਕਟ੍ਰਾੱਡ ਰਿਣ ਚਾਰਜਿਤ ਹੈ ?
	(ਅ) ਸੈੱਲ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਵਾਹਕ ਕੌਣ ਹਨ ?
	(ੲ) ਹਰ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਡ ਉੱਤੇ ਹੋਣ ਵਾਲੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਕੀ ਹਨ ?

Downloaded from https:// www.studiestoday.com

275

ਯੁਨਿਟ 9

ਹਾਈਡ੍ਰੋਜਨ (Hydrogen)

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ

- ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਸਥਿਤੀ ਦੀ ਗਿਆਤ ਧਾਰਣਾਵਾਂ ਨੂੰ ਦੱਸ ਸਕੋਗੇ;
- ਹਾਈ ਡ੍ਰੋਜਨ ਨੂੰ ਘੱਟ ਅਤੇ ਵਪਾਰਿਕ ਪੱਧਰ ਤੇ ਬਨਾਉਣ ਦੀਆਂ ਵਿਧੀਆਂ ਦਾ, ਉਸ ਦੇ ਸਮ ਸਥਾਨਕਾਂ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ;
- ਹਾਈ ਡ੍ਰੋਜਨ ਕਿਸ ਤਰ੍ਹਾਂ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਨਾਲ ਸੰਜੋਗ ਕਰਕੇ ਅਇਣਿਕ, ਅਣਵੀ ਅਤੇ ਸਟੋਕਿੳਮੀਟਰਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਬਣਾਉਂਦੀ ਹੈ, ਇਸ ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਇਸ ਦੇ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਲਾਭਕਾਰੀ ਪਦਾਰਥਾਂ ਅਤੇ ਨਵੀਂ ਤਕਨੀਕਾਂ ਦੇ ਉਤਪਾਦਨ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ;
- ਵਾਤਾਵਰਣੀ ਪਾਣੀ ਦੀ ਗੁਣਵਤਾ ਕਿਸ ਤਰ੍ਹਾਂ ਭਿੰਨ ਭਿੰਨ ਘੁਲਿਤ ਪਦਾਰਥਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਇਹ ਸਮਝਾ ਸਕੋਗੇ। ਨਾਲ ਹੀ ਕਠੋਰ ਅਤੇ ਨਰਮ ਪਾਣੀ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ ਅਤੇ ਪਾਣੀ ਨੂੰ ਨਰਮ ਕਰਨ ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਭਾਰੇ ਪਾਣੀ ਅਤੇ ਉਸਦੇ ਮਹਤੱਵ ਦੇ ਸੰਬਧ ਵਿੱਚ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰ ਸਕੋਗੇ;
- ਹਾਈ ਡ੍ਰੋਜਨ ਪਰ ਆਕਸਾਈਡ ਦੀ ਰਚਨਾ, ਸਮਝ ਸਕੋਗੇ ਅਤੇ ਇਸ ਨੂੰ ਬਨਾਉਣ ਦੀਆਂ ਵਿਧੀਆਂ ਅਤੇ ਇਸ ਦੇ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਉੱਤੇ ਲਾਭਕਾਰੀ ਰਸਾਇਣਾਂ ਦੇ ਉਤਪਾਦਨ ਅਤੇ ਵਾਤਾਵਰਨ ਦੀ ਸਵੱਛਤਾ ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਇਲੈਕਟਾਨ ਅਧੂਰੇ, ਇਲੇਕਟ੍ਰੈਾਨ ਭਰਪੂਰ, ਇਲੌਕਟ੍ਰਾਨ ਸਮਰੱਥ, ਹਾਈ ਡ੍ਰੋਜੀਨੇਸ਼ਨ, ਹਾਈਡ੍ਰੋਜਨ ਅਰਥ ਵਿਵਸਥਾ ਅਦਿ ਟਰਮਾਂ ਨੂੰ ਸਮਝ ਸਕੋਗੇ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਵਰਤ ਸਕੋਗੇ;
- ਪਾਣੀ ਦੀ ਬਣਤਰ ਦੇ ਅਧਾਰ ਤੇ ਉਸ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾ ਦਾਂ ਵਰਣਨ ਕਰ ਸਕੋਗੇ।

ਹਾਈਡ੍ਰੋਜਨ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਅਤਿ ਭਰਪੂਰ ਤੱਤ ਹੈ। ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਉਤੇ ਭਰਪੂਰਤਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਇਹ ਤੀਜੇ ਸਥਾਨ ਤੇ ਹੈ ਇਹ ਭਵਿੱਖ ਵਿੱਚ ਊਰਜਾ ਦੇ ਪ੍ਰਮੁੱਖ ਸਰੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਨਜਰ ਅਉਂਦੇ ਹੈ।

ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਸਾਰੇ ਗਿਅਤ ਤੱਤਾਂ ਵਿੱਚੋ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪਰਮਾਣੂ ਬਣਤਰ ਸਭ ਤੋਂ ਸਰਲ ਹੈ। ਇਸ ਦੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਕ ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ। ਤੱਤ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਹੋਂਦ ਦੇ ਪਰਮਾਣਵੀਂ H₂ ਅਣੂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ, ਜਿਨ ਨੂੰ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ H₂ ਕਹਿੰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਇਹ ਜਾਣਦੇ ਹੋ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਦੂਜੇ ਤੱਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ ? ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਊਰਜਾ ਸਰੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰਕੇ ਵੱਡੇ ਪਧੱਰ ਤੱਕ ਸਰਬ ਵਿਆਪੀ ਊਰਜਾ ਦੀ ਪੂਰਤੀ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਇਕਾਈ ਵਿੱਚ ਤੁਸੀਂ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਉਦਯੋਗਿਕ ਮਹੱਤਵ ਦੇ ਬਾਰੇ ਅਧਿਐਨ ਕਰ ਸਕੋਗੇ।

9.1 ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਸਥਾਨ

ਹਾਈਡ੍ਰੋਜਨ ਅਵਰਤੀ ਸਾਰਣੀ ਦਾ ਪਹਿਲਾ ਤੱਤ ਹੈ, ਫਿਰ ਵੀ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਉਚਿਤ ਸਥਾਨ ਚਰਚਾ ਦਾ ਵਿਸ਼ਾ ਰਿਹਾ ਹੈ। ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ, ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੱਤ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਤੇ ਵਿਵਸਥਿਤ ਰਹਿੰਦੇ ਹਨ।

ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ 1s¹ ਹੈ। ਇੱਕ ਪਾਸੇ ਇਸ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਖਾਰੀ ਧਾਤਾਂ (ns¹) ਦੇ ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਜੋ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਪਹਿਲੇ ਗਰੁੱਪ ਨਾਲ ਸਬੰਧਿਤ ਹੈ, ਦੂਜੇ ਪਾਸੇ ਹੈਲੋਜਨਾਂ ਦੇ ਵਾਂਗ (ns²np⁵ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਨਾਲ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਸਤਾਰਵੇਂ ਗਰੁੱਪ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਜੋ ਸੰਗਤ ਨੋਬਲ ਗੈਸ ਤਰਤੀਬ ਤੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਘੱਟ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਖਾਰੀ ਧਾਤਾਂ ਨਾਲ ਸਮਾਨਤਾ ਵਿਖਾਉਂਦੀ ਹੈ, ਜੋ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਗੁਆ ਦੇ ਇੱਕ ਧਨੀ ਅਇਨ ਬਣਾਉਂਦੇ ਹਨ। ਨਾਲ ਹੀ ਇਹ ਹੈਲੋਜਨ ਵਾਂਗ ਇੱਕ ਇਲੈਕਟ੍ਰਾਂਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਇੱਕ ਗਿਣੀ ਅਇਨ ਬਣਾਉਂਦੀ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਵਾਂਗ ਹਾਈਡ੍ਰੋਜਨ, ਅੱਕਸਾਈਡ, ਹੇਲਾਈਡ ਅਤੇ ਸਲਫਾਈਡ ਬਣਾਉਂਦੀ ਹੈ। ਫਿਰ ਵੀ ਆਮ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਇਸ ਦੀ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਉਲਟ ਉੱਚੀ ਅਇਨਕ ਐਨਥੈਲਪੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਧਾਤਵੀ ਲੱਛਣ ਵੀ ਨਹੀਂ ਦਰਸਾਉਂਦੀ। ਅਸਲ ਵਿੱਚ ਆਇਨਨ ਊਰਜਾ ਦੀ ਟਰਮ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਹੈਲੋਜਨਾਂ ਨਾਲ ਵਧੇਰੇ ਸਮਾਨਤਾ ਦਰਸਾਉਂਦੀ ਹੈ।

Li ਦੀ ∆_iH 520 ਕਿਲੋ ਜੂਲ ਪ੍ਰਤੀ ਮੋਲ, F ਦੀ 1680 ਕਿਲੋ ਜੂਲ ਪ੍ਰਤੀਮੋਲ ਅਤੇ H ਦੀ 1312 ਕਿਲੋ ਜੂਲ ਪ੍ਰਤੀ ਮੋਲ ਹੈ। ਇਹ ਹੈਲੋਜਨ ਦੇ ਵਾਂਗ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂ ਅਤੇ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਨਾਲ ਜੁੜ ਕੇ ਹਾਈਡ੍ਰਾਈਡ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਸਹਿਸੰਯੋਜੀ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ। ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਅਧਾਰ ਤੇ ਇਹ ਹੈਲੋਜਨਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੈ।

ਕੁਝ ਸੀਮਾ ਤੱਕ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਹੈਲੋਜਨਾਂ ਨਾਲ ਸਮਾਨਤਾ ਦਰਸਾਉਣ ਦੇ ਬਾਵਜੂਦ ਉਨ੍ਹਾਂ ਨਾਲੋਂ ਅਸਮਾਨਤਾਵਾਂ ਵੀ ਦਰਸਾਉਂਦੀ ਹੈ। ਹੁਣ ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ ਇਸ ਨੂੰ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਕਿਥੇ ਰੱਖਿਆ ਜਾਵੇ ? ਹਾਈਡ੍ਰੋਜਨ ਇਲੈਕਟ੍ਰਾਨ ਤਿਆਗ ਕੇ ਨਿਊਕਲੀਅਸ (H⁺) ਦਿੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਅਕਾਰ ~1.5 × 10⁻³ pm ਹੈ। ਜੋ ਸਧਾਰਣ ਪਰਮਾਣਵੀਂ ਅਤੇ ਆਇਨਿਕ ਅਕਾਰ 50 ਤੋਂ 200pm. ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਛੋਟਾ ਹੈ। ਨਤੀਜੇ ਵਜੋ H⁺ ਸੁਤੰਤਰ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਮਿਲਦਾ ਅਤੇ ਦੂਜੇ ਪਰਮਾਣੂਆਂ ਜਾ ਅਣੂਆਂ ਨਾਲ ਜੁੜਿਆ ਰਹਿੰਦਾ ਹੈ। ਇੰਜ ਇਸ ਦੇ ਅਣੋਖੇ ਵਿਹਾਰ ਦੇ ਕਾਰਣ ਇਸ ਨੂੰ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਖ ਰੱਖਿਆ ਗਿਆ ਹੈ। (ਇਕਾਈ 3)।

9.2 ਡਾਈਹਾਈਡ੍ਰੋਜਨ H_2

9.2.1 ਉਪਸਥਿਤੀ

ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਸਭ ਤੋਂ ਵਧ ਮੌਜੂਦ ਤੱਤ (ਬ੍ਰਹਿਮੰਡ ਦੇ ਸੰਪੂਰਣ ਪੁੰਜ ਦਾ 70%) ਹੈ ਅਤੇ ਇਹ ਸੂਰਜੀ ਵਾਯੂਮੰਡਲ ਦਾ ਪ੍ਰਮੁੱਖ ਤੱਤ ਹੈ। ਵੱਡੇ ਗ੍ਰਹਿਆਂ-ਜੁਪੀਟਰ (Jupiter) ਅਤੇ ਸ਼ਨੀ (Saturn) ਉੱਤੇ ਵਧੇਰੇ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਹੁੰਦੀ ਹੈ, ਹਾਂਲਾਂਕਿ ਅਪਣੀ ਹਲਕੀ ਪ੍ਕਿਰਤੀ ਦੇ ਕਾਰਣ ਇਹ ਧਰਤੀ ਦੇ ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਘੱਟ ਮਾਤਰਾ (ਪੁੰਜਅਨੁਸਾਰ ਲਗਪਗ 0.15%) ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਸੰਯੋਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਤੱਤ ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਅਤੇ ਮਹਾਂਸਾਗਰ ਵਿੱਚ 15.4 ਪ੍ਤੀਸ਼ਤ ਭਾਗ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀ ਹੈ। ਸੰਯੋਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਪਾਣੀ ਦੇ ਇਲਾਵਾ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਸੈੱਲਾਂ, ਕਾਰਬੋਹਾਈਡ੍ਰੇਟ, ਪ੍ਰੋਟੀਨ, ਹਾਈਡ੍ਰਾਈਡ, ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਅਤੇ ਕਈ ਹੋਰ ਯੋਗਿਕਾਂ ਵਿੱਚ ਮਿਲਦੀ ਹੈ।

9.2.2 ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਮਸਥਾਨਿਕ

ਹਾਈਡੋ੍ਜਨ ਦੇ ਤਿੰਨ ਸਮਸਥਾਨਿਕ ਪ੍ਰੋਟਿਅਮ ¹₁H, ਡਿਊਟੀਗੀਅਮ ²₁H ਜਾ D ਅਤੇ ਟ੍ਰਿਟਿਅਮ ³₁H ਜਾਂ T. ਹੁੰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਅਨੁਮਾਨ ਲਾ ਸਕਦੇ ਹੌ ਕਿ ਇਹ ਸਮਸਥਾਨਿਕ ਇੱਕ ਦੂਜੇ ਤੋਂ ਕਿਵੇ ਵੱਖ ਹੁੰਦੇ ਹਨ ? ਇਹ ਤਿੰਨੇ ਸਮਸਸਥਨਿਕ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ ਇੱਕ ਦੂਜੇ ਨਾਲੋਂ ਵੱਖ ਹੁੰਦੇ ਹਨ। ਆਮ ਹਾਈਡੋ੍ਜਨ (ਪ੍ਰੋਟਿਅਮ) ਵਿੱਚ ਕੋਈ ਨਿਊਟ੍ਰਾਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਡਿਊਟੀਰਿਅਮ (ਜਿਸ ਨੂੰ ਭਾਰੀ ਹਾਈਡੋ੍ਜਨ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਵਿੱਚ ਇਕ ਅਤੇ ਟ੍ਰਿਟਿਅਮ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਦੋ ਨਿਊਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ। ਸੰਨ 1934 ਵਿੱਚ ਇੱਕ ਅਮਰੀਕੀ ਵਿਗਿਆਨੀ ਹੇਰਾਲਡ ਸੀ. ਯੂਰੇ ਨੂੰ ਭੋਤਿਕ ਵਿਧੀਆਂ ਨਾਲ ਦੋ ਪਰਮਾਣੂ ਪੁੰਜ ਵਾਲੀ ਹਾਈਡੋ੍ਜਨ ਦੇ ਸਮਸਥਾਨਿਕ ਦੇ ਵੱਖ ਕਰਨ ਤੇ ਨੋਬਲ ਪੁਰਸਕਾਰ ਪ੍ਰਾਪਤ ਹੋਇਆ ਸੀ।

ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪ੍ਰਮੁੱਖ ਸਮਸਥਾਨਿਕ ਪ੍ਰੋਟਿਅਮ ਹੈ। ਡਿਊਟੀ ਰਿਅਮ ਲੌਕਿਕ ਹਾਈਡ੍ਰੋਜਨ ਵਿੱਚ 0.0156% ਪ੍ਰਤੀਸ਼ਤ ਮੁੱਖ ਰੂਪ ਵਿੱਚ HD ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਟ੍ਰਿਟਿਅਮ ਦੀ ਸੰਘਣਤਾ ਲਗਪਗ 10¹⁸ ਪ੍ਰੋਟਿਅਮ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇੱਕ ਟ੍ਰਿਟਿਅਮ ਦੇ ਪਰਮਾਣੂ ਦੀ ਹੈ। ਇਨਾਂ ਸਮਸਥਾਨਿਕਾਂ ਵਿਚੋਂ ਸਿਰਫ ਟ੍ਰਿਟਿਅਮ ਰੇਡੀਓਐਕਟਿਵ (t₁₂, =12.33 ਸਾਲ) ਹੈ ਅਤੇ ਘੱਟ ਊਰਜਾ ਵਾਲੇ β⁻ ਕਣਾਂ ਨੂੰ ਉਤਸਰਜਿਤ ਕਰਦਾ ਹੈ।

ਗੁਣ	ਹਾਈਡ੍ਰੋਜਨ (H)	ਡਿਊਟੀਰਿਅਮ	ਟ੍ਰਿਟਿਅਮ
ਸਾਪੇਖਕ ਬਹੁਲਤਾ 99.985	0.0156	10^{-15}	
ਸਾਪੇਖਕ ਪਰਮਾਣੂ ਭਾਗ (g mol ⁻¹)	1.008	2.014	3.016
ਪਿਘਲਾੳ ਦਰਜਾ / K	13.96	18.73	20.62
ਉਬਾਲ ਦਰਜਾ / K	20.39	23.67	25.0
ਪਿਘਲਣ ਐਨ ਥੈਲਪੀ / kJ mol⁻¹	0.09	0.18	0.27
ਵਾਸਪਣ ਐਨਥੈਲਪੀ /kJ mol ⁻¹	0.117	0.197	-
ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ/ $\mathrm{kJ} \mathrm{mol}^{-1}$	0.904	1.226	-
ਅੰਤਰ ਨਿਊਕਲੀਅਸ ਦੂਰੀ /pm			
ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ/kJ mol ⁻¹ (298.2K ਉੱਤੇ)	435.88	443.35	-
ਅੰਤਰ ਨਿਊਕਲੀਅਸ ਦੂਰੀ/pm	74.14	74.14	-
ਆਇਨਨ ਐਨਥੈਲਪੀ/kJ mol ⁻¹	1312	-	-
ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ/kJ mol ⁻¹	-73	-	-
ਸਹਿਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ/pm	37	-	-
ਅਇਨਿਕ ਅਰਥ ਵਿਆਸ/pm	208		

ਸਾਰਣੀ 9.1 ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਮਸਥਾਨਕਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣ

278

ਇਨ੍ਹਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਵੀ ਲਗਭਗ ਸਮਾਨ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਸਿਰਫ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਗਤੀ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਆਪਣੇ ਵੱਖ ਬੰਧਨ–ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਭਿੰਨ ਹੁੰਦੀ ਹੈ (ਸਾਰਣੀ 9.1) ਜਿਸ ਕਾਰਣ ਭੌਤਿਕ ਗੁਣਾਂ ਵਿੱਚ ਇਹ ਸਮਸਥਾਨਕ ਪਰਮਾਣੂ–ਭਾਰ ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਣ ਭਿੰਨਤਾ ਦਰਸਾਉਂਦੇ ਹਨ।

9.3 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਬਨਾਉਣ ਦੀਆਂ ਵਿਧੀਆਂ

ਧਾਤਾਂ ਅਤੇ ਧਾਤ ਹਾਈਡ੍ਰਾਈਡਾਂ ਤੋ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਬਣਾਉਨ ਦੀਆਂ ਅਨੇਕਾਂ ਵਿਧੀਆਂ ਹਨ।

9.3.1 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਬਣਾਉਣ ਦੀ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿਧੀ

 (i) ਆਮ ਤੋਰ ਤੇ ਇਹ ਦਾਣੇਦਾਰ ਜਿੰਕ ਦੀ ਹਲਕੇ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਬਣਾਈ ਜਾਂਦੀ ਹੈ।

 $Zn(s) \ + \ 2H^{\text{+}}(aq) \ \rightarrow \ Zn^{2\text{+}}(aq) \ + \ H_2(g)$

(ii) ਇਹ ਜ਼ਿੰਕ ਧਾਤ ਦੀ ਜਲੀ ਖਾਰ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਵੀ ਬਣਾਈ ਜਾਂਦੀ ਹੈ ?

 $Zn(s) + 2NaOH(aq) \rightarrow Na_2ZnO_2(aq) + H_2(g)$ หิธาิพห โก้สิc

9.3.2 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਾ ਵਪਾਰਕ ਉਤਪਾਦਨ

- ਇਸ ਦੇ ਲਈ ਲੋੜੀਂਦੇ ਸਧਾਰਣ ਪ੍ਰਕਰਮਾਂ ਦੀ ਰੂਪਰੇਖਾ ਹੇਠਾਂ ਦਿੱਤੀ ਜਾ ਰਹੀ ਹੈ–
- (i) ਪਲੈਟੀਨਮ ਇਲੈਕਟ੍ਰਾਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਤੇਜਾਬੀ ਪਾਣੀ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਨਾਲ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

$$2H_2O(1)$$
—ਬਿਜਲਈ ਅਪਘਟਨ
ਬੋੜੀ ਮਾਤਰਾ ਵਿੱਚ ਤੇਜਾਬ ਖ਼ਾਰ $\rightarrow 2H_2(g) + O_2(g)$

- (ii) ਅਤਿ ਸ਼ੁਧ ਹਾਈਡ੍ਰੋਜਨ (>99.95%) ਨਿਕੱਲ ਇਲੈਕਟ੍ਰਾਂਡਾਂ ਦੇ ਵਿੱਚ ਰੱਖੇ ਬੇਰੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੇ ਜਲੀ ਘੋਲ ਨੂੰ ਗਰਮ ਅਣਸਥਾ ਵਿੱਚ ਬਿਜਲਈ ਅਪਘਟਨ ਕਰਵਾ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- (iii) ਬਰਾਈਨ ਘੋਲ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਦੁਆਰਾ ਕਲੋਰੀਨ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦੇ ਉਦਯੋਗਿਕ ਨਿਰਮਾਣ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਉਪ-ਉਪਜ (by-product) ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਬਿਜਲਈ ਅਪਘਟਨ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਂ ਹਨ :

ਐਨੋਡ ਉੱਤੇ : $2CI(aq) \rightarrow Cl_2(g) + 2e$

2Na⁺ (aq) + 2Cl⁻(aq) + 2H₂O(l)
$$\downarrow$$

$$Cl_2(g) + H_2(g) + 2Na^{+}(aq) + 2OH^{-}(aq)$$

(iv) ਹਾਈਡੋ੍ਕਾਰਬਨ ਜਾਂ ਕੋਕ ਦੀ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਭਾਫ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਾਉਣ ਤੇ ਡਾਈਹਾਈਡੋ੍ਜਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

$$C_nH_{2n+2} + nH_2O \xrightarrow{1270K}_{Ni} \rightarrow nCO + (2n+1)H_2$$

ਉਦਾਹਰਣ ਵਜੋਂ

$$CH_4(g) + H_2O(g) \xrightarrow{1270K} CO(g) + 3H_2(g)$$

CO ਅਤੇ H_2 ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਵਾਟਰਗੈਸ ਕਹਿੰਦੇ ਹਨ। CO ਅਤੇ H_2 ਦਾ ਇਹ ਮਿਸ਼ਰਣ ਮੀਥੇਨੋਲ ਅਤੇ ਹੋਰ ਕਈ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਦੀ ਕੰਮ ਅਉਂਦਾ ਹੈ। ਇੰਜ ਇਸ ਨੂੰ ਸੰਸਲੇਸ਼ਣ ਗੈਸ ਜਾਂ ਸਿਨਗੈਸ (syngas) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਅੱਜਕਲ ਸਿਨਗੈਸ ਵਹਿਭਮਲ (Sewage waste) ਅਖਬਾਰ, ਲਕੜੀ ਦਾ ਬੁਰਾਦਾ, ਲਕੜੀ ਦੀ ਛਿੱਲ ਅਦਿ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਕੋਲ ਵਿੱਚ ਸਿਨਗੈਸ ਦਾ ਉਤਪਾਦਨ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕੋਲ-ਗੈਸੀਕਰਣ 'coal gasification' ਕਹਿੰਦੇ ਹਨ।

$$C(s) + H_2O(g) \xrightarrow{1270K} CO(g) + H_2(g)$$

ਸਿਨਗੈਸ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਮੋਨੋਅੱਕਸਾਈਡ ਨੂੰ ਅਇਰਨ ਕਰੋਮੇਟ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਭਾਫ਼ ਨਾਲ ਕਿਰਿਆ ਕਰਨ ਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਾ ਉਤਪਾਦਨ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

$$CO(g) + H_2O(g) \xrightarrow{673K} CO_2(g) + H_2(g)$$

ਇਸ ਨੂੰ ਵਾਟਰ ਗੈਸ ਸ਼ਿਫਟ ਪ੍ਰਤੀਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ। ਵਰਤਮਾਨ ਸਮੇਂ ਵਿੱਚ ~77% H₂ ਦਾ ਉਦਯੋਗਿਕ ਉਤਪਾਦਨ ਪੈਟਰੋ ਕੈਮੀਕਲਜ਼, 18% ਕੋਲ, 4% ਜਲੀ ਘੋਲਾਂ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਅਤੇ 1% ਉਤਪਾਦਨ ਹੋਰ ਸਰੋਤਾਂ ਤੋਂ ਹੁੰਦਾ ਹੈ।

9.4 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਗੁਣ

9.4.1 ਭੱਤਿਕ ਗੁਣ

ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਇੱਕ ਰੰਗਹੀਣ, ਗੰਧਹੀਣ ਅਤੇ ਸੁਅਦਹੀਨ ਜਲਣਸ਼ੀਲ ਗੈਸ ਹੈ। ਇਹ ਹਵਾ ਤੋਂ ਹਲਕੀ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਹੈ। ਇਸ ਦੇ ਅਤੇ ਡਿਊਟੀਰਿਅਮ ਦੇ ਹੋਰ ਭੋਤਿਕ ਗੁਣ ਸਾਰਣੀ 9.1 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

9.4.2 ਰਸਾਇਣਿਕ ਗੁਣ

ਹਾਈਡ੍ਰੋਜਨ ਜਾਂ (ਕਿਸੇ ਵੀ ਅਣੂ) ਦਾ ਰਸਾਇਣਿਕ ਵਿਹਾਰ ਕਾਫੀ ਹੱਦ ਤੱਕ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।H–H ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਕਿਸੇ ਤੱਤ ਕੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਲਈ ਅਧਿਕਤਮ ਹੈ। ਇਸ ਤੱਥ ਤੋਂ ਤੁਸੀਂ ਕੀ ਨਤੀਜਾ ਕਢੱਦੇ ਹੋ? ਇਹ ਇਸ ਕਾਰਕ ਦੇ ਕਾਰਣ ਹੈ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਇਸ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਵਿਯੋਜਨ ਕੇਵਲ 2000K ਤੋਂ ਉੱਤੇ ਲਗਪਗ ~0.081 ਪ੍ਰਤੀਸ਼ਤ ਹੀ ਹੁੰਦਾ ਹੈ ਜੋ 5000K ਉੱਤੇ ਵਧ ਕੇ 95.5% ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ।ਉੱਚੀ H–H ਬੰਧਨ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਉਮੀਦ ਮੁਤਾਬਿਕ ਅਕਿਰਿਅਸ਼ੀਲ ਹੈ।ਇਸ ਤਰ੍ਹਾਂ ਬਿਜਲਈ ਆਰਕ ਜਾਂ ਪਰਾ ਬੈਗਣੀ ਵਿਕੀਰਣਾਂ ਦੁਆਰਾ ਪਰਮਾਣਵੀ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਉਤਪਾਦਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਸਦਾ ਇੱਕ

ਆੱਰਬਿਟਲ1s¹ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਨਾਲ ਅਪੂਰਣ ਹੈ, ਇੰਜ ਇਹ ਲਗਭਗ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਨਾਲ ਸੰਜੋਗ ਕਰਦਾ ਹੈ। ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ- (i) ਇੱਕ ਇਲੈਕਟ੍ਰਾਂਨ ਗੁਆ ਕੇ H⁺ ਦਿੰਦਾ ਹੈ, (ii) ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਕੇ H⁻ ਅਇਨ ਬਣਾਉਂਦਾ ਹੈ। (iii) ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਸਾਂਝਾ ਕਰਕੇ ਇਕਹਿਰਾ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ।

ਹੈਲੋਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ: ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਹੌਲੇਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ ਦਿੰਦੀ ਹੈ।

$$\mathrm{H_{2}}\left(g\right) + \mathrm{X_{2}}\left(g\right) \rightarrow 2\mathrm{HX}\left(g\right) \quad (\mathrm{X}=\mathrm{F},\mathrm{Cl},\,\mathrm{Br},\mathrm{I})$$

ਫਲੋਰੀਨ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਹਨੇਰੇ ਵਿੱਚ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਅਇਓਡੀਨ ਦੇ ਨਾਲ ਉਤਪ੍ਰੇਰਕ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ।

ਡਾਈਆੱਕਸੀਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ: ਇਹ ਡਾਈਆਕਸੀਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਪਾਣੀ ਬਣਾਉਂਦੀ ਹੈ। ਇਹ ਪ੍ਰਤੀ ਕਿਰਿਆ ਪ੍ਰਬਲ ਤਾਪਨਿਕਾਸੀ (Exothermic) ਹੈ।

$$2H_2(g) + O_2(g) \xrightarrow{\frac{\theta}{2}g\dot{q}\dot{q}a} \pi^{i} \operatorname{dow} \operatorname{adv} \hat{s} > 2H_2O(l);$$

 $\Lambda H^{\theta} = -285.9 \text{ kJ mol}^{-1}$

ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ: ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਅਮੋਨੀਆ ਬਣਾਉਂਦੀ ਹੈ।

$$\begin{array}{l} 3\mathrm{H}_{2}\left(g\right) + \mathrm{N}_{2}\left(g\right) & \xrightarrow{673\mathrm{K},200\mathrm{atm}}{\mathrm{Fe}} \rightarrow 2\mathrm{NH}_{3}\left(g\right);\\ \Delta H^{\theta} = -92.6\mathrm{kJmol}^{-1} \end{array}$$

ਅਮੋਨੀਆ ਨੂੰ ਵਪਾਰਕ ਮਾਤਰਾ ਵਿੱਚ ਇਸ ਵਿਧੀ ਨਾਲ ਹੈਬਰ ਪ੍ਰਕਰਮ ਦੁਆਰਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

ਧਾਤਾ ਦੇ ਨਾਲ ਕਿਰਿਆ: ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਕਈ ਧਾਤਾਂ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਸੰਗਤ ਹਾਈਡ੍ਰਾਈਡ ਦਿੰਦੀ ਹੈ (ਅਨੁਭਾਗ 9.5)

 $H_2(g) + 2M(g) \rightarrow 2MH(s);$

ਜਿੱਥੇ M ਖਾਰੀ ਧਾਤ ਹੈ।

ਧਾਤ ਆਇਨ ਅਤੇ ਧਾਤਵੀ ਅੱਕਸਾਈਡ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ: ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਕੁਝ ਧਾਤ ਅਇਨਾਂ ਦੇ ਜਲੀ ਘੋਲ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਧਾਤਵੀ (ਅਇਰਨ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ) ਆਕਸਾਈਡ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਸੰਗਤ ਧਾਤਾਂ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ।

$$\begin{split} &H_{2}\left(g\right)+Pd^{2*}\left(aq\right)\rightarrow Pd\left(s\right)+2H^{*}\left(aq\right) \\ &yH_{2}\left(g\right)+M_{x}O_{y}\left(s\right)\rightarrow xM\left(s\right)+yH_{2}O\left(l\right) \end{split}$$

ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ: ਉਤਪ੍ਰੇਰਕਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਕਈ ਮਹਤੱਵਪੂਰਣ ਉਦਯੋਗਿਕ ਹਾਈਡ੍ਰੋਜਨੀਕ੍ਰਿਤ ਉਪਜਾਂ ਬਣਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ–

 (i) ਬਨਸਪਤੀ ਤੇਲਾਂ ਨੂੰ ਨਿਕੱਲ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨੀਕਰਣ ਕਰਨ ਤੇ ਖਾਣ ਵਾਲਾ ਘਿਓ (ਮਾਰਗੇਰੀਨ ਅਤੇ ਬਨਸਪਤੀ ਘਿਓ) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। (ii) ਉਲੇਫਿਨ ਦਾ ਹਾਈਡ੍ਰੋਫਾਰਮਿਲੀਕਰਣ ਕਰਾਉਣ ਤੇ ਐਲਡੀਹਾਈਡ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਜੋ ਅੱਗੇ ਐਲਕੋਹਲ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

 $\mathrm{H_2} + \mathrm{CO} + \mathrm{RCH} = \mathrm{CH_2} \rightarrow \mathrm{RCH_2}\mathrm{CH_2}\mathrm{CHO}$

 $\rm H_2 + RCH_2CH_2CHO \rightarrow RCH_2CH_2OH$

ਉਦਾਹਰਣ 9.1

ਹੇਠ ਲਿਖਿਆਂ ਨਾਲ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਉੱਤੇ ਟਿਪੱਣੀ ਕਰੋ।

(i) ਕਲੋਰੀਨ, (ii) ਸੋਡੀਅਮ (iii) ਕਾਪੱਰ (II) ਆੱਕਸਾਈਡ **ਹੱਲ**

(i) ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰੀਨ ਨੂੰ ਕਲੋਰਾਈਡ ਆਇਨ Cl⁻ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਕਰਦੀ ਹੈ ਅਤੇ ਆਪ ਕਲੋਰੀਨ ਦੁਆਰਾ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਕੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ H⁺ ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਾਉਂਦੀ ਹੈ। H ਅਤੇ Cl ਦੇ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਰਾਮ ਦੀ ਸਾਂਝ ਹੋ ਕੇ ਇੱਕ ਸਹਿਸੰਯੋਜਕ ਅਣੂ ਬਣਦਾ ਹੈ।

(ii) ਹਾਈਡ੍ਰੋਜਨ ਸੋਡੀਅਮ ਤੋਂ ਲਘੂਕ੍ਰਿਤ ਹੋਕੇ ਸੋਡੀਅਮ ਹਾਈਡਰਾਈਡ ਬਣਾਉਂਦੀ ਹੈ।ਇਕ ਇਲੈਕਟ੍ਰਾਨ ਸੋਡੀਅਮ ਤੋਂ ਹਾਈਡ੍ਰੋਜਨ ਉੱਤੇ ਸਥਾਨਅੰਤਰਿਤ ਹੋ ਕੇ ਆਇਨਕ Na⁺H⁻ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀ ਹੈ।

(iii) ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਕਾੱਪਰ (II) ਆੱਕਸਾਈਡ ਨੂੰ ਕਾੱਪਰ ਦੀ ਸਿਫਰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ ਅਤੇ ਆਪ ਪਾਣੀ, ਜੋ ਇੱਕ ਸਹਿਸੰਯੋਜਕ ਅਣੂ ਹੈ, ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਦੀ ਹੈ।

9.4.3 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਲਾਭ

- ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਾ ਸਭ ਤੋਂ ਵੱਡਾ ਲਾਭ ਅਮੋਨੀਆ ਦੇ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ ਨਾਈਟ੍ਰਿਕਐਸਿਡ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਖਾਦਾਂ ਦੇ ਉਤਪਾਦਨ ਵਿੱਚ ਕੰਮ ਅਉਂਦਾ ਹੈ।
- ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਬਹੁ ਅਸੰਤ੍ਰਿਪਤ ਬਨਸਪਤੀ ਤੇਲਾਂ (ਜਿਵੇਂ-ਸੋਇਆਬੀਨ, ਵੇੜਵੇਂ ਅਦਿ) ਤੋਂ ਬਨਸਪਤੀ ਘਿਓ ਦੇ ਉਤਪਾਦਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
- ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਅਨੇਕਾਂ ਕਾਰਬਨਿਕ ਰਸਾਇਣਾਂ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਮੀਥੇਨੋਲ ਨੂੰ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

- ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਧਾਤਵੀ ਹਾਈਡ੍ਰਾਈਡ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ (ਭਾਗ 9.5)
- ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਅਤਿ ਲਾਭਦਾਇਕ ਰਸਾਇਣ (ਜਿਵੇਂ-ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ) ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
- ਧਾਤਕਰਮ ਪ੍ਰਕਰਮਾ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਭਾਰੀ ਧਾਤ ਆੱਕਸਾਈਡਾਂ ਨੂੰ ਧਾਤ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਕਰਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

280

- ਪਰਮਾਣਵੀ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆਕਸੀਹਾਈਡ੍ਰੋਜਨ ਟਾਰਚ ਦੀ ਵਰਤੋਂ ਕਟੱਣ ਅਕੇ ਵੈਲਡਿੰਗ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਪਰਮਾਣਵੀਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ (ਜੋ ਬਿਜਲਈ ਆਰਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਵਿਯੋਜਨ ਨਾਲ ਬਣਦੇ ਹਨ) ਦਾ ਮੁੜ ਸੰਯੋਗ ਵੈਲਡਿੰਗ ਕੀਤੇ ਜਾਣ ਵਾਲੀਆਂ ਧਾਤਾਂ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਲਗਭਗ 4000 K ਤਕ ਤਾਪਮਾਨ ਪੈਦਾ ਕਰ ਦਿੰਦਾ ਹੈ।
- ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਪੁਲਾੜ ਖੋਜ ਵਿੱਚ ਰਾਕੇਟ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- ਡਾਈਹਾਈਡ੍ਰੈਂਜਨ ਦੀ ਵਰਤੋਂ ਬਾਲਣ ਸੈੱਲਾਂ (Fuel cell) ਵਿੱਚ ਬਿਜਲੀ ਉਤਪਾਦਨ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪਰੰਪਰਾਗਤ ਫਾੱਸਿਲ ਬਾਲਣ ਅਤੇ ਬਿਜਲਈ ਸ਼ਕਤੀ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਨ ਦੀ ਵਰਤੋਂ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰਨ ਨਾਲ ਕਈ ਲਾਭ ਹੁੰਦੇ ਹਨ। ਇਹ ਬਾਲਣ ਪ੍ਰਦੂਸ਼ਣ ਮੁਕਤ ਹੈ ਅਤੇ ਪੋਟ੍ਰੋਲ ਅਤੇ ਹੋਰ ਬਾਲਣਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਇਕਾਈ ਪੁੰਜ ਤੋਂ ਵਧੇਰੇ ਊਰਜਾ ਮੁਕਤ ਕਰਦੀ ਹੈ।

9.5 ਹਾਈਡਾਈਡ

ਡਾਈਹਾਈਡ੍ਰੋਜੰਨ ਨਿਸ਼ਚਿਤ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਨੋਬਲ ਗੈਸਾਂ ਦੇ ਇਲਾਵਾ ਲਗਪਗ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਨਾਲ ਸੰਜੋਗ ਕਰਕੇ ਦੋ ਅੰਗੀ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਹਾਈਡ੍ਰਾਈਡ ਕਹਿੰਦੇ ਹਨ। ਜੇ E ਕਿਸੇ ਤੱਤਾ ਦਾ ਪ੍ਰਤੀਕ ਹੈ, ਤਾਂ ਹਾਈਡ੍ਰਾਈਡ ਨੂੰ EH_x (ਉਦਾਹਰਣ ਵਜੋ, MgH₂) ਜਾਂ E_mH_n (ਉਦਾਹਰਣ ਵਜੋਂ, B₂H₆). ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ੈ ਹੌਂਈਡ੍ਰਾਈਡਾਂ ਨੂੰ ਤਿੰਨ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ– :

- (i) ਆਇਣਿਕ ਜਾਂ ਲੂਣੇ ਜਾਂ ਲੂਣ-ਵਰਗੇ ਹਾਈਡ੍ਰਾਈਡ (Saline Hydride)
- (ii) ਸਹਿਸੰਯੋਜਕ ਜਾਂ ਅਣਵੀਂ ਹਾਈਡਾਈਡ (Molecular Hydride)
- (iii) ਧਾਤਵੀ ਜਾਂ ਅਸਟੋਕਿਓਮੀਟਰਿਕ ਹਾਈਡ੍ਰਾਈਡ (Nonstoichiometric Hydride)

9.5.1 ਅਇਣਿਕ ਜਾਂ ਲੁਣੇ ਹਾਈਡ੍ਰਾਈਡ

S-ਬਲਾੱਕ ਦੇ ਵਧੇਰੇ ਤੱਤ, ਜੋ ਉੱਚ ਇਲੈਕਟ੍ਰੈਪਾਜੇਟਿਵ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ, ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਾਲ ਸਟੋਕਿਉਮੀਟਰਰਿਕ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਫਿਰ ਵੀ ਹਲਕੇ ਧਾਤਵੀ ਹਾਈਡ੍ਰਾਈਡ ਜਿਵੇ LiH, BeH₂ ਅਤੇ MgH₂. ਵਿੱਚ ਸਾਰਥਕ ਸਹਿਸ ਯੋਜਕ ਗੁਣ ਮਿਲਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ BeH₂ ਅਤੇ MgH₂ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਬਹੁਲਕ (Polymer) ਬਣਤਰ ਹੁੰਦੀ ਹੈ। ਅਇਨਿਕ ਹਾਈਡ੍ਰਾਈਡ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਕ੍ਰਿਸਟਲੀ, ਅ-ਵਾਸ਼ਪਸ਼ੀਲ ਅਤੇ ਕੁਚਾਲਕ ਹੁੰਦੇ ਹਨ, ਪਰ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਿਘਲੇ ਹਾਈਡ੍ਰਾਈਡ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਰਦੇ ਹਨ ਅਤੇ ਬਿਜਲਈ ਅਪਘਟਨ ਦੁਆਰਾ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਐਨੋਡ ਉੱਤੇ ਮੁਕਤ ਹੁੰਦੀ ਹੈ ਜੋ ਹਾਈਡ੍ਰਾਈਡ H⁻ ਅਇਨ ਦੀ ਹੋਂਦ ਦੀ ਪੁਸ਼ਟੀ ਕਰਦਾ ਹੈ।

 $2H^{-}($ ਪਿਘਲਾਓ) $\xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \beg$

ਲੂਣੇ ਹਾਈਡ੍ਰਾਈਡ ਪਾਣੀ ਨਾਲ ਵਿਸਫੋਟਕ ਰੂਪ ਵਿੱਚ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਡਾਈਹਾਈਡੋ਼ਜਨ ਗੈਸ ਦਿੰਦੇ ਹਨ। $NaH(s) + H_2O(aq) \rightarrow NaOH(aq) + H_2(g)$

ਲੀਥਿਅਮ ਹਾਈਡ੍ਰਾਈਂਡ ਸਧਾਰਣ ਤਾਪਮਾਨ ਉੱਤੇ O₂ ਅਤੇ Cl₂. ਦੇ ਨਾਲ ਅਕਿਰਿਆਸ਼ੀਲ ਹੈ। ਇੰਜ ਇਸ ਦੀ ਵਰਤੋਂ ਹੋਰ ਉਪਯੋਗੀ ਹਾਈਡ੍ਰਾਈਡ ਬਨਾਉਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋ।

 $\begin{array}{c} 8\text{LiH} + \text{Al}_2\text{Cl}_6 \rightarrow 2\text{LiAlH}_4 + 6\text{LiCl} \\ 2\text{LiH} + \text{B}_2\text{H}_6 \rightarrow 2\text{LiBH}_4 \end{array}$

9.5.2 ਸਹਿਸੰਯੋਂਜਕੰ ਜਾਂ ਅਣਵੀਂ ਹੈਾਈਡਾਈਡ

ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਵਧੇਰੇ ਕਰਕੇ *p*-ਬਲਾਕ ਦੇ ਤੱਤਾਂ ਦੇ ਨਾਲ ਮਿਲਕੇ ਅਣਵੀਂ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਦੀਆਂ ਕੁਝ ਜਾਣੀਆਂ ਉਦਾਹਰਣਾ CH₄, NH₃, H₂O ਅਤੇ HF. ਹਨ। ਸੁਵਿਧਾ ਦੇ ਲਈ ਅਧਾਤਾਂ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਯੋਗਿਕਾਂ ਨੂੰ ਹਾਈਡ੍ਰਾਈਡ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਸਹਿਸੰਯੋਜਕ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਵਾਸ਼ਪਸ਼ੀਲ ਯੋਗਿਕ ਹਨ। ਅਣਵੀਂ ਹਾਈਡ੍ਰਾਈਡ ਦਾ ਅੱਗੇ ਵਰਗੀਕਰਣ ਉਨ੍ਹਾਂ ਦੀ ਲੁਈਸ ਰਚਨਾ (Lewis structure) ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਹੈ।

(i) ਇਲੈਕਟ੍ਰਾਨ ਅਧੂਰਾ (Electron-deficient)

(ii) ਇਲੇਕਟ੍ਰਾਨ ਪੁਰਾ (Electron-precise)

(iii) ਇਲੈਕਟ੍ਰਾਨ ਭਰਪੂਰ (Electron-rich hydrides).

ਇਲੈਕਟ੍ਰਾਨ ਅਧੂਰੇ ਹਾਈਡ੍ਰਾਈਡ, ਜਿਵੇਂ ਨਾਮ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ, ਪਰੰਪਰਾਗਤ ਲੁਈਸ ਰਚਨਾ ਲਿਖਣ ਦੇ ਲਈ ਇਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੀ ਉਦਾਹਰਣ ਡਾਈਬੋਰੇਨ (B₂H₆) ਹੈ। ਅਸਲ ਵਿੱਚ, ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ 13 ਵੇਂ ਗਰੁੱਪ ਦੇ ਸਾਰੇ ਤੱਤ ਇਲੈਕਟ੍ਰਾਨ ਅਧੂਰੇ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਦੇ ਵਿਹਾਰ ਤੋਂ ਕੀ ਉਮੀਦ ਰਖਦੇ ਹੋ ? ਇਹ ਲੁਈਸ ਐਸਿਡ ਵਾਂਗ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਇਹ ਇਲੈਕਟਾਨ ਗਹਿਣੀ ਹੰਦੇ ਹਨ।

ਇਲੈਂਕਟ੍ਰਾਨ ਪੂਰੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਵਿੱਚ ਪਰੰਪਰਾਗਤ ਲੁਈਸ– ਰਚਨਾ ਦੇ ਲਈ ਲੋੜੀਂਦੇ ਇਲੇਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ 14 ਵੇਂ ਗਰੁੱਪ ਦੇ ਸਾਰੇ ਤੱਤ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਯੋਗਿਕ (ਜਿਵੇਂ, CH₄) ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਚੌਫਲਕੀ ਜੋਮੈਟਰੀ ਦੇ ਹੁੰਦੇ ਹਨ।

ਇਲੈਕਟ੍ਰਾਨ ਭਰਪੂਰ ਹਾਈਡ੍ਰਾਈਡ ਇਲੈਕਟ੍ਰਾਨ ਵਾਧੂ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ (lone pair) ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ 15 ਵੇਂ ਤੋਂ 17 ਵੇਂ ਗਰੁੱਪ ਦੇ ਤੱਤ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। (NH₃ ਵਿੱਚ ਇੱਕ ਯੁਗਮ, H₂O ਵਿਚੋ ਦੋ ਅਤੇ HF ਵਿੱਚ ਤਿੰਨ ਏਕਾਕੀ ਯੁਗਮ ਹੁੰਦੇ ਹਨ। ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਦੇ ਵਤੀਰੇ ਤੋਂ ਕੀ ਆਸ ਰੱਖਦੇ ਹੋ ? ਇਹ ਲੁਈਸ ਖਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਹਾਰ ਕਰਦੇ ਹਨ। ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਦਾਤਾ ਹੁੰਦੇ ਹਨ। ਉੱਚੀ ਇਲੈਕਟ੍ਰੋਨੈਗਟਿਵਟੀ ਵਾਲੇ ਪਰਮਾਣੂ, ਜਿਵੇਂ ਨਾਈਟ੍ਰੋਜਨ, ਆੱਕਸੀਜਨ ਅਤੇ ਫਲੋਰੀਨ ਦੇ ਹਾਈਡ੍ਰਾਈਡ, ਉਤੇ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਹੋਣ ਦੇ ਕਾਰਣ ਅਣੂਆਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਜਿਨ੍ਹਾਂ ਦੇ ਕਾਰਣ ਅਣੂਆਂ ਵਿੱਚ ਸੰਗੁਣਨ (Association) ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਣ 9.2

ਕੀ ਤੁਸੀਂ ਉਮੀਦ ਕਰਦੇ ਹੋ ਕਿ N, O ਅਤੇ F ਦੇ ਹਾਈਡ੍ਰਾਈਡ ਦੇ ਉਬਾਲ ਦਰਜੇ ਉਨ੍ਹਾਂ ਦੇ ਗਰੁੱਪ ਦੇ ਸੰਗਤ ਮੈਂਬਰਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਤੋਂ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਕਾਰਣ ਦੱਸੋ।

ਹੱਲ

 $\rm NH_3, \ H_2O$ ਅਤੇ HF, ਦੇ ਅਣਵੀਂ ਭਾਗ ਦੇ ਅਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਦੇ ਉਬਾਲ ਦਰਜੇ ਸੰਗਤ ਮੈਂਬਰਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਤੋਂ ਘੱਟ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ, ਪਰੰਤੂ N, O ਅਤੇ F, ਦੀ ਉੱਚੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੇ ਕਾਰਣ ਹਾਈਡ੍ਰਾਈਡਾਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਨਾਉਣ ਦੀ ਸਮਰਥਾ ਵਰਣਨ ਯੋਗ ਹੈ। ਇੰਜ $\rm NH_3, \ H_2O$ ਅਤੇ HF ਦੇ ਉਬਾਲ ਅੰਕ ਉਨ੍ਹਾਂ ਦੇ ਗਰੱਪ ਦੇ ਮੈਂਬਰਾਂ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦੇ ਹਨ।

9.5.3 ਧਾਤਵੀ ਜਾਂ ਨਾਨ-ਸਟੋਕਿਉਮੀਟਰਿਕ (ਜਾਂ ਵਿੱਥੀ) ਹਾਈਡ੍ਰਾਈਡ

ਇਹ ਆਮ ਤੌਰ ਤੇ *d*-ਬਲਾੱਕ ਅਤੇ *f*-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਤੋਂ ਬਣਦੇ ਹਨ, ਹਾਲਾਂਕਿ 7 ਵੇਂ 8 ਵੇਂ ਅਤੇ 9 ਵੇਂ ਗਰੁੱਪ ਦੀਆਂ ਧਾਤਾਂ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡ ਨਹੀਂ ਬਣਾਉਂਦੀਆਂ, 6 ਵੇਂ ਗਰੁੱਪ ਵਿੱਚ ਸਿਰਫ ਕਰੋਮਿਅਮ ਹੀ CrH ਹਾਈਡ੍ਰਾਈਡ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਰਦੇ ਹਨ, ਪਰ ਉਨ੍ਹਾਂ ਦੀ ਚਾਲਕਤਾ ਜਨਕ ਧਾਤ ਦੀ ਤਰ੍ਹਾਂ ਜਿਆਦਾ ਨਹੀਂ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਕਮੀ ਦੇ ਕਾਰਣ ਲੂਣੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਦੇ ਉਲਟ ਇਹ ਹਮੇਸ਼ਾ ਨਾੱਨ-ਸਟੋਕਿਉਮੀਟਰਿਕ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ। LaH_{2.87}, YbH_{2.55}, TiH_{1.5-1.8}, ZrH_{1.3-1.75}, VH_{0.56}, NiH_{0.6-0.7}, PdH_{0.6-0.8} ਆਦਿ। ਅਜਿਹੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਵਿੱਚ ਸਥਿਤ ਸੰਗਠਨ ਦਾ ਨਿਯਮ ਲਾਗੁ ਨਹੀਂ ਹੁੰਦਾ।

ਪਹਿਲਾਂ ਇਹ ਸੋਚਿਆ ਜਾਂਦਾ ਸੀ ਕਿ ਇਨ੍ਹਾਂ ਹਾਈਡ੍ਰਾਈਡਾਂ ਦੇ ਧਾਤ ਲੈਟਿਸ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਵਿੱਥਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਇਨ੍ਹਾਂ ਵਿੱਚ ਬਿਨਾਂ ਕਿਸੇ ਪਰਿਵਰਤਨ ਦੀ ਵਿਰੂਪਣ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਰਕੇ ਇਨ੍ਹਾਂ ਨੂੰ ਵਿੱਥੀ ਹਾਈਡ੍ਰਾਈਡ ਆਖਿਆ ਗਿਆ, ਭਾਵੇਂ ਬਾਅਦ ਵਿੱਚ ਅਧਿਐਨ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੋਇਆ ਕਿ Ni, Pd, Ce ਅਤੇ Ac, ਦੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਨੂੰ ਛੱਡ ਕੇ ਇਸ ਗਰੁੱਪ ਦੇ ਹੋਰ ਹਾਈਡ੍ਰਾਈਡ ਆਪਣੇ ਜਨਕ (Parent) ਧਾਤ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਭਿੰਨ ਲੈਟਿਸ ਰੱਖਦੇ ਹਨ। ਅੰਤਰਕਾਲੀ ਧਾਤਾਂ ਉੱਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸੋਖਣ ਦੇ ਗੁਣ ਨੂੰ ਉਤਪ੍ਰੇਰਕੀ ਲਘੂਕਰਣ ਜਾਂ ਹਾਈਡ੍ਰੋਜਨੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਅਨੇਕਾਂ ਯੋਗਿਕ ਬਨਾਉਣ ਵਿੱਚ ਵੱਡੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਕੁਝ ਧਾਤਾਂ (ਜਿਵੇਂ, Pd, Pt) ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਵੱਡੇ ਅਇਤਨ ਨੂੰ ਸਮਾਸਕਦੀ ਹੈ। ਇੰਜ ਇਨ੍ਹਾਂ ਨੂੰ ਭੰਡਾਰਣ ਮਾਧਿਅਮ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਭੰਡਾਰਣ ਅਤੇ ਊਰਜਾ ਸਰੋਤ ਦੇ ਰੂਪ– ਵਿੱਚ ਇਸ ਗੁਣ ਦੀ ਵਰਤੋਂ ਦੀ ਪ੍ਰਬਲ ਸੰਭਾਵਨਾ ਹੈ।

ਉਦਾਹਰਣ 9.3

ਕੀ ਫਾਸਫੋਰਸ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $3s^2 3p^3$ ਦੇ ਅਧਾਰ ਤੇ PH_{s} ਬਣਾਏਗੀ ?

ਹੱਲ

ਭਾਵੇਂ ਫਾਸਫੋਰਸ +3 ਅਤੇ +5 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਰਸਾਉਂਦੀ ਹੈ, ਤਾਂ ਵੀ ਇਹ PH_5 . ਨਹੀਂ ਬਣਾਉਂਦੀ। ਕੁਝ ਹੋਰ ਤੱਥਾਂ ਤੋਂ ਇਲਾਵਾ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਉੱਚ $\Delta_a H$ ਅਤੇ $\Delta_c gH$ ਮਾਨ ਨੂੰ ਸਰਬ ਉੱਚ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਅਤੇ ਫਲਸਰੂਪ PH_5 ਦੇ ਬਣਨ ਦਾ ਸਮਰਥਨ ਨਹੀਂ ਕਰਦੇ।

9.6 ਪਾਣੀ

ਸਾਰੇ ਜੀਵਾਂ ਦਾ ਇੱਕ ਮੁੱਖ ਭਾਗ ਪਾਣੀ ਦੁਆਰਾ ਨਿਰਮਿਤ ਹੈ। ਮਨੁੱਖੀ ਸਰੀਰ ਵਿੱਚ ਲਗਭਗ 65% ਅਤੇ ਕੁੱਝ ਪੌਦਿਆਂ ਵਿੱਚ ਲਗਪਗ 95% ਪਾਣੀ ਹੁੰਦਾ ਹੈ। ਜੀਵਾਂ ਨੂੰ ਜਿਉਂਦੇ ਰਹਿਣ ਦੇ ਲਈ ਪਾਣੀ ਇੱਕ ਮਹਤੱਵਪੂਰਣ ਯੋਗਿਕ ਹੈ। ਇਹ ਇੱਕ ਅਤਿ ਮਹੱਤਵਪੂਰਣ ਘੋਲਕ ਹੈ। ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਪਾਣੀ ਦਾ ਵਿਤਰਣ ਇੱਕ ਸਮਾਨ ਨਹੀਂ ਹੈ। ਵਿਸ਼ਵ ਦੀ ਅਨੁਮਾਨਿਤ ਜਲ-ਸਪਲਾਈ ਸਾਰਣੀ 9.2 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

ਸਾਰਣੀ 9.2 ਵਿਸ਼ਵ ਦੀ ਅੰਦਾਜਨ ਜਲ-ਸਪਲਾਈ

ਸਰੋਤ	ਸੰਪੂਰਣ% ਮਾਤਰਾ
ਮਹਾਂਸਾਗਰ (oceans)	97.33
ਖਾਰੀ ਝੀਲ ਅਤੇ ਇਨਲੈਂਡ ਸਮੁੰਦਰ	0.008
ਧਰੁਵੀ ਬਰਫ ਅਤੇ ਗਲੇਸ਼ੀਅਰ	2.04
ਭੂਮੀ ਪਾਣੀ (graound water)	0.61
ਝੀਲ (lakes)	0.009
ਮਿੱਟੀ–ਸਿੱਲ੍ਹ (soil moisture)	0.005
ਵਾਯੂਮੰਡਲੀ ਜਲਵਾਸ਼ਪ	0.001
ਨਦੀਆਂ (rivers)	0.0001

9.6.1. ਪਾਣੀ ਦੇ ਭੌਤਿਕ ਗੁਣ

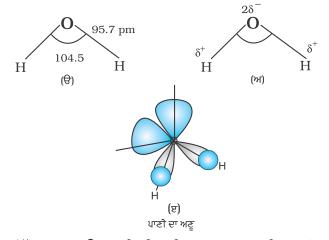
ਇਹ ਇੱਕ ਰੰਗਹੀਣ ਅਤੇ ਸੁਆਦਹੀਣ ਦ੍ਵ ਹੈ। ਪਾਣੀ (H_20) ਅਤੇ ਭਾਰੀ ਪਾਣੀ (D_20) ਦੇ ਭੋਤਿਕ ਗੁਣ ਸਾਰਣੀ 9.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

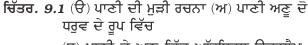
ਸੰਘਣਿਤ ਅਵਸਥਾ (ਦ੍ਵ ਅਤੇ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਸਧਾਰਣ ਗੁਣਾਂ ਦਾ ਕਾਰਣ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿਚ ਵਿਆਪਕ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦਾ ਹੋਣਾ ਹੈ। ਇਸੇ ਗਰੁੱਪ ਦੇ ਹੋਰ ਤੱਤਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡ H₂S ਅਤੇ H₂Se. ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਪਾਣੀ ਦਾ ਉੱਚ ਜੰਮਣ ਦਰਜਾ, ਉੱਚ ਉਬਲਣ ਦਰਜਾ, ਉੱਚ ਵਾਸ਼ਪਨ ਤਾਪ ਅਤੇ ਉੱਚ ਪਿਘਲਣ ਤਾਪ ਦਾ ਕਾਰਣ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦਾ ਹੋਣਾ ਹੈ। ਹੋਰ ਦ੍ਵਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਪਾਣੀ ਦਾ ਵਿਸ਼ਿਸਟ ਤਾਪ, ਤਾਪ ਚਾਲਕਤਾ, ਸਤ੍ਹਾ ਤਣਾਓ, ਦੋਧਰੁਵ ਮੌਸੈਂਟ ਅਤੇ ਡਾਈਇਲੈਕਟ੍ਰਿਕ ਸਥਿਤ ਅੰਕ ਦੇ ਮਾਨ ਉੱਚੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਦੇ ਕਾਰਣ ਜੀਵ ਮੰਡਲ ਵਿੱਚ ਪਾਣੀ ਦੀ ਮਹਤੱਵਪੁਰਣ ਭੂਮਿਕਾ ਹੈ।

Downloaded from https:// www.studiestoday.com

281

282

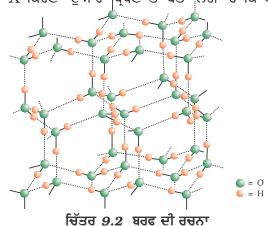

ਗੁਣ	H ₂ O	D ₂ O
ਅਣਵੀ ਪੁੰਜ (g mol ⁻¹)	18.0151	20.0276
ਪਿਘਲਣ ਅੰਕ/K	273.0	276.8
ਉਬਲਣ ਅੰਕ/K	373.0	374.4
ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ/kJ mol ⁻¹	-285.9	-294.6
ਵਾਸ਼ਪਣ ਐਨਥੈਲਪੀ (373K)/kJ mol ⁻¹	40.66	41.61
ਪਿਘਲਣ ਐਨਥੈਲਪੀ/kJ mol ⁻¹	6.01	-
ਉਚੱ ਘਣਤਾ ਦਾ ਤਾਪਮਾਨ/K	276.98	284.2
ਘਣਤਾ (298K)/g cm ⁻³	1.0000	1.1059
ਵਿਸਕਾਸਿਤਾ C	0.8903	1.107
ਡਾਈ ਇਲੈਕਟ੍ਰਿਕ ਸਥਿਰਅੰਕ/ $C^2/N.m^2$	78.39	78.06
ਬਿਜਲਈ ਚਾਲਕਤਾ (293K/ohm $^{-1} ext{ cm}^{-1}$)	5.7×10^{-8}	-


ਸਾਰਣੀ 9.3 H₂O ਅਤੇ D₂O ਦੇ ਭੌਤਿਕ ਗੁਣ

ਪਾਣੀ ਦੇ ਉੱਚ ਵਾਸ਼ਪਣ ਤਾਪ ਅਤੇ ਉੱਚ ਤਾਪ ਧਾਰਣ ਸਮਰਥਾ ਹੀ ਜੀਵਾਂ ਦੇ ਸਰੀਰ ਅਤੇ ਜਲਵਾਯੂ ਦੇ ਨਾਰਮਲ ਤਾਪਮਾਨ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਣ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹਨ। ਬਨ– ਸਪਤੀ ਅਤੇ ਪ੍ਰਾਣੀਆਂ ਦੇ ਉਸਾਰੂ ਕਿਰਿਆ (Metabolism) ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਢੋਆ ਢੂਆਈ ਲਈ ਪਾਣੀ ਇੱਕ ਉੱਤਮ ਘੋਲਕ ਦਾ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਪਾਣੀ ਧਰੁਵੀ ਅਣਊਆ ਦੇ ਨਾਲ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕ, ਜਿਵੇਂ-ਐਲਕੋਹਲ ਅਤੇ ਕਾਰਬੋ ਹਾਈਡ੍ਰੇਟ ਯੋਗਿਕ ਪਾਣੀ ਵਿੱਚ ਘੁਲਦੇ ਹਨ।

9.6.2 ਪਾਣੀ ਦੀ ਰਚਨਾ

ਗੈਸ ਫੇਜ ਵਿੱਚ ਪਾਣੀ ਇੱਕ ਮੁੜਿਆ ਅਣੂ ਹੈ। ਬੰਧਨ ਕੋਣ ਅਤੇ O–H ਬੰਧਨ ਦੂਰੀ ਦੇ ਮਾਨ ਕ੍ਰਮਵਾਰ 104.5° ਅਤੇ 95.7 pm ਹੈ।ਜਿਵੇਂ ਚਿੱਤਰ 9.1 (ੳ) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਬਹੁਤ ਜਿਆਦਾ ਧਰੁਵਿਤ ਅਣੂ ਚਿੱਤਰ 9.1 (ਅ)


(ੲ) ਪਾਣੀ ਦੇ ਅਣੂ ਵਿੱਚ ਆੱਰਬਿਟਲ ਉਵਰਲੈਪ

ਵਿੱਚ ਅਤੇ ਚਿੱਤਰ 9.1 (ੲ) ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂ ਵਿੱਚ ਆਰਬਿਟਲ ਉਵਰਲੈਪ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਪਾਣੀ ਦਾ ਕ੍ਰਿਸਟਲੀ ਰੂਪ ਬਰਫ ਹੈ। ਵਾਯੂਮੰਡਲ ਦਾਬ ਉੱਤੇ ਬਰਫ ਦਾ ਕ੍ਰਿਸਟਲੀਕਰਣ ਛੇ ਕੋਣੀ ਆਕ੍ਰਿਤੀ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਪਰੰਤੂ ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ ਇਸਦਾ ਸੰਘਨਨ ਕਿਊਬਿਕ ਅਕ੍ਰਿਤੀ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਬਰਫ਼ ਦੀ ਘਣਤਾ ਪਾਣੀ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਰਕੇ ਬਰਫ ਦਾ ਟੁਕੜਾ ਪਾਣੀ ਉੱਤੇ ਤੈਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਸਰਦ ਰੁੱਤ ਵਿੱਚ ਝੀਲਾਂ ਦੇ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਜੰਮੀ ਬਰਫ ਦੀ ਸਤ੍ਹਾ ਤਾਪ ਰੋਧਨ ਕਾਰਣ (Thermal Insulation) ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਜਲੀ ਜੀਵਨ ਸੁਰਖਿਅਤ ਰਹਿੰਦਾ ਹੈ। ਇਹ ਤੱਥ ਪਰਿਸਥਿਤਿਕੀ (Ecological) ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਅਤਿ ਮਹੱਤਵਪੂਰਣ ਹੈ।

9.6.3 ਬਰਫ ਦੀ ਰਚਨਾ

ਬਰਫ ਇੱਕ ਅਤਿ ਵਿਵਸਥਿਤ ਤ੍ਰਿਵਿਸੀ ਬੰਧਨ ਰਚਨਾ (Highly ordered three dimensional hydrogen bonded structure) ਹੈ, ਜਿਸ ਨੂੰ ਚਿੱਤਰ 9.2 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

X–ਕਿਰਣਾਂ ਦੁਆਰਾ ਪ੍ਰੇਖਣ ਤੋਂ ਪਤਾ ਲੱਗਾ ਹੈ ਕਿ ਬਰਫ

283

ਕ੍ਰਿਸਟਲ ਵਿੱਚ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਚਾਰ ਹੋਰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆ ਨਾਲ 276 pm ਦੂਰੀ ਉਤੇ ਚੌਫਲਕੀ ਰੂਪ ਵਿੱਚ ਘਿਰਿਆ ਰਹਿੰਦਾ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਰਫ ਵਿੱਚ ਛੇਕਾਂ ਵਾਲੀ ਇਕ ਕਿਸਮ ਦੀ ਖ਼ੁਲ੍ਹੀ ਰਚਨਾ ਬਣਉਂਦੇ ਹਨ। ਇਹ ਛੇਕ ਢੁਕਵੇਂ ਅਕਾਰ ਦੇ ਕੁਝ ਦੂਜੇ ਅਣੂਆਂ ਨੂੰ ਵਿੱਥਾਂ ਵਿੱਚ ਗ੍ਰਹਿਣ ਕਰ ਸਕਦੇ ਹਨ।

9.6.4 ਪਾਣੀ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ

ਪਾਣ ਅਨੇਕਾਂ ਪਦਾਰਥਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਹੇਠ ਲਿਖੀਆਂ ਹਨ। (1) ਐਂਫੋਟੈਰਿਕ ਪ੍ਰਕਿਰਤੀ: ਪਾਣੀ ਤੇਜਾਬ ਅਤੇ ਖਾਰ-ਦੋਵਾਂ ਰੂਪਾਂ ਵਿੱਚ ਵਿਹਾਰ ਕਰਦਾ ਹੈ। ਇੰਜ ਇਹ ਐਫੋਟੈਰਿਕ ਹੈ। ਬਰਾਨਸਟੈਡ ਧਾਰਣਾ ਦੀ ਲੋਅ ਵਿੱਚ NH₃ ਦੇ ਨਾਲ ਤੇਜਾਬ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ H₂S ਦੇ ਨਾਲ ਖਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦਾ ਹੈ।

 $H_2O(l) + NH_3(aq) \Rightarrow OH^{-}(aq) + NH_4^{+}(aq)$

 $H_2O(1) + H_2S(aq) \rightleftharpoons H_3O^+(aq) + HS^-(aq)$ ਪਾਣੀ ਦੇ ਸਵੈ ਅਪਘਟਨ (ਸਵੈ ਆਇਨਨ) ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪ

ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$H_2O(l) + H_2O(l) \Rightarrow H_3O^+(aq) + OH^-(aq)$$

ਤੇਜਾਬ-1 ਖਾਰ-2 ਤੇਜਾਬ-2 ਖਾਰ-1 (ਤੇਜਾਬ) (ਖਾਰ) (ਸੰਯੁਗਮੀ ਤੇਜਾਬ) (ਸੰਯੁਗਮੀ ਖਾਰ) (2) ਪਾਣੀ ਦੀ ਲਘੂਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆ: ਉੱਚੀਆਂ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਧਾਤਾਂ ਦੁਆਰਾ ਪਾਣੀ ਅਸਾਨੀ ਨਾਲ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

$$2H_2O(1) + 2Na(s) \rightarrow 2NaOH(aq) + H_2(g)$$

ਇੰਜ ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪ੍ਰਮੁਖ ਸਰੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਲਾਭਕਾਰੀ ਹੈ। ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪਾਣੀ O, ਵਿੱਚ ਅੱਕਸੀਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ।

 $6CO_2(g) + 12H_2O(l) \rightarrow C_6H_{12}O_6(aq) + 6H_2O(l) + 6O_2(g)$

ਫਲੋਰੀਨ ਦੁਆਰਾ ਵੀ H₂O ਦਾ ਆੱਕਸੀਜਨ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਹੁੰਦਾ ਹੈ।

 $2F_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4F^-(aq) + O_2(g)$

(3) ਜਲ-ਅਪਘਟਨ ਪ੍ਰਤੀ ਕਿਰਿਆ: ਪਾਣੀ ਦਾ ਡਾਈ ਇਲੈਕਟ੍ਰਿਕ ਸਥਿਰ ਅੰਕ ਉੱਚਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਵਿੱਚ ਪ੍ਰਬਲ ਜਲ ਯੋਜਨਗੁਣ ਹੁੰਦਾ ਹੈ ਇਹ ਅਨੇਕ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਘੋਲਣ ਦੇ ਸਮਰੂਪ ਹੈ, ਫਲਸਰੂਪ ਕੁਝ ਆਇਣਿਕ ਅਤੇ ਸਹਿਸੰਯੋਜੀ ਯੋਗਿਕਾਂ ਦਾ ਜਲ-ਅਪਘਟਨ (hydrolysis) ਹੋ ਜਾਂਦਾ ਹੈ।

$$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$$

$$\operatorname{SiCl}_{4}(1) + 2\operatorname{H}_{2}O(1) \rightarrow \operatorname{SiO}_{2}(s) + 4\operatorname{HCl}(\operatorname{aq})$$

$$N^{3-}(s) + 3H_2O(1) \rightarrow NH_3(g) + 3OH^{-}(aq)$$

(4) ਹਾਈਡੇ੍ਟ ਨਿਰਮਾਣ: ਜਲੀ ਘੋਲ ਵਿਚੋਂ ਅਨੇਕਾਂ ਲੂਣ ਜਲ ਯੋਜਿਤ ਲੂਣਦੇ ਰੂਪ ਵਿੱਚ ਕ੍ਰਿਸਟਲੀਕਰਣ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਪਾਣੀ ਦਾ ਸੰਗੁਣਨ ਭਿੰਨ ਭਿੰਨ ਤਰਾਂ ਹੁੰਦਾ ਹੈ।

(i) ਉਪ ਸਹਿਸੰਯੋਜਿਤ ਪਾਣੀ

ਉਦਾਹਰਣ $-\left[\operatorname{Cr}(\operatorname{H_2O})_6\right]^{3+}\operatorname{3Cl^-}$

(ii) ਵਿਥੀ ਪਾਣੀ ਉਦਾਹਰਣ BaCl₂.2H₂O

(iii) ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਪਾਣੀ ਉਦਾਹਰਣ

 $CuSO_{4}5HQ$, ਵਿੱਚ $\left[Cu(H_{2}O)_{4}\right]^{2+}SO_{4}^{2-}.H_{2}O$

ਉਦਾਹਰਣ 9.4

CuSO₄.5H₂O ਵਿੱਚ ਕਿੰਨੇ ਪਾਣੀ ਦੇ ਅਣੂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੁਆਰਾ ਜੁੜੇ ਹਨ ? ਹਲ ਸਿਰਫ ਪਾਣੀ ਦਾ ਇੱਕ ਅਣੂ, ਜੋ ਵੱਡੀ ਬਰੈਕਟ ਦੇ ਬਾਹਰ (ਸਹਿਸੈਯੋਜਨ ਖੇਤਰ) ਹੈ, ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੁਆਰਾ ਜੁੜਿਆ ਹੈ। ਪਾਣੀ ਦੇ ਬਾਕੀ ਚਾਰ ਅਣੂ ਉਪ– ਸਹਿਸੰਯੋਜਿਤ ਹਨ।

9.6.5 ਕਠੋਰ ਅਤੇ ਨਰਮ ਪਾਣੀ

ਆਸ ਤੌਰ ਤੇ ਵਰਖਾ ਦਾ ਪਾਣੀ ਸ਼ੁੱਧ ਹੁੰਦਾ ਹੈ (ਵਾਯੂਮੰਡਲ ਦੀਆਂ ਕੁਝ ਘੁਲਣਸ਼ੀਲ ਗੈਸਾਂ ਘੁਲੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਜਦੋਂ ਪਾਣੀ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਵਹਿੰਦਾ ਹੈ, ਤਾਂ ਇਸਦੀ ਹੋਦ ਉੱਤਮ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਹ ਕਈ ਲੂਣਾਂ ਨੂੰ ਘੋਲ ਲੈਂਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਘੁਲਣਸ਼ੀਲ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਲੂਣ (ਜੋ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ, ਕਲੋਰਾਈਡ ਅਤੇ ਸਲਫੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ) ਉਸਦੀ ਕਠੋਰਤਾ ਦਾ ਕਾਰਣ ਹੁੰਦੇ ਹਨ। ਕਠੋਰ ਪਾਣੀ ਸਾਬਣ ਦੇ ਨਾਲ ਅਸਾਨੀ ਨਾਲ ਝੱਗ ਨਹੀਂ ਦਿੰਦਾ।ਘੁਲਣਸ਼ੀਲ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਤੋਂ ਮੁਕਤ ਪਾਣੀ ਨੂੰ ਨਰਮ ਪਾਣੀ (Soft water) ਕਹਿੰਦੇ ਹਨ। ਗਰਮ ਪਾਣੀ ਸਾਬਣ ਨਾਲ ਅਸਾਨੀ ਨਾਲ ਝੱਗ ਦਿੰਦਾ ਹੈ।

ਕਠੋਰ ਪਾਣੀ ਸਾਬਣ ਦੇ ਨਾਲ ਮੈਲ (Scum) ਅਵਖੇਪ ਦਿੰਦਾ ਹੈ। ਸਾਬਨ ਜਿਸ ਵਿੱਚ ਸੋਡੀਅਮ ਸਟੀਅਰੇਟ (C₁₇H₃₅COONa) ਹੁੰਦਾ ਹੈ, ਕਠੋਰ ਪਾਣੀ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰ ਕੇ Ca/Mg ਸਟੀਅਰੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਅਵਖੇਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

$$\begin{aligned} &2\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COONa}\left(\mathrm{aq}\right) + \mathrm{M}^{2+}\left(\mathrm{aq}\right) \rightarrow \\ &\left(\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COO}\right)_{2}\mathrm{M} \downarrow + 2\mathrm{Na}^{+}\left(\mathrm{aq}\right); \, \mathrm{M} = \mathrm{Ca} \; / \; \mathrm{Mg} \end{aligned}$$

ਇੰਜ ਕਠੋਰ ਪਾਣੀ ਧੁਲਾਈ ਦੇ ਲਈ ਯੋਗ ਨਹੀਂ ਹੈ। ਇਹ ਭਾਫ ਬਾਇਲਰ (Steam boiler) ਦੇ ਲਈ ਵੀ ਹਾਨੀਕਾਰਕ ਹੈ, ਕਿਉਂਕਿ ਪੇਪੜੀ ਦੇ ਰੂਪ ਵਿੱਚ ਇਸ ਵਿੱਚ ਲੂਣ ਜੰਮ ਜਾਂਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਭਾਫ ਬਾਇਲਰ ਸੁਯੋਗਤਾ (efficiency) ਵਿੱਚ ਕਮੀਂ ਆ ਜਾਂਦੀ ਹੈ। ਪਾਣੀ ਦੀ ਕਠੋਰਤਾ ਦੋ ਕਿਸਮ ਦੀ ਹੰਦੀ ਹੈ।

(i) ਅਸਥਾਈ ਕਠੋਰਤਾ (ii) ਸਥਾਈ ਕਠੋਰਤਾ

284

9.6.6 ਅਸਥਾਈ ਕਠੋਰਤਾ

ਅਸਥਾਈ ਕਠੋਰਤਾ ਪਾਣੀ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ।ਪਾਣੀ ਦੀ ਅਸਥਾਈ ਕਠੋਰਤਾ ਹੇਠ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਦੁਆਰਾ ਦੂਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

(i) ਉਬਾਲਣਾ: ਉਬਾਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ Mg(HCO₃)₂ ਅਤੇ Ca(HCO₃)₂ ਦੇ ਘੁਲਣਸ਼ੀਲ ਲੂਣ ਕ੍ਰਮਵਾਰ ਅਘੁੱਲ Mg(OH)₂ ਅਤੇ CaCO₃ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। MgCO₃ ਦੀ ਤੁਲਨਾ ਵਿੱਚ Mg(OH)₂, ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ– ਗੁਣਨਫਲ ਉੱਚਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ Mg(OH)₂ ਅਵਖੇਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਅਵਖੇਪ ਨੂੰ ਛਾਣ ਕੇ ਵੱਖ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

$$Mg(HCO_3)_2 \xrightarrow{\Delta} Mg(OH)_2 \downarrow + 2CO_2 \uparrow$$

$$\operatorname{Ca}(\operatorname{HCO}_3)_2 \xrightarrow{\Delta} \operatorname{CaCO}_3 \downarrow + \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 \uparrow$$

(ii) ਕਲਾਰਕ ਵਿਧੀ: ਇਸ ਵਿਧੀ ਵਿੱਚ ਬੁਝੇ ਚੂਨੇ ਦੀ ਪਰਿਕਲਿਤ ਮਾਤਰਾ ਨੂੰ ਕਠੋਰ ਪਾਣੀ ਵਿੱਚ ਮਿਲਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।ਫਲਸਰੂਪ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਅਵਖੇਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਉਸ ਨੂੰ ਛਾਣ ਕੇ ਵੱਖ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

 $\begin{aligned} \operatorname{Ca}(\operatorname{HCO}_3)_2 + \operatorname{Ca}(\operatorname{OH})_2 &\to 2\operatorname{CaCO}_3 \downarrow + 2\operatorname{H}_2\operatorname{O} \\ \operatorname{Mg}(\operatorname{HCO}_3)_2 + 2\operatorname{Ca}(\operatorname{OH})_2 &\to 2\operatorname{CaCO}_3 \downarrow \\ &+ \operatorname{Mg}(\operatorname{OH})_2 \downarrow + 2\operatorname{H}_2\operatorname{O} \end{aligned}$

9.6.7 ਸਥਾਈ ਕਠੋਰਤਾ

ਇਸ ਕਿਸਮ ਦੀ ਕਠੋਰਤਾ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਕਲੋਰਾਈਡ ਅਤੇ ਸਲਫੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਘੁਲੇ ਹੋਣ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ।ਇਹ (ਸਥਾਈ ਕਠੋਰਤਾ) ਉਬਾਲਣ ਨਾਲ ਦੂਰ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ। ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਦੁਆਰਾ ਦੂਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

(i) ਕਪੜੇ ਧੋਣ ਵਾਲੇ ਸੈਂਡੇ (ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ) ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਵਾ ਕੇ : ਕੱਪੜੇ ਧੋਣ ਵਾਲਾ ਸੋਡਾ ਕਠੋਰ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਸਲਫੇਟ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਅਘੁੱਲ ਕਾਰਬੋਨੇਟ ਬਣਾਉਂਦਾ ਹੈ।

 $MCl_2 + Na_2CO_3 \rightarrow MCO_3 \downarrow + 2NaCl$ (M = Mg, Ca)

 $MSO_4 + Na_2CO_3 \rightarrow MCO_3 \downarrow + 2Na_2SO_4$ (ii) ਕੈਲਗਾਨ ਵਿਧੀ: ਸੋਡੀਅਮ ਹੇਕਸਾਮੈਟਾਫਾੱਸਫੇਟ (Sodium hexameta phosphate) ($Na_6P_6O_{18}$) ਨੂੰ ਵਪਾਰਕ ਰੂਪ

ਵਿੱਚ ਕੈਲਗਾਨ ਕਹਿੰਦੇ ਹਨ। ਜਦੋਂ ਇਹ ਕਠੌਰ ਪਾਣੀ ਨਾਲ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।

$$\begin{split} &Na_6P_6O_{18} \to 2Na^+ + Na_4P_6O_{18}^{2-} \\ &M^{2+} + Na_4P_6O_{18}^{2-} \to \left[Na_2MP_6O_{18}\right]^{2-} + 2Na^+ \\ &(M = Mg, \, Ca) \end{split}$$

ਇਹ ਰਿਣਆਇਨ ਕੰਪਲੈਕਸ Mg²⁺ ਅਤੇ Ca²⁺ ਨੂੰ ਘੋਲ ਵਿੱਚ ਰਖਦਾ ਹੈ।

(iii) ਅਇਨ ਵਟਾਂਦਰਾ ਵਿਧੀ (Ion exchange method): ਇਸ ਵਿਧੀ ਨੂੰ ਵਿਧੀ ਵੀ ਕਹਿੰਦੇ ਹਨ, ਜਲ ਯੁਕਤ ਸੋਡੀਅਮ ਐਲੂਮੀਨੋ ਸਿਲੀਕੇਟ (NaAlSiO₄.3H₂O) ਜੀਉਲਾਈਟ, ਪਰਮਿਊਟਿਟ (Permutit) ਅਖਵਾਉਂਦਾ ਹੈ। ਸਰਲਤਾ ਦੇ ਲਈ ਸੋਡੀਅਮ ਐਲੂਮੀਨਿਅਮ ਸਿਲੀਕੇਟ ਨੂੰ NaZ ਵੀ ਲਿਖ ਸਕਦੇ ਹਾ ਕਠੋਰ ਪਾਣੀ ਵਿੱਚ ਇਸ ਦੇ ਗਿਲਾਉਣ ਤੇ ਹੇਠ ਲਿਖੀ ਵਟਾਂਦਰਾ ਪ੍ਤੀ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ।

$$2NaZ(s) + M^{2+}(aq) \rightarrow MZ_{2}(s) + 2Na^{+}(aq)$$

(M = Mg, Ca)

ਪਰਮਿਊਟਿਟ, ਜ਼ੀਓਲਾਈਟ ਵਿਚੋਂ ਜਦੋਂ ਸਾਰਾ ਸੋਡੀਅਮ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਖਤਮ ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਜਲੀ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਘੋਲ ਦੁਆਰਾ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਵਾ ਕੇ ਮੁੜ ਵਰਤੋਂ ਕਰਨ ਦੇ ਲਈ ਪੁਨਰ ਯੋਜਿਤ (Regenerated) ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

$$MZ_2(s) + 2NaCl(aq) \rightarrow 2NaZ(s) + MCl_2(aq)$$

(iv) ਸੰਸਲਿਸ਼ਤ ਰੇਜਿਨ (Resin) ਵਿਧੀ : ਅੱਜ ਕਲ ਕਠੋਰ ਪਾਣੀ ਨੂੰ ਨਰਮ ਕਰਨ ਦੇ ਲਈ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਸੰਸਲਿਸ਼ਤ ਧਨਅਇਨ ਵਟਾਂਦਰੇ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਵਿਧੀ ਜ਼ੀਓਲਾਈਟ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਸੁਯੋਗ ਹੈ। ਧਨ ਅਇਨ ਵਟਾਂਦਰਾ ਰੇਜ਼ਿਨ -SO₃H ਗੱਰੁਪ ਯੁਕਤ ਵੱਡੇ ਕਾਰਬਨਿਕ ਅਣੂ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲੇ ਹੁੰਦੇ ਹਨ। ਅਇਨ ਵਾਂਦਰਾ ਰੇਜ਼ਿਨ (R - SO₃H) ਨੂੰ NaCl ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ RNa ਵਿੱਚ ਬਦਲਿਆ ਜਾਂਦਾ ਹੈ।ਰੇਜਿਨ Na⁺ ਦਾ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ Ca²⁺ ਅਤੇ Mg²⁺ ਨਾਲ ਵਟਾਂਦਰਾ ਕਰਕੇ ਕਠੋਰ ਪਾਣੀ ਨੂੰ ਨਰਮ ਬਣਾ ਦਿੰਦਾ ਹੈ ਜਿੱਥੇ R ਰੇਜ਼ਿਨ ਰਿਣਆਇਨ ਹੈ)

$$2RNa(s) + M^{2+}(aq) \rightarrow R_2M(s) + 2Na^+(aq)$$

ਰੇਜਿਨ ਦਾ ਪੁਨਰ ਯੋਜਿਨ (Regeneration) ਸੋਡੀਅਮ
ਕਲੋਰਾਈਡ ਘੋਲ ਮਿਲਾ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਪਾਣੀ ਨੂੰ ਬਾਰ ਬਾਰ (Successively) ਧਨਆਇਨ ਵਟਾਂਦਰਾ (H⁺ ਦੇ ਰੂਪ ਵਿੱਚ) ਅਤੇ ਰਿਣਆਇਨ ਵਟਾਂਦਰਾ (OH⁻ ਦੇ ਰੂਪ ਵਿੱਚ) ਰੇਜਿਨ ਉੱਤੋਂ ਲੰਘਾਉਣ ਤੇ ਸ਼ੁਧ ਖਣਿਜ ਰਹਿਤ (Demineralised) ਅਤੇ ਅਇਨ ਰਹਿਤ (Deionised) ਪਾਣੀ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

2RH(s) + M²⁺ (aq)
$$\rightleftharpoons$$
 MR₂(s) + 2H⁺ (aq)
ਧਨ ਆਇਨ ਵਟਾਂਦਰੇ ਦੇ ਇਸ ਪ੍ਰਕਰਮ ਵਿੱਚ, H⁺ ਦਾ ਵਟਾਂਦਰਾ
ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ Na⁺, Ca²⁺, Mg²⁺ ਅਤੇ ਹੋਰ ਧਨਅਇਨਾਂ
ਦੁਆਰਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਫਲਸਰੂਪ ਪ੍ਰੋਟਾਨ ਦਾ ਨਿਸ਼ਕਾਸਨ ਹੁੰਦਾ

ਹੋ ਅਤੇ ਪਾਣੀ ਤੋਜਾਬੀ ਹੋ ਜਾਂਦਾ ਹੈ।

$$\operatorname{RNH}_{2}(s) + \operatorname{H}_{2}O(1) \rightleftharpoons \operatorname{RNH}_{3}^{+}.OH^{-}(s)$$

$$RNH_{3}^{+}.OH^{-}(s) + X^{-}(aq) \rightleftharpoons RNH_{3}^{+}.X^{-}(s)$$
$$+ OH^{-}(aq)$$

ਰਿਣਆਇਨ ਵਟਾਂਦਰੇ ਦੇ ਦੂਜੇ ਪ੍ਰਕਰਮ ਵਿੱਚ OH⁻ਦਾ ਵਟਾਂਦਰਾ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਰਿਣਆਇਨ (ਜਿਵੇਂ) Cl⁻, HCO₃^{-,} SO₄²⁻ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ ? ਇਸ ਤਰ੍ਹਾਂ ਮੁਕਤ OH⁻ ਆਇਨ ਧਨਆਇਨ ਵਟਾਂਦਰੇ ਦੇ ਮੁਕਤ H⁺ ਅਇਨ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਪਾਣੀ ਨੂੰ ੳਦਾਸੀਨ ਕਰ ਦਿੰਦਾ ਹੈ।

 $\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}\mathrm{O}(1)$

ਧਨ ਅਇਨ ਅਤੇ ਰਿਣਆਇਨ ਵਟਾਂ ਦਰਿਆਂ ਦੇ ਰੇਜ਼ਿਨ ਤਲ (Resin bed) ਦੀ ਵਰਤੋਂ ਜਦੋਂ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਹਲਕੇ ਤੇਜਾਬ ਅਤੇ ਹਲਕੀਖਾਰ ਘੋਲਾਂ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਵਾ ਕੇ ਪੁਨਰ ਯੋਜਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

9.7 ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ (H_2O_2)

ਹਾਈਡ੍ਰੋਜਨ ਪਰਆਕੱਸਾਈਡ ਇੱਕ ਮਹਤੱਵਪੂਰਨ ਰਸਾਇਣ ਹੈ, ਜੋ ਪ੍ਰਦੂਸ਼ਣ ਕੰਟਰੋਲ ਵਿੱਚ ਘਰੇਲੂ ਅਤੇ ਉਦਯੋਗਿਕ ਵਿਅਰਥ ਪਦਾਰਥਾਂ (Effluents) ਦੇ ਨਾਲ ਕਿਰਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਕੰਮ ਆਉਂਦਾ ਹੈ।

9.7.1 ਬਨਾਉਣ ਦੀਆਂ ਵਿਧੀਆਂ

ਇਹ ਹੇਠ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਅਦੁਆਰਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਬੇਰੀਅਮ ਪਰਆੱਕਸਾਈਡ ਨੂੰ ਤੇਜਾਬੀ ਕਰਕੇ ਅਤੇ ਪਾਣੀ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਨੂੰ ਘੱਟ ਦਾਬ ਉੱਤੇ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $BaO_{2}.8H_{2}O\left(s\right)+H_{2}SO_{4}\left(aq\right)\rightarrow BaSO_{4}\left(s\right)+$

 $H_2O_2(aq) + 8H_2O(1)$

(ii) ਉੱਚ ਕਰੰਟ ਘਣਤਾ ਤੇ ਤੇਜਾਬੀ ਸਲਫੇਟ ਘੋਲ ਦੇ ਬਿਜਲਈ– ਅਪਘਟਨੀ ਆੱਕਸੀਕਰਣ ਤੋਂ ਪ੍ਰਾਪਤ ਪਰਆੱਕਸਾਈਡ ਸਲਫੇਟ ਦੇ ਜਲ–ਅਪਘਟਨ ਨਾਲ ਹਾਈਡੋਜਨ ਪਰਆੱਕਸਾਈਡ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $2HSO_{4}^{-}(aq) \xrightarrow{$ ਬਿਜਲਈ ਅਪਘਟਨ $} HO_{3}SOOSO_{3}H(aq)$

 $\xrightarrow{\text{HS WVW2C}}$ 2HSO₄⁻(aq)+2H⁺(aq)+H₂O₂(aq) ਹੁਣ ਇਹ ਵਿਧੀ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ D₂O₂ ਬਨਾਉਣ ਦੇ ਕੰਮ ਵਿੱਚ ਅਉਂਦੀ ਹੈ।

 $K_2S_2O_8(s)+2D_2O(l) \rightarrow 2KDSO_4(aq)+D_2O_2(l)$ (iii) ਹਾਈਡ੍ਰੋਜਨ ਪਰਅੱਕਸਾਈਡ ਦਾ ਉਦਯੋਗਿਕ ਉਤਪਾਦਨ ਐਲਕਾਈਲ ਐਨਥਰੋਕਿਉਂਨੋਲ 2-alklylanthraquinols ਦੇ ਸਵੈਆੱਕਸੀਕਰਣ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

$$2-$$
 ਈਥਾਈਲ ਐਨਥਰੋਕਿਊਨੋਲ $\xrightarrow[H_2/Pd]{O_2(Jer)} H_2O_2 +$ ਆਕਸੀਕ੍ਰਿਤ ਉਪਜ

ਇਸ ਵਿਧੀ ਤੋਂ ਪ੍ਰਾਪਤ (~ 1 %) ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਸਾਰਣੀ 9.4 ਹਾਈਡੋਜਨ ਦਾ ਨਿਸ਼ਕਰਸ਼ਣ ਪਾਣੀ ਦੁਆਰਾ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਉਸਦੇ ਬਾਅਦ ਘੱਟ ਦਾਬ ਉੱਤੇ ਇਸ ਦਾ ਵਾਸ਼ਪਨ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਨੂੰ ਸੰਘਣਾ (ਪੁੰਜ ਅਨੁਸਾਰ 30% ਤਕ) ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੇ 85% ਤਕ ਸੰਘਣਾ ਕਰਨ ਦੇ ਲਈ ਘੱਟ ਦਾਬ ਉੱਤੇ ਕਸ਼ੀਦਣ ਸਾਵਧਾਨੀ ਪੂਰਵਰ ਕਰਵਾ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਬਹੁਤ ਠੰਡਾ (Frozen) ਕਰਕੇ ਸ਼ੁਧ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

9.7.2 ਭੌਤਿਕ ਗੁਣ

ਸ਼ੁਧ ਅਵਸਥਾ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਲਗਭਗ ਰੰਗਹੀਣ (ਅਤਿਹਲਕਾ ਨੀਲਾ) ਦ੍ਵ ਹੈ। ਇਸ ਦੇ ਮੁੱਖ ਭੋਤਿਕ ਗੁਣ ਸਾਰਣੀ 9.4 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਹਾਈਡ੍ਰੋਜਨ ਪਰਅੱਕਸਾਈਡ ਪਾਣੀ ਦੇ ਹਰ ਇਕ ਅਨੁਪਾਤ ਵਿੱਚ ਮਿਸ਼ਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਹਾਈਡ੍ਰੇਟ H₂O₂.H₂O ਉਬਲਣ ਅੰਕ 221K) ਬਣਾ ਲੈਂਦਾ ਹੈ। ਬਜਾਰਾਂ ਵਿੱਚ ਉਪਲਬਧ 30% ਸੰਘਣਤਾ ਵਾਲੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਘੋਲ ਦੀ ਅਇਤਨ ਸੰਘਣਤਾ (volume' Strenght) 100 ਅੱਇਤਨ ਹੁੰਦੀ ਹੈ। 100 ਅਇਤਨ H₂O₂ ਤੋਂ ਭਾਵ ਹੈ ਕਿ 100 mL H₂O₂ ਘੋਲ ਦੇ ਪੂਰਣ ਅਪਘਟਨ ਦੇ ਫਲਸਰੂਪ ਸਟੈਂਡਰਡ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ 100 mL ਅੱਕਸੀਜਨ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਬਜਾਰ ਵਿੱਚ ਇਹ 10 ਅਇਤਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵੇਚਿਆ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ ਇਸਦੀ ਸੰਘਣਤਾ 3% ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਣ 9.5

10 ਅਇਤਨ H_2O_2 ਘੋਲ ਸੰਘਣਤਾ (Strength) ਪਰਿਕਲਿਤ ਕਰੋ। ਹਲ

 $\rm H_2O$ ਦੇ 10 ਅਇਤਨ ਘੋਲ ਦਾ ਅਰਥ ਹੈ ਕਿ $\rm H_2O_2$ ਦੇ ਇਸ ਘੋਲ ਦਾ 1 ਲਿਟਰ ਸਟੈਂਡਰਡ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ 10 ਲਿਟਰ ਅੱਕਸੀਜਨ ਦੇਵੇਗਾ।

 $\begin{array}{c} 2H_2O_2(1) \to O_2(g) + H_2O(1) \\ 2\times 34 \ g \\ \end{array} \begin{array}{c} 22.7 \ L \ at \ STP \end{array}$

68 g

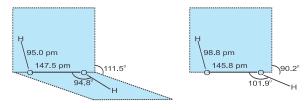
ਉਪਰੋਂਕਤ ਸਮੀਕਰਣ ਦੇ ਅਧਾਰ ਤੇ $68 \text{ ਗ੍ਰਾਮ } H_2O_2$ ਤੋਂ STP ਉੱਤੇ 22.7 L O_2 ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ STP ਉੱਤੇ 10 to L O_2 ਪੇਦਾ ਕਰਨ ਦੇ ਲਈ H_2O_2 ਦੀ ਲੋੜੀ ਦੀ ਮਾਤਰਾ ਹੋਵੇਗੀ।

$$\frac{68 \times 10}{22.7}$$
g = 29.9 g ≈ 30 g H₂O₂

22.7ਇਸ ਲਈ 10 ਅਇਤਨ H_2O_2 ਦੀ ਸੰਘਣਤਾ 30. og/L ਹੈ ਭਾਵ 3% H_2O_2 ਘੋਲ ਹੈ।

ਸਾਰਣੀ 9.4 ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੇ ਭੌਤਿਕ ਗੁਣ

ਪਿਘਲਣ ਅੰਕ/K	272.4	ਘਣਤਾ ਦ੍ਵਕ (298 K)/g cm ⁻³	1.44
ਉਬਲਣ ਅੰਕ/K	423	ਵਿਸ਼ਕਾਸਿਤਾ (290 K) centirise	1.25
ਵਾਸ਼ਪਦਾਬ (298K)/mmHg	1.9	ਡਾਈਇਲੈਕਟ੍ਰਿਕ ਅੰਕ (298K)/ $ ext{C}^2$ /N $ ext{m}^2$	70.7
ਘਣਤਾ (268.5K) ਉਤੇ ਠੋਸ/g cm ⁻³	1.64	ਬਿਜਲੀ ਚਾਲਕਤਾ (298K)/ $\Omega^{^{-1}}~{ m cm}^{^{-1}}$	5.1×10^{-8}


Downloaded from https:// www.studiestoday.com

285

286

9.7.3 ਰਚਨਾ

ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੀ ਰਚਨਾ ਅ-ਸਮਤਲੀ ਹੁੰਦੀ ਹੈ। ਗੈਸੀ ਫੇਜ਼ ਵਿੱਚ ਅਤੇ ਠੋਸ ਫੇਜ਼ ਵਿੱਚ ਇਸ ਦੀ ਅਣਵੀਂ ਰਚਨਾ ਨੂੰ ਚਿੱਤਰ 9.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

(ਅ) ਠੋਸ ਫੇਜ਼

ਚਿਤੱਰ. 9.3 (a) ਗੈਸ ਫੇਜ਼ ਵਿੱਚ H_2O_2 ਦੀ ਰਚਨਾ ਦੋ ਤਲਾਂ ਵਿੱਚਲਾ ਕੋਣ 111.5° ਹੈ। (b) ਠੋਸ ਫੇਜ ਵਿੱਚ 110K ਤਾਪਮਾਨ ਉੱਤੇ H_2O_2 ਦੀ ਰਚਨਾ ਦੋ ਤਲਾ ਵਿਚਲਾ ਕੋਣ 90° ਹੈ।

9.7.4 ਰਸਾਇਣਿਕ ਗੁਣ

ਤੇਜਾਬੀ ਅਤੇ ਖਾਰੀ–ਦੋਵਾਂ ਮਾਪਿਅਮਾਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਲਘੂਕਾਰਕ ਅਤੇ ਆੱਕਸੀਕਾਰਕ ਦੋਵੇਂ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਕੁਝ ਸਰਲ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਾ ਵਰਣਨ ਹੇਠਾਂ ਕੀਤਾ ਗਿਆ ਹੈ।

(i) ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ H_2O_2 ਆੱਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ

 $2Fe^{2+}(aq)+2H^{+}(aq)+H_{2}O_{2}(aq) \rightarrow$

$$2 \text{Fe}^{3+}(\text{aq}) + 2 \text{H}_2 \text{O}(1)$$

 $PbS(s)+4H_2O_2(aq) \rightarrow PbSO_4(s)+4H_2O(l)$ (ii) ਤੇਜਾਬੀ ਮਾਧਿਅਮ ਵਿੱਚ H_2O_2 ਆਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ—

 $2MnO_{4}^{-} + 6H^{+} + 5H_{2}O_{2} \rightarrow 2Mn^{2+} + 8H_{2}O + 5O_{2}$

 $HOCl + H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$

(iii) ਖਾਰੀ ਮਾਧਿਅਮ ਵਿੱਚ H_2O_2 ਆਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ

 $2Fe^{2+} + H_2O_2 \rightarrow 2Fe^{3+} + 2OH^-$

 $Mn^{2+} + H_2O_2 \rightarrow Mn^{4+} + 2OH^-$

(iv) ਖਾਰੀ ਮਾਧਿਅਮ ਵਿੱਚ H_2O_2 ਲਘੁਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ

 $\mathrm{I_2} + \mathrm{H_2O_2} + \mathrm{2OH^-} \rightarrow \mathrm{2I^-} + \mathrm{2H_2O} + \mathrm{O_2}$

 $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 +$

$$2H_2O + 2OH^-$$

9.7.5 ਭੰਡਾਰਣ

ਪ੍ਰਕਾਸ਼ ਦੇ ਪ੍ਰਭਾਵ ਵਿੱਚ H_2O_2 ਅਪਘਟਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। $2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$

ਧਾਤਾਂ ਦੀ ਸਤ੍ਹਾ ਅਤੇ ਖਾਰ ਦੀ ਸੂਖਮ ਮਾਤਰਾ (ਜੋ ਕੱਚ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੀ ਹੈ, ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਉਤਪ੍ਰੇਰਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਮੋਮ ਦੀ ਪਰਤ ਨਾਲ ਯੁਕਤ ਕੱਚ ਜਾਂ ਪਲਾਸਟਿਕ ਦੇ ਬਰਤਨਾਂ ਵਿੱਚ ਹਨੇਰੇ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਯੂਰੀਆ ਇੱਕ ਸਥਾਈਕਾਰੀ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਧੂੜ ਦੇ ਕਣਾਂ ਤੋਂ ਦੂਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਕਿਉਕਿ ਧੂੜ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੇ ਵਿਸਫੋਟੀ ਅਪਘਟਨ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ।

9.7.6 ਲਾਭ

H₂O₂ ਦੀ ਜਿਆਦਾ ਵਰਤੋਂ ਦੇ ਕਾਰਣ ਇਸ ਦੇ ਉਦਯੋਗਿਕ ਉਤਪਾਦਨ ਦੇ ਲਈ ਵਾਧਾ ਹੁੰਦਾ ਜਾ ਰਿਹਾ ਹੈ। ਇਸ ਦੇ ਕੁਝ ਲਾਭ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ।

- (i) ਹਰ ਰੋਜ ਦੇ ਜੀਵਨ ਵਿੱਚ ਇਸ ਦੀ ਵਰਤੋਂ ਹਲਕੇ ਕੀਟਨਾਸ਼ਕ ਅਤੇ ਵਾਲਾਂ ਦੇ ਰੰਗ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਐਂਟੀਸੈਪਟਿਕ (Antiseptic) ਦੇ ਰੂਪ ਵਿੱਚ ਇਹ ਬਜਾਰ ਵਿੱਚ ਪਰਹਾਈਡਰੋਲ (Perhydrol) ਨਾਮ ਨਾਲ ਵੇਚਿਆ ਜਾਂਦਾ ਹੈ।
- (ii) ਇਸ ਦੀ ਵਰਤੋਂ ਪਰਬੋਰੇਟ ਅਤੇ ਸੋਡੀਅਮ ਪਰਕਾਰਬੋਨੇਟ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਉੱਚ ਕੋਟੀ ਦੇ ਡਿਟਰਜੈਂਟਾਂ ਦੇ ਲਈ ਲਾਭਦਾਇਕ ਹੈ।
- (iii) ਇਸ ਦੀ ਵਰਤੋਂ ਹਾਈਡ੍ਰੋਕਿਊਨੋਨ ਟਾਰਟੈਰਿਕ ਐਸਿਡ, ਡੋਜਨ ਪਦਾਰਥਾਂ ਅਤੇ ਦਵਾਈਆਂ (ਸਿਫੈਲੋਸਪੋਰਿਨ ਦੇ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- (iv)ਉਦਯੋਗਾਂ ਵਿੱਚ H₂O₂ ਦੀ ਵਰਤੋਂ ਕਪੜਿਆਂ, ਕਾਗਜ ਦੀ ਲੁਗਦੀ (pulp), ਚਮੜਾ ਤੇਲ, ਘਿਓ ਦੇ ਰੰਗ ਕਟੱਣ (Bleaching agent) ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- (v) ਅੱਜ ਕਲ H₂O₂ ਦੀ ਵਰਤੋਂ ਵਾਤਾਵਰਣੀ (ਹਰੀ) ਰਸਾਇਣ ਉਦਾਹਰਣ ਵਜੋਂ ਪਰਦੂਸ਼ਣ ਕੰਟਰੋਲ ਵਿੱਚ ਘਰੇਲੂ ਅਤੇ ਉਦਯੋਗਿਕ ਵਿਅਰਥ ਪਦਾਰਥ (Effluents) ਕਿਰਿਆ ਵਿੱਚ, ਮਾਈਆਨਾਏਡ ਦੇ ਆੱਕਸੀਕਰਣ ਵਿੱਚ, ਸੀਵੇਜ ਦੇ ਲਈ ਵਾਯੂਜੀਵੀ ਦਸ਼ਾ ਦੀ ਮੁੜ ਬਹਾਲੀ ਆਦਿ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

9.8 ਭਾਰੀ ਪਾਣੀ, D₂O

ਭਾਰੀ ਪਾਣੀ ਵਧੇਰੇ ਕਰਕੇ ਨਿਊਕਲੀਅਰ ਰਿਐਕਟਰਾਂ ਵਿੱਚ ਨਿਊਟ੍ਰਾਨ ਧੀਮਾ ਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਵਟਾਂਦਰਾ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਕਿਰਿਆ ਵਿਧੀਆਂ ਦੇ ਅਧਿਐਨ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ। ਇਸ ਦਾ ਉਤਪਾਦਨ ਪਾਣੀ ਬਿਜਲਈ ਅਪਘਟਨ ਦੁਆਰਾ ਅਤੇ ਖਾਦ ਉਦਯੋਗ ਵਿੱਚ ਸਹਿ ਊਪਜ (by products) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਪਾਣੀ ਦੇ ਭਾਰੀ ਭੋਤਿਕ ਗੁਣ ਸਾਰਣੀ 9.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਭਾਰੀ ਪਾਣੀ ਦੀ ਵਰਤੋਂ ਡਿਊਟੀਰਿਅਮ ਦੇ ਅਨੇਕ ਯੋਗਿਕ ਬਨਾਉਣ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ।

$$CaC_2 + 2D_2O \rightarrow C_2D_2 + Ca(OD)_2$$

$$SO_3 + D_2O \rightarrow D_2SO_2$$

 $Al_4C_3 + 12D_2O \rightarrow 3CD_4 + 4Al(OD)_3$

9.9 ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ

ਜਲਣ ਕਿਰਿਆ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਮੁਕਤ ਕਰਦੀ ਹੈ। ਬਾਲਣ (ਜਿਵੇਂ ਡਾਈਹਾਈਡ੍ਰੋਜਨ, ਮੀਥੇਨ,

287

ਐਲ ਪੀ.ਜੀ. ਅਦਿ ਦੀ ਸਮਾਨ ਅਣਵੀਂ ਮਾਤਰਾ, ਪੁੰਜ ਅਤੇ ਅਇਤਨ ਦੇ ਜਲਨ ਨਾਲ ਮੁਕਤ ਊਰਜਾ ਦੇ ਅੰਕੜੇ ਸਾਰਣੀ 9.5 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ।

ਇਸ ਸਾਰਣੀ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਡਾਈਹਾਈਡੋ਼ਜਨ ਪੈਟੋ਼ਲ (ਸਮਾਨ ਪੁੰਜ ਦੀ) ਤੁਲਨਾ ਵਿੱਚ ਤਿੰਨ ਗੁਣਾ ਵੱਧ ਉਰਜਾ ਮਕਤ ਕਰ ਸਕਦੀ ਹੈ। ਹਾਲਾਂਕਿ ਡਾਈਹਾਈਡੋਜਨ ਦੇ ਜਲਨ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਕ ਪੈਟੋਲ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਹਨ। ਸਿਰਫ ਡਾਈ-ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਆੱਕਸਾਈਡ ਹੀ ਪ੍ਰਦੂਸ਼ਕ ਹੋਣਗੇ (ਡਾਈ-ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਾਲ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਦੀ ਅਸ਼ੂਧੀ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੋਣ ਦੇ ਕਾਰਣ ਗੈਸ ਸਿਲੰਡਰ ਵਿੱਚ ਥੋੜੀ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਇਨਜੈਕਟ (inject) ਕਰਨ ਤੇ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਡਾੱਈਆੱਕਸੀਜਨ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨਹੀਂ ਹੋ ਸਕਦੀ, ਹਾਲਾਂਕਿ ਬਰਤਨ (ਜਿਸ ਵਿੱਚ ਡਾਈ ਹਾਈਡੋ਼ਜਨ ਰੱਖੀ ਜਾਂਦੀ ਹੈ, ਦੇ ਪੰਜ ਦਾ ਵੀ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਨਪੀੜਤ ਡਾਈਹਾਈਡੋ਼ਜਨ ਦੇ ਇੱਕ ਸਿਲੰਡਰ ਦਾ ਭਾਰ ਸਮਾਨ ਉਰਜਾ ਵਾਲੇ ਪੈਟ੍ਰੋਲ ਟੈਂਕ ਤੋਂ ਲਗਪਗ 30 ਗੁਣਾ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਡਾਈਹਾਈਡਰੋਜਨ ਨੂੰ 20K ਉੱਤੇ ਠੰਡਾ ਕਰ ਦੇ ਦ੍ਵਿਤ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਲਈ ਮੰਹਿਗੇ ਰੋਧੀ ਟੈਂਕਾ ਦੀ ਜਰਰਤ ਪੈਂਦੀ ਹੈ।

ਭਿੰਨ ਭਿੰਨ ਧਾਤਾਂ ਜਿਵੇਂ Na, Ni5, T:₁ – T: H₂, Mg H_2 ਅਦਿ ਦੇ ਟੈਂਕਾ ਦੀ ਵਰਤੋਂ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਘੱਟ ਮਾਤਰਾ ਦੇ ਭੰਡਾਰਣ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਸੀਮਾਵਾਂ ਦੇ ਖੋਜ

ਕਰਤਵਾਂ ਨੂੰ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਫਲ ਪ੍ਰਯੋਗ ਦੀਆਂ ਵਿਕਲਪਿਤ ਤਕਨੀਕਾਂ ਦੀ ਖੋਜ ਸਾਰਣੀ 9.5 ਭਿੰਨ ਭਿੰਨ ਬਾਲਣਾਂ ਦੁਆਰਾ ਜਲਨ ਨਾਲ ਮੁਕਤ ਊਰਜਾ, ਮੋਲ, ਪੁੰਜ ਅਤੇ ਅਇਤਨ ਵਿੱਚ ਕਰਨ ਦੇ ਲਈ ਉਤਸਾਹਿਤ ਕੀਤਾ ਹੈ।

ਇਸ ਸੰਦਰਭ ਵਿੱਚ ਨਵਾਂ ਵਿਕਲਪ 'ਹਾਈਡੋ਼ਜਨ ਅਰਥ ਵਿਵਸਥਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਰਥਵਿਵਸਥਾ ਦਾ ਮੂਲ ਸਿਧਾਂਤ ਉਰਜਾ ਦਾ ਦ੍ਵ ਹਾਈਡ੍ਰੋਜਨ ਜਾਂ ਗੈਸੀ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਰੂਪ ਵਿੱਚ ਟਰਾਂਸਪੋਰਟੇਸਨ ਅਤੇ ਭੰਡਾਰਣ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਰਥ ਵਿਵਸਥਾ ਦਾ ਮੁੱਖ ਟੀਚਾ ਅਤੇ ਲਾਭ ਉਰਜਾ ਦਾ ਸੰਚਰਣ ਬਿਜਲਈ ਉਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਨਾ ਹੋ ਕੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋਣਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਪਹਿਲੀ ਵਾਰ ਅਕਤੂਬਰ 2005 ਵਿੱਚ ਸ਼ੁਰੂ ਪਰਿਯੋਜਨਾ ਵਿੱਚ ਡਾਈਹਾਈਡੋ਼ਜਨ ਸਵੈ ਚਲਿਤ ਵਾਹਨਾਂ ਦੇ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਗਿਆ। ਸ਼ੁਰੂ ਵਿੱਚ ਚਾਰਪਹੀਆ ਵਾਹਨਾਂ ਦੇ ਲਈ 5% ਡਾਈਹਾਈਡੋ਼ਜ ਮਿਸ਼ਰਤ CNG ਨੂੰ ਵਰਤਿਆ ਗਿਆ। ਬਾਅਦ ਵਿੱਚ ਡਾਈਹਾਈਡੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਹੋਲੀ ਹੌਲੀ ਢੁਕਵੇਂ ਪਧੱਰ ਤੱਕ ਵਧਾਈ ਜਾਏਗੀ। ਅਜਕੱਲ ਡਾਈਹਾਈਡੋਜਨ ਦੀ ਵਰਤੋਂ ਬਾਲਣ ਸੈੱਲਾਂ ਵਿੱਚ ਬਿਜਲੀ ਉਤਪਾਦ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅਜਿਹੀ ਆਸ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਆਰਥਿਕ ਰੂਪ ਵਿੱਚ ਵਰਤੋਂ ਯੋਗ ਅਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸੁਰਖਿਅਤ ਸਰੋਤ ਦਾ ਪਤਾ ਆਉਣ ਵਾਲੇ ਸਾਲਾਂ ਵਿੱਚ ਲੱਗ ਸਕੇਗਾ ਅਤੇ ਉਸਦੀ ਵਰਤੋਂ ਉਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋ ਸਕੇਗੀ।

ਜਲਨ ਨਾਲ ਮੁਕਤ ਹੋਈ ਊਰਜਾ kJ	ਡਾਈਹਾਈਡ੍ਰੋਜਨ (ਗੈਸੀ ਫੇਜ਼)	ਡਾਈਹਾਈਡ੍ਰੋਜਨ (ਦ੍ਰਵ ਫੇਜ਼)	ਐਲ ਪੀ ਜੀ	ਮੀਥੇਨ ਗੈਸ	ਆੱਕਟੇਨ (ਦ੍ਵ ਅਵਸਥਾ)
ਪ੍ਰਤੀ ਮੋਲ	286	285	2220	880	5511
ਪ੍ਤੀ ਗ੍ਰਾਮ	143	142	50	53	47
ਪ੍ਰਤੀ ਲਿਟਰ	12	9968	25590	35	34005

ਸਾਰਣੀ 9.5 ਭਿੰਨ-ਭਿੰਨ ਬਾਲਣਾਂ ਦੁੱਆਰਾ ਜਲਨ ਨਾਲ ਮੁਕਤ ਊਰਜਾ, ਮੋਲ, ਪੁੰਜ ਅਤੇ ਆਇਤਨ ਵਿੱਚ

ਸਾਰਾਂਸ਼

ਹਾਈਡ੍ਰੋਜਨ ਸਿਰਫ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਵਾਲਾ ਸਭ ਤੋਂ ਹਲਕਾ ਪਰਮਾਣੂ ਹੈ। ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਤਿਆਗ ਕੇ ਮੂਲਕਣ ਪ੍ਰੋਟਾੱਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਇਸ ਦਾ ਵਿਸ਼ੇਸ਼ ਵਿਹਾਰ ਹੈ। ਇਸਦੇ ਤਿੰਨ ਸਮਸਥਾਨਕ ਪ੍ਰੋਟਿਅਮ (¹₁H) ਡਿਊਟੀਰਿਅਮ (D ਜਾਂ ²₁H) ਟ੍ਰਿਟਿਅਮ (T ਜਾ ³₁H) ਹਨ। ਇਨ੍ਹਾਂ ਤਿਨਾਂ ਵਿਚੋਂ ਸਿਰਫ ਟ੍ਰਿਟਿਆਮ ਰੇਡੀਓਏਕਟਿਵ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਹੋਲੇਜ਼ਨ ਨਾਲ ਸਮਾਨਤਾਵਾਂ ਦੇ ਬਾਵਜੂਦ ਇਸ ਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਦੇ ਕਾਰਣ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਵੱਖ ਥਾਂ ਦਿਤੀ ਗਈ ਹੈ।

ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਹਾਈਡੋ੍ਜਨ ਸਭ ਤੋਂ ਵੱਧ ਭਰਪੂਰ ਤੱਤ ਹੈ। ਮੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਧਰਤੀ ਦੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਨਹੀਂ ਮਿਲਦੀ, ਹਾਲਾਂਕਿ ਸੰਜੋਗ ਅਵਸਥਾ ਵਿੱਚ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਅਤਿ ਭਰਪੂਰ ਤੱਤਾਂ ਵਿੱਚ ਹਾਈਡੋ੍ਜਨ ਤੀਜੇ ਸਥਾਨ ਤੇ ਹੈ।

ਪੈਟਰੋ ਕੈਮੀਕਲਜ਼ ਤੋ ਵਾਟਰਗੈਸ ਸ਼ਿਫਟ ਪ੍ਰਤੀ ਕਿਰਿਆ (Watergas shift reaction) ਦੁਆਰਾ ਹਾਈਡ੍ਰੋਜਨ

288

ਦਾ ਉਦਯੋਗਿਕ ਉਤਪਾਦਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਲੂਣ ਪਾਣੀ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਵਿੱਚ ਸਹਿ-ਉਪਜ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਡਾਈਹਾਈਡ੍ਰੋਜਨ H–H ਇਕਹਿਰੇ ਬੰਧਨ, ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ (435.88 KJ mol⁻¹) ਤੱਤਾਂ ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਲਈ ਸਭ ਤੋ[°]ਵੱਧ ਹੈ। ਇਸ ਗੁਣ ਦੇ ਅਧਾਰ ਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਪਰਮਾਣਵੀ ਟਾੱਰਚ (Atomic Torch) ਵਿੱਚ ਕੀਤੀ ਜਾਂਦਾ ਹੈ। ਫਲਸਰੂਪ ਤਾਪਮਾਨ ~ 4000 K ਤੱਕ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ, ਜੋ ਉੱਚੇ ਪਿਘਲਣ ਅੰਕ ਵਾਲੀਆਂ ਧਾਤਾ ਦੀ ਵੈਲਡਿੰਗ ਲਈ ਕਾਫੀ ਹੁੰਦਾ ਹੈ।

ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਡ ਉੱਚ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀ ਹੈ। ਇਹ ਲਗਪਗ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਨਾਲ ਢੁਕਵੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਮਿਲ ਕੇ ਹਾਈਡ੍ਰਾਈਡ ਬਣਾਉਂਦੀ ਹੈ। ਸਾਰੇ ਹਾਈਡ੍ਰਾਈਡਾਂ ਨੂੰ ਤਿੰਨ ਵਰਗਾਂ-ਆਇਨਕ ਜਾਂ ਲੂਣੇ (Saline) ਹਾਈਡ੍ਰਾਈਡ, ਸਹਿਸੰਯੋਜਕ ਜਾਂ ਅਣਵੀਂ ਹਾਈਡ੍ਰਾਈਡ ਅਤੇ ਧਾਤਵੀ ਜਾਂ ਨਾਨਸਟੋ ਕਿਉਮੀਟਰਿਕ ਹਾਈਡ੍ਰਾਈਡ ਗਿਆ ਹੈ। ਹੋਰ ਹਾਈਡ੍ਰਾਈਡ ਬਨਾਉਣ ਦੇ ਲਈ ਖਾਰੀ ਧਾਤਾਂ ਹਾਈ ਡ੍ਰਾਈਡ ਰਾਹੀ ਪ੍ਰਤੀਕਾਰਕ ਹਨ। ਹਾਈਡ੍ਰਾਈਡ ਉਦਾਹਰਣ ਵਜੋਂ B₂ H₆, CH₄. NH₃, H₂0 ਆਦਿ ਦਾ ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਬਹੁਤ ਮਹਤੱਵ ਹੈ। ਧਾਤਵੀ ਹਾਈਡ੍ਰਾਈਡ ਦੀ ਵਰਤੋਂ ਡਾਈਹਾਡ੍ਰੋਜਨ ਦੇ ਅਤਿਸ਼ੁੱਧੀਕਰਣ (Ultra purification) ਅਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਭੰਡਾਰਣ ਲਈ ਮਾਧਿਅਮ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਡਾਈਹਾਈਡੋਜਨ ਤੋਂ ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ, ਪਾਣੀ, ਅਮੋਨੀਆ, ਮੀਥੇਨੋਲ, ਬਨਸਪਤੀ ਘਿਓ ਅਦਿ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕਾਂ ਦਾ ਨਿਰਮਾਣ ਲਘੂਆਂਕਸੀਕਰਣ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ।ਧਾਤਕਰਮੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਹ ਧਾਤਵੀਂ ਆਕਸਾਈਡ ਨੂੰ ਧਾਤ ਵਿੱਚ ਲਘੂਕ੍ਰਰਿਤ ਕਰਦੀ ਹੈ। ਪੁਲਾੜ-ਖੋਜ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੀ ਵਰਤੋਂ ਰੱਾਕਟ-ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਸਪਸ਼ਟ ਹੈ ਕਿ ਭੱਵਿਖ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਣ ਦੀ ਵਰਤੋਂ ਪ੍ਰਦੁਸਣ ਮੁਕਤ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਮਹਤਵਪੂਰਣ ਹੋਵੇਗੀ (ਹਾਈਡ੍ਰੋਜਨ ਅਰਥ ਵਿਵਸਥਾ)?

ਪਾਣੀ ਅਤਿ ਸਧਾਰਣ, ਬਹੁਤ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਮਿਲਣ ਵਾਲਾ ਪਦਾਰਥ ਹੈ। ਰਸਾਇਣਿਕ ਅਤੇ ਜੈਵਿਕ ਦ੍ਰਿਸ਼ਟੀ ਕੋਣ ਤੋਂ ਇਹ ਅਤਿ-ਮਹਤੱਵਪੂਰਣ ਹੈ। ਦ੍ਰਵ ਅਵਸਥਾ ਤੋਂ ਠੋਸ ਅਵਸਥਾ ਅਤੇ ਦ੍ਰਵ ਅਵਸਥਾ ਤੋਂ ਗੈਸ ਅਵਸਥਾ ਵਿੱਚ ਇਸਦਾ ਰੂਪਾਂਤਰਣ ਸਰਲ ਹੈ, ਜੋ ਜੀਵਮੰਡਲ ਵਿੱਚ ਮਹਤੱਵਪੂਰਣ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ। ਪਾਣੀ ਦੇ ਅਣੂ ਦੀ ਮੁੜ ਰਚਨਾ ਦੇ ਕਾਰਣ ਇਸ ਦੀ ਬੜੀ ਜਿਅਦਾ ਧਰੁਵੀ ਪ੍ਰਕਿਰਤੀ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਪਾਣੀ ਬਰਫ਼ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਅਤੇ ਜਲ ਵਾਸ਼ਪ ਵਿੱਚ ਸਭ ਤੋਂ ਘੱਟ ਹਾਈਡਰੋਜਨ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਪਾਣੀ (ੳ) ਧਰੁਵੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਅਧਾਰ ਤੇ ਇਹ ਆਇਨਿਕ ਅਤੇ ਅੰਸ਼ਿਕ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਉੱਤਮ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਹਾਰ ਕਰਦਾ ਹੈ (ਅ) ਇੱਕ ਐਫੋਟੈਰਿਕ (ਤੇਜਾਬ ਅਤੇ ਖਾਰ) ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਹਾਰ ਕਰਦਾ ਹੈ ਅਤੇ (ੲ) ਇਹ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਹਾਈਡ੍ਰੇਟ ਬਣਾਉਂਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਅਨੇਕ ਲੂਣਾਂ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਘੁਲਣ ਨਾਲ ਪਾਣੀ ਕਠੋਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਵਪਾਰਿਕ ਮਹੱਤਵ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੈ। ਪਾਣੀ ਦੀ ਸਥਾਈ ਅਤੇ ਅਸਥਾਈ ਕਠੋਰਤਾ ਜੀਓਲਾਈਟ ਅਤੇ ਸੰਲਿਸ਼ਤ ਆਇਨ ਵਟਾਂਦਰਿਆਂ ਦੀ ਵਕਤੋਂ ਕਰਕੇ ਦੂਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਭਾਰੀ ਪਾਣੀ D₂O ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ ਹੈ, ਜਿਸਦਾ ਨਿਰਮਾਣ ਸਧਾਰਣ ਪਾਣੀ ਦੇ ਬਿਜਲਈ-ਅਪਘਟਨ ਦਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਨਿਊਕਲੀਅਕ ਰਿਐਕਟਰਾਂ ਵਿੱਚ ਮੰਦਕ (moderalor) ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦਾ ਹੈ

ਹਾਈਡ੍ਰੋਜਨ ਪਰਕਆੱਕਸਾਈਡ H₂O₂ ਦੀ ਅਸਮਤਲੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ। ਇਸਦੀ ਵਰਤੋ ਉਦਯੋਗਿਕ ਰੰਗਕਾਟ, ਦਵਾਈ, ਪ੍ਰਦੂਸ਼ਣ ਨਿਯੰਤਰਣ, ਉਦਯੋਗਿਕ ਅਤੇ ਘਰੇਲੂ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਨੂੰ ਸਹੀ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਅਭਿਆਸ

- 9.1 ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਇਸ ਦੀ ਸਥਿਤੀ ਨੂੰ ਉਚਿਤ ਠਹਿਰਾਓ।
- 9.2 ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਮਸਥਾਨਕਾਂ ਦੇ ਨਾਮ ਲਿਖੋ ਅਤੇ ਦੱਸੋ ਕਿ ਇਨ੍ਹਾਂ ਸਮਸਥਾਨਕਾਂ ਦਾ ਪੁੰਜ ਅਨੁਪਾਤ ਕੀ ਹੈ।
- 9.3 ਸਧਾਰਣ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਇੱਕ ਪਰਮਾਣਵੀਂ ਨਾਲੋਂ ਦੋ ਪਰਮਾਣਵੀਂ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਮਿਲਦਾ ਹੈ।
- 9.4 'ਕੋਲ ਗੈਸੀਕਰਣ' ਤੋਂ ਪ੍ਰਾਪਤ ਡਾਈਹਾਈਡੋਜਨ ਦਾ ਉਤਪਾਦਨ ਕਿਵੇਂ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ?
- 9.5 ਬਿਜਲੀ ਅਪਘਟਨ ਵਿਧੀ ਦੁਆਰਾ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਕਿੰਵੇ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ ? ਇਸ ਪ੍ਰਕਰਮ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਦੀ ਕੀ ਭੂਮਿਕਾ ਹੈ ?

ਹੇਠ ਲਿਖੀਆਂ ਸਮੀਕਰਣਾਂ ਨੂੰ ਪੂਰਾ ਕਰੋ– 9.6 $H_2(g) + M_m O_o(s) \xrightarrow{\Delta}$ (i) $CO(g) + H_2(g) \xrightarrow{\Delta} \theta = 0$ (ii) $C_{3}H_{8}(g) + 3H_{2}O(g) \xrightarrow{\Delta} \theta$ зүдаа (iii) $Zn(s) + NaOH(aq) \xrightarrow{\Delta}$ (iv) ਹਾਈਡਰੋਜਨ ਦੀ ਪ੍ਤੀਕਿਰਿਆ ਸ਼ੀਲਤਾ ਦੀਆਂ ਟਰਮਾਂ ਵਿੱਚ H - H ਬੰਧਨ ਦੀ ਉੱਚ ਐਨਥੈਲਪੀ ਦੇ 9.7 ਪਹਿਣਾਮਾਂ ਦੀ ਵਿਅਖਿਆ ਕਰੋ। ਹਾਈਡ੍ਰੋਜਨ ਦੇ (i) ਇਲੈਕਟ਼ਾੱਨ ਘੱਟ (ii) ਇਲੈਕਟ਼ਾੱਨ ਪੂਰੇ (iii) ਇਲੈਕਟ਼ਾਂਨ ਭਰਪੂਰ ਯੋਗਿਕਾ ਤੋਂ ਤੁਸੀਂ ਕੀ 9.8 ਸਮਝਦੇ ਹੋ ? ਉਹਾਹਰਣਾ ਦੁਆਰਾ ਸਮਝਾਓ। ਰਚਨਾ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਦੱਸੋ ਕਿ ਇਲੈਕਟਾਨ ਘੱਟ ਹਾਈਡਾਈਡ ਦੇ 9.9 ਕਿਹੜੇ ਲੱਛਣ ਹੈਂਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਆਸ ਰੱਖਦੇ ਹੋ ਕਿ (C_nH_{2n+2}) ਕਾਰਬਨਿਕ ਹਾਈਡ੍ਰਾਈਡ ਲੁਈਸ ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦੇ ਵਾਂਗ 9.10 ਕਾਰਜ ਕਰਣਗੇ ? ਉੱਤਰ ਨੂੰ ਉਚਿੱਤ ਠਹਿਰਾਓ। ਨਾਨ ਸਟੋਕਿਓਮੀਟਰਿਕ ਹਾਈਡ੍ਰਾਈਡ "non-stoichiometric hydrides"? ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? 9.11 ਕੀ ਤੁਸੀਂ ਖਾਰੀ ਧਾਤਾਂ ਤੋਂ ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਦੀ ਆਸ ਰੱਖਦੇ ਹੋ ? ਆਪਣੇ ਉੱਤਰ ਦੇ ਸਬੰਧ ਵਿੱਚ ਨਿਆਂ ਕਰੋ। ਹਾਈਡ੍ਰੋਜਨ ਭੰਡਾਰਣ ਦੇ ਲਈ ਧਾਤਵੀ ਹਾਈਡ੍ਰਾਈਡ ਕਿਵੇਂ ਲਾਭਦਾਇਕ ਹਨ ? ਸਮਝਾਓ। 9.12 ਕਟੱਣ ਅਤੇ ਵੈਲਡਿੰਗ ਵਿੱਚ ਪਰਮਾਣਵੀਂ ਹਾਈਡੋ਼ਜਨ ਜਾ ਆੱਕਸੀਹਾਈਡੋ਼ਜਨ ਟਾਰਚ ਕਿਸ ਤਰ੍ਹਾਂ ਕਾਰਜ 9.13 ਕਰਦੀ ਹੈ ? ਸਮਝਾਓ। NH₃, H₂O ਅਤੇ HF, ਵਿੱਚੋ ਕਿਸ ਦਾ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦਾ ਪਰਿਮਾਣ ਉਚਤੱਮ ਹੈ ਅਤੇ ਕਿਉਂ ? 9.14 ਲੁਣੇ ਹਾਈਡ੍ਰਾਈਡ ਪਾਣੀ ਨਾਲ ਪ੍ਰਬਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਅੱਗ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਕੀ ਇਸ ਵਿੱਚ 9.15 CO₂, ਜੋ ਇੱਕ ਅੱਗ ਬੁਝਾਉ ਹੈ, ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਕਰ ਸਕਦੇ ਹਾਂ ? ਸਮਝਾਓ। ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰੋ। 9.16 (i) CaH_2 , BeH_2 ਅਤੇ TiH_2 ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਵਧਦੀ ਹੋਈ ਬਿਜਲਈ ਚਾਲਕਤਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ। (ii) LiH, NaH ਅਤੇ CsH ਆਇਨਕ ਗੁਣ ਦੇ ਵਧਦੇ ਹੋਏ ਕ੍ਰਮ ਵਿੱਚ। (iii) H–H, D–D ਅਤੇ F–F ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਵਧਦੇ ਹੋਏ ਕ੍ਰਮ ਵਿੱਚ। (iv) NaH, MgH_2 ਅਤੇ H_2O ਨੂੰ ਵਧਦੇ ਹੋਏ ਲਘੂਕਾਰਕ ਗੁਣ ਦੇ ਕ੍ਰਮ ਵਿੱਚ H₂O ਅਤੇ H₂O₂ ਦੀਆਂ ਬਣਤਰਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ. 9.17 ਪਾਣੀ ਦੇ ਸਵੈ-ਪ੍ਰੋਟੋਨੀਕਰਣ ਤੋਂ ਤੁਸੀ ਕੀ ਸਮਝਦੇ ਹੋ ? ਇਸ ਦਾ ਕੀ ਮਹਤੱਵ ਹੈ ? 9.18 ${
m F}_2$ ਦੇ ਨਾਲ ਪਾਣੀ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਆੱਕਸੀਕਰਣ ਅਤੇ ਲਘੁਕਰਣ ਟਰਮਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ 9.19 ਅਤੇ ਦੱਸੋ ਕਿ ਕਿਹੜਾ ਸਪੀਸ਼ੀਜ ਅੱਕਸੀਕ੍ਰਿਤ , ਲਘੁਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ ? ਹੇਠ ਲਿਖੀਆਂ ਪਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਪੂਰਾ ਕਰੋ। 9.20 (i) $PbS(s) + H_2O_2(aq) \rightarrow$ (ii) $MnO_4^-(aq) + H_2O_2(aq) \rightarrow$ (iii) $CaO(s) + H_2O(g) \rightarrow$ (v) $AlCl_3(g) + H_2O(l) \rightarrow$ (vi) $Ca_3N_2(s) + H_2O(1) \rightarrow$

Downloaded from https:// www.studiestoday.com

289

290

ਉਪਰੋਕਤ ਨੂੰ (ੳ) ਜਲ-ਅਪਘਟਨ (ਅ) ਲਘੂ ਆੱਕਸੀਕਰਣ (Redox) (ੲ) ਜਲਯੋਜਨ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ।

- 9.21 ਬਰਫ ਦੇ ਸਧਾਰਣ ਰੂਪ ਦੀ ਬਣਤਰ ਦਾ ਵਰਣਨ ਕਰੋ।
- 9.22 ਪਾਣੀ ਦੀ ਅਸਥਾਈ ਅਤੇ ਸਥਾਈ ਕਠੋਰਤਾ ਦੇ ਕੀ ਕਾਰਣ ਹਨ ? ਵਰਣਨ ਕਰੋ।
- 9.23 ਸੰਸਲਿਸ਼ਤ ਅਇਨ ਵਟਾਂਦਰਾ ਵਿਧੀ ਦੁਾਰਾ ਕਠੋਰ ਪਾਣੀ ਨੂੰ ਨਰਮ ਕਰਨ ਦੇ ਸਿਧਾਂਤ ਅਤੇ ਵਿਧੀ ਦੀ ਵਿਅਖਿਆ ਕਰੋ।
- 9.24 ਪਾਣੀ ਦੇ ਐਂਫੋਟੈਰਿਕ ਸੁਭਾਅ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਲਿਖੋ।
- 9.25 ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੇ ਆੱਕਸੀਕਾਰਕ ਅਤੇ ਲਘੂਕਾਰਕ ਰੂਪ ਨੂੰ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਸਮਝਾਓ।
- 9.26 ਅਣ-ਖਣਿਜਿਤ ਪਾਣੀ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਇਹ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
- 9.27 ਕੀ ਅਣ-ਖਣਿਜਿਤ ਜਾਂ ਕਸ਼ੀਦਤ ਪਾਣੀ ਪੀਣ ਵਿੱਚ ਲਾਭਦਾਇਕ ਹੈ ? ਜੇ ਨਹੀਂ, ਤਾਂ ਇਸ ਨੂੰ ਲਾਭਦਾਇਕ ਕਿਵੇਂ ਬਣਆਇਆ ਜਾ ਸਕਦਾ ਹੈ ?
- 9.28 ਜੀਵਮੰਡਲ ਅਤੇ ਜੈਵ ਪ੍ਣਾਲੀਆਂ ਵਿੱਚ ਪਾਣੀ ਦੀ ਮਹਤੱਤਾ ਸਮਝਾਓ।
- 9.29 ਪਾਣੀ ਦਾ ਕਿਹੜਾ ਗੁਣ ਇਸ ਨੂੰ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਲਾਭਕਾਰੀ ਬਣਾਉਂਦਾ ਹੈ ? ਇਹ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਯੋਗਿਕ (i) ਘੋਲ ਸਕਦਾ ਹੈ ਅਤੇ (ii) ਜਲ ਅਪਘਟਨ ਕਰ ਸਕਦਾ ਹੈ ?
- $9.30 H_2O$ ਅਤੇ D_2O , ਦੇ ਗੁਣਾਂ ਨੂੰ ਜਾਣਦੇ ਹੋਏ ਕੀ ਤੁਸੀਂ ਮੰਨਦੇ ਹੋ ਕਿ D_2O ਦੀ ਵਰਤੋਂ ਪੀਣ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਆਂਦੀ ਜਾ ਸਕਦੀ ਹੈ ?
- 9.31 ਜਲ-ਅਪਘਟਨ (hydrolysis) ਅਤੇ ਜਲਯੋਜਨ (Hydration) ਟਰਮਾਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?
- 9.32 ਲੂਣੇ ਹਾਈਡ੍ਰੋਈਡ ਕਿਸ ਤਰ੍ਹਾਂ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚੋ ਅਤਿ ਸੂਖਮ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਨੂੰ ਕੱਢ ਸਕਦੇ ਹਨ ?
- 9.33 ਪਰਮਾਣੂ ਕ੍ਰਮਅੰਕ 15, 19, 23 ਅਤੇ 44 ਵਾਲੇ ਤੱਤ ਜੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਆ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਬਣਾਉਂਦੇ ਹਨ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਪ੍ਰਕਿਰਿਤੀ ਤੋਂ ਤੁਸੀਂ ਕੀ ਆਸ ਕਰੋਗੇ ? ਪਾਣੀ ਦੇ ਨਾਲ ਉਨ੍ਹਾਂ ਦੇ ਵਿਹਾਰ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- 9.34 ਜਦੋਂ ਐਲੂਮੀਨਿਅਮ (III) ਕਲੋਰਾਈਡ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਵੱਖ ਵੱਖ (ੳ) ਸਧਾਰਣ ਪਾਣੀ (ਅ) ਤੇਜਾਬੀ ਪਾਣੀ ਅਤੇ (ੲ) ਖਾਰੇ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਅਤ ਕਰਵਾਇਆ ਜਾਵੇਗਾ, ਤਾਂ ਤੁਸੀਂ ਕਿਹੜੀਆਂ ਭਿੰਨ ਭਿੰਨ ਉਪਜਾਂ ਦੀ ਆਸ ਕਰੋਗੇ ? ਜਿੱਥੇ ਜਰੂਰੀ ਹੋਵੇ, ਉੱਥੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦਿਓ।
- 9.35 H₂O₂ ਰੰਗਕਾਟ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਵੇਂ ਕਾਰਜ ਕਰਦਾ ਹੈ ? ਲਿਖੋ।
- 9.36 ਹੇਠ ਲਿਖੀਆਂ ਟਰਮਾਂ ਤੋ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?

(i) ਹਾਈਡ੍ਰੋਜਨ ਅਰਥਵਿਵਸਥਾ (ii) ਹਾਈਡ੍ਰੋਜਨੀਕਰਣ (iii) ਸਿਨਗੈਸ (iv) ਵਾਟਰ ਗੈਸ ਸ਼ਿਫਟ ਪ੍ਰਤੀਕਿਰਿਆ (v) ਬਾਲਣ-ਸੈਲੱ।

ਯੁਨਿਟ 10

<u>s-ਬੱਲਾਕ ਤੱਤ</u>

(The s-Block Elements)

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ

- ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਸਧਾਰਣ ਲੱਛਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਸਾਧਾਰਣ ਲੱਛਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਪੋਰਟਲੈਂਡ ਸੀਮੈਂਟ ਸਹਿਤ ਸੋਡੀਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਦੇ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕਾਂ ਦੇ ਨਿਰਮਾਣ, ਗੁਣਾਂ ਅਤੇ ਲਾਭਾਂ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ;
- ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ਿਅਮ, ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਦੀ ਜੈਵ ਮਹੱਤਤਾ ਦੇ ਬਾਰੇ ਜਾਣ ਸਕੋਗੇ।

"ਖਾਰੀ ਅਤੇ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤ ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਤੱਤ ਇਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਦੇ ਬਾਕੀ ਦੇ ਤੱਤਾਂ ਤੋਂ ਕਈ ਗੁਣਾਂ ਵਿੱਚ ਵੱਖ ਹੁੰਦੇ ਹਨ।"

ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ s-ਬਲਾੱਕ ਦੇ ਉਹ ਤੱਤ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਅੰਤਿਮ ਇਲੈਕਟ੍ਰਾੱਨ ਬਾਹਰੀ s-ਆਰਬਿਟਲ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ s-ਆੱਰਬਿਟਲ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਦੋ ਹੀ ਇਲੈਕਟ੍ਰਾਨ ਹੋ ਸਕਦੇ ਹਨ ਇਸ ਤਰ੍ਹਾਂ ਸਿਰਫ ਦੋ ਹੀ ਗਰੁੱਪ (1 ਅਤੇ 2) s-ਬਲਾੱਕ ਤੱਤਾਂ ਅਧੀਨ ਆਉਂਦੇ ਹਨ। ਪਹਿਲੇ ਗਰੁੱਪ ਦੇ ਤੱਤ ਹਨ-ਲੀਥਿਅਮ (Li),ਸੋਡੀਅਮ (Na), ਪੋਟਾਸ਼ਿਅਮ (K) ਰੁਬੀਡੀਅਮ (Rb) ਸੀਜੀਅਮ (Cs) ਅਤੇ ਫਰੈਸਿਅਮ (Fr)। ਆਮ ਰੂਪ ਵਿੱਚ ਇਹ ਤੱਤ ਖਾਰੀ ਧਾਤਾਂ ਵਜੋਂ ਜਾਣੇ ਜਾਂਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਪਾਣੀ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਖਾਰੀ ਸੁਭਾਅ ਦੇ ਹਾਈਡੋ੍ਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ, ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ 'ਖਾਰੀ ਧਾਤਾਂ' ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਗਰੁੱਪ ਦੇ ਤੱਤ ਹਨ-ਬੈਰੀਲਿਅਮ (Be), ਮੈਗਨੀਸ਼ਿਅਮ (Mg), ਕੈਲਸ਼ਿਅਮ (Ca), ਸਟਗੈਂਸ਼ਿਅਮ (Sr), ਬੇਰੀਅਮ (Ba) ਅਤੇ ਰੇਡੀਅਮ (Ra)। ਬੈਰੀਲਿਅਮ ਨੂੰ ਛੱਡ ਕੇ ਬਾਕੀ ਤੱਤ ਖਾਰੀ ਮਿਟੀ ਧਾਤਾਂ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੇ ਜਾਂਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡੋ੍ਕਸਾਈਡ ਦਾ ਸੁਭਾਅ ਖਾਰਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਆੱਕਸਾਈਡ ਆਮ ਕਰਕੇ ਭੂ–ਪੇਪੜੀ (Earth crust) ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਕਹਿੰਦੇ ਹਨ।

ਖਾਰੀ ਧਾਤਾਂ ਵਿਚੋਂ ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਕਾਫ਼ੀ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ, ਜਦਕਿ ਲੀਥਿਅਮ, ਰੁਬੀਡੀਅਮ ਅਤੇ ਸੀਜੀਅਮ ਅਲਪ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਫਰੈਂਸਿਅਮ ਇੱਕ ਅਤਿ ਰੇਡੀਓਐਕਟਿਵ ਤੱਤ ਹੈ। (ਸਾਰਣੀ 10.1)। ਫਰੈਂਸਿਅਮ ਦੀ ਵੱਧ ਤੋਂ ਵਧ ਲੰਬੀ ਆਯੂ ਵਾਲੇ ਸਮਸਥਾਨਕ ²²³Fr ਦੀ ਅਰਧ ਆਯੂ ਸਿਰਫ 21 ਮਿੰਟ ਹੈ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਭੂ-ਪੇਪੜੀ ਵਿੱਚ ਮੌਜੂਦਗੀ ਦੇ ਆਧਾਰ ਤੇ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦਾ ਸਥਾਨ ਕ੍ਰਮਵਾਰ ਪੰਜਵਾਂ ਅਤੇ ਛੇਵਾਂ ਹੈ। ਸਟੱਰਾਂਸ਼ਿਅਮ ਅਤੇ ਬੇਰੀਅਮ ਦੀ ਉਪਲਬਧਤਾ ਬਹੁਤ ਘੱਟ ਹੈ। ਬੈਗੀਲਿਅਮ ਇੱਕ ਦੁਰਲਭ ਧਾਤ ਹੈ, ਜਦਕਿ ਰੇਡੀਅਮ ਦੀ ਮਾਤਰਾ ਅਗਨੀ ਚਟਾਨਾਂ ਵਿੱਚ ਕੇਵਲ 10⁻¹⁰ ਪ੍ਰਤੀਸ਼ਤ ਹੈ (ਸਾਰਣੀ 10.2)।

ਖਾਰੀਧਾਤਾਂ ਦੀ ਸਧਾਰਣ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ (ਨੋਬਲ ਗੈਸ) ns^1 ਅਤੇ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਤਰਤੀਬ (ਨੋਬਲ ਗੈਸ] ns^2 ਹੈ।ਲੀਥਿਅਮ ਅਤੇ ਬੈਰੀਲਿਅਮ ਜੋ ਕ੍ਰਮਵਾਰ ਗਰੁੱਪ 1 ਅਤੇ 2 ਦੇ ਪਹਿਲੇ ਤੱਤ ਹਨ, ਦੇ ਕੁਝ ਗੁਣ ਇਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਦੇ ਦੂਜੇ ਤੱਤਾਂ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਅਸੰਗਤ ਵਿਹਾਰ ਦੇ ਕਾਰਣ ਦੋਵੇਂ ਤੱਤ

* ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਪਾਤਲੀ ਚੱਟਾਨੀ ਸਤ੍ਹਾ ਭੂ-ਪੇਪੜੀ ਅਖਵਾਉਂਦੀ ਹੈ।ਮੈਗਮਾ (ਪਿਘਲੀ ਹੋਈ ਚਟਾਨ) ਦੇ ਠੰਡੇ ਹੋਣ ਤੋਂ ਬਣੀ ਸਖ਼ਤ ਚਟਾਨ।

292

ਆਪਣੇ ਬਿਲਕੁਲ ਅਗਲੇ ਗਰੁੱਪ ਦੇ ਦੂਜੇ ਤੱਤਾਂ ਨਾਲ ਗੁਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਲੀਥਿਅਮ ਦੇ ਬਹੁਤ ਸਾਰੇ ਗੁਣ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਬੈਰੀਲਿਅਮ ਦੇ ਬਹੁਤ ਸਾਰੇ ਗੁਣ ਅਲੂਮੀਨਿਅਮ ਦੇ ਗੁਣਾਂ ਨਾਲ ਮਿਲਦੇ ਹਨ। ਇਸ ਕਿਸਮ ਦੀਆਂ ਵਿਕਰਣ ਸਮਾਨਤਾਵਾਂ ਨੂੰ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਵਿਕਰਣ ਸਬੰਧ (Diagonal Relationship) ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਤੱਤਾਂ ਦੇ ਆਇਨਿਕ ਅਕਾਰ ਜਾਂ ਉਨ੍ਹਾਂ ਦੇ ਚਾਰਜ/ ਅਰਧ ਵਿਆਸ ਅਨੁਪਾਤ ਦਾ ਸਮਾਨ ਹੋਣਾ ਹੀ ਵਿਕਰਣ ਸਬੰਧ ਦਾ ਮੁੱਖ ਅਧਾਰ ਹੈ। ਇਕ ਸੰਯੋਜਕ ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਆਇਨ ਅਤੇ ਦੋ ਸੰਯੋਜਕ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਆਇਨ ਜੈਵ ਤਰਲਾਂ ਵਿੱਚ ਵਧੇਰੀ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਹ ਆਇਨ ਜੈਵੀ ਕਿਰਿਆਵਾਂ, ਜਿਵੇਂ-ਆਇਨ ਦਾ ਸੰਤੁਲਨ (Maintenance of Ion balance) ਅਤੇ ਸ਼ਿਰਾ ਅਵੇਗ ਚਾਲਨ (Nerve-impulse conduction) ਆਦਿ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੇ ਹਨ।

10.1 ਗਰੁੱਪ 1 ਦੇ ਤੱਤ : ਖਾਰੀ ਧਾਤਾਂ

ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਅਤੇ ਭੌਤਿਕ ਗੁਣਾਂ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮਅੰਕ ਦੇ ਨਾਲ ਇਕ ਨਿਯਮਿਤ ਪ੍ਰਵਿਰਤੀ ਵੇਖੀ ਗਈ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ, ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀ ਵਿਆਖਿਆ ਇੱਥੇ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ।

10.1.1 ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ

ਸਾਰੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਇੱਕ ਸੰਜੋਗੀ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅੰਤਿਮ ਦੂਜੇ ਸੈੱਲ ਦੀ ਨੋਬਲ ਗੈਸ ਬਣਤਰ ਹੁੰਦੀ ਹੈ (ਸਾਰਣੀ 10.1)। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈਲ ਵਿੱਚ ਮੌਜੂਦ s-ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਤਿਆਗਨ ਦੇ ਕਾਰਣ ਇਹ ਬਹੁਤ ਜਿਆਦਾ ਇਲੈਕਟ੍ਰੋਪਾਂਜੇਟਿਵ ਇਕ ਸੰਯੋਜਕ ਆਇਨ M⁺ ਦਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਮੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਮਿਲਦੇ।

ਤੱਤ	ਪ੍ਰਤੀਕ	ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ
ਲੀਬਿਅਮ	Li	$1s^22s^1$
ਸੋਡੀਅਮ	Na	$1 s^2 2 s^2 2 p^6 3 s^1$
ਪੋਟਾਸ਼ਿਅਮ	K	$1s^22s^22p^63s^23p^64s^1$
ਰੁਬੀਡੀਅਮ	Rb	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$
ਸੀਜੀਅਮ	Cs	$1s^22s^22p^63s^23p^63d^{10}4s^2$
		$4p^{6}4d^{10}5s^{2}5p^{6}6s^{1}$ or [Xe] $6s^{1}$
ਫਰੈਂਸਿਅਮ	Fr	[Rn] 7 <i>s</i> ¹

ਸਾਰਣੀ 10.1 ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

10.1.2 ਪਰਮਾਣੂ ਅਤੇ ਆਇਨੀ ਅਰਧ ਵਿਆਸ

ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦਾ ਅਕਾਰ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪੀਰੀਅਡ ਵਿੱਚ ਸਭ ਤੋਂ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ ਨਾਲ ਪਰਮਾਣੂ ਦਾ ਅਕਾਰ ਵੀ ਵਧਦਾ ਜਾਂਦਾ ਹੈ ਇੱਕ ਸੰਯੋਜਕ (Monovalent) ਆਇਨ (M⁺) ਦਾ ਅਕਾਰ ਉਸ ਦੇ ਜਨਕ ਪਰਮਾਣੂ (Parent atom) ਦੇ ਅਕਾਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਦਾ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨੀ ਅਰਧ ਵਿਆਸ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਵਧਦਾ ਹੈ। ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਦਾ ਅਕਾਰ Li ਤੋਂ Cs ਤਕ ਵਧਦਾ ਹੈ।

10.1.3 ਆਇਨਨ ਐਨਥੈਲਪੀ

ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਹ ਗਰੁੱਪ ਵਿੱਚ ਲੀਥਿਅਮ ਤੋਂ ਸੀਜੀਅਮ ਦੇ ਵੱਲ ਹੇਠਾਂ ਜਾਣ ਤੇ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਇਸਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਵਧਦੇ ਹੋਏ ਨਿਊਕਲੀ ਚਾਰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਅਕਾਰ ਦਾ ਪ੍ਰਭਾਵ ਵਧੇਰੇ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀ ਚਾਰਜ ਦੁਆਰਾ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸ਼ੀਲਡਿਡ (Shielded) ਹੁੰਦੇ ਹਨ।

10.1.4 ਜਲਯੋਜਨ ਐਨਥੈਲਪੀ

ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਜਲਯੋਜਕ ਐਨਥੈਲਪੀ ਅਇਨਿਕ ਅਕਾਰ ਦੇ ਵਧਣ ਤੋਂ ਘਟਦੀ ਜਾਂਦੀ ਹੈ।

 $Li^+>Na^+>K^+>Rb^+>Cs^+$

Li⁺ ਦੀ ਜਨਯੋਜਨ ਦੀ ਮਾਤਰਾ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਲੀਥਿਅਮ ਦੇ ਵਧੇਰੇ ਲੂਣ (ਉਦਾਹਰਣ ਵਜੋ– LiCl· 2H,O) ਜਲਯੋਜਿਤ ਹੁੰਦੇ ਹਨ।

10.1.5 ਭੌਤਿਕ ਗੁਣ

ਖਾਰੀ ਧਾਤਾਂ ਬਹੁਤ ਹੀ ਨਰਮ, ਹੌਲੀਆਂ ਅਤੇ ਚਾਂਦੀ ਵਰਗੀਆਂ ਚਿੱਟੀਆਂ ਹੰਦੀਆਂ ਹਨ। ਵੱਡਾ ਅਕਾਰ ਹੋਣ ਕੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਦੀ ਘਣਤਾ ਘੱਟ ਹੁੰਦੀ ਹੈ, ਜੋ ਲੀਥਿਅਮ ਤੋਂ ਸੀਜ਼ਿਅਮ ਦੇ ਵੱਲ ਹੇਠਾਂ ਜਾਣ ਤੇ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਫਿਰ ਵੀ ਪੋਟਾਸ਼ਿਅਮ ਧਾਤ ਸੋਡੀਅਮ ਦੀ ਤਲਨਾ ਵਿੱਚ ਹੌਲੀ ਹੰਦੀ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ੳਬਲਣ ਅੰਕ ਘੱਟ ਹੰਦੇ ਹਨ ਜੋ ਇਨਾਂ ਧਾਤਾਂ ਦੇ ਸਿਰਫ ਇਕ ਸੰਯੋਗੀ ਇਲੈਕਟਾਨ ਦੀ ਮੌਜਦਗੀ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਦੂਰਬਲ ਧਾਤਵੀ ਬੰਧਨ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਲੁਣ ਆਕਸੀਕਾਰਕ ਲਾਟ ਨੂੰ ਲੱਛਣਿਕ ਰੰਗ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਲਾਟ ਦਾ ਤਾਪ ਇਨ੍ਹਾਂ ਦੇ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਉੱਚ ਉਰਜਾ ਸਤਰ ਤੇ ਉੱਤੇਜਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਜਦੋਂ ਇਹ ਇਲੈਕਟ੍ਰਾੱਨ ਮੁੜ ਆਪਣੀ ਗਰਾਉਂਡ ਅਵਸਥਾ ਵਿੱਚ ਆਉਂਦਾ ਹੈ ਤਾਂ ਦ੍ਰਿਸ਼ ਖੇਤਰ ਵਿੱਚ ਵਿਕੀਰਣ ਉਤਰਸਰਜਨ ਦੇ ਕਾਰਣ ਲਾਟ ਨੂੰ ਰੰਗ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਆਕਸੀਕਾਰਕ ਲਾਟ ਨੂੰ ਮਿਲੇ ਰੰਗ ਇਸ ਸਾਰਣੀ ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ-

ਧਾਤ	Li	Na	K	Rb	Cs
ਰੰਗ	ਕਰਿਮਜੀ ਲਾਲ	ਪੀਲਾ		ਲਾਲ ਬੈਂਗਣੀ	ਨੀਲਾ
λ/nm	670.8	589.2	766.5	780.0	455.5

ਇੰਜ ਖਾਰੀ ਧਾਤਾਂ ਨੂੰ ਇਨ੍ਹਾਂ ਦੇ ਲਾਟ ਟੈੱਸਟ ਦੇ ਦੁਆਰਾ ਪਛਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਦਾ ਨਿਰਧਾਰਣ ਲਾਟ-ਪ੍ਰਕਾਸ਼ਮਾਪੀ (ਫਲੇਮ ਫੋਟੋਮੀਟਰੀ) ਅਤੇ ਪਰਮਾਣਵੀਂ ਸੋਖਣ ਸਪੈਕਟ੍ਰੋਸਕੋਪੀ (Atomic Absorption Spectroscopy) ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ

ਗੁਣ	ਲੀਥਿਅਮ Li	ਸੋਡੀਅਮ Na	ਪੋਟਾਸ਼ਿਅਮ K	ਰੁਬੀਡਿਅਮ Rb	ਸੀਜਿਅਮ Cs	ਫਰੈਂਸਿਅਮ Fr
ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ	3	11	19	37	55	87
ਪਰਮਾਣੂ ਪੰਜ (g $\operatorname{mol}^{^{-1}}$)	6.94	22.99	39.10	85.47	132.91	(223)
ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ	[He] 2 <i>s</i> ¹	[Ne] 3 <i>s</i> ¹	[Ar] 4s ¹	[Kr] 5 <i>s</i> ¹	[Xe] 6 <i>s</i> ¹	[Rn] 7 <i>s</i> ¹
ਅਇਨਕ ਐਨਥੈਲਪੀ / kJ mol ⁻¹	520	496	419	403	376	~375
ਜਲਯੋਜਨਾ ਐਨਥੈਨਪੀ/k $\mathrm{J}\mathrm{mol}^{-1}$	-506	-406	-330	-310	-276	_
ਧਾਤਵੀ ਅਰਧ ਵਿਆਸ / pm	152	186	227	248	265	-
ਅਇਨੀ ਅਰਧ ਵਿਆਸ M ⁺ / pm	76	102	138	152	167	(180)
ਪਿਘਲਣ ਅੰਕ / K	454	371	336	312	302	-
ਉਬਲਣ ਅੰਕ / K	1615	1156	1032	961	944	-
ਘਣਤਾ / g cm ⁻³	0.53	0.97	0.86	1.53	1.90	-
ਸਟੈਂਡਰਡ ਪੋਟੈਸ਼ਲ E [⊖] / V (M ⁺ / M) ਦੇ ਲਈ	-3.04	-2.714	-2.925	-2.930	-2.927	-
ਲਿਖੋਸਫੀਅਰ ਵਿੱਚ ਪ੍ਰਾਪਤੀ	18*	2.27**	1.84**	78-12*	2-6*	~ 10 ⁻¹⁸ *

ਸਾਰਣੀ 10.1 ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣ

*ppm (part per million), ** ਲਿਬੋਸਫੀਅਰ : ਧਰਤੀ ਦਾ ਬਾਹਰੀ ਤਲ; ਇਸਦੀ ਪੇਪੜੀ ਅਤੇ ਉਪਰੀ ਮੈਂਟਲ ਦਾ ਭਾਗ।

ਨੂੰ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਦੁਆਰਾ ਵਿਕਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪ੍ਰਕਾਸ਼ ਸੋਖਣ ਦੇ ਕਾਰਣ ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਤਿਆਗ ਕਰਦੇ ਹਨ। ਇਸੇ ਗੁਣ ਦੇ ਕਾਰਣ ਸੀਜਿਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਦੀ ਵਰਤੋਂ ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਸੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

10.1.6 ਰਸਾਇਣਿਕ ਗੁਣ

ਵਡੇ ਅਕਾਰ ਅਤੇ ਘੱਟ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਖਾਰੀ ਧਾਤਾਂ ਬਹੁਤ ਜਿਆਦਾ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਕ੍ਰਮਵਾਰ ਵਧਦੀ ਜਾਂਦੀ ਹੈ।

(i) ਹਵਾ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਰਿਆਸ਼ੀਲਤਾ : ਖਾਰੀ ਧਾਤਾਂ ਹਵਾ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਬਦਰੰਗ (Tarnish) ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਹਵਾ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਨ੍ਹਾਂ ਉੱਤੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੀ ਪਰਤ ਬਣ ਜਾਂਦੀ ਹੈ। ਇਹ ਆੱਕਸੀਜਨ ਵਿੱਚ ਤੀਬਰਤਾ ਨਾਲ ਬਲ ਕੇ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਲੀਥਿਅਮ ਅਤੇ ਸੋਡੀਅਮ ਕ੍ਰਮਵਾਰ ਮੋਨੋ ਆੱਕਸਾਈਡ ਅਤੇ ਪਰਆੱਕਸਾਈਡ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀਆਂ ਹਨ, ਜਦਕਿ ਬਾਕੀ ਧਾਤਾਂ ਦੁਆਰਾ ਸੁਪਰਆਕਸਾਈਡ ਆਇਨ O₂ ਵੱਡੇ ਧਨਆਇਨਾਂ, ਜਿਵੇਂ- K, Rb ਅਤੇ Cs ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਸਥਾਈ ਹੁੰਦਾ ਹੈ।

 $4 \operatorname{Li} + \operatorname{O}_2 \rightarrow 2 \operatorname{Li}_2 \operatorname{O}$ (ਆਕਸਾਈਡ)

 $2 \operatorname{Na} + \operatorname{O}_2 \rightarrow \operatorname{Na}_2 \operatorname{O}_2$ (ਪਰਆਕਸਾਈਡ) $M + \operatorname{O}_2 \rightarrow \operatorname{MO}_2$ (ਸੁਪਰਆਕਸਾਈਡ)

(M = K, Rb, Cs)

ਇਨ੍ਹਾਂ ਸਾਰੇ ਆੱਕਸਾਈਡਾਂ ਵਿੱਚ ਖਾਰੀ ਧਾਤ ਦੀ ਆੱਕਸੀ– ਕਰਣ ਅਵਸਥਾ +1 ਹੁੰਦੀ ਹੈ। ਲੀਥਿਅਮ ਅਪਵਾਦ ਸਰੂਪ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਨਾਈ– ਟ੍ਰਾਈਡ, Li₃N ਬਣਾ ਲੈਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਲੀਥਿਅਮ ਭਿੰਨ ਸੁਭਾਅ ਦਰਸਾਉਂਦਾ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਨੂੰ ਹਵਾ ਅਤੇ ਪਾਣੀ ਦੇ ਪ੍ਰਤੀ ਉਨ੍ਹਾਂ ਦੀ ਅਤਿ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਕਾਰਣ ਆਮ ਤੌਰ ਤੇ ਕੈਰੋਸੀਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 10.1 KO₂ ਵਿੱਚ K ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਕੀ ਹੈ ? <mark>ਹੱਲ</mark> ਸੁਪਰ ਆਕਸਾਈਡ ਨੂੰ O₂; ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਯੋਗਿਕ ਉਦਾਸੀਨ ਹੈ ਇਸ ਲਈ K ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +1 ਹੈ।

(ii) ਪਾਣੀ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ : ਖਾਰੀ ਧਾਤਾਂ ਪਾਣੀ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡਰੋਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਬਣਾਉਂਦੀਆਂ ਹਨ।

$$2 M + 2H_2O \rightarrow 2 M^+ 2OH^- + H_2$$

(M = ਖਾਰੀ ਧਾਤ)

ਭਾਵੇਂ ਲੀਥਿਅਮ ਦੀ E^{\ominus} ਦਾ ਮਾਨ ਸਭ ਤੋਂ ਜਿਆਦਾ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਪਾਣੀ ਦੇ ਨਾਲ ਇਸ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਸੋਡੀਅਮ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਹੈ, ਜਦਕਿ ਸੋਡੀਅਮ ਦੇ E^{\ominus} ਦਾ ਮਾਨ ਹੋਰ ਖਾਰੀ ਧਾਤਾਂ ਨਾਲੋਂ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਲੀਥਿਅਮ ਦੇ ਇਸ ਵਿਹਾਰ ਦਾ ਕਾਰਣ ਇਸ ਦੇ ਛੋਟੇ ਅਕਾਰ ਅਤੇ ਬੜੀ ਜਿਆਦਾ ਜਲ ਯੋਜਨ ਊਰਜਾ ਦਾ ਹੋਣਾ ਹੈ। ਹੋਰ ਖਾਰੀ ਧਾਤਾਂ ਪਾਣੀ ਦੇ ਨਾਲ ਵਿਸਫੋਟੀ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ।

ਇਹ ਖਾਰੀ ਧਾਤਾਂ ਪ੍ਰੋਟਾਨ ਦਾਤਾ (ਜਿਵੇਂ-ਐਲਕੋਹਲ, ਗੈਸੀ ਅਮੋਨੀਆ, ਐਲਕਾਈਨ ਆਦਿ) ਨਾਲ ਵੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਕਰਦੀਆਂ ਹਨ।

(iii) ਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ : ਲਗਪਗ 673K (ਲੀਬਿਅਮ ਦੇ ਲਈ 1073K) ਉੱਤੇ ਖਾਰੀ ਧਾਤਾਂ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡ੍ਰਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ।ਸਾਰੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਹਾਈਡ੍ਰਾਈਡ ਠੋਸ ਅਤੇ ਆਇਨਿਕ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਹਾਈਡ੍ਰਾਈਡਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਉੱਚੇ ਹੁੰਦੇ ਹਨ।

 $2\,\mathrm{M}\!+\!\mathrm{H}_2\rightarrow\,2\,\mathrm{M}^+\!\mathrm{H}^-$

- (iv) ਹੈਲੋਜਨ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆਸ਼ੀਲਤਾ : ਖਾਰੀ ਧਾਤਾਂ ਹੈਲੋਜਨ ਨਾਲ ਤੇਜ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਆਇਨਿਕ ਹੇਲਾਈਡ M⁺X⁻ਬਣਾਉਂਦੀਆਂ ਹਨ, ਹਾਲਾਂਕਿ ਲੀਥਿਅਮ ਦੇ ਹੇਲਾਈਡ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਸਹਿਸੰਯੋਜਕ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਣ ਲੀਥਿਅਮ ਦੀ ਉੱਚ ਧਰੁਵਣ ਸਮਰੱਥਾ ਹੈ (ਧਨ ਆਇਨ ਦੇ ਕਾਰਣ ਰਿਣ ਆਇਨ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ ਦਾ ਵਿਕਰਿਤ ਹੋਣਾ ਧਰੁਵਣਤਾ ਅਖਵਾਉਂਦਾ ਹੈ।) ਲੀਥਿਅਮ ਆਇਨ ਦਾ ਅਕਾਰ ਵੱਧ ਹੈ, ਇਸ ਲਈ ਇਹ ਹੇਲਾਈਡ ਆਇਨ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ ਨੂੰ ਵਿਕਰਿਤ ਕਰਨ ਦੀ ਸਮਰਥਾ ਦਰਸਾਉਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਵੱਡੇ ਅਕਾਰ ਦਾ ਰਿਣਆਇਨ ਅਸਾਨੀ ਨਾਲ ਵਿਕਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਇਸ ਲਈ ਲੀਥਿਅਮ ਆਇਨ ਬਾ ਰੁਸਾਉਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਵੱਡੇ ਅਕਾਰ ਦਾ ਰਿਣਆਇਨ ਅਸਾਨੀ ਨਾਲ ਵਿਕਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਇਸ ਲਈ ਲੀਥਿਅਮ ਆਇਓਡਾਈਡ ਸਹਿਸੰਯੋਜਕ ਪ੍ਰਕਿਰਤੀ ਸਭ ਤੋਂ ਵੱਧ ਦਰਸਾਉਂਦਾ ਹੈ।
- (v) ਲਘੂਕਾਰਕ ਪ੍ਰਕਿਰਤੀ : ਖਾਰੀ ਧਾਤਾਂ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਲੀਥਿਅਮ ਸਭ ਤੋਂ ਪ੍ਰਬਲ ਅਤੇ ਸੋਡੀਅਮ ਸਭ ਤੋਂ ਦੁਰਬਲ ਲਘੂਕਾਰਕ ਹੈ।(ਸਾਰਣੀ 10.1)।ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰੱਡ ਪੋਟੈਸ਼ਲ (E^{\op}) ਜੋ ਲਘੂ ਕਾਰਕ ਸਮਰਥਾ ਦਾ ਮਾਪਕ ਹੈ, ਸੰਪੂਰਣ ਪਰਿਵਰਤਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ

$M(s) \rightarrow M(g)$	ਜੌਹਰ ਉਡਾਉਣ ਐਨਥੈਲਪੀ
-------------------------	--------------------

 $M(g) \rightarrow M^+ + e^-$

ਆਇਨਨ ਐਨਥੈਲਪੀ

 $M^+(g)+H_2O(l) \rightarrow M^+(aq)$ ਜਲਯੋਜਨ ਐਨਥੈਲਪੀ

ਲੀਥਿਅਮ ਆਇਨ ਦਾ ਅਕਾਰ ਛੋਟਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਦੀ ਜਲ ਯੋਜਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਸਭ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ, ਜੋ ਇਸ ਦੇ ਉੱਚ ਰਿਣਾਤਮਕ E[⊖] ਮਾਨ ਅਤੇ ਇਸ ਦੇ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਹੋਣ ਦੀ ਪੁਸ਼ਟੀ ਕਰਦਾ ਹੈ।

ਉਦਾਹਰਣ 10.2

 Cl_2/Cl^{-} ਦੇ ਲਈ E^{\ominus} ਦਾ ਮਾਨ +1.36, I_2/I^{-} ਦੇ ਲਈ + 0.53, Ag^{+}/Ag ਦੇ ਲਈ +0.79, Na^{+}/Na ਦੇ ਲਈ –2.71 ਅਤੇ Li^{+}/Li ਦੇ ਲਈ – 3.04 ਹੈ। ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਘਟਦੀ ਹੋਈ ਲਘੂਕਰਣ ਸਮਰਥਾ ਦੇ ਅਨੁਸਾਰ ਵਿਵਸਥਿਤ ਕਰੋ– I^{-} , Ag, Cl^{-} , Li, Na**ਹੱਲ** ਕ੍ਰਮ ਇਸ ਤਰ੍ਹਾਂ ਹੈ : $Li > Na > I^{-} > Ag > Cl^{-}$

(vi) ਦ੍ਵ ਅਮੋਨੀਅਮ ਵਿੱਚ ਘੋਲ : ਖਾਰੀ ਧਾਤਾਂ ਦ੍ਵ ਅਮੋਨੀਅਮ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹਨ। ਅਮੋਨੀਅਮ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੇ ਘੋਲ ਦਾ ਰੰਗ ਗੂੜ੍ਹਾ ਨੀਲਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਘੋਲ ਅਵਸਥਾ ਵਿੱਚ ਬਿਜਲੀ ਦਾ ਸੁਚਾਲਕ ਹੁੰਦਾ ਹੈ। M+(x + y)NH₃ →[M(NH₃)_x]⁺+[e(NH₃)_y]⁻ ਘੋਲ ਦਾ ਨੀਲਾ ਰੰਗ ਅੋਮੀਨੀਕ੍ਰਿਤ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ ਜੋ ਦ੍ਰਿਸ਼ ਪ੍ਰਕਾਸ਼ ਖੇਤਰ ਦੀ ਸੰਗਤ ਊਰਜਾ ਦਾ ਸੋਖਣ ਕਰਕੇ ਘੋਲ ਨੂੰ ਨੀਲਾ ਰੰਗ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਅਮੋਨੀਕ੍ਰਿਤ ਘੋਲ ਅਨੁਚੁੰਬਕੀ (Paramagnetic) ਹੁੰਦਾ ਹੈ, ਜੋ ਕੁਝ ਸਮਾਂ ਪੇਰਹਿਣ ਤੇ ਹਾਈਡੋ੍ਜਨ ਨੂੰ ਮੁਕਤ ਕਰਦਾ ਹੈ। ਫਲ ਸਰੂਪ ਘੋਲ ਵਿੱਚ ਐਮਾਈਡ ਬਣਦਾ ਹੈ। M⁺_(am) + e⁻ + NH₂(1) → MNH_{2(am)} + ¹/₂H₂(g)

M⁺_(am) + e⁻ + NH₃ (1) → MNH_{2(am)} + ½H₂(g) (ਜਿੱਥੇ ਅਮੋਨੀਕ੍ਰਿਤ ਘੋਲ ਦਰਸਾਉਂਦਾ ਹੈ)।

ਗਾੜ੍ਹੇ ਘੋਲ ਦਾ ਨੀਲਾ ਰੰਗ ਬਰਾਂਜ (Bronze) ਰੰਗ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਘੋਲ ਪ੍ਰਤੀ ਚੁੰਬਕੀ (Diamagnetic) ਹੋ ਜਾਂਦਾ ਹੈ।

<mark>10.1.7</mark> ਲਾਭ

ਲੀਥਿਅਮ ਦੀ ਵਰਤੋਂ ਮਹੱਤਵ ਪੂਰਣ ਮਿਸ਼ਰਤ ਧਾਤਾਂ (alloy) ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਲੈਂਡ ਦੇ ਨਾਲ ਇਹ ਚਿੱਟੀ ਧਾਤ (white metal) ਬਣਾਉਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਇੰਜਨ ਦੇ ਬੈਰਿੰਗ (Bearings) ਬਣਾਏ ਜਾਂਦੇ ਹਨ। ਐਲੂਮੀਨਿਯਮ ਦੇ ਨਾਲ ਮਿਲ ਕੇ ਲੀਥਿਅਮ ਉੱਚ ਸ਼ਕਤੀ ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਬਣਾਉਂਦਾ ਹੈ। ਜਿਸ ਦੀ ਵਰਤੋਂ ਹਵਾਈ ਜਹਾਜਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਮੈਗਨੀਸ਼ਿਮ ਦੇ ਨਾਲ ਉਸਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਦੀ ਵਰਤੋਂ ਆਰਮਰ ਪਲੇਟ (Armour Plate) ਬਨਾਉਣ ਵਿੱਚ ਅਤੇ ਲੀਥਿਅਮ ਦੀ ਵਰਤੋਂ ਤਾਪ ਨਿਓਕਲੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਤੋਂ ਇਲਾਵਾਂ ਬਿਜਲਈ ਰਸਾਇਣਿਕ ਸੈੱਲਾਂ ਵਿੱਚ ਵੀ ਹੁੰਦਾ ਹੈ। ਸੋਡੀਅਮ ਦੀ ਵਰਤੋਂ Na/Pb ਮਿਸ਼ਰਤ ਧਾਤ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ Pb(Et₄) ਅਤੇ Pb(Me₄) ਦੇ ਨਿਰਮਾਣ ਲਈ ਜਰੂਰੀ ਹੈ। ਇਨ੍ਹਾਂ ਕਾਰਬ ਲੈਂਡ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤੋਂ ਪਹਿਲਾਂ ਪੈਟੋਲ ਵਿੱਚ ਐਂਟੀਨਾੱਕ

(Antiknock) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਸੀ, ਪਰੰਤੂ ਹੁਣ ਵਧੇਰੇ ਵਾਹਨਾਂ ਵਿੱਚ ਸੀਸਾ ਰਹਿਤ (Lead-free) ਪੈਟ੍ਰੋਲ ਦੀ ਵਰਤੋਂ ਹੋਣ ਲੱਗ ਪਈ ਹੈ। ਦ੍ਵ ਸੋਡੀਅਮ ਧਾਤ ਦੀ ਵਰਤੋਂ ਨਿਊਕਲੀ ਰਿਐਕਟਰ ਵਿੱਚ ਸ਼ੀਤਲਕ (Coolant) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਜੈਵੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਦੀ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਹੈ। ਪੋਟਾਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਦੀ ਵਰਤੋਂ ਖਾਦ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੀ ਵਰਤੋਂ ਨਰਮ ਸਾਬਣ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਸੋਖਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਹੁੰਦੀ ਹੈ। ਸੀਜ਼ਿਅਮ ਦੀ ਵਰਤੋਂ ਪ੍ਰਕਾਸ਼ ਬਿਜਲੀ ਸੈੱਲ (Photoelectric cells) ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

10.2 ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਸਧਾਰਣ ਲੱਛਣ

ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਸਾਰੇ ਯੋਗਿਕ ਆਮ ਤੌਰ ਤੇ ਆਇਨਿਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਕੁਝ ਯੋਗਿਕਾਂ ਦੇ ਆਮ ਲੱਛਣਾਂ ਦੀ ਚਰਚਾ ਇੱਥੇ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ।

10.2.1 ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ

ਹਵਾ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਜਲਾਉਣ ਤੇ ਲੀਥਿਅਮ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਮੋਨੋਆਕਸਾਈਡ, Li₂O (ਅਤੇ ਕੁਝ ਪਰਆਕਸਾਈਡ Li₂O₂), ਸੋਡੀਅਮ ਪਰਆੱਕਸਾਈਡ Na₂O₂ (ਅਤੇ ਕੁਝ ਸੁਪਰ ਆੱਕਸਾਈਡ NaO₂) ਵੀ ਬਣਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਪੋਟਾਸ਼ਿਅਮ, ਰੁਬੀਡੀਅਮ ਅਤੇ ਸੀਜਿਅਮ ਸੁਪਰਆਕਸਾਈਡ (MO₂) ਬਣਾਉਂਦੇ ਹਨ। ਸਹੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ M₂O, M₂O₂ ਅਤੇ MO₂ ਸ਼ੁੱਧ ਰੂਪ ਵਿੱਚ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਧਾਤਆਇਨ੍ਹਾਂ ਦਾ ਅਕਾਰ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਪਰਆੱਕਸਾਈਡਾਂ ਅਤੇ ਸੁਪਰਆੱਕਸਾਈਡ ਦੇ ਸਥਾਈਪਨ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਲੈਟਿਸ ਊਰਜਾ ਪ੍ਰਭਾਵ (Lattice Energry Effect) ਦੇ ਫਲਸਰੂਪ ਵੱਡੇ ਰਿਣ ਆਇਨਾਂ ਦਾ ਵੱਡੇ ਧਨ ਆਇਨਾਂ ਦੁਆਰਾ ਸਥਾਈਪਨ ਪ੍ਰਦਾਨ ਕਰਨਾ ਹੈ। ਇਹ ਆੱਕਸਾਈਡ ਸਰਲਤਾ ਪੂਰਵਕ ਜਲ ਅਪਘਟਿਤ ਹੋ ਕੇ ਹਾਈਡੋਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

 $M_2O + H_2O \rightarrow 2M^+ + 2OH^-$

 $M_2O_2 + 2H_2O \rightarrow 2M^+ + 2OH^- + H_2O_2$

 $2\,MO_2 + 2\,H_2O \rightarrow 2M^{\scriptscriptstyle +} + 2\,OH^{\scriptscriptstyle -} + H_2O_2 + O_2$

ਸ਼ੁੱਧ ਅਵਸਥਾ ਵਿੱਚ ਆੱਕਸਾਈਡ ਅਤੇ ਪਰਆੱਕਸਾਈਡ ਰੰਗਹੀਣ ਹੁੰਦੇ ਹਨ ਪਰੰਤੂ ਸ਼ੁਧਆੱਕਸਾਈਡ ਪੀਲੇ ਜਾਂ ਔਰੇਂਜ ਰੰਗ ਦੇ ਹੁੰ ਦੇ ਹਨ। ਸੁਪਰਆੱਕਸਾਈਡ ਵੀ ਅਨੁਚੁੰਬਕੀ (Paramagnetic) ਹੁੰਦੇ ਹਨ। ਅਕਾਰਬਨਿਕ ਰਸਾਇਣ ਵਿੱਚ ਸੋਡੀਅਮ ਪਰਆੱਕਸਾਈਡ ਨੂੰ ਆੱਕਸੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 10.3 KO₂ ਅਨੁਚੁੰਬਕੀ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ? ਹੱਲ ਸੁਪਰਆੱਕਸਾਈਡ O₂⁻ ਵਿੱਚ ਇਕ ਅ-ਯੁਗਮਿਤ ਇਲੈਕਟ੍ਰਾਨ π*2p ਅਣਵੀਂ ਆਰਬਿਟਲ ਵਿੱਚ ਹੋਣ ਦੇ ਕਾਰਣ KO₂ ਅਨੁਚੁੰਬਕੀ ਹੁੰਦਾ ਹੈ। ਆੱਕਸਾਈਡ ਅਤੇ ਜਲ-ਪ੍ਰਤੀ ਕਿਰਿਆ ਤੋਂ ਪ੍ਰਾਪਤ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਸਫੈਦ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਹੁੰਦੇ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਪ੍ਰਬਲ ਖਾਰਾਂ ਹੁੰਦੇ ਹਨ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਬੜੇ ਜਿਆਦਾ ਤਾਪ ਦੇ ਉਤਸਰਜਨ ਦੇ ਨਾਲ ਅਸਾਨੀ ਨਾਲ ਘੁਲ ਜਾਂਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੇ ਘੁਲਣ ਦਾ ਕਾਰਣ ਤੀਬਰ ਜਲ ਯੋਜਨ ਹੈ।

10.2.2 ਹੇਲਾਈਡ

ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਹੇਲਾਈਡ, MX, (X=F,Cl,Br,I) ਉੱਚ ਪਿਘਲਣ ਅੰਕ ਵਾਲੇ ਰੰਗਹੀਣ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਢੁਕਵੇਂ ਆੱਕਸਾਈਡ, ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਜਾਂ ਕਾਰਬੋਨੇਟ ਦੀ ਹਾਈਡ੍ਰੋਹੈਲਿਕ ਤੇਜ਼ਾਬ (HX) ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।ਇਨ੍ਹਾਂ ਸਾਰੇ ਹੇਲਾਈਡਾਂ ਦੀ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਉੱਚ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਫਲੋਰਾਈਡਾਂ ਦੇ $\Delta_f H^{\ominus}$ ਦਾ ਮਾਨ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਦੇ ਵੱਲ ਜਾਣ ਤੇ ਘੱਟ ਰਿਣਾਤਮਕ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਦ ਕਿ ਇਨ੍ਹਾਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਕਲੋਰਾਈਡ, ਬ੍ਰੋਮਾਈਡ ਅਤੇ ਆਇਓਡਾਈਡ ਦੇ $\Delta_f H^{\ominus}$ ਦਾ ਮਾਨ ਫਲੋਰਾਈਡ ਤੋਂ ਆਇਓਡਾਈਡ ਤੱਕ ਹਮੇਸ਼ਾ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ।

ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਦਾ ਕ੍ਰਮ ਹਮੇਸ਼ਾ ਫਲੋਰਾਈਡ > ਕਲੋਰਾਈਡ > ਬ੍ਰੋਮਾਈਡ > ਆਇਓਡਾਈਡ ਦੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ। ਇਹ ਸਾਰੇ ਹੇਲਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ LiF ਦੀ ਘੱਟ ਘੁਲਣਸ਼ੀਲਤਾ ਇਸਦੀ ਉੱਚ ਲੈਟਿਸ ਐਨਥੈਲਪੀ (Lattice Enthalpy) ਦੇ ਕਾਰਣ ਅਤੇ CsI ਦੀ ਘੱਟ ਘੁਲਣਸ਼ੀਲਤਾ Cs⁺ ਅਤੇ I⁻ ਦੀ ਘੱਟ ਜਲਯੋਜਨ ਊਰਜਾ (Hydration Energy) ਦੇ ਕਾਰਣ ਹੈ। ਲੀਥਿਅਮ ਦੇ ਹੋਰ ਹੇਲਾਈਡ ਈਥੇਨੋਲ, ਐਸੀਟੋਨ ਅਤੇ ਈਥਾਈਲ ਐਸੀਟੇਟ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤ ਹਨ। LiCl ਪਿਰੀਡੀਨ ਵਿੱਚ ਵੀ ਘੁਲਣਸ਼ੀਲ ਹੈ।

10.2.3 ਔਕਸੋ-ਤੇਜਾਬਾਂ ਦੇ ਲੁਣ

ਐਕਸੋ ਤੇਜਾਬ ਉਹ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਤੇਜਾਬੀ ਪੋਟਾੱਨ ਨਾਲ ਜੁੜਿਆ ਹਾਈਡੋ਼ਕਸਿਲ ਗਰੂਪ ਹੁੰਦਾ ਹੈ, ਉਸੇ ਪਰਮਾਣੂ ਉੱਤੇ ਔਕਸੋਗਰੁੱਪ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਾਰਬੋਨਿਕ ਐਸਿਡ $H_{2}CO_{3}$ (OC(OH)₂; ਸਲਫਿਊਰਿਕਐਸਿਡ $H_{2}SO_{4}$ (O₂S(OH)₂)। ਖਾਰੀ ਧਾਤਾਂ ਸਾਰੇ ਔਕਸੋ ਤੇਜਾਬਾਂ ਦੇ ਨਾਲ ਲੂਣ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਹ ਆਮ ਕਰਕੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਤਾਪ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਕਾਰਬੋਨੇਟਾਂ (M₂CO₃) ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰ ਬੋਨੇਟਾਂ (MHCO₃) ਦਾ ਤਾਪੀ ਸਥਾਈਪਨ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਗਰੁੱਪ ਵਿੱਚ ਉਪਰ ਤੋਂ ਹੇਠਾਂ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਸੁਭਾਅ ਵਧਦਾ ਹੈ ਇਸ ਲਈ ਕਾਰਬੋਨੇਟਾਂ ਅਤੇ ਹਾਈਡੋ਼ਜਨ ਕਾਰਬੋਨੇਟਾਂ ਦਾ ਸਥਾਈਪਨ ਵੀ ਵਧਦਾ ਹੈ। ਲੀਥਿਅਮ ਕਾਰਬੋਨੇਟ ਤਾਪ ਦੇ ਪ੍ਰਤੀ ਵਧੇਰੇ ਸਥਾਈ ਨਹੀ ਹੁੰਦਾ। ਲੀਥਿਅਮ ਦੀ ਅਕਾਰ ਛੋਟਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਵੱਡੇ CO₃²⁻ ਨੂੰ ਧਰੁਵਿਤ ਕਰਕੇ ਵਧੇਰੇ ਸਥਾਈ Li₂O ਅਤੇ CO₂ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ। ਇਸ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੀ ਹੋਂਦ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਹੰਦੀ।

296

10.3 ਲੀਥਿਅਮ ਦਾ ਅਨਿਯਮਿਤ ਵਿਹਾਰ

ਹੇਠ ਲਿਖੇ ਕਾਰਣਾਂ ਕਰਕੇ ਲੀਥਿਅਮ ਦਾ ਵਿਹਾਰ ਅਨਿਯਮਿਤ (Anomalous) ਹੈ–(ੳ) ਇਸ ਦੇ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨ (Li[†]) ਦਾ ਛੋਟਾ ਅਕਾਰ (ਅ) ਉੱਚ ਧਰੁਵਣ ਸਮਰੱਥਾ (ਅਰਥਾਤ ਚਾਰਜ/ ਅਰਧਵਿਆਸ ਅਨੁਪਾਤ)। ਫਲਸਰੂਪ ਲੀਥਿਅਮ ਯੋਗਿਕਾਂ ਦੀ ਸਹਿਸੰਯੋਜਕ ਪ੍ਵਿਰਤੀ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇਸੇ ਕਾਰਣ ਇਹ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ। ਲੀਥਿਅਮ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਨਾਲ ਵਿਕਰਣ ਸਬੰਧ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਿਸ ਦਾ ਵਰਣਨ ਅੱਗੇ (ਭਾਗ 10.3.2 ਵਿੱਚ) ਦਿੱਤਾ ਗਿਆ ਹੈ।

10.3.1 ਲੀਥਿਅਮ ਅਤੇ ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ ਅਸਮਾਨਤਾਵਾਂ ਦੇ ਮੁੱਖ ਬਿੰਦੂ

- (i) ਲੀਥਿਅਮ ਬੜੀ ਕਠੋਰ ਹੈ। ਇਸ ਦਾ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵੱਧ ਹੈ।
- (ii) ਲੀਥਿਅਮ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਬਾਕੀ ਦੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਨਾਲੋਂ ਸਭ ਤੋਂ ਘੱਟ ਹੈ, ਪਰੰਤੂ ਇਹ ਸਭ ਤੋਂ ਵੱਧ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਦਾ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਹਵਾ ਵਿੱਚ ਜਲਨ ਦੇ ਫਲਸਰੂਪ ਲੀਥਿਅਮ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਮੋਨੋਆੱਕਸਾਈਡ (Li₂O) ਬਣਾਉਂਦਾ ਹੈ। ਹੋਰ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਉਲਟ ਲੀਥਿਅਮ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਨਾਈਟ੍ਰਾਈਡ (Li₂N) ਵੀ ਬਣਾ ਲੈਂਦਾ ਹੈ।
- (iii) LiCl ਪਸੀਜਕ (Deliquescent) ਹੈ ਅਤੇ ਹਾਈਡ੍ਰੇਟ LiCl.2H₂O ਦੇ ਰੂਪ ਵਿੱਚ ਕ੍ਰਿਸਟਲਿਤ ਹੁੰਦਾ ਹੈ, ਜਦ ਕਿ ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਕਲੋਰਾਈਡ ਹਾਈਡ੍ਰੇਟ ਨਹੀਂ ਬਣਾਉਂਦੇ।
- (iv) ਲੀਥਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਜਦਕਿ ਹੋਰ ਖਾਰੀ ਧਾਤਾਂ ਠੋਸ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਬਣਾਉਂਦੇ ਹਨ।
- (v) ਲੀਥਿਅਮ ਈਥਾਈਨ (Ethyne) ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਈਥਾਈਨਾਈਡ (Ethynide) ਨਹੀਂ ਬਣਾਉਂਦਾ ਜਦ ਕਿ ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਅਜਿਹਾ ਕਰਦੀਆਂ ਹਨ।
- (vi) ਲੀਥਿਅਮ ਨਾਈਟ੍ਰੇਟ ਗਰਮ ਕਰਨ ਤੇ ਲੀਥਿਅਮ ਆੱਕਸਾਈਡ, Li₂O, ਦਿੰਦਾ ਹੈ, ਜਦਕਿ ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਨਾਈਟ੍ਰੇਟ ਵਿਘਟਤ ਹੋ ਕੇ ਨਾਈਟ੍ਰਾਈਟ ਦਿੰਦੀਆਂ ਹਨ।

$$4\text{LiNO}_3 \rightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$$

 $2 \text{ NaNO}_3 \rightarrow 2 \text{ NaNO}_2 + \text{O}_2$

(vii) ਦੂਜੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਫਲੋਰਾਈਡ ਅਤੇ ਆੱਕਸਾਈਡ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ LiF ਅਤੇ Li₂O ਪਾਣੀ ਵਿੱਚ ਘੱਟ ਘੁਲਦੇ ਹਨ।

10.3.2 ਲੀਥਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਦੇ ਬਿੰਦੂ

ਲੀਥਿਅਮ ਅਤੇ ਮੈਂਗਨੀਸ਼ਿਅਮ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਵਿਚਾਰ ਯੋਗ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਸਮਾਨ ਅਕਾਰ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ। Li ਅਤੇ Mg ਦਾ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਕ੍ਰਮਵਾਰ 152 pm ਅਤੇ 160 pm ਹੈ।Li⁺ ਅਤੇ Mg²⁺ ਦਾ ਆਇਨਿਕ ਅਰਧ ਵਿਆਸ ਕ੍ਰਮਵਾਰ 76 pm ਅਤੇ 22 pm ਹੈ।ਲੀਥਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਹੇਠ ਲਿਖੀਆਂ ਹਨ-

- (i) Li ਅਤੇ Mg ਆਪਣੇ ਗਰੁੱਪਾਂ ਵਿੱਚ ਦੂਜੀਆਂ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਠੋਰ ਅਤੇ ਹਲਕੀਆਂ ਧਾਤਾਂ ਹਨ।
- (ii) Li ਅਤੇ Mg ਪਾਣੀ ਨਾਲ ਹੋਲੀ ਗਤੀ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈ– ਡ੍ਰੋਕਸਾਈਡ ਬਹੁਤ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਹਨ। ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਗਰਮ ਕਰਨ ਤੇ ਵਿਘਟਿਨ ਹੋ ਜਾਂਦੇ ਹਨ। ਦੋਵੇਂ ਨਾਈਟ੍ਰੋਜਨ ਨਾਲ ਸਿੱਧੇ ਸੰਜੋਗ ਕਰਕੇ ਨਾਈਟ੍ਰਾਈਡ ਕ੍ਰਮਵਾਰ Li₃N ਅਤੇ Mg₃N₂ ਬਣਾਉਂਦੇ ਹਨ।
- (iii) Li₂O ਅਤੇ MgO ਆਕਸੀਜਨ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਸੁਪਰਆੱਕਸਾਈਡ ਨਹੀਂ ਬਣਾਉਂਦੇ ਹਨ।
- (iv) ਲੀਥਿਅਮ ਅਤੇ ਮੈਗ ਨੀਸ਼ਿਅਮ ਧਾਤਾਂ ਦੇ ਕਾਰਬੋਨੇਟ ਗਰਮ ਕਰਨ ਤੇ ਸਰਲਤਾਪੂਰਵਕ ਅਪਘਟਿਤ ਹੋ ਕੇ ਉਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ CO₂ ਬਣਾਉਂਦੇ ਹਨ। ਦੋਵੇਂ ਠੋਸ ਹਾਈਡੋਜਨ ਕਾਰਬੋਨੇਟ ਨਹੀਂ ਬਣਾਉਂਦੇ ਹਨ।
- (v) LiCl ਅਤੇ $MgCl_2$ ਈਥੇਨੋਲ ਵਿੱਚ ਘੁਲਦੇ ਹਨ।
- (vi) LiCl ਅਤੇ MgCl₂ ਦੋਵੇਂ ਪਸੀਜਕ (Deliquescent)^r ਯੋਗਿਕ ਹਨ। ਇਹ ਜਲੀ ਘੋਲ ਤੋਂ LiCl.2H₂O ਅਤੇ MgCl₂.8H₂O ਦੇ ਰੂਪ ਵਿੱਚ ਕ੍ਰਿਸਟਲੀਕ੍ਰਿਤ ਹੁੰਦੇ ਹਨ।

10.4 ਸੋਡੀਅਮ ਦੇ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ

ਉਦਯੋਗਿਕ ਪਧੱਰ ਤੇ ਸੋਡੀਅਮ ਦੇ ਮਹੱਤਵ ਪੂਰਣ ਯੋਗਿਕ ਹਨ: ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ, ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ, ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦੇ ਉਦਯੋਗਿਕ ਨਿਰਮਾਣ ਅਤੇ ਲਾਭਾਂ ਦਾ ਵਰਣਨ ਹੇਠਾਂ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ।

ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਕਪੜੇ ਧੋਣ ਵਾਲਾ ਸੌਡਾ (ਵਾਸ਼ਿੰਗ ਸੋਡਾ), Na,CO,·10H,O

ਆਮ ਤੌਰ ਤੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਸਾਲਵੇ ਵਿਧੀ ਦੁਆਰਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਦਾ ਲਾਭ ਇਹ ਹੈ ਕਿ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ, ਜੋ ਅਮੋਨਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਅਤੇ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਸੰਜੋਗ ਤੋਂ ਅਵਖੇਪਿਤ ਹੁੰਦਾ ਹੈ, ਘੱਟ ਘੁਲਦਾ ਹੈ। ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ, CO₂ ਗੈਸ ਨੂੰ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਅਮੋਨੀਅਮ ਨਾਲ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਕਰ ਕੇ ਬਣਇਆ ਜਾਂਦਾ ਹੈ। ਉੱਥੇ ਪਹਿਲਾਂ ਅਮੋਨੀਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ ਫਿਰ ਅਮੋਨੀਅਮ ਹਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਬਣਦਾ ਹੈ। ਸੰਪੂਰਣ ਪ੍ਰਕਰਮ ਦੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਹੇਠ ਲਿਖਿਤ ਹਨ-

$$2 \operatorname{NH}_3 + \operatorname{H}_2 O + \operatorname{CO}_2 \rightarrow (\operatorname{NH}_4)_2 \operatorname{CO}_3$$

 $(\mathrm{NH}_4)_2 \mathrm{CO}_3 + \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2 \rightarrow 2\,\mathrm{NH}_4\mathrm{HCO}_3$

 $NH_4HCO_3 + NaCl \rightarrow NH_4Cl + NaHCO_3$

ਇਸ ਤਰ੍ਹਾਂ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਕ੍ਰਿਸਟਲ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਗਰਮ ਕਰਕੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ-

297

 $2 \operatorname{NaHCO}_3 \rightarrow \operatorname{Na_2CO_3} + \operatorname{CO_2} + \operatorname{H_2O}$

ਇਸ ਪ੍ਰਕਰਮ ਵਿੱਚ NH_4Cl ਯੁਕਤ ਘੋਲ ਨੂੰ Ca $(OH)_2$ ਨਾਲ NH_3 ਨੂੰ ਮੁੜ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਸਹਿ ਉਪਜ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

$$2 \operatorname{NH}_4 \operatorname{Cl} + \operatorname{Ca}(\operatorname{OH})_2 \rightarrow 2 \operatorname{NH}_3 + \operatorname{CaCl}_2 + \operatorname{H}_2 \operatorname{O}$$

ਇੱਥੇ ਇਹ ਵਰਣਨ ਯੋਗ ਹੈ ਕਿ ਸਾਲਵੇ ਪ੍ਰਕਰਮ ਦੀ ਵਰਤੋਂ ਪੋਟਾਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ, ਕਿਉਂਕਿ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੀ ਵਧੇਰੇ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਕਾਰਣ ਇਸ ਨੂੰ ਪੋਟਾਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਸੰਜੋਗ ਦੁਆਰਾ ਅਵਖੇਪਿਤ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਗੁਣ : ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਸਫ਼ੇਦ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਹੈ, ਜੋ ਡੈਕਾਹਾਈਡ੍ਰੇਟ Na₂CO₃·10H₂O ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਇਸ ਨੂੰ ਕੱਪੜੇ ਧੋਣ ਵਾਲਾ ਸੋਡਾ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਘੁਲ ਜਾਂਦਾ ਹੈ। ਗਰਮ ਕਰਨ ਤੇ ਡੈਕਾਹਾਈਡ੍ਰੇਟ ਕ੍ਰਿਸਟਲੀ ਜਲ ਤਿਆਗ ਕੇ ਮੋਨੋਹਾਈਡ੍ਰੇਟ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ। 1373 ਤੋਂ ਉੱਚੇ ਤਾਪਮਾਨ ਤੋਂ ਮੋਨੋਹਾਈਡ੍ਰੇਟ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਖੁਸ਼ਕ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਸਫੇਦ ਰੰਗ ਦੇ ਪਾਊਡਰ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨੂੰ ਸੋਡਾ ਐਸ਼ (Soda Ash) ਕਹਿੰਦੇ ਹਨ।

 $Na_2CO_3 \bullet 10H_2O \xrightarrow{375K} Na_2CO_3 \bullet H_2O + 9H_2O$

Na₂CO₃ •H₂O —^{>373K}→Na₂CO₃ +H₂O ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਕਾਰਬੋਨੇਟ ਵਾਲਾ ਹਿੱਸਾ ਜਲ ਅਪਘਟਿਤ ਹੋ ਕੇ ਖਾਰੀ ਘੋਲ ਬਣਾਉਂਦਾ ਹੈ।

$$\mathrm{CO}_3^{2-} + \mathrm{H}_2\mathrm{O} \to \mathrm{HCO}_3^- + \mathrm{OH}^-$$

<mark>ਲਾ</mark>ਭ:

- (i) ਪਾਣੀ ਨੂੰ ਹਲਕਾ ਕਰਨ, ਧੁਲਾਈ ਅਤੇ ਸਫਾਈ ਵਿੱਚ;
- (ii) ਕੱਚ, ਸਾਬਣ, ਬੋਰੈਕਸ ਅਤੇ ਕਾੱਸਟਿਕ ਸੋਡਾ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ;
- (iii) ਕਾਗਜ਼, ਪੇਂਟ ਅਤੇ ਕਪੜਾ ਉਦਯੋਗ ਵਿੱਚ; ਅਤੇ
- (iv) ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਗੁਣਾਤਮਕ ਅਤੇ ਮਾਤਰਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਅਭਿਕਰਮਕ ਦੇ ਰੂਪ ਵਿੱਚ

ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ, NaCl

ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਮੁੱਖ ਸਰੋਤ ਸਮੁੰਦਰੀ ਪਾਣੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਲਗਪਗ 2.7 ਤੋਂ 2.9 ਪ੍ਰਤੀਸ਼ਤ ਲੂਣ ਹੁੰਦਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਰਗੇ ਦੇਸ਼ਾਂ ਵਿੱਚ ਸਮੁੰਦਰੀ ਪਾਣੀ ਦੇ ਵਾਸ਼ਪੀਕਰਣ ਦੁਆਰਾ ਸਧਾਰਣ ਨਮਕ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਸੂਰਜ ਨਾਲ ਵਾਸ਼ਪੀਕਰਣ ਦੁਆਰਾ ਲਗਪਗ 50 ਲੱਖ ਟੱਨ ਨਮਕ ਦਾ ਉਤਪਾਦਨ ਹਰ ਸਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਣਸੋਧਿਆ ਨਮਕ, ਜੋ ਬਰਾਈਨ ਘੋਲ ਦੀ ਕ੍ਰਿਸਟਲੀਕਰਣ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਵਿੱਚ ਸੋਡੀਅਮ ਸਲਫੇਟ, ਕੈਲਸ਼ਿਅਮ ਸਲਫੇਟ, ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਸ਼ੁਧੀਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ (CaCl₂) ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਕਲੋਰਾਈਡ MgCl₂ ਦੀ ਅਸ਼ੁਧੀ ਦਾ ਕਾਰਣ ਉਨ੍ਹਾਂ ਦਾ ਪਸੀਜਨ (Deliquescent) ਸੁਭਾਅ ਹੈ ਅਰਥਾਤ ਇਹ ਸਰਲਤਾਪੂਰਵਕ ਵਾਯੂਮੰਡਲ ਵਿੱਚੋਂ ਨਮੀਂ ਦਾ ਸੋਖਣ ਕਰਦੇ ਹਨ। ਸ਼ੁੱਧ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਅਣਸੋਧੇ ਨਮਕ ਨੂੰ ਪਾਣੀ ਦੀ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਘੱਲਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸਨੂੰ ਛਾਣਨ ਤੇ ਅਘੁੱਲ ਅਸ਼ੁੱਧੀਆਂ ਦੂਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਜਦੋਂ ਘੋਲ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਗੈਸ ਨਾਲ ਸੰਤ੍ਰਿਪਤ ਕਰਦੇ ਹਨ ਤਾਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਕ੍ਰਿਸਟਲ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ। ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨਾਲੋਂ ਵਧੇਰੇ ਘੁਲਣਸ਼ੀਲ ਹੋਣ ਦੇ ਕਾਰਣ ਘੋਲ ਵਿੱਚ ਹੀ ਰਹਿੰਦੇ ਹਨ।

ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਪਿਘਲਣ ਅੰਕ 1081K ਹੈ। ਪਾਣੀ ਵਿੱਚ ਇਸਦੀ ਘੁਲਣਸ਼ੀਲਤਾ 273K ਉੱਤੇ 36.0 ਗ੍ਰਾਮ ਪ੍ਰਤੀ 100 ਗ੍ਰਾਮ ਪਾਣੀ ਹੈ। ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਘੁਲਣਸ਼ੀਲਤਾ ਤੇ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪੈਂਦਾ।

ਲਾਭ :

(i) ਸਧਾਰਣ ਨਮਕ ਦੇ ਰੂਪ ਵਿੱਚ, ਅਤੇ

(ii) Na₂O₂, NaOH ਅਤੇ Na₂CO₃ ਬਨਾਉਣ ਵਿੱਚ।

ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (ਕਾਸਟਿਕ ਸੋਡਾ) NaOH

ਉਦਯੋਗਿਕ ਪੱਧਰ ਤੇ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦਾ ਉਤਪਾਦਨ ਕਾਸਨਰ-ਕੈਲਨਰ ਸੈੱਲ (Castner Kellner Cell) ਵਿੱਚ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਮਰਕਰੀ ਕੈਥੋਡ ਅਤੇ ਕਾਰਬਨ ਐਨੋਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਲੂਣੇ-ਪਾਣੀ ਦਾ ਬਿਜਲਈ ਅਪਘਟਨ ਸੈੱਲ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸੋਡੀਅਮ ਦਾਤ ਮਰਕਰੀ ਕੈਥੋਡ ਉੱਤੇ ਵਿਸਰਜਿਤ ਹੋ ਕੇ ਮਰਕਰੀ ਨਾਲ ਸੰਜੋਗ ਕਰਕੇ ਸੋਡੀਅਮ ਅਮਲਗਮ ਬਣਾਉਂਦਾ ਹੈ। ਐਨੋਡ ਉੱਤੇ ਕਲੋਰੀਨ ਗੈਸ ਮੁਕਤ ਹੰਦੀ ਹੈ।

ਕੈਥੋਡ :
$$Na^+ + e^- \xrightarrow{Hg} Na - ਅਮਲਗਮ$$

ਐਨੋਡ :
$$\operatorname{Cl}^{-} \rightarrow \frac{1}{2}\operatorname{Cl}_{2} + \operatorname{e}^{-}$$

ਅਮਲਗਮ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਅਤੇ ਹਾਈਡੋਜਨ ਗੈਸ ਦਿੰਦਾ ਹੈ।

2Na-ਅਮਲਗਮ + $2H_2O$ →2NaOH+ 2Hg + H_2

ਸੋਡੀਅਮ ਹਾਈਡੋ੍ਕਸਾਈਡ ਅਲਪ ਪਾਰਦਰਸ਼ੀ ਸਫੇਦ ਠੋਸ ਪਦਾਰਥ ਹੈ। ਇਸ ਦਾ ਪਿਘਲਣ ਅੰਕ 591 K ਹੈ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਜਲਦੀ ਘੁਲਕੇ ਖਾਰੀ ਘੋਲ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਸੀਜਕ ਪਦਾਰਥ ਹੈ। ਸਤ੍ਹਾ ਉੱਤੇ ਸੋਡੀਅਮ ਹਾਈਡੋ੍ਕਸਾਈਡ ਘੋਲ ਵਾਯੂਮੰਡਲੀ CO₂ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ Na₂CO₃ ਬਣਾਉਂਦਾ ਹੈ।

298

ਲਾਭ: (i) ਸਾਬਣ, ਕਾਗਜ਼, ਬਣਾਉਟੀ ਸਿਲਕ ਅਤੇ ਕਈ ਹੋਰ ਰਸਾਇਣਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ; (ii) ਪੈਟਰੋਲਿਅਮ ਦੇ ਸੋਧਣ ਵਿੱਚ; (iii) ਬਾੱਕਸਾਈਟ ਦੇ ਸ਼ੁਧੀਕਰਣ ਵਿੱਚ; (iv) ਕਪੜਾ ਉਦਯੋਗ ਵਿੱਚ ਸੂਤੀ ਧਾਗੇ ਦੀ ਮਰਸਰੀਕਰਣ ਵਿੱਚ; (v) ਸ਼ੁੱਧ ਘਿਓ ਅਤੇ ਤੇਲਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ; ਅਤੇ (vi) ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਅਭਿਕਰਮਕ ਦੇ ਰੂਪ ਵਿੱਚ।

ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ (ਬੇਕਿੰਗ ਸੋਡਾ), NaHCO₃

ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਨੂੰ ਬੇਕਿੰਗ ਸੋਡਾ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਗਰਮ ਕਰਨ ਤੇ ਵਿਘਟਿਤ ਹੋ ਕੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਬੁਲਬੁਲੇ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਪੇਸਟ੍ਰੀ, ਕੇਕ ਆਦਿ ਵਿੱਚ ਛੋਟੇ-ਛੋਟੇ ਛੇਕ ਹੋ ਜਾਂਦੇ ਹਨ। ਫਲਸਰੁਪ ਉਹ ਹਲਕੇ ਅਤੇ ਫਲਫੀ (fluffy) ਬਣ ਜਾਂਦੇ ਹਨ।

ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਨੂੰ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਘੋਲ ਵਿਚੋਂ CO₂ ਗੈਸ ਨਾਲ ਸੰਤ੍ਰਿਪਤ ਕਰਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦਾ ਸਫੇਦ ਪਾਊਡਰ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਹੋਣ ਦੇ ਕਾਰਣ ਵੱਖ ਹੋ ਜਾਂਦਾ ਹੈ।

 $\mathrm{Na_2CO_3} + \mathrm{H_2O} + \mathrm{CO_2} \rightarrow \mathrm{2\,NaHCO_3}$

ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਚਮੜੀ ਰੋਗਾਂ ਵਿੱਚ ਹਲਕਾ ਰੋਗਾਣੂਨਾਸ਼ੀ (Mild Antiseptic) ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਅੱਗ ਬੁਝਾਉ ਯੰਤਰ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

10.5 ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਦੀ ਜੈਵ ਉਪਯੋਗਿਤਾ

70 ਕਿਲੋ ਦੇ ਵਜਨ ਵਾਲੇ ਇਕ ਨਾਰਮਲ ਵਿਅਕਤੀ ਵਿੱਚ ਲਗਪਗ 90 ਗ੍ਰਾਮ ਸੋਡੀਅਮ ਅਤੇ 170 ਗ੍ਰਾਮ ਪੋਟਾਸ਼ਿਅਮ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਲੋਹਾ ਸਿਰਫ 5 ਗ੍ਰਾਮ ਅਤੇ ਤਾਂਬਾ 0.06 ਗ੍ਰਾਮ ਹੁੰਦਾ ਹੈ।

ਸੋਡੀਅਮ ਆਇਨ ਮੁੱਖ ਤੌਰ ਤੇ ਅੰਤਰਕਾਸੀ ਦ੍ਵ ਵਿੱਚ ਮੌਜੂਦ ਖੂਨ ਪਲਾਜਮਾ ਜੋ ਸੈੱਲਾਂ ਦੇ ਦੁਆਲੇ ਹੁੰਦਾ ਹੈ, ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਇਹ ਆਇਨ ਸ਼ਿਰਾ-ਸੰਕੇਤਾਂ ਦੇ ਸੰਚਰਣ ਵਿੱਚ ਭਾਗ ਲੈਂਦੇ ਹਨ, ਜੋ ਸੈੱਲ ਝਿੱਲੀ ਵਿੱਚ ਪਾਣੀ ਦੇ ਪ੍ਵਾਹ ਨੂੰ ਨਿਯਮਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਸੈੱਲਾਂ ਵਿੱਚ ਸ਼ੂਗਰ ਅਤੇ ਐਮੀਨੋ ਐਸਿਡਾਂ ਦੇ ਪ੍ਵਾਹ ਨੂੰ ਵੀ ਨਿਯੰਤ੍ਰਿਤ ਕਰਦੇ ਹਨ। ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਰਸਾਇਣਿਕ ਰੂਪ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹੋਏ ਵੀ ਸੈੱਲ ਝਿੱਲੀ ਨੂੰ ਪਾਰ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਅਤੇ ਐਨਜਾਈਮ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲ ਕਰਨ ਵਿੱਚ ਮਾਤਰਾਤਮਕ ਰੂਪ ਵਿੱਚ ਭਿੰਨ ਹਨ। ਇਸ ਲਈ ਸੈੱਲ ਦ੍ਵ ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਧਨ ਆਇਨ ਵਧੇਰੀ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਜਿੱਥੇ ਇਹ ਐਨਜਾਈਮ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲ ਕਰਦੇ ਹਨ ਅਤੇ ਗਲੂਕੋਜ਼ ਦੇ ਆਕਸੀਕਰਣ ਨਾਲ ATP ਬਣਨ ਵਿੱਚ ਹਿੱਸਾ ਲੈਂਦੇ ਹਨ। ਸੋਡੀਅਮ ਆਇਨ ਸ਼ਿਰਾ ਸੰਕੇਤਾਂ ਦੇ ਸੰਚਰਣ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹਨ।

ਸੈੱਲ ਝਿੱਲੀ ਦੇ ਦੂਜੇ ਹਿੱਸਿਆਂ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਵਰਣਨਯੋਗ ਭਿੰਨਤਾ ਵੇਖੀ ਗਈ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਖੂਨ ਪਲਾਜਮਾ ਵਿੱਚ ਲਾਲ ਖੂਣ ਸੈੱਲਾਂ ਵਿੱਚ ਸੋਡੀਅਮ ਦੀ ਮਾਤਰਾ 143 mmolL⁻¹ ¹ਹੈ, ਜਦ ਕਿ ਪੋਟਾਸ਼ਿਅਮ ਦਾ ਲੈਵਲ ਸਿਰਫ 5 mmolL⁻¹ ਹੈ। ਇਹ ਸੰਘਣਤਾ 10 mmolL⁻¹ (Na⁺) ਅਤੇ 105 mmolL⁻¹ (K⁺) ਤੱਕ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਅਸਧਾਰਣ ਆਇਨਿਕ ਉਤਾਰ-ਚੜਾਅ, ਜਿਸ ਨੂੰ ਸੋਡੀਅਮ ਪੋਟਾਸ਼ਿਅਮ ਪੰਪ ਕਹਿੰਦੇ ਹਨ, ਸੈੱਲ ਝਿੱਲੀ ਉੱਤੇ ਕਾਰਜ ਕਰਦਾ ਹੈ, ਜੋ ਮਨੁੱਖ ਦੀ ਵਿਸ਼ਰਾਮ ਅਵਸਥਾ ਦੇ ਕੁੱਲ ਵਰਤੇ ਗਏ ATP ਦੇ ਤੀਜੇ ਹਿੱਸੇ ਤੋਂ ਵੱਧ ਵਰਤ ਲੈਂਦਾ ਹੈ, ਜੋ ਮਾਤਰਾ ਲਗਪਗ 15 ਕਿਲੋ ਪ੍ਰਤੀ 24 ਘੰਟੇ ਤੱਕ ਹੋ ਸਕਦੀ ਹੈ।

10.6 ਗਰੁੱਪ 2 ਦੇ ਤੱਤ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਗਰੁੱਪ 2 ਦੇ ਤੱਤ ਹਨ-ਬੈਰੀਲਿਅਮ, ਮੈਗਨੀਸ਼ਿਅਮ, ਕੈਲਸ਼ਿਅਮ, ਸਟਰਾਸ਼ਿਅਮ, ਬੇਰਿਅਮ ਅਤੇ ਰੇਡੀਅਮ।ਬੈਰੀਲਿਅਮ ਨੂੰ ਛੱਡ ਕੇ ਬਾਕੀ ਤੱਤ ਇੱਕਠੇ ਰੂਪ ਵਿੱਚ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਅਖਵਾਉਂਦੇ ਹਨ।ਪਹਿਲਾ ਤੱਤ ਬੈਰੀਲਿਅਮ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਤੱਤਾਂ ਨਾਲੋਂ ਭਿੰਨਤਾ ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਦੇ ਨਾਲ ਵਿਕਰਣ ਸਬੰਧ (Diagonal Relationship) ਦਰਸਾਉਂਦਾ ਹੈ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣ ਸਾਰਣੀ 10.2 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ।

10.6.1 ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕਨਾ ਸ਼ੈੱਲ ਦੇ *s*-ਐਰਬਿਟਲ ਵਿੱਚ 2 ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ (ਸਾਰਣੀ 10.2) ਇਨ੍ਹਾਂ ਦੀ ਆਮ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ (ਨੋਬਲ ਗੈਸ)*ns*² ਹੁੰਦੀ ਹੈ। ਖਾਰੀ ਧਾਤਾਂ ਵਾਂਗ ਹੀ ਇਨ੍ਹਾਂ ਦੇ ਵੀ ਯੋਗਿਕ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਆਇਨਿਕ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ।

ਤੱਤ	ਪ੍ਰਤੀਕ	ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ
ਬੈਰੀਲਿਅਮ	Be	$1s^22s^2$
ਮੈਗਨੀਸ਼ਿਅਮ	Mg	$1s^22s^22p^63s^2$
ਕੈਲਸ਼ਿਅਮ	Са	$1s^22s^22p^63s^23p^64s^2$
ਸਟੱਰਾਂਸ਼ਿਅਮ	Sr	$rac{1}{1}s^22s^22p^63s^23p^63d^{10}\ 4s^24p^65s^2$
ਬੇਰਿਅਮ	Ва	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}$ $4p^{6}4d^{10}5s^{2}5p^{6}6s^{2}$ or [Xe] $6s^{2}$
ਰੇਡੀਅਮ	Ra	[Rn]7 <i>s</i> ²

10.6.2 ਪਰਮਾਣੂ ਅਤੇ ਆਇਨੀ ਅਰਧ ਵਿਆਸ

ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਸੰਗਤ ਪੀਰੀਅਡਾਂ ਵਿੱਚ ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨ ਅਰਧ ਵਿਆਸ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਣ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਨਿਉਕਲੀ ਚਾਰਜ ਵਿੱਚ ਵਾਧਾ ਹੈ।

ਗੁਣ	ਬੈਰਿਲਿਅਮ Be	ਮੈਗਨੀਸ਼ਿਅਮ Mg	ਕੈਲਸ਼ਿਅਮ Ca	ਸਟ੍ਰਾਂਸ਼ਿਅਮ Sr	ਬੇਰਿਅਮ Ba	ਰੇਡਿਅਮ Ra		
ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ	4	12	20	38	56	88		
ਪਰਮਾਣੂ ਪੁੰਜ (g mol ⁻¹)	9.01	24.31	40.08	87.62	137.33	226.03		
ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ	[He] 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²	[Rn] 7s ²		
ਆਇਨਨ ਐਨਥੈਲਪੀ (I) / kJ mol ⁻¹	899	737	590	549	503	509		
ਆਇਨਨ ਐਨਥੈਲਪੀ (II) /kJ mol ⁻¹	1757	1450	1145	1064	965	979		
ਜਲਯੋਜਨ ਐਨਥੈਕਲਪੀ (kJ/mol)	- 2494	- 1921	-1577	- 1443	- 1305	-		
ਧਾਤਵੀ ਅਰਧ ਵਿਆਸ / pm	111	160	197	215	222	-		
ਆਇਨੀ ਅਰਧ ਵਿਆਸ M ²⁺ / pm	31	72	100	118	135	148		
ਪਿਘਲਣ ਅੰਕ / K	1560	924	1124	1062	1002	973		
ਉਬਲਣ ਅੰਕ/ K	2745	1363	1767	1655	2078	(1973)		
ਘਣਤਾ / g cm-3	1.84	1.74	1.55	2.63	3.59	(5.5)		
ਸਟੈਂਡਰਡ ਪੋਟੈਂਸ਼ਲ ਦੇ E [⊖] / V (M²⁺/ M) ਲਈ	-1.97	-2.36	-2.84	-2.89	- 2.92	-2.92		
ਸਥਲ ਮੰਡਲ ਵਿੱਚ ਪ੍ਰਾਪਤੀ	2*	2.76**	4.6**	384*	390 *	10-6*		

ਸਾਰਣੀ 10.2 ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੋਤਿਕ ਗੁਣ

*ਪੀ.ਪੀ.ਐਮ ਭਾਰ ਨਾਲ ਪ੍ਰਤੀਸ਼ਤ

10.6.3 ਆਇਨਨ ਐਨਥੈਲਪੀ

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਵੱਡੇ ਅਕਾਰ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਗਰੁੱਪ ਵਿੱਚ ਅਕਾਰ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਕ੍ਰਮਵਾਰ ਵਧਦਾ ਜਾਂਦਾ ਹੈ ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਘੱਟ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। (ਸਾਰਣੀ 10.2) ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਹਿਲੇ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਹੈ। ਇਹ ਇਨ੍ਹਾਂ ਦੀ ਖਾਰੀ ਧਾਤਾਂ ਸੰਗਤ ਤੁਲਨਾਤਮਕ ਰੂਪ ਵਿੱਚ ਛੋਟੇ ਅਕਾਰ ਹੋਣ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਇਹ ਵੇਖਣਾ ਦਿਲਚਸਪ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨਾਂ ਦੀ ਤਲਨਾ ਵਿੱਚ ਘੱਟ ਹੈ।

10.6.4 ਜਨਯੋਜਨ ਐਨਥੈਲਪੀ

ਖਾਰੀ ਧਾਤਾਂ ਵਾਂਗ ਇਸ ਵਿੱਚ ਵੀ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਆਇਨਿਕ ਅਕਾਰ ਵਧਣ ਤੇ ਇਨ੍ਹਾਂ ਦੀ ਜਲਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਘੱਟ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ।

 $Be^{2+} > Mg^{2+} > Ca^{2+} > Sr^{2+} > Ba^{2+}$

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਜਲਯੋਜਨ ਐਨਥੈਲਪੀ ਖਾਰੀਧਾਤਾਂ

ਦੀ ਜਲ ਯੋਜਨ ਐਨਥੈਲਪੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਜਲ ਯੋਜਿਤ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ- $MgCl_2$ ਅਤੇ $CaCl_2$ ਜਲਯੋਜਿਤ ਅਵਸਥਾ $MgCl_2.6H_2O$ ਅਤੇ $CaCl_2 \cdot 6H_2O$ ਵਿੱਚ ਮਿਲਦੇ ਹਨ, ਜਦ ਕਿ NaCl ਅਤੇ KCl ਅਜਿਹੇ ਹਾਈਡ੍ਰੇਟ ਨਹੀਂ ਬਣਾਉਂਦੇ ਹਨ।

10.6.5 ਭੌਤਿਕ ਗੁਣ

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਆਮ ਕਰਕੇ ਚਾਂਦੀ ਵਾਂਗ ਸਫੇਦ, ਚਮਕਦਾਰ ਅਤੇ ਨਮਰ ਪਰੰਤੂ ਦੂਜੀਆਂ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਠੋਰ ਹੁੰਦੀਆਂ ਹਨ। ਬੈਰੀਲਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਲਗਪਗ ਸਲੇਟੀ ਰੰਗ (Greyish) ਦੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਖਾਰੀ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉੱਚੇ ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦਾ ਅਕਾਰ ਛੋਟਾ ਹੁੰਦਾ ਹੈ। ਫਿਰ ਵੀ ਇਨ੍ਹਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਵਿੱਚ ਕੋਈ ਨਿਯਮਿਤ ਪਰਿਵਰਤਨ ਨਹੀਂ ਦਿੱਸਦਾ।ਘੱਟ ਆਇਨਕ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਇਹ ਪ੍ਰਬਲ ਇਲੈਕਟ੍ਰੋ ਪਾਂਜੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰੋਪਾਂਜੇਟਿਵ ਗੁਣ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ Be ਤੋਂ Ba ਤੱਕ ਵਧਦਾ ਹੈ। ਕੈਲਸ਼ਿਅਮ, ਬੇਰੀਅਮ ਅਤੇ ਸਟੱਰਾਂਸ਼ਿਅਮ ਲਾਟ ਨੂੰ ਕ੍ਰਮਵਾਰ ਇੱਟ ਵਰਗਾ ਲਾਲ (Brick Red) ਹਰਾ (Apple Green) ਅਤੇ ਕਿਰਮਜੀ ਲਾਲ (Crimson Red) ਰੰਗ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਲਾਟ ਵਿੱਚ

300

ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿੱਚ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਉਤੇਜਿਤ ਹੋਕੇ ਉੱਚ ਉਰਜਾ ਸਤਰ ਤੇ ਚਲੇ ਜਾਂਦੇ ਹਨ। ਇਹ ਉਤੇਜਿਤ ਇਲੈਕਟ਼ਾੱਨ ਜਦੋਂ ਮੁੜ ਆਪਣੀ ਗਰਾਉਂਡ ਅਵਸਥਾ ਵਿੱਚ ਮੁੜਦੇ ਹਨ, ਤਾਂ ਦ੍ਰਿਸ਼ ਪ੍ਰਕਾਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਉਰਜਾ ਉਤਸਰਜਿਤ ਹੁੰਦੀ ਹੈ। ਜਿਸ ਨਾਲ ਲਾਟ ਰੰਗੀਨ ਦਿਸਣ ਲੱਗਦੀ ਹੈ। ਬੈਰੀਲਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਬਾਹਰੀ ਸੈਲਾਂ ਦੇ ਇਲੈਕਟ਼ਾੱਨ ਐਨੀ ਪ੍ਰਬਲਤਾ ਨਾਲ ਬੱਝੇ ਹੁੰਦੇ ਹਨ ਕਿ ਲਾਟ ਦੀ ਊਰਜਾ ਦੁਆਰਾ ਇਨ੍ਹਾਂ ਦਾ ਉਤੇਜਿਤ ਹੋਣਾ ਮੁਸ਼ਕਿਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਲਾਟ ਵਿੱਚ ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦਾ ਅਪਣਾ ਕੋਈ ਲੱਛਣਿਕ ਰੰਗ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਗੁਣਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ Ca, Sr ਅਤੇ Ba ਮੁਲਕਾਂ ਦੀ ਪਸ਼ਟੀ ਫਲੇਮ ਟੈਸਟ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਦਾ ਨਿਰਧਾਰਣ ਲਾਟ ਪ੍ਰਕਾਸ਼ਮਾਪੀ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਖਾਰੀ ਧਾਤਾਂ ਵਾਂਗ ਬਿਜਲੀ ਚਾਲਕਤਾ ਅਤੇ ਤਾਪ ਚਾਲਕਤਾ ਉੱਚ ਹੁੰਦੀ ਹੈ। ਇਹ ਇਨ੍ਹਾਂ ਦਾ ਲੱਛਣਿਕ ਗੁਣ ਹੁੰਦਾ ਹੈ।

10.6.6 ਰਸਾਇਣਿਕ ਗੁਣ

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਖਾਰੀ ਧਾਤਾਂ ਨਾਲੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਤਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਵਧਦੀ ਹੈ।

(i) ਹਵਾ ਅਤੇ ਪਾਣੀ ਪ੍ਰਤੀ ਕਿਰਿਆਸ਼ੀਲਤਾ : ਬੈਰੀਲਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਗਤਿਜ ਰੂਪ ਵਿੱਚ ਆੱਕਸੀਜਨ ਅਤੇ ਪਾਣੀ ਦੇ ਪ੍ਰਤੀ ਅਕਿਰਿਆਸ਼ੀਲ ਹਨ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਆੱਕਸਾਈਡ ਪਰਤ ਜੰਮ ਜਾਂਦੀ ਹੈ। ਫਿਰ ਵੀ ਬੈਰੀਲਿਅਮ ਪਾਊਡਰ ਰੂਪ ਵਿੱਚ ਹਵਾ ਵਿੱਚ ਜਲ ਕੇ BeO ਅਤੇ Be₃N₂.ਬਣਾ ਲੈਂਦਾ ਹੈ। ਮੈਗਨੀਸ਼ਿਅਮ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਹੈ, ਜੋ ਹਵਾ ਵਿੱਚ ਵਧੇਰੇ ਚਮਕੀਲੇ ਪ੍ਰਕਾਸ਼ ਨਾਲ ਜਲਦੇ ਹੋਏ MgO ਅਤੇ Mg₃N₂ ਬਣਾ ਲੈਂਦਾ ਹੈ। ਕੈਲਸ਼ਿਅਮ ਸਟਰੋਸ਼ਿਅਮ ਅਤੇ ਬੇਰੀਅਮ ਹਵਾ ਵਿੱਚ ਤੇਜ ਕਿਰਿਆ ਕਰਕੇ ਆੱਕਸਾਈਡ ਅਤੇ ਨਾਈਟ੍ਰਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਪਾਣੀ ਨਾਲ ਹੋਰ ਵੀ ਜ਼ਿਆਦਾ ਤੀਬਰਤਾ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡੋਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ।

(ii) ਹੈਲੋਜਨ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ : ਸਾਰੀਆਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਹੈਲੋਜਨਾਂ ਦੇ ਨਾਲ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹੇਲਾਈਡ ਬਣਾ ਲੈਂਦੀਆਂ ਹਨ-

 $M + X_2 \rightarrow MX_2 (X = F, Cl, Br, l)$

 ${
m BeF}_4$ ਬਨਾਉਣ ਦੀ ਸਭ ਤੋਂ ਸਰਲ ਵਿਧੀ $({
m NH}_4)_2\,{
m BeF}_2$, ਦਾ ਤਾਪੀ ਅਪਘਟਨ ਹੈ, ਜਦਕਿ ${
m BeCl}_2$ ਆੱਕਸਾਈਡ ਤੋਂ ਸਰਲਤਾ ਪੁਰਵਕ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ–

 $\operatorname{BeO} + \operatorname{Cl}_2 \xrightarrow{600-800\mathrm{K}} \operatorname{BeCl}_2 + \operatorname{CO}$

(iii) ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ : ਬੈਰੀਲਿਅਮ ਨੂੰ ਛੱਡ ਕੇ ਸਾਰੀਆਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਗਰਮ ਕਰਨ ਤੇ ਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡ੍ਰਾਈਡ ਬਣਾਉਦੀਆਂ ਹਨ। BeH₂ ਨੂੰ BeCl₂ ਅਤੇ LiAlH₄ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਤੋਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

 $2BeCl_2 + LiAlH_4 \rightarrow 2BeH_2 + LiCl + AlCl_3$

(iv) ਤੇਜਾਬਾਂ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਤੇਜੀ ਨਾਲ ਤੇਜਾਬਾਂ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਮੁਕਤ ਕਰਦੀਆਂ ਹਨ।

 $M + 2HCl \rightarrow MCl_2 + H_2$

(v) ਲਘੂਕਾਰਕ ਸੁਭਾਅ : ਪਹਿਲੇ ਗਰੁੱਪ ਦੀਆਂ ਧਾਤਾਂ ਵਾਂਗ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਹਨ। ਇਸ ਦੀ ਜਾਣਕਾਰੀ ਇਨ੍ਹਾਂ ਦੇ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਲਘੂਕਰਣ ਪੋਟੈਂਸ਼ਲ ਤੋਂ ਹੁੰਦੀ ਹੈ (ਸਾਰਣੀ 10.2), ਫਿਰ ਵੀ ਇਨ੍ਹਾਂ ਦੀ ਲਘੂਕਰਣ ਸਮਰਥਾ ਖਾਰੀ ਧਾਤਾਂ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਬੈਰੀਲਿਅਮ ਦੀ ਲਘੂਕਰਣ ਪੋਟੈਂਸ਼ਲ ਦਾ ਮਾਨ ਦੂਜੀਆਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਤੋਂ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਫਿਰ ਵੀ ਇਸ ਦੀ ਲਘੂਕਰਣ ਸਮਰਥਾ ਦਾ ਕਾਰਣ Be²⁺ ਦੇ ਛੋਟੇ ਅਕਾਰ, ਇਸ ਦੀ ਉੱਚ ਜਨਯੋਜਨ ਊਰਜਾ ਅਤੇ ਧਾਤ ਦੀ ਉੱਚ ਪਰਮਾਣਵੀਂਕਰਣ ਐਨਥੈਲਪੀ ਦਾ ਹੋਣਾ ਹੈ।

(vi) ਦ੍ਵ ਅਮੋਨੀਆ ਵਿੱਚ ਘੋਲ : ਖਾਰੀ ਧਾਤਾਂ ਵਾਂਗ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਵੀ ਦ੍ਵ ਅਮੋਨੀਅਮ ਵਿੱਚ ਘੁਲ ਕੇ ਗੂੜੇ ਨੀਲੇ ਰੰਗ ਦਾ ਘੋਲ ਬਣਾ ਲੈਂਦੀਆਂ ਹਨ। ਇਸ ਘੋਲ ਵਿੱਚ ਧਾਤਾਂ ਦੇ ਅਮੋਨੀਕ੍ਰਿਤ ਆਇਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ-

 $M + (x + y) NH_3 \rightarrow [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^{-}$ ਇਨ੍ਹਾਂ ਘੋਲਾਂ ਤੋਂ ਮੁੜ ਅਮੋਨੀਏਟ੍ਸ (Ammoniates) [M(NH)]^{2+} ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

10.6.7 ਲਾਭ

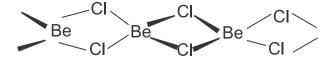
ਬੈਰੀਲਿਅਮ ਦੀ ਵਰਤੋਂ ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ I Cu-Be ਮਿਸਰਤ ਧਾਤ ਦੀ ਵਰਤੋਂ ਉੱਚ ਸ਼ਕਤੀ ਦੇ ਸਪਰਿੰਗ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਧਾਤਵੀ ਬੈਰੀਲਿਅਮ ਦੀ ਵਰਤੋਂ X-ਕਿਰਣ ਟਿਊਬ ਵਿੱਚ ਖਿੜਕੀ (Window) ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਮੈਗਨੀਸ਼ਿਅਮ ਐਲੂਮੀਨਿਅਮ, ਜਿੰਕ, ਮੈਗਨੀਜ ਅਤੇ ਟਿਨ ਦੇ ਨਾਲ ਮਿਸ਼ਰਤ ਧਾਤ ਬਣਾਉਂਦਾ ਹੈ। Mg – Al ਮਿਸ਼ਰਤ ਧਾਤ ਹਲਕੀ ਹੋਣ ਦੇ ਕਾਰਣ ਹਵਾਈ ਜਹਾਜ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਮੈਗਨੀਸ਼ਿਅਮ (ਪਾੳਡਰ ਅਤੇ ਰਿੱਬਨ) ਦੀ ਵਰਤੋਂ ਚਮਕੀਲੇ ਪਾਉਡਰ ਅਤੇ ਬਲਬ, ਤਾਪਦੀਪਤ ਬੰਬਾਂ (Incendiary Bombs) ਅਤੇ ਸੰਕੇਤਕਾਂ (Signals) ਵਿੱਚ ਹੰਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਮੈਗਨੀਸ਼ਿਅਮ ਹਾਈਡਾਕਸਾਈਡ ਦੇ ਨਿਲੰਬਨ (Suspension) (ਜਿਸ ਨੂੰ ਮਿਲਕ ਆੱਫ ਮੈਗਨੀਸ਼ੀਅਮ ਕਹਿੰਦੇ ਹਨ ਦੀ ਵਰਤੋਂ ਐਂਟਐਸਿਡ (Antacid) ਦਵਾਈ ਵਜੋਂ ਹੁੰਦੀ ਹੈ। ਮੈਗਨੀਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਕਿਸੇ ਵੀ ਟੁਥਪੇਸਟ ਦਾ ਮੁੱਖ ਅੰਗ ਹੈ। ਕੈਲਸ਼ਿਅਮ ਦੀ ਵਰਤੋਂ ਆੱਕਸਾਈਡਾਂ ਤੋਂ ਉਨ੍ਹਾਂ ਧਾਤਾਂ ਦੇ ਨਿਸ਼ਕਰਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਕਾਰਬਨ ਦੁਆਰਾ ਲਘੁਕ੍ਰਿਤ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਕਿਉਂਕਿ ਕੈਲਸ਼ਿਅਮ ਅਤੇ ਬੇਰਿਅਮ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਆੱਕਸੀਜਨ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ, ਇਸ ਲਈ ਇਸ ਗੁਣ ਦੀ ਵਰਤੋਂ ਵੈਕਯੂਮ ਟਿਊਬ ਵਿੱਚੋਂ ਹਵਾ ਕੱਢਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਰੇਡੀਅਮ ਦੇ ਲੁਣਾਂ ਦੀ ਵਰਤੋਂ ਵਿਕਿਰਣ ਇਲਾਜ ਉਦਾਹਰਣ ਵਜੋਂ ਕੈਂਸਰ ਦੇ ਇਲਾਜ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

10.7 ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਆਮ ਲੱਛਣ

ਗਰੁੱਪ 2 ਦੇ ਤੱਤਾਂ ਦੀ ਦੋ ਧਨੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ (M²⁺) ਇਨ੍ਹਾਂ ਦੀ ਪ੍ਰਮੁੱਖ, ਸੰਯੋਜਕਤਾ ਹੈ ਲੇਕਿਨ ਇਹ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਸੰਗਤ ਯੋਗਿਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਆਇਨਿਕ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਸਦਾ ਕਾਰਣ ਇਨ੍ਹਾਂ ਦਾ ਵਧੇਰੇ ਨਿਊਕਲੀ ਚਾਰਜ ਅਤੇ ਛੋਟਾ ਅਕਾਰ ਹੈ। ਬੈਰੀਲਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹੋਰ ਯੋਗਿਕ ਇਸ ਗਰੁੱਪ ਦੇ ਭਾਰੀ ਅਤੇ ਵੱਡੇ ਅਕਾਰ ਵਾਲੇ ਦੂਜੇ ਤੱਤਾਂ (Ca, Sr, Ba) ਦੇ ਆਕਸਾਈਡਾਂ ਅਤੇ ਹੋਰ ਯੋਗਿਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਸਹਿਸੰਯੋਜੀ ਹੁੰਦੇ ਹਨ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਆਮ ਲੱਛਣ ਇੱਥੇ ਦੱਸੇ ਜਾ ਰਹੇ ਹਨ।

(i) ਅੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਹਵਾ ਵਿੱਚ ਜਲ ਕੇ ਮੋਨੋਆੱਕਸਾਈਡ MO ਬਣਾਉਂਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਰਚਨਾ BeO ਨੂੰ ਛੱਡ ਕੇ, ਰਾੱਕ ਸਾਲਟ (Rock salt) ਵਰਗੀ ਹੁੰਦੀ ਹੈ। BeO ਸਹਿਸੰਯੋਜਕ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੁੰਦਾ ਹੈ ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦੇ ਨਿਰਮਾਣ ਤਾਪ ਉੱਚੇ ਹੁੰਦੇ ਹਨ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਇਹ ਤਾਪ ਦੇ ਪ੍ਰਤੀ ਅਤਿ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। BeO ਐਂਫੋਟੈਰਿਕ ਹੈ ਜਦਕਿ ਬਾਕੀ ਤੱਤਾਂ ਦੇ ਆੱਕਸਾਈਡ ਖਾਰੇ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਘੱਟ ਘਲਣਸ਼ੀਲ ਹਾਈਡੋਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ।

 $MO + H_2O \rightarrow M(OH)_2$


ਇਨ੍ਹਾਂ ਹਾਈਡ੍ਰੋਕਸਾਈਡਾਂ ਦੇ ਘੁਲਣਸ਼ੀਲਤਾ, ਤਾਪੀ ਸਥਾਈਪਨ ਅਤੇ ਖਾਰੀ ਸੁਭਾਅ Mg(OH)₂ ਤੋਂ Ba(OH)₂ ਤੱਕ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਧਣ ਤੇ ਵਧਦੇ ਹਨ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਖਾਰ ਧਾਂਤਾ ਦੇ ਸੰਗਤ ਹਾਈਡ੍ਰੋਕਸਾਈਡਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। ਬੈਰੀਲਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਐਂਫੋਟੈਰਿਕ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੋਵਾਂ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।

 $\operatorname{Be(OH)}_2 + 2OH^- \rightarrow [\operatorname{Be(OH)}_4]^{2^-}$ ਬੈਗੇਲੇਟ ਆਇਨ

 $Be(OH)_2 + 2HCl + 2H_2O \rightarrow [Be(OH)_4]Cl_2$

(ii) ਹੇਲਾਈਡ : ਬੈਰੀਲਿਅਮ ਹੇਲਾਈਡ ਨੂੰ ਛੱਡ ਕੇ ਬਾਕੀ ਧਾਤਾਂ ਦੇ ਹੇਲਾਈਡਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਆਇਨਿਕ ਹੁੰਦੀ ਹੈ। ਬੈਰੀਲਿਅਮ ਹੇਲਾਈਡ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਸਹਿਸੌਜਕ ਹੁੰਦੇ ਹਨ ਅਤੇ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਵਿੱਚ ਘੁਲਦੇ ਹਨ। ਬੈਰੀਲਿਅਮ ਕਲੋਰਾਈਡ ਦੀ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਚੇਨ-ਰਚਨਾ, ਜਿਵੇਂ ਕਿ ਹੇਠਾਂ ਵਿਆਇਆ ਗਿਆ ਹੈ-

ਵਸਤੂ ਅਵਸਥਾ ਵਿੱਚ $BeCl_2$ ਕਲੋਰੋ ਪੁਲ (Chloro Bridged) ਡਾਈਮਰ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ 1200 K ਦੇ ਉੱਚੇ

ਤਾਪਮਾਨ ਉੱਤੇ ਰੇਖੀ ਮੋਨੋਮਰ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਹੇਲਾਈਡ ਹਾਈਡ੍ਰੇਟ ਬਨਾਉਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਘਟਦੀ ਜਾਂਦੀ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ-MgCl₂.8H₂O, CaCl₂.6H₂O ਅਤੇ SrCl₂.6H₂O ਅਤੇ BaCl₂.2H₂O) Ca, Sr ਅਤੇ Ba ਦੇ ਜਲ ਯੋਜਿਤ ਕਲੋਰਾਈਡਾਂ, ਬ੍ਰੋਮਾਈਡ ਅਤੇ ਆਇਓਾਈਡਾਂ ਦਾ ਨਿਰਜਲੀਕਰਣ ਇਨ੍ਹਾਂ ਨੂੰ ਗਰਮ ਕਰ ਕੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਦਕਿ Be ਅਤੇ Mg ਦੇ ਸੰਗਤ ਜਲ ਯੋਜਿਤ ਹੇਲਾਈਡਾਂ ਦਾ ਗਰਮ ਕਰਨ ਤੇ ਜਲ ਅਪਘਟਨ ਹੋ ਜਾਂਦਾ ਹੈ।ਉੱਚ ਲੈਟਿਸ ਊਰਜਾ ਦੇ ਕਾਰਣ ਫਲੋਰਾਈਡ ਕਲੋਰਾਈਡ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਘੱਟ ਘੁਲਦੇ ਹਨ।

(iii) ਔਕਸੋ ਤੇਜਾਬਾਂ ਦੇ ਲੂਣ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਔਕਸੋ ਤੇਜਾਬਾਂ ਦੇ ਲੂਣ ਵੀ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਕੁਝ ਮੁੱਖ ਹੇਠ ਲਿਖਤ ਹਨ-

ਕਾਰਬੋਨੇਟ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਕਾਰਬੋਨੇਟ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਘੁਲੇ ਲੂਣਾਂ ਦੇ ਘੋਲ ਵਿੱਚ ਸੋਡੀਅਮ ਜਾਂ ਅਮੋਨੀਅਮ ਕਾਰਬੋਨੇਟ ਮਿਲਾਕੇ ਅਵਖੇਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਧਣ ਤੇ ਕਾਰਬੋਨੇਟਾਂ ਦੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਵਧਦੀ ਹੈ।ਸਾਰੇ ਕਾਰਬੋਨੇਟ ਗਰਮ ਕਰਨ ਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਆੱਕਸਾਈਡ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਬੈਰੀਲਿਅਮ ਕਾਰਬੋਨੇਟ ਅਸਥਾਈ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਸਿਰਫ CO₂ ਦੇ ਵਾਤਾਵਰਣ ਵਿੱਚ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਾਰਬੋਨੇਟਾਂ ਦਾ ਤਾਪੀ ਸਥਾਈਪਨ ਧਨਆਇਨ ਦਾ ਅਕਾਰ ਵਧਣ ਤੇ ਵਧਦਾ ਹੈ।

ਸਲਫੇਟ : ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਸਲਫੇਟ ਸਫੇਦ ਅਤੇ ਠੋਸ ਹੁੰਦੇ ਹਨ ਅਤੇ ਤਾਪ ਦੇ ਪ੍ਰਤੀ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। BeSO₄, ਅਤੇ MgSO₄ ਜਲਦੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਜਾਂਦੇ ਹਨ। CaSO₄ ਤੋਂ BaSO₄ ਤੱਕ ਘੁਲਣਸ਼ਲੀਤਾ ਘਟਦੀ ਜਾਂਦੀ ਹੈ। Be²⁺ ਅਤੇ Mg²⁺ ਦੀ ਜਲਯੋਜਨ ਐਨਥੈਲਪੀ ਇਨ੍ਹਾਂ ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇੰਜ ਇਨ੍ਹਾਂ ਦੇ ਸਲਫੇਟ ਪਾਣੀ ਵਿੱਚ ਘੁਲਦੇ ਹਨ।

ਨਾਈਟ੍ਰੇਟ : ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦੇ ਕਾਰਬੋਨੇਟਾਂ ਨੂੰ ਹਲਕੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਵਿੱਚ ਘੋਲਕੇ ਇਨ੍ਹਾਂ ਦੇ ਨਾਈਟ੍ਰੇਟ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਮੈਗਨੀਸ਼ਿਅਮ ਨਾਈਟ੍ਰੇਟ ਪਾਣੀ ਦੇ ਛੇ ਅਣੂਆਂ ਦੇ ਨਾਲ ਕ੍ਰਿਸਟਲਿਤ ਹੁੰਦਾ ਹੈ ਜਦ ਕਿ ਬੇਰਿਅਮ ਨਾਈਟ੍ਰੇਟ ਨਿਰਜਲ ਲੂਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕ੍ਰਿਸਟਲਿਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਫਿਰ ਵਧਦੇ ਅਕਾਰ ਦੇ ਨਾਲ ਘਟਦੀ ਜਲ ਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਕਾਰਣ ਘੱਟ ਜਲਯੋਜਿਤ ਲੂਣ ਬਨਾਉਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਨੂੰ ਮੁੜ ਦਰਸਾਉਂਦਾ ਹੈ। ਲੀਥਿਅਮ ਨਾਈਟ੍ਰੇਟ ਵਾਂਗ ਸਾਰੇ ਨਾਈਟ੍ਰੇਟ ਗਰਮ ਕਰਨ ਤੇ ਅਪਘਟਿਤ ਹੋ ਕੇ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ।

 $2M(NO_3)_2 \rightarrow 2MO + 4NO_2 + O_2$ (M = Be, Mg, Ca, Sr, Ba)

302

ਉਦਾਹਰਣ 10.4

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡਾਂ ਦੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠ ਜਾਣ ਤੇ ਕਿਉਂ ਵਧਦੀ ਹੈ ?

ਹੱਲ

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਰਿਣ ਆਇਨ ਸਮਾਨ ਹੋਣ, ਤਾਂ ਧਨ ਆਇਨ ਦਾ ਅਰਧ ਵਿਆਸ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਕਿਉਂਕਿ ਵਧਦਾ ਹੋਇਆ ਅਰਧ ਵਿਆਸ ਦੇ ਨਾਲ ਜਲ ਯੋਜਨ ਐਨਥੈਲਪੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਰਿਣਾਤਮਕ ਐਨਥੈਲਪੀ ਤੇਜੀ ਨਾਲ ਘੱਟ ਹੁੰਦੀ ਹੈ, ਇੰਜ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਘੁਲਣਸ਼ੀਲਤਾ ਵਧਦੀ ਹੈ।

ਉਦਾਹਰਣ 10.5

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਕਾਰਬੋਨੇਟਾਂ ਅਤੇ ਸਲਫੇਟਾਂ ਦੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਕਿਉਂ ਘਟਦੀ ਹੈ ?

ਹੱਲ

ਰਿਣਾਆਇਨ ਦਾ ਅਕਾਰ ਧਨਆਇਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਹੈ ਅਤੇ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਗਰੁੱਪ ਵਿੱਚ ਲਗਪਗ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ। ਕਿਉਂਕਿ ਗਰੁੱਪ ਵਿੱਚ ਜਲਯੋਜਨ ਦਾ ਮਾਨ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਘਟਦਾ ਹੈ, ਇਸ ਲਈ ਧਾਤ ਕਾਰਬੋਨੇਟਾਂ ਅਤੇ ਸਲਫੇਟਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਘਟਦੀ ਜਾਂਦੀ ਹੈ।

10.8 ਬੈਰੀਲਿਅਮ ਦਾ ਅਨਿਯਮਿਤ ਵਿਹਾਰ

ਗਰੁੱਪ 2 ਦਾ ਪਹਿਲਾ ਤੱਤ ਬੈਰੀਲਿਅਮ ਗਰੁੱਪ ਵਿੱਚ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਹੋਰ ਤੱਤਾਂ ਦੇ ਨਾਲੋਂ ਅਨਿਯਮਿਤ ਵਿਹਾਰ ਵਿਖਾਉਂਦਾ ਹੈ।ਇਹ ਐਲੂਮੀਨਿਅਮ ਨਾਲ ਵਿਕਰਣ ਸਬੰਧ ਵੀ ਦਰਸਾਉਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਦਾ ਵਰਣਨ ਬਾਅਦ ਵਿੱਚ ਕੀਤਾ ਜਾਵੇਗਾ।

- (i) ਬੈਰੀਲਿਅਮ ਦਾ ਪਰਮਾਣਵੀ ਅਤੇ ਆਇਨਿਕ ਅਕਾਰ ਅ– ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਛੋਟਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੀ ਤੁਲਨਾ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਤੱਤਾਂ ਨਾਲ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ। ਉੱਚੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ ਛੋਟਾ ਪਰਮਾਣਵੀਂ ਅਕਾਰ ਦੇ ਕਾਰਣ ਬੈਰੀਲਿਅਮ ਦੇ ਯੋਗਿਕ ਸਹਿਸੰਯੋਜੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਅਸਾਨੀ ਨਾਲ ਜਲ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।
- (ii) ਬੈਰੀਲਿਅਮ ਦੀ ਉਪਸਹਿਸੰਯੋਜਨ ਸੰਖਿਆ (Coordination Number) ਚਾਰ ਤੋਂ ਵੱਧ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਸ ਦੇ ਸੰਜੋਗੀ ਸ਼ੈੱਲ ਵਿੱਚ ਸਿਰਫ ਚਾਰ ਐਰਾਬਿਟਲ ਹਨ। ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਮੈਂਬਰਾਂ ਦੀ ਉਪਸਹਿਸਯੋਜਨ ਸੰਖਿਆ 6 ਹੋ ਸਕਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਆਰਬਿਟਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।

(iii) ਬਾਕੀ ਮੈਂਬਰਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੇ ਉਲਟ ਬੈਗੀਲਿਅਮ ਦੇ ਆਕਸਾਈਡਾਂ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡਾਂ ਦਾ ਸੁਭਾਅ ਐਂਫੋਟੈਰਿਕ ਹੁੰਦਾ ਹੈ।

10.8.1 ਬੈਰੀਲਿਅਮ ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਵਿੱਚ ਵਿਕਰਣ ਸੰਬੰਧ Be²⁺ ਦਾ ਅਨੁਮਾਨਿਤ ਅਰਧ ਵਿਆਸ 31 pm ਹੈ। ਇਸ ਦਾ ਚਾਰਜ/ਅਰਧ ਵਿਆਸ ਅਨੁਪਾਤ Al³⁺ ਦੇ ਲਗਪਗ ਬਰਾਬਰ ਹੈ। ਇਸ ਲਈ ਬੈਰੀਲਿਅਮ ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਵਰਗਾ ਹੈ। ਕੁਝ ਸਮਾਨਤਾਵਾਂ ਹੇਠ ਲਿਖੀਆਂ ਹਨ-

- ਐਲੂਮੀਨਿਅਮ ਵਾਂਗ ਬੈਰੀਲਿਅਮ ਤੇਜਾਬਾਂ ਤੋਂ ਜਲਦੀ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦਾ, ਕਿਉਂਕਿ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਤੇ ਆੱਕਸਾਈਡ ਪਰਤ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ।
- (ii) ਖਾਰੀ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਬੈਰੀਲਿਅਮ ਘੁਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬੈਰੀਲੇਟ (Beryllate) ਆਇਨ [Be(OH)₄]² ਦਿੰਦਾ ਹੈ। ਠੀਸ ਇਸੇ ਤਰ੍ਹਾਂ ਐਲੂਮੀਨਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਐਲੂਮੀਨੇਟ (Aluminate) ਆਇਨ [Al(OH)₄] ਦਿੰਦਾ ਹੈ।
- (iii) ਬੈਰੀਲਿਅਮ ਅਤੇ ਐਲੂਮੀਨਿਯਮ ਦੇ ਕਲੋਰਾਈਡ ਵਾਸ਼ਪ ਫੇਜ ਵਿੱਚ ਪੁਲ ਬੰਧਿਤ ਕਲੋਰਾਈਡ (Bridged chloride) ਦੀ ਰਚਨਾ ਕਰਦੇ ਹਨ।ਦੋਵੇਂ ਹੀ ਕਲੋਰਾਈਡ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਵਿੱਚ ਘੁਲਦੇ ਹਨ ਅਤੇ ਪ੍ਰਬਲ ਲੁਈਸ ਐਸਿਡ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਫਰਿਡਲਕਰਾਫਟ ਦੇ ਓਤਪ੍ਰੇਰਕ (Friedel Craft Catalyst) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
- (iv) ਬੈਰੀਲਿਅਮ ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਆਇਨ ਕੰਪਲੈਕਸ ਯੋਗਿਕ (Complexes) ਬਨਾਉਣ ਦੀ ਪ੍ਬਲ ਪ੍ਰਵਿਰਤੀ ਰੱਖਦੇ ਹਨ, ਜਿਵੇਂ− BeF₄^{2−}, AlF₆^{3−}।

10.9 ਕੈਲਸ਼ਿਅਮ ਦੇ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ

ਕੈਲਸ਼ਿਅਮ ਦੇ ਮਹੱਤਵ ਪੂਰਣ ਯੋਗਿਕ ਕੈਲਸ਼ਿਅਮ ਆੱਕਸਾਈਡ, ਕੈਲਸ਼ਿਅਮ ਹਾਈਡ੍ਰਾਕਸਾਈਡ, ਕੈਲਸ਼ਿਅਮ ਸਲਫੇਟ, ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ ਸੀਮੈਂਟ ਹਨ। ਇਹ ਉਦਯੋਗਿਕ ਰੂਪ ਵਿੱਚ ਮਹੱਤਵ ਪੂਰਣ ਯੋਗਿਕ ਹਨ। ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦਾ ਨਿਰਮਾਣ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਲਾਭ ਹੇਠਾਂ ਵਰਣਨ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।

ਕੈਲਸ਼ਿਅਮ ਆੱਕਸਾਈਡ ਜਾਂ ਅਣਬੁਝਿਆ ਚੂਨਾ, CaO

ਇਸ ਦਾ ਵਪਾਰਕ ਨਿਰਮਾਣ ਘੁੰਮਕ ਭੱਠੀ (Rolary Kiln) ਵਿੱਚ ਚੂਨੇ ਦੇ ਪੱਥਰ (CaCO₃) ਨੂੰ ਲਗਪਗ 1070-1270 K ਤਕ ਗਰਮ ਕਰਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $CaCO_3 \xrightarrow{\exists \forall u} CaO + CO_2$

CO₂ ਨੂੰ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚੋਂ ਜਲਦੀ ਜਲਦੀ ਹਟਾਉਂਦੇ ਰਹਿੰਦੇ ਹਨ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਅਗ੍ਰਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪੂਰੀ ਹੋ ਸਕੇ। ਕੈਲਸ਼ਿਅਮ ਆੱਕਸਾਈਡ ਇੱਕ ਸਫੇਦ ਅ-ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਪਦਾਰਥ ਹੈ, ਜਿਸਦਾ ਪਿਘਲਣ ਅੰਕ 2870K ਹੈ। ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਖ਼ੁਲ੍ਹਾ ਛਣੱਣ ਤੇ ਇਹ ਨਮੀਂ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਸੋਖ ਲੈਂਦਾ ਹੈ।

 $CaO + CO_2 \rightarrow CaCO_3$

ਸੀਮਿਤ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਮਿਲਾਉਣ ਦੇ ਚੂਨੇ ਦੇ ਢੇਲੇ (Lumps) ਟੁੱਟ ਜਾਂਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਰਮ ਨੂੰ ਚੂਨਾ ਬੁਝਾਉਣ (Slaking of lime) ਦੀ ਪ੍ਰਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ। ਬਿਨਾਂ ਬੁਝੇ ਚੂਨੇ ਨੂੰ ਜਦੋਂ ਸੋਡੇ ਦੁਆਰਾ ਬੁਝਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਸੋਡਾ ਲਾਈਮ (Soda Lime) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।ਇਹ ਖਾਰੀ ਆੱਕਸਾਈਡ ਹੋਣ ਦੇ ਕਾਰਣ ਉੱਚ ਤਾਪਮਾਨ ਤੇ ਤੇਜਾਬੀ ਆੱਕਸਾਈਡਾਂ ਨਾਲ ਸੰਜੋਗ ਕਰਦਾ ਹੈ।

 $CaO + SiO_2 \rightarrow CaSiO_3$

 $6\text{CaO} + P_4O_{10} \rightarrow 2\text{Ca}_3(\text{PO}_4)_2$

ਲਾਭ:

- (i) ਸੀਮੈਂਟ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਪਹਿਲੇ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਖਾਰ ਦੇ ਸਭ ਤੋਂ ਸਸਤੇ ਰੂਪ ਵਿੱਚ;
- (ii) ਕਾਸਟਿਕ ਸੋਡੇ ਤੋਂ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਬਨਾਉਣ ਵਿੱਚ;ਅਤੇ
- (iii) ਖੰਡ ਦੇ ਸ਼ੁਧੀਕਰਣ ਅਤੇ ਰੰਗਾਂ (Dye stuffs) ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ।

ਕੈਲਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਜਾਂ ਬੁੱਝਿਆ ਚੂਨਾ, Ca(OH) $_2$

ਕੈਲਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦਾ ਨਿਰਮਾਣ ਅਣਬੁਝੇ ਚੂਨੇ ਨੂੰ ਪਾਣੀ ਨਾਲ ਮਿਲਾ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਫੇਦ ਪਾਊਡਰ ਹੈ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਅਲਪ ਘੁਲਣਸ਼ੀਲ ਹੈ। ਇਸਦੇ ਜਲੀ ਘੋਲ (ਚੂਨੇ ਦਾ ਪਾਣੀ (Lime water) ਵਿੱਚੋਂ ਜਦੋਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਗੈਸ ਲੰਘਾਈ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਬਣਨ ਕਾਰਣ ਚੂਨੇ ਦਾ ਪਾਣੀ ਦੁਧੀਆਂ ਹੋ ਜਾਂਦਾ ਹੈ।

 $Ca(OH)_{2} + CO_{2} \rightarrow CaCO_{3} + H_{2}O$

ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਨੂੰ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਲੰਘਾਉਣ ਤੇ ਅਵਖੇਪਿਤ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਪਾਣੀ ਵਿੱਚ ਘੁਲੇ ਕੈਲਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$

ਚੂਨੇ ਦਾ ਪਾਣੀ ਕਲੋਗੀਨ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਹਾਈਪੋਕਲੋਰਾਈਟ (hypochlorite) ਬਣਾ ਲੈਂਦਾ ਹੈ, ਜੋ ਬਲੀਚਿੰਗ ਪਾਉਡਰ ਦਾ ਇੱਕ ਸੰਘਟਕ ਹੈ।

$$2Ca(OH)_2 + 2Cl_2 \rightarrow CaCl_2 + Ca(OCl)_2 + 2H_2O$$

ਬਲੀਚਿੰਗ ਪਾਉਡਰ

ਲਾਭ:

(i) ਵੱਡੇ ਪੱਧਰ ਤੇ ਚੂਨਾ-ਲੇਪ (Mortar) ਦੇ ਰੂਪ ਵਿੱਚ ਇਮਾਰਤ ਉਸਾਰੀ ਵਿੱਚ;

- (ii) ਰੋਗਾਣੂ ਨਾਸ਼ੀ (Disinfectant) ਪ੍ਰਕਿਰਤੀ ਦੇ ਕਾਰਣ ਸਫੇਦੀ (White wash) ਦੇ ਰੂਪ ਵਿੱਚ;
- (iii) ਕੱਚ ਦੇ ਉਤਪਾਦਨ, ਖੱਲ ਉਦਯੋਗ, ਰੰਗਕਾਟ ਅਤੇ ਚੀਨੀ− ਸੋਧਣ ਵਿੱਚ।

ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ, CaCO

ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਕਈ ਰੂਪਾਂ ਵਿੱਚ, ਜਿਵੇਂ ਚੂਨਾ ਪੱਥਰ, ਖੜੀਆ (Chalk), ਸੰਗਮਰਮਰ (Marble) ਆਦਿ ਦੇ ਰੂਪ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਮਿਲਦਾ ਹੈ। ਬੂਝੇ ਚੂਨੇ ਵਿਚੋਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸੀ ਗੈਸ ਲੰਘਾ ਕੇ, ਜਾਂ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਵਿੱਚ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਮਿਲਾਕੇ ਇਸ ਨੂੰ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

 $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$

ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਤੋਂ ਬਚਨਾ ਚਾਹੀਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸਦੇ ਜਿਆਦਾ ਹੋਣ ਨਾਲ ਘੁਲਣਸ਼ੀਲ ਕੈਲਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਬਣ ਸਕਦਾ ਹੈ।

ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਸਫੇਦ ਪਾਊਡਰ ਹੁੰਦਾ ਹੈ ਇਹ ਪਾਣੀ ਵਿੱਚ ਲਗਪਗ ਅਘੁੱਲ ਹੈ। 1200 K ਤੇ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਵਿਘਟਤ ਹੋ ਕੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦਿੰਦਾ ਹੈ।

$$CaCO_3 \xrightarrow{1200 \text{ K}} CaO + CO_3$$

ਇਹ ਹਲਕੇ ਤੇਜਾਬਾਂ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦਿਦਾ ਹੈ।

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$$

ਸੰਗਮਰਮਰ ਦੇ ਰੂਪ ਵਿੱਚ ਇਮਾਰਤ ਉਸਾਰੀ ਵਿੱਚ; ਬੂਝੇ ਚੂਨੇ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ, ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਨੂੰ ਮੈਗਨੀਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਨਾਲ ਮਿਲਾ ਕੇ ਲੋਹੇ ਵਰਗੀਆਂ ਧਾਤਾਂ ਦੇ ਨਿਸ਼ਕਰਣ ਵਿੱਚ,ਫਲਕਸ (Flux) ਦੇ ਰੂਪ ਵਿੱਚ; ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਵਿਖੇਪਿਤ CaCO₃ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਉੱਚ ਗੁਣਵੱਤਾ ਵਾਲੇ ਕਾਗਜ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ; ਐਂਟਐਸਿਡ, ਟੁਥਪੇਸਟ ਵਿੱਚ ਘਸਾਊ ਵਜੋਂ, ਚਿਉਂਗਮ ਦੇ ਸੰਘਟਕ ਅਤੇ ਸੁੰਦਰਤਾ ਸਾਧਨਾਂ ਵਿੱਚ ਪੂਰਕ ਦੇ ਰੂਪ ਵਿੱਚ।

ਕੈਲਸ਼ਿਅਮ ਸਲਫੇਟ (ਪਲਾਸਟਰ ਆੱਫ ਪੈਰਿਸ) CaSO₄ ·½ H₂O ਇਹ ਕੈਲਸ਼ਿਅਮ ਸਲਫੇਟ ਦਾ ਅਰਧ ਹਾਈਡੇਟੀ ਹੈ। ਇਸ ਨੂੰ ਜਿਪਸਮ CaSO₄.2H₂O ਨੂੰ 393 K ਉੱਤੇ ਗਰਮ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $2(CaSO_4.2H_2O) \rightarrow 2(CaSO_4).H_2O + 3H_2O$ 393 K ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ਤੇ ਕ੍ਰਿਸਟਲੀ ਪਾਣੀ ਨਹੀਂ ਬਚਦਾ ਅਤੇ ਖੁਸ਼ਕ CaSO₄ ਬਣਦਾ ਹੈ।ਇਸ ਨੂੰ ਮ੍ਰਿਤ ਤਾਪਿਤ ਪਲਾਸਟਰ (Dead Burnt Plaster) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਪਾਣੀ ਦੇ ਨਾਲ ਜੰਮਣ ਦੀ ਇਸ ਦੀ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਵਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਕਾਫੀ ਮਾਤਰਾ

304

ਵਿੱਚ ਪਾਣੀ ਮਿਲਾਉਣ ਨਾਲ ਇਹ ਪਲਾਸਟਿਕ ਵਰਗਾ ਇੱਕ ਦ੍ਵ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ 5 ਤੋਂ 15 ਮਿੰਟ ਵਿੱਚ ਜੰਮ ਕੇ ਸਖਤ ਅਤੇ ਠੋਸ ਹੋ ਜਾਂਦਾ ਹੈ।

ਲਾਭ :

ਪਲਾਸਟਰ ਐਫ ਪੈਰਿਸ ਦੀ ਵਧੇਰੇ ਵਰਤੋਂ ਇਮਾਰਤ ਉਸਾਰੀ ਦੇ ਨਾਲ ਨਾਲ ਟੁੱਟੀਆਂ ਹਡੀਆਂ ਦੇ ਪਲਸਤਰ ਵਿੱਚ ਵੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਦੰਦਾ ਦੇ ਇਲਾਜ, ਸਜਾਵਟ ਦੇ ਕੰਮ, ਮੂਰਤੀਆਂ ਅਤੇ ਅੱਧੇ ਧੜ ਦਾ ਬੱਤ ਬਨਾਉਣ ਵਿੱਚ ਵੀ ਹੰਦੀ ਹੈ।

ਸੀਮੈਂਟ : ਸੀਮੈਂਟ ਇੱਕ ਮਹੱਤਵ ਪੂਰਣ ਇਮਾਰਤ ਉਸਾਰੀ ਸਮੱਗਰੀ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਬਿਟੇਨ ਵਿੱਚ ਸੰਨ 1824 ਵਿੱਚ ਜੋਸੇਫ ਐਸਪਿਡਿਨ ਨੇ ਕੀਤੀ ਸੀ। ਇਸ ਨੂੰ ਪੋਰਟਲੈਂਡ ਸੀਮੈਂਟ ਵੀ ਆਖਿਆ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਬ੍ਰਿਟੇਨ ਦੇ ਪੋਰਟਲੈਂਡ ਟਾਪੂ ਉੱਤੇ ਪ੍ਰਾਪਤ ਚੁਨੇ ਦੇ ਪੱਥਰ ਨਾਲ ਮਿਲਦਾ ਜੁਲਦਾ ਹੈ। ਇਹ ਇੱਕ ਅਜਿਹਾ ਪਦਾਰਥ ਹੈ, ਜੋ ਚੁਨੇ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਵਾਲੇ ਪਦਾਰਥ CaO ਨੂੰ ਹੋਰ ਪਦਾਰਥ (ਜਿਵੇਂ-ਮਿੱਟੀ ਜਿਸ ਵਿੱਚ ਸਿਲੀਕਾ SiO, ਅਤੇ ਐਲੁਮੀਨਿਅਮ, ਲੋਹਾ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਆੱਕਸਾਈਡ ਹੁੰਦੇ ਹਨ) ਨੂੰ ਮਿਲਾ ਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਪੋਰਟਲੈਂਡ ਸੀਮੈਂਟ ਦਾ ਔਸਤ ਸੰਘਟਨ ਹੈ: CaO, 50-60%; SiO₂, 20-25%; Al₂O₃, 5-10%; MgO, 2-3%; Fe₂O₃, 1-2% ਅਤੇ SO₃, 1-2%। ਇੱਕ ਚੰਗੀ ਗੁਣਵੱਤਾ ਵਾਲੇ ਸੀਮੈਂਟ ਵਿੱਚ ਸਿਲੀਕਾ (SiO₂) ਅਤੇ ਐਲੂਮੀਨਾ (Al₂O₂) ਦਾ ਅਨੁਪਾਤ 2.5 ਤੋਂ 4 ਦੇ ਵਿੱਚ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਚੁਨੇ (CaO) ਅਤੇ ਹੋਰ ਕੁੱਲ ਆੱਕਸਾਈਡਾਂ (SiO) ਅਤੇ (Al₂O₂) ਦਾ ਅਨੁਪਾਤ 2 ਦੇ ਨੇਡੇ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਸੀਮੈਂਟ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੱਚੇ ਮਾਲ ਦੇ ਰੂਪ ਵਿੱਚ ਚੂਨੇ ਦੇ ਪੱਥਰ (Lime-stone) ਅਤੇ ਚੀਕਨੀ ਮਿੱਟੀ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਮਿਲ ਕੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਸੀਮੈਂਟ ਕਲਿੰਕਰ (Clinker) ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਕਲਿੰਕਰ ਵਿੱਚ 2-3% (ਭਾਰ ਦੇ ਹਿਸਾਬ ਨਾਲ) ਜਿਮਸਮ (CaSO₄.2H₂O) ਮਿਲਾਕੇ ਸੀਮੈਂਟ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪੋਰਟਲੈਂਡ ਸੀਮੈਂਟ ਦੇ ਮੁੱਖ ਘਟਕ ਡਾਈਕੈਲਸ਼ਿਅਮ ਸਿਲੀਕੇਟ (Ca₂SiO₄) 26%, ਟ੍ਰਾਈਕੈਲਸ਼ਿਅਮ ਸਿਲੀਕੇਟ (Ca₃SiO₅) 51% ਅਤੇ ਟ੍ਰਾਈਕੈਲਸ਼ਿਅਮ ਐਲੂਮੀਨੇਟ (Ca₃Al₂O₆) 11% ਹਨ। ਸੀਮੈਂਟ ਦਾ ਜੰਮਣਾ : ਪਾਣੀ ਮਿਲਾਉਣ ਨਾਲ ਸੀਮੈਂਟ ਜੰਮ ਕੇ ਸਖਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਘਟਕਾਂ ਦੇ ਅਣੂਆਂ ਦਾ ਜਲਯੋਜਨ ਅਤੇ ਮੁੜ ਵਿਵਸਥਿਤ ਹੋਣਾ ਹੈ। ਜਿਪਸਮ ਮਿਲਾਉਣ ਦਾ ਕਾਰਣ ਸੀਮੈਂਟ ਦੇ ਜੰਮਣ ਦੇ ਪ੍ਰਕਰਮ ਨੂੰ ਹੌਲੀ ਕਰਨਾ ਹੈ ਤਾਂ ਕਿ ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਠੋਸ ਹੋ ਸਕੇ।

ਲਾਭ : ਲੋਹਾ ਅਤੇ ਸਟੀਲ ਦੇ ਬਾਅਦ ਸੀਮੈਂਟ ਹੀ ਇੱਕ ਅਜਿਹਾ ਪਦਾਰਥ ਹੈ, ਜੋ ਕਿਸੇ ਰਾਸ਼ਟਰ ਦੀਆਂ ਉਪਯੋਗੀ ਵਸਤਾਂ ਦੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਕੰਕਰੀਟ (Concrete) ਪ੍ਰਬਲਿਤ ਕੰਕਰੀਟ (Reinforced concerete), ਪਲਾਸਟਰਿੰਗ, ਪੁਲਨਿਰਮਾਣ, ਇਮਾਰਤ ਉਸਾਰੀ ਆਦਿ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

10.10 ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਦੀ ਜੈਵ ਮਹਤੱਤਾ

ਇੱਕ ਸਧਾਰਣ ਵਿਅਕਤੀ ਵਿੱਚ ਕਰੀਬ 25 ਗ੍ਰਾਮ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ 1200 ਗ੍ਰਾਮ ਕੈਲਸ਼ਿਅਮ ਹੁੰਦਾ ਹੈ, ਜਦ ਕਿ ਲੋਹਾ ਸਿਰਫ 5 ਗ੍ਰਾਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤਾਂਬਾ ਸਿਰਫ 0.06 ਗ੍ਰਾਮ ਹੁੰਦਾ ਹੈ। ਮਨੁੱਖੀ ਸਰੀਰ ਵਿੱਚ ਇਸ ਦੀ ਰੋਜਾਨਾ ਜਰੂਰਤ 200 – 300 mg ਅਨੁਮਾਨਿਤ ਕੀਤੀ ਗਈ ਹੈ।

ਸਾਰੇ ਐਨਜ਼ਾਈਮ, ਜੋ ਫਾਸਫੇਟ ਦੇ ਤਬਦੀਲਕਰਨ ਵਿੱਚ ATP ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ, ਮੈਗਨੀਸ਼ਿਅਮ ਦੀ ਵਰਤੋਂ ਸਹਿਘਟਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰਦੇ ਹਨ। ਪੌਦਿਆਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸੋਖਣ ਦੇ ਲਈ ਮੁੱਖ ਵਰਣਕ (Pigment) ਕਲੋਰੋਫਿਲ ਵਿੱਚ ਵੀ ਮੈਗਨੀਸ਼ਿਅਮ ਹੰਦਾ ਹੈ।ਸਰੀਰ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਦਾ 99 % ਦੰਦਾਂ ਅਤੇ ਹੱਡੀਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਹ ਅੰਤਰਤੰਤਰਕੀ ਪੇਸ਼ੀ ਪਣਾਲੀ. ਅੰਤਰਤੰਤਰਕੀ ਸੰਚਾਰਨ, ਸੈੱਲ ਝਿੱਲੀ ਅਖੰਡਤਾ (cell membrane integrity) ਅਤੇ ਖੁਣ ਜੰਮਣ (blood coagulation) ਵਿੱਚ ਵੀ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ। ਪਲਾਜਮਾ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਦੀ ਸੰਘਣਤਾ ਲਗਪਗ 100 mgL⁻¹ ਹੰਦੀ ਹੈ। ਦੋ ਹਾੱਰਮੋਨ ਕੈਲਸਿਟੋਨਿਨ ਅਤੇ ਪੈਰਾਥਾਇਰਾੱਇਡ ਇਸ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਹੱਡੀ ਅਕਿਰਿਆਸ਼ੀਲ ਅਤੇ ਅਪਰਿਵਰਤਨਸ਼ੀਲ ਪਦਾਰਥ ਨਹੀਂ ਹੈ, ਇਹ ਕਿਸੇ ਮਨੱਖ ਵਿੱਚ ਲਗਪਗ 400 mg ਪਤੀਦਿਨ ਦੇ ਹਿਸਾਬ ਨਾਲ ਘਲਦੀਆਂ ਅਤੇ ਵਿਖੇਪਿਤ ਹੰਦੀਆਂ ਹਨ। ਇਸ ਦਾ ਸਾਰਾ ਕੈਲਸ਼ਿਅਮ ਪਲਾਜਮਾ ਵਿਚੋਂ ਲੰਘਦਾ ਹੈ।

ਸਾਰਾਂਸ਼

ਗਰੁੱਪ ਇੱਕ ਦੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਗਰੁੱਪ ਦੋ ਦੀਆਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੋਵੇਂ ਮਿਲ ਕੇ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ S-ਬਲਾੱਕ ਦੀ ਰਚਨਾ ਕਰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਖਾਰੀ ਧਾਤਾਂ ਕਹਿਣ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡੋਕਸਾਈਡ ਖਾਰੀ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਪਛਾਣ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਜੋਗੀ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਇੱਕ S-ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ 2S ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਅਧਾਰ ਤੇ ਹੁੰਦੀ ਹੈ। ਇਹ ਅਤਿਅੰਤ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਹਨ ਜੋ ਕ੍ਰਮਵਾਰ ਇੱਕ ਧਨੀ (M[↑]) ਅਤੇ ਦੋ ਧਨੀ (M²⁺) ਆਇਨ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਵਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਕ੍ਰਮਅੰਕ ਦੇ ਨਾਲ ਇਨ੍ਹਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਇੱਕ ਨਿਯਮਿਤ ਪ੍ਰਵਿਰਤੀ ਵੇਖੀ ਜਾਂਦੀ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵਿਵਸਥਿਤ ਕ੍ਰਮ ਵਿੱਚ ਪਰਮਾਣਵੀਂ ਅਤੇ

ਆਇਨਿਕ ਅਕਾਰ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਆਇਨਨ ਐਨਥੈਲਪੀ ਘਟਦੀ ਜਾਂਦੀ ਹੈ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਵੀ ਲਗਪਗ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਪ੍ਰਵਿਰਤੀ ਵੇਖੀ ਜਾਂਦੀ ਹੈ।

ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਗਰੁੱਪਾਂ ਵਿੱਚ ਪਹਿਲਾ ਤੱਤ ਗਰੁੱਪ-1 ਵਿੱਚ ਲੀਥਿਅਮ ਅਤੇ ਗਰੁੱਪ-2 ਵਿੱਚ ਬੈਗੇਲਿਅਮ ਆਪਣੇ ਠੀਕ ਬਾਅਦ ਵਾਲੇ ਗਰੁੱਪ ਦੇ ਦੂਜੇ ਤੱਤ ਨਾਲ ਸਮਾਨਤਾਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਇਸ ਕਿਸਮ ਦੀਆਂ ਸਮਾਨਤਾਵਾਂ ਨੂੰ ਵਿਕਰਣ ਸਬੰਧ ਵਜੋਂ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਤੱਤ ਆਪਣੇ ਹੀ ਗਰੁੱਪ ਦੇ ਦੂਜੇ ਤੱਤਾਂ ਤੋਂ ਅਸਮਾਨਤਾਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਚਾਂਦੀ ਵਾਂਗ ਸਫੇਦ (Silvery white) ਮੁਲਾਇਮ ਅਤੇ ਘੱਟ ਪਿਘਲਣ ਅੰਕ ਵਾਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਅਤਿਅੰਤ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਯੋਗਿਕ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਆਇਨਿਕ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਬਲ ਖਾਰ ਬਣਾਉਂਦੇ ਹਨ। ਸੋਡੀਅਮ ਦੇ ਪ੍ਰਮੁਖ ਯੋਗਿਕਾਂ ਵਿੱਚ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ, ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ, ਸੋਡੀਅਮ ਹਾਈਡੋਕਸਾਈਡ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਾਰਬੋਨੇਟ ਹਨ। ਸੋਡੀਅਮ ਹਾਈਡੋ੍ਕਸਾਈਡ ਦਾ ਨਿਰਮਾਣ ਕਾਸਟਨਰ-ਕੈਲਨਰ ਵਿਧੀ ਅਤੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਨਿਰਮਾਣ ਸਾਲਵੇ ਵਿਧੀ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਰਸਾਇਣ ਖਾਰੀ ਧਾਤਾਂ ਵਰਗੀ ਹੀ ਹੈ। ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਛੋਟੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਆਇਨਿਕ ਅਕਾਰ ਅਤੇ ਵਧੇ ਹੋਏ ਧਨ ਆਇਨਿਕ ਚਾਰਜ ਦੇ ਕਾਰਣ ਕੁਝ ਅਸਮਾਨਤਾਵਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਖਾਰੇ ਹੁੰਦੇ ਹਨ। ਕੈਲਸ਼ਿਅਮ ਦੇ ਉਦਯੋਗਿਕ ਮਹੱਤਤਾ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਆੱਕਸਾਈਡ (ਚੂਨਾ), ਕੈਲੇਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (ਬੁਝਿਆ ਚੂਨਾ), ਕੈਲਸ਼ਿਅਮ ਸਲਫੇਟ (ਪਲਾਸਟਰ ਆੱਫ ਪੈਰਿਸ), ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ (ਚੂਨਾ-ਪੱਥਰ) ਅਤੇ ਸੀਮੈਂਟ ਪ੍ਰਮੁੱਖ ਹਨ। ਪੋਰਟਲੈਂਡ ਸੀਮੈਂਟ ਇੱਕ ਮਹੱਤਵ ਪੂਰਣ ਨਿਰਮਾਣ-ਸਮੱਗਰੀ ਹੈ। ਚੂਨਾ ਪੱਥਰ ਅਤੇ ਚੀਕਨੀ ਮਿੱਟੀ ਦੇ ਪਾਊਡਰ (pulverised) ਮਿਸ਼ਰਣ ਨੂੰ ਘੁੰਮਣ ਭੱਠੀ ਵਿੱਚ ਗਰਮ ਕਰਕੇ ਇਸਦਾ ਨਿਰਮਾਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਕਲਿੰਕਰ ਵਿੱਚ ਜਿਪਸਮ ਦੀ ਕੁਝ ਮਾਤਰਾ (2-3%) ਮਿਲਾ ਕੇ ਸੀਮੈਂਟ ਦਾ ਬਰੀਕ ਪਾਉਡਰ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਾਰੇ ਪਦਾਰਥ ਭਿੰਨ-ਭਿੰਨ ਖੇਤਰਾਂ ਵਿੱਚ ਅਨੇਕਾਂ ਉਪਯੋਗ ਦਰਸਾਉਂਦੇ ਹਨ।

ਇੱਕ ਸੰਜੋਗੀ ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਅਤੇ ਦੋਸੰਜੋਗੀ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਆਇਨ ਜੈਵ ਤਰਲਾਂ (Biological Fluids) ਵਿੱਚ ਉੱਚ ਅਨੁਪਾਤਾਂ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਹ ਆਇਨ ਕਈ ਜੈਵ ਕਿਰਿਆਵਾਂ, ਜਿਵੇਂ ਆਇਨ-ਸੰਤੁਲਨ ਦਾ ਨਿਰਵਾਹ, ਸ਼ਿਰਾ-ਆਵੇਗ ਸੰਚਰਣ (Nerve Impulse Conduction) ਆਦਿ ਵਿੱਚ ਮਹੱਤਵਪੁਰਣ ਭੁਮਿਕਾ ਨਿਭਉਂਦੇ ਹਨ।

ਅਭਿਆਸ

- 10.1 ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਸਮਾਨ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਕੀ ਹਨ ?
- 10.2 ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਸਧਾਰਣ ਲੱਛਣ ਅਤੇ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤਤਾ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 10.3 ਖਾਰੀ ਧਾਤਾਂ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਨਹੀਂ ਮਿਲਦੀਆਂ ਹਨ ?
- 10.4 Na₂O₂ ਵਿੱਚ ਸੋਡੀਅਮ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਗਿਆਤ ਕਰੋ।
- 10.5 ਪੋਟਾਸ਼ਿਅਮ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸੋਡੀਅਮ ਘੱਟ ਪ੍ਰਤੀ ਕਿਰਿਆਸ਼ੀਲ ਕਿਉਂ ਹੈ ? ਦੱਸੋ।
- 10.6 ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ (i) ਆਇਨਨ ਐਨਥੈਲਪੀ (ii) ਆੱਕਸਾਈਡਾਂ ਦਾ ਖਾਰੀਪਨ (iii) ਹਾਈਡੋਕਸਾਈਡਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ
- 10.7 ਲੀਥਿਅਮ ਕਿਸ ਤਰ੍ਹਾਂ ਮੈਗਨੀਸ਼ਿਅਮ ਨਾਲ ਰਸਾਇਣਿਕ ਗਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਦਰਸਾਉਂਦਾ ਹੈ ?
- 10.8 ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਮਿੱਟੀ ਧਾਤਾਂ ਰਸਾਇਣਿਕ ਲਘੁਕਰਣ ਵਿਧੀ ਨਾਲ ਕਿਉਂ ਨਹੀ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ?ਸਮਝਾਓ।
- 10.9 ਪ੍ਰਕਾਸ਼ ਬਿਜਲੀ ਸੈੱਲ ਵਿੱਚ ਲੀਥਿਅਮ ਦੀ ਥਾਂ ਤੇ ਪੋਟਾਸ਼ਿਅਮ ਅਤੇ ਸੀਜੀਅਮ ਕਿਉਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ?
- 10.10 ਜਦੋਂ ਇੱਕ ਖਾਰੀ ਧਾਤ ਨੂੰ ਦ੍ਵ ਅਮੋਨੀਅਮ ਵਿੱਚ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਘੋਲ ਵੱਖ-ਵੱਖ ਰੰਗ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦਾ ਹੈ।ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਰੰਗ ਪਰਿਵਰਤਨ ਦਾ ਕਾਰਣ ਦੱਸੋ।
- 10.11 ਲਾਟ ਨੂੰ ਬੈਰੀਲਿਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਕੋਈ ਰੰਗ ਨਹੀਂ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਜਦਕਿ ਬਾਕੀ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਅਜਿਹਾ ਕਰਦੀਆਂ ਹਨ।ਕਿਉਂ ?
- 10.12 ਸਾਲਵੇ ਪ੍ਰਕਰਮ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 10.13 ਪੋਟਾਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਸਾਲਵੇ ਵਿਧੀ ਦੁਆਰਾ ਨਹੀਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ।ਕਿਉਂ ?
- 10.14 Li₂CO₃ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਅਤੇ Na₂CO₃ ਉੱਚ ਤਾਪਮਾਨ ਤੇ ਕਿਉਂ ਵਿਘਟਿਤ ਹੁੰਦੇ ਹਨ ?

10.15	ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੀ ਤੁਲਨਾ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਸੰਗਤ ਯੋਗਿਕਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਅਤੇ ਤਾਪ ਪ੍ਰਤੀ ਸਥਾਈਪਨ ਦੇ ਅਧਾਰ ਤੇ ਕਰੋ (ੳ) ਨਾਈਟ੍ਰੇਟ (b) ਕਾਰਬੋਨੇਟ (c) ਸਲਫੇਟ।
10.16	ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਤੋਂ ਸ਼ੁਰੂ ਹੋ ਕੇ ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਤੁਸੀਂ ਕਿਵੇਂ ਤਿਆਰ ਕਰੋਗੇ ?
	(i) ਸੋਡੀਅਮ ਧਾਤ (ii) ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (iii) ਸੋਡੀਅਮ ਪਰਆੱਕਸਾਈਡ (iv) ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ
10.17	ਕੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ (i) ਮੈਗਨੀਸ਼ਿਅਮ ਨੂੰ ਹਵਾ ਵਿੱਚ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ। (ii) ਅਣਬੁਝੇ ਚੂਨੇ ਨੂੰ ਸਿਲੀਕਾ ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।(iii) ਕਲੋਰੀਨ ਬੁਝੇ ਚੂਨੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀ ਹੈ।(iv) ਕੈਲਸ਼ਿਅਮ ਨਾਈਟ੍ਰੇਟ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
10.18	ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਹਰ ਇੱਕ ਦੇ ਦੋ–ਦੋ ਲਾਭ ਦੱਸੋ : (i) ਕਾਸਟਿਕ ਸੋਡਾ (ii) ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ (iii) ਅਣਬੁਝਿਆ ਚੁਨਾ
10.19	ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਰਚਨਾ ਦੱਸੋ− (i) BeCl₂ (ਵਾਸ਼ਪ) (ii) BeCl₂ (ਠੋਸ)
10.20	ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ [ੱ] ਅਤੇ ਕਾਰਬੋਨੇਟ ਪਾਣੀ [ੱ] ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹਨ, ਜਦ ਕਿ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਦੇ ਸੰਗਤ ਲੁਣ ਪਾਣੀ ਵਿੱਚ ਅਲਪ ਘੁਲਣਸ਼ੀਲ ਹਨ।ਸਮਝਾਓ।
10.21	ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਮਹੱਤਤਾ ਦੱਸੋ− (i) ਚੁਨਾ ਪੱਥਰ (ii) ਸੀਮੈਂਟ (iii) ਪਲਾਸਟਰ ਆੱਫ ਪੈਰਿਸ
10.22	ਲੀਬਿਅਮ ਦੇ ਲੂਣ ਆਮ ਤੌਰ ਤੇ ਜਲ ਯੋਜਿਤ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ ਦੂਜੀਆਂ ਖਾਰੀ ਦਾਤਾਂ ਦੇ ਲੂਣ ਨਿਰਜਲੀ ਹੁੰਦੇ ਹਨ। ਕਿਉਂ ?
10.23	LiF ਪਾਣੀ ਵਿੱਚ ਲਗਪਗ ਅਘੁੱਲ ਹੈ, ਜਦਕਿ LiCl ਨਾ ਸਿਰਫ ਪਾਣੀ ਵਿੱਚ ਬਲਕਿ ਐਸੀਟੋਨ ਵਿੱਚ ਵੀ ਘੁਲਦਾ ਹੈ। ਕਾਰਣ ਦੱਸੇ ?
10.24	ਜੈਵ ਦ੍ਰਵਾਂ ਵਿੱਚ ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ਿਅਮ ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਦੀ ਸਾਰਥਕਤਾ ਦਸੋ।
10.25	ਕੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ-
	(i) ਸੋਡੀਅਮ ਧਾਤ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ।
	(ii) ਸੋਡੀਅਮ ਧਾਤ ਨੂੰ ਹਵਾ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
	(iii) ਸੋਡੀਅਮ ਪਰਆੱਕਸਾਈਡ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ।
10.26	ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਹਰ ਇੱਕ ਪ੍ਰੇਖਣ ਤੇ ਟਿੱਪਣੀ ਕਰੋ :
	(ੳ) ਜਲੀ ਘੋਲਾਂ ਵਿੱਚ ਸੋਡੀਅਮ ਧਾਤ ਆਇਨਾਂ ਦੀ ਗਤੀਸ਼ੀਲਤਾ Li ⁺ < Na ⁺ < K ⁺ < Rb ⁺ < Cs ⁺ ਕ੍ਰਮ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
	(ਅ) ਲੀਥਿਅਮ ਅਜਿਹੀ ਇੱਕਲੀ ਖਾਰੀ ਧਾਤ ਹੈ ਜੋ ਨਾਈਟ੍ਰਾਈਡ ਬਣਾਉਂਦੀ ਹੈ।
	$(extbf{E})$ $ extbf{E}^{\ominus}$ M^{2+} (aq) + 2e ⁻ → M(s) ਲਈ (ਜਿੱਥੇ M = Ca, Sr ਜਾਂ Ba) ਲਗਪਗ ਸਥਿਰ ਅੰਕ ਹੈ।
10.27	ਸਮਝਾਓ ਕਿ ਕਿਉਂ–
	(Θ) Na ₂ CO ₃ ਦਾ ਘੋਲ ਖਾਰੀ ਹੁੰਦਾ ਹੈ।
	(ਅ) ਖਾਰੀ ਧਾਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਪਿਘਲੇ (fused) ਕਲੋਰਾਈਡਾਂ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।
	(ੲ) ਪੋਟਾਸ਼ਿਅਮ ਨਾਲੋਂ ਸੋਡੀਅਮ ਵੱਧ ਲਾਭਦਾਇਕ ਹੈ।
10.28	ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਲਿਖੋ−
	$(\theta) \operatorname{Na_2O_2}$ ਅਤੇ ਪਾਣੀ
	(ਅ) KO_{2} ਅਤੇ ਪਾਣੀ
	(\mathfrak{P}) Na ₂ O ਅਤੇ CO ₂ .
10.29	ਤੁਸੀਂ ਹੇਠ ਲਿਖੇ ਤੱਥਾਂ ਨੂੰ ਕਿਵੇਂ ਸਮਝਾਓਗੇ-
	(i) BeO ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਹੈ ਜਦਕਿ BeSO_4 ਘੁਲਦਾ ਹੈ।
	(ii) BaO ਪਾਣੀ ਵਿੱਚ ਘੁਲਦਾ ਹੈ, ਜਦਕਿ BaSO ₄ ਅਘੁਲ ਹੈ।
	(iii) ਈਥੇਨੋਲ ਵਿੱਚ LiI, KI ਨਾਲੋਂ ਵੱਧ ਘੁਲਦਾ ਹੈ।
10.30	ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਸ ਖਾਰੀ ਧਾਤ ਦਾ ਪਿਘਲਣ ਅੰਕ ਸਭ ਤੋਂ ਘੱਟ ਹੈ ?
	(ϑ) Na (ϑ) K (ϑ) Rb (ϑ) Cs
10.31	ਹੇਠ ਲਿਖੀਆਂ ਵਿਚੋਂ ਕਿਹੜੀ ਖਾਰੀ ਧਾਤ ਜਲਯੋਜਿਤ ਲੂਣ ਦਿੰਦੀ ਹੈ ?
	(ੳ) Li (ਅ) Na (お) K (用) Cs
10.32	ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤ ਕਾਰਬੋਨੇਟ ਤਾਪ ਦੇ ਪ੍ਰਤੀ ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਹੈ ?
	$(\vartheta) \operatorname{MgCO}_3$ (ϑ) CaCO ₃ (ϑ) SrCO ₃ (π) BaCO ₃

306 C:\ChemistryXI\Unit-10\Unit-10-Lay-3(reprint).pmd 27.7.6, 16.10.6 (reprint)

Downloaded from https:// www.studiestoday.com

306

ਯੁਨਿਟ 11

p-ਬਲਾੱਕ ਤੱਤ (THE*p*-BLOCK ELEMENTS)

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਦੇ ਅਧਿਐਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀ-

- *p*-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੀ ਰਸਾਇਣ ਦੀਆਂ ਆਮ ਪ੍ਰਵਿਰਤੀਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਗਰੁੱਪ 13 ਅਤੇ 14 ਦੇ ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀਆਂ ਪ੍ਰਵਿਰਤੀਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਬੋਰਾੱਨ ਅਤੇ ਕਾਰਬਨ ਦੇ ਅਨਿਯਮਿਤ ਵਿਹਾਰ ਨੂੰ ਸਮਝਾ ਸਕੋਗੇ;
- ਕਾਰਬਨ ਦੇ ਭਿੰਨ ਰੁਪਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਬੋਰਾੱਨ, ਕਾਰਬਨ ਅਤੇ ਸਿਲੀਕਾਂਨ ਦੇ ਕੁਝ ਮਹੱਤਵ ਪੁਰਣ ਯੋਗਿਕਾਂ ਦੀ ਰਸਾਇਣ ਨੂੰ ਜਾਣ ਸਕੋਗੇ;
- ਗਰੁੱਪ 13 ਅਤੇ 14 ਦੇ ਤੱਤ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਮਹੱਤਵਪੂਰਣ ਲਾਭਾਂ ਨੂੰ ਸੂਚੀਬੱਧ ਕਰ ਸਕੋਗੇ।

p-ਬਲਾੱਕ ਤੱਤਾਂ ਦੀ ਅੰਦਰੂਨੀ ਕੋਰ ਵਿੱਚ d ਅਤੇ f ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਣ p-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਭਿੰਨਤਾ ਉਨ੍ਹਾਂ ਦੀ ਰਸਾਇਣ ਨੂੰ ਦਿਲਚਸਪ ਬਣਾਉਂਦੀ ਹੈ।

p-ਬੱਲਾਕ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਅੰਤਿਮ ਇਲੈਕਟਾਨ ਬਾਹਰੀ p-ਆੱਰਬਿਟਲ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ, p-ਆਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਤਿੰਨ ਹੁੰਦੀ ਹੈ ਇਸ ਤਰ੍ਹਾਂ *p-*ਆੱਰਬਿਟਲਾਂ ਦੇ ਇੱਕ ਸਮੂਹ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਛੇ ਇਲੈਕਟਾਨ ਸਮਾ ਸਕਦੇ ਹਨ। ਪਰਿਣਾਮ ਸਰੂਪ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ *p*-ਬਲਾੱਕ ਦੇ 13 ਤੋਂ 18 ਤੱਕ ਛੇ ਗਰੁੱਪ ਹਨ। ਬੋਰਾੱਨ, ਕਾਰਬਨ, ਨਾਈਟ੍ਰੋਜਨ, ਆੱਕਸੀਜਨ, ਫਲੋਰੀਨ ਅਤੇ ਹੀਲੀਅਮ ਇਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਤੱਤ ਹਨ। ਹੀਲੀਅਮ ਨੂੰ ਛੱਡ ਕੇ ਇਨ੍ਹਾਂ ਦੇ ਸੰਜੋਗੀ ਸ਼ੈੱਲ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ns^2np^{1-6} ਹੈ, ਹਾਲਾਂਕਿ ਇਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ਦੀ ਅੰਦਰਲੀ ਕੋਰ ਵੱਖ ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਭਿੰਨਤਾ ਇਨ੍ਹਾਂ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ (ਜਿਵੇਂ-ਪਰਅਣਵੀਂ ਅਤੇ ਆਇਨਿਕ ਅਰਧ ਵਿਆਸ, ਆਇਨਨ ਐਨਥੈਲਪੀ ਆਦਿ) ਦੇ ਨਾਲ-ਨਾਲ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਵੀ ਬੜਾ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਪਰਿਣਾਮ ਸਰਪ p-ਬੱਲਾਕ ਦੇ ਤੱਤਾਂ ਦੇ ਗਣਾਂ ਵਿੱਚ ਬੜੀ ਭਿੰਨਤਾ ਨਜਰ ਆਉਂਦੀ ਹੈ। p-ਬੱਲਾਕ ਦੇ ਇੱਕ ਤੱਤ ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਣ ਵਾਲੀ ਵੱਧ ਤੋਂ ਵੱਧ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਉਸ ਦੇ ਸੰਜੋਗੀ ਇਲੈਕਟ਼ਾੱਨਾਂ (ਅਰਥਾਤ s ਅਤੇ p ਇਲੈਕਟਾੱਨਾਂ ਦਾ ਜੋੜ) ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੰਦੀ ਹੈ। ਸਪਸ਼ਟ ਹੈ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਜਾਣ ਤੇ ਸੰਭਾਵਿਤ ਆਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਵਧਦੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਇਲਾਵਾ ਮੰਨੀ ਗਈ ਗਰੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦੇ ਨਾਲ-ਨਾਲ p-ਬੱਲਾਕ ਦੇ ਤੱਤ ਹੋਰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਵੀ ਦਰਸਾਉਂਦੇ ਹਨ, ਜੋ ਆਮ ਤੌਰ ਤੇ (ਪਰੰਤੂ ਜਰੂਰੀ ਨਹੀਂ) ਕੁੱਲ ਸੰਜੋਗੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਤੋਂ ਦੋ ਇਕਾਈ ਘੱਟ ਹੁੰਦੀ ਹੈ। p-ਬੱਲਾਕ ਦੇ ਤੱਤਾਂ ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਣ ਵਾਲੀ ਮਹੱਤਵਪਰਣ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਸੰਧਾਰਣੀ 11.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਬੋਰਾੱਨ, ਕਾਰਬਨ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਪਰਿਵਾਰਾਂ ਵਿੱਚ ਹਲਕੇ ਤੱਤਾਂ ਦੇ ਲਈ ਗਰੱਪ ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਜ਼ਿਆਦਾ ਸਥਾਈ ਹੁੰਦੀ ਹੈ।ਗਰੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਨਾਲੋਂ ਦੋ ਇਕਾਈ ਘੱਟ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਹਰ ਇੱਕ ਗਰੁੱਪ ਵਿੱਚ ਸਿਲਸਿਲੇ ਵਾਰ ਤੱਤਾਂ ਦੇ ਲਈ ਕ੍ਰਮਵਾਰ ਸਥਾਈ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਗਰੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿਚੋਂ ਦੋ ਇਕਾਈ ਘੱਟ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦੀ ਪ੍ਰਾਪਤੀ ਨੂੰ ਅਕਿਰਿਆ ਯੂਗਮ ਪ੍ਰਭਾਵ (Inert pair effect) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਨਾਂ ਦੋ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ (ਗਰੱਪ ਆੱਕਸੀਕਰਣ

308

ਗਰੁੱਪ	13	14	15	16	17	18
ਆਮ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ	ns^2np^1	ns²np²	ns²np³	ns²np⁴	ns^2np^5	<i>ns²np</i> ⁶ (He ਲਈ 1 <i>s</i> ²)
ਗਰੁੱਪ ਦਾ ਪਹਿਲਾਂ ਮੈਂਬਰ	В	С	N	0	F	Не
ਗਰੁੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ	+3	+4	+5	+6	+7	+8
ਹੋਰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ	+1	+2, - 4	+3, - 3	+4, +2, -2	+5, + 3, +1, -1	+6, +4, +2

ਸਾਰਣੀ 11.1 p-ਬੱਲਾਕ ਦੇ ਤੱਤਾਂ ਦੀ ਆਮ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਅਤੇ ਆਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ

ਅਵਸਥਾ ਅਤੇ ਗਰੁੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿਚੋਂ ਦੋ ਇਕਾਈ ਘੱਟ) ਗਰੁੱਪ ਤੋਂ ਗਰੁੱਪ ਲਈ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਦੀ ਵਿਆਖਿਆ ਢਕਵੀਂ ਥਾਂ ਤੇ ਕੀਤੀ ਜਾਵੇਗੀ।

ਇਹ ਵੇਖਣਾ ਵੀ ਦਿਲਚਸਪ ਹੋਵੇਗਾ ਕਿ ਅਧਾਤਾਂ ਅਤੇ ਉੱਪ ਧਾਤਾਂ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਕੇਵਲ *p*-ਬੱਲਾਕ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਅਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਕਮੀਂ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਹਰ ਇੱਕ *p*-ਬੱਲਾਕ ਦਾ ਸਭ ਤੋਂ ਅੰਤਲਾ ਤੱਤ ਸੱਭ ਤੋਂ ਵੱਧ ਧਾਤਵੀ ਸੁਭਾਅ ਦਾ ਹੁੰਦਾ ਹੈ। ਅਧਾਤਵੀ ਤੋਂ ਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਵਰਤਨ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਰਸਾਇਣ ਵਿੱਚ ਅਨੇਕਤਾ ਲਿਆਉਂਦਾ ਹੈ। ਇਹ ਪਰਿਵਰਤਨ ਉਸ ਤੱਤ ਨਾਲ ਸੰਬੰਧਿਤ ਗਰੁੱਪ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਆਮ ਤੌਰ ਤੇ ਧਾਤਾਂ ਦੀ ਤਲਨਾ ਵਿੱਚ ਅਧਾਤਾਂ ਵਿੱਚ ਉੱਚ ਆਇਨ ਐਨਥੈਲਪੀ ਅਤੇ ਉੱਚ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਧਾਤਾਂ ਦੇ ਉਲਟ ਜੋ ਅਸਾਨੀ ਨਾਲ ਧਨ-ਆਇਨ ਬਣਾਉਂਦੀਆਂ ਹਨ, ਅਧਾਤਾਂ ਰਿਣਾਆਇਨ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਨਾਲ ਵਧੇਰੇ ਅਕਿਰਿਆਸ਼ੀਲ ਅਧਾਤ ਵਿੱਚ ਬਣਿਆ ਯੋਗਿਕ ਆਮ ਤੌਰ ਤੇ ਆਇਨਿਕ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦੀਆਂ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾਵਾਂ ਵਿੱਚ ਬੜਾ ਜਿਆਦਾ ਅੰਤਰ ਹੁੰਦਾ ਹੈ, ਉੱਥੇ ਦੂਜੇ ਪਾਸੇ ਅਧਾਤਾਂ ਦੇ ਆਪਣੇ ਵਿੱਚ ਬਣਾਏ ਗਏ ਯੋਗਿਕ ਵਧੇਰੇ ਕਰਕੇ ਸਹਿ ਸੰਯੋਗੀ ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਟਿਵਤਾਵਾਂ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਅਧਾਤਵੀਂ ਤੋਂ ਧਾਤਵੀਂ ਗੁਣ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਇਨ੍ਹਾਂ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਆੱਕਸਾਈਡ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਵਧੇਰੇ ਆੱਕਸਾਈਡ ਉਦਾਸੀਨ ਜਾਂ ਤੇਜਾਬੀ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ ਧਾਤਵੀ ਆੱਕਸਾਈਡ ਖਾਰੀ ਸਭਾਅ ਦੇ ਹੰਦੇ ਹਨ।

p-ਬਲਾਕ ਵਿੱਚ ਹਰ ਗਰੁੱਪ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਦੂਜੇ ਮੈਂਬਰਾਂ

ਨਾਲੋਂ ਦੋ ਕਾਰਣਾਂ ਨਾਲ ਭਿੰਨ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਪਹਿਲਾ ਕਾਰਣ ਇਸ ਦਾ ਛੋਟਾ ਅਕਾਰ ਅਤੇ ਦੂਜਾ ਕਾਰਣ ਉਹ ਸਾਰੇ ਗੁਣ ਹਨ, ਜਿਹੜੇ ਅਕਾਰ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ *s*-ਬੱਲਾਕ ਦੇ ਹਲਕੇ ਤੱਤ ਲੀਥਿਅਮ ਅਤੇ ਬੈਰੀਲਿਅਮ ਵਾਂਗ p-ਬੱਲਾਕ ਦੇ ਵੀ ਸਭ ਤੋਂ ਹਲਕੇ ਤੱਤ ਭਿੰਨਤਾ ਰੱਖਦੇ ਹਨ। ਸਿਰਫ *p*-ਬੱਲਾਕ ਦੇ ਤੱਤਾਂ ਤੇ ਲਾਗੂ ਦੂਜੀ ਮਹੱਤਵਪੁਰਣ ਭਿੰਨਤਾ ਬਾਕੀ ਤੱਤਾ (ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਬਾਅਦ ਦੇ ਤੱਤ) ਦੇ ਸੰਜੋਗੀ ਸ਼ੈੱਲ ਵਿੱਚ ਆੱਰਬਿਟਲਾਂ ਦੀ ਮੌਜੁਦਗੀ ਹੈ, ਜੋ ਦੂਜੇ ਪੀਰੀਅਡਾਂ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। p-ਬੱਲਾਕ ਵਿੱਚ ਦੂਜੇ ਪੀਰੀਅਡ ਤਕ ਦੇ ਤੱਤ, ਜੋ ਬੋਰਾੱਨ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ, ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਯੋਜਕਤਾ 4 (ਇੱਕ 2s ਅਤੇ ਤਿੰਨ 2p ਅੱਰਬਿਟਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ) ਤੱਕ ਸੀਮਿਤ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਦੇ ਉਲਟ *p*-ਬੱਲਾਕ ਦੇ ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤ (ਜਿਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ 3 $s^2 3 p^{
m n}$ ਹੁੰਦੀ ਹੈ, ਵਿੱਚ ਖਾਲੀ 3d ਆੱਰਬਿਟਲ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਜੋ 3p ਅਤੇ 4s ਉਰਜਾ ਸਤਰ ਦੇ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ d-ਆੱਰਬਿਟਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤ ਆਪਣੀ ਸੰਯੋਜਕਤਾ ਨੂੰ ਚਾਰ ਤੋਂ ਵਧਾ ਸਕਦੇ ਹਨ। ਜਿਵੇਂ– ਜਿੱਥੇ ਬੋਰਾੱਨ ਸਿਰਫ [BF₄] ਆਇਨ ਬਣਾਉਂਦਾ ਹੈ, ਉੱਥੇ ਐਲੂਮੀਨਿਅਮ $[AIF_6]^{3-1}$ ਆਇਨ ਦਿੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ d-ਆਰਬਿਟਲਾਂ ਦੀ ਮੌਜੁਦਗੀ ਭਾਰੇ ਤੱਤਾਂ (Heavier Elements) ਦੇ ਰਸਾਇਣ ਵਿੱਚ ਕਈ ਹੋਰ ਤਰ੍ਹਾਂ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਅਕਾਰ ਅਤੇ d- ਆੱਰਬਿਟਲਾਂ ਦੀ ਉਪਲਬਧਤਾ ਦਾ ਇਕੱਠਾ ਪ੍ਰਭਾਵ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ π ਬੈਧਨ ਬਨਾਉਣ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਗਰੁੱਪ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਦੂਜੇ ਮੈਂਬਰਾਂ ਨਾਲੋਂ ਆਪਣੇ ਨਾਲ (ਉਦਾਹਰਣ ਵਜੋਂ— C=C, C≡C, N≡N) ਅਤੇ ਦੂਜੇ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ (ਉਦਾਹਰਣ ਵਜੋਂ—C=O, C=N, C≡N, N=O) ਦੇ ਨਾਲ *pπ* -*pπ* ਬਹੁਬੰਧਨ ਬਨਾਉਣ ਦੀ ਸਮਰੱਥਾ ਵਿੱਚ ਅੰਤਰ ਰੱਖਦਾ ਹੈ। ਅਗਲੇ ਤੱਤ ਵੀ π ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ, ਪਰੰਤੁ ਇਨ੍ਹਾਂ ਵਿੱਚ d-ਆੱਰਬਿਟਲ ($d\pi$ – $p\pi$ ਅਤੇ $d\pi$ –

 $d\pi$) ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ d-ਆਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ p-ਆਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾਂ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ $p\pi - p\pi$ ਬੰਧਨਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ d-ਆੱਰਬਿਟਲਾਂ ਦਾ ਸਥਾਈਪਨ ਵਿੱਚ ਯੋਗਦਾਨ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਹਾਲਾਂਕਿ ਸਮਾਨ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਾਲੇ ਪਹਿਲੇ ਮੈਂਬਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਅਗਲੇ ਤੱਤਾਂ ਦੀ ਉਪ-ਸਹਿਯੰਯੋਜਕਤਾ ਜਿਆਦਾ ਹੋ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ +5 ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ P ਅਤੇ N ਦੋਵੇਂ ਔਕਸੋਰਿਣਆਇਨ NO_3^- (π -ਬੰਧਨ ਦੇ ਨਾਲ ਤਿੰਨ ਉਪਸਹਿਸੰਯੋਜਨ ਵਿੱਚ ਸਾਮਲ ਕਰਦੇ ਹੋਏ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਇੱਕ p-ਆਰਬਿਟਲ ਨੂੰ) ਅਤੇ PO_4^{3-} (s, p ਅਤੇ d ਆੱਰਬਿਟਲਾਂ ਨੂੰ π –ਬੰਧਨ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਦੇ ਹੋਏ) ਚਾਰ ਉਪ–ਸਹਿਸਯੋਜਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਇਕਾਈ ਵਿੱਚ ਅਸੀਂ ਗਰੁੱਪ 13 ਅਤੇ 14 ਦੇ ਤੱਤਾਂ ਦੇ ਰਸਾਇਣ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

11.1 ਗਰੁੱਪ 13 ਦੇ ਤੱਤ : ਬੋਰਾੱਨ ਪਰਿਵਾਰ

ਗੁਣਾਂ ਵਿੱਚ ਇਸ ਗਰੁੱਪ ਦੇ ਤੱਤ ਬੜੀ ਭਿੰਨਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਬੋਰਾੱਨ (B) ਇੱਕ ਵਿਸ਼ੇਸ਼ ਅਧਾਤ ਹੈ, ਐਲੂਮੀਨਿਅਮ (Al) ਧਾਤ ਹੈ, ਪਰੰਤੂ ਇਸ ਦੇ ਕਈ ਗੁਣ ਬੋਰਾੱਨ ਵਰਗੇ ਹਨ। ਜਦਕਿ ਗੈਲੀਅਮ (Ga) ਇੰਡੀਅਮ (In) ਅਤੇ ਥੈਲੀਅਮ (Tl) ਗੁਣਾਂ ਵਿੱਚ ਲਗਪਗ ਪੁਰਣ ਧਾਤਾਂ ਹਨ।

ਮੌਜੁਦਗੀ—ਬੋਰਾੱਨ ਇੱਕ ਦੂਰਲਭ ਤੱਤ ਹੈ। ਇਹ ਮੁਖ ਰੂਪ ਵਿੱਚ ਔਰਥੋਬੋਰਿਕ ਐਸਿਡ (H_3BO_3), ਬੋਰੈਕਸ ($Na_2B_4O_7$. $10H_2O$) ਅਤੇ ਕਾਰਨਾਈਟ ($Na_2B_4O_7.4H_2O$) ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਬੇਰੈਕਸ ਪੂਗਾ ਘਾਟੀ (ਲਦਾੱਖ) ਅਤੇ ਸਾਂਭਰਝੀਲ (ਰਾਜਸਥਾਨ) ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਭੂਮੀ ਦੀ ਪਰਤ (Earth crust) ਵਿੱਚ ਬੋਰਾੱਨ ਦੀ ਮੌਜੂਦਗੀ 0.0001% (ਭਾਰ ਅਨੁਸਾਰ) ਤੋਂ ਵੀ ਘੱਟ ਹੈ। ਬੋਰਾੱਨ ਦੇ ਦੋ ਸਮਸਥਾਨਕ $^{10}{
m B}$ (19%) ਅਤੇ $^{11}{
m B}$ (81%) ਮਿਲਦੇ ਹਨ। ਐਲੂਮੀਨਿਅਮ ਦੀ ਭੂਮੀ ਦੀ ਪਰਤ ਵਿੱਚ ਭਰਪੁਰਤਾ (8.3%) ਸਭ ਤੋਂ ਵੱਧ ਹੈ। ਭਾਰ ਦੇ ਹਿਸਾਬ ਨਾਲ ਇਹ ਭੂਮੀ ਦੀ ਪਰਤ ਉੱਤੇ ਆੱਕਸੀਜਨ (45.5%) ਅਤੇ ਸਿਲੀਕਾਨ (27.7%) ਦੇ ਬਾਅਦ ਸਭ ਤੋਂ ਵੱਧ ਮਿਲਣ ਵਾਲਾ ਤੱਤ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਦੇ ਪ੍ਰਮੁੱਖ ਬਾੱਕਸਾਈਟ (Al₂O₃. 2H₂O) ਅਤੇ ਕਰਾਇਓਲਾਈਟ (Na₃AlF₆) ਖਣਿਜ ਹਨ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਇਹ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਮੱਧਪ੍ਰਦੇਸ਼, ਕਰਨਾਟਕ, ਉੜੀਸਾ ਅਤੇ ਜੰਮੂ ਵਿੱਚ ਅਬਰਕ (Mica) ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਗੈਲੀਅਮ, ਇੰਡੀਅਮ ਅਤੇ ਥੈਲੀਅਮ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੇ ਹਨ।

ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ, ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗਣ ਹੇਠ ਲਿਖੇ ਹਨ—

				Eleme	nt	
ਗੁਣ	ਗੁਣ		ਐਲੂਮੀਨਿਅਮ Al	ਗੈਲੀਅਮ Ga	ਇੰਡੀਅਮ In	ਥੈਲੀਅਮ Tl
<mark>ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ</mark>	r –	5	13	31	49	81
<mark>ਪਰਮਾਣੂ ਪੁੰਜ /</mark> g	mol ⁻¹	10.81	26.98	69.72	114.82	204.38
ਇਲੈਕਟ੍ਰਾਨਿਕ ਤ	ਤਤੀਬ	[He] $2s^22p^1$	$[Ne]3s^23p^1$	$[Ar]3d^{10}4s^24p^1$	$[Kr]4d^{10}5s^25p^1$	$[Xe]4f^{14}5d^{10}6s^{2}6p^{1}$
ਪਰਮਾਣੂ ਅਰਧਵਿ	ਆਸ/pmª	(88)	143	135	167	170
ਆਇਨੀ ਅਰਧਵਿ M ³⁺ /pm ^b	ਆਸ	(27)	53.5	62.0	80.0	88.5
ਆਇਨੀ ਅਰਧਵਿਆਸ M ⁺ /pm		-	-	120	140	150
ਆਇਕਨ ਐਨਥੈਲਪੀ (kJ mol ⁻¹)	$\Delta_t H_1 \ \Delta_t H_2 \ \Delta_t H_3$	801 2427 3659	577 1816 2744	579 1979 2962	558 1820 2704	589 1971 2877
ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ	ਤਾ	2.0	1.5	1.6	1.7	1.8
ਘਣਤਾ /g cm at 298 K	-3	2.35	2.70	5.90	7.31	11.85
ਪਿਘਲਣ ਅੰਕ /	K	2453	933	303	430	576
	ਉਬਲਣ ਅੰਕ / K		2740	2676	2353	1730
$E^{\Theta}/V(M^{3+}/2)$	M) ਦੇ ਲਈ	-	-1.66	-0.56	-0.34	+1.26
E [⊖] / V (M ⁺ /)	M) ਦੇ ਲਈ		+0.55	-0.79(ਤੇਜਾਬ) –1.39(ਖਾਰ)	-0.18	-0.34

ਸਾਰਣੀ 11.2 ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣਾ

^a ਧਾਤਵੀ ਅਰਧਵਿਆਸ, ^b 6-ਉਪਸਹਿਸੰਯੋਜਨ, ^cਪਾੱਲਿੰਗ ਸਕੇਲ

310

11.1.1 ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ns^2np^1 ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿ ਤਰਤੀਬ ਪਹਿਲੇ ਦੋ ਗਰੁੱਪਾਂ ਦੇ ਤੱਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ (ਜਿਵੇਂ— ਇਕਾਈ 10 ਵਿੱਚ ਵਰਣਨ ਕੀਤਾ ਗਿਆ ਹੈ) ਵਧੇਰੇ ਜਟਿਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਵਿੱਚ ਇਹੀ ਅੰਤਰ ਇਸ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ ਦੇ ਦੂਜੇ ਗੁਣਾਂ ਅਤੇ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਰਸਾਇਣ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ।

11.1.2 ਪਰਮਾਣੂ ਅਰਧਵਿਆਸ

ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਹਰੇਕ ਕ੍ਰਮ ਦੇ ਮੈਂਬਰ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਇੱਕ ਸ਼ੈੱਲ ਜੁੜਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੂ ਅਰਧਵਿਆਸ ਵਿੱਚ ਵਾਧਾ ਸੰਭਾਵਿਤ ਹੋਣ ਦੇ ਬਾਵਜੂਦ ਵਿਚਲਨ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। Ga ਦਾ ਪਰਮਾਣੂ ਅਰਧਵਿਆਸ Al ਦੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਤੋਂ ਘੱਟ ਹੈ। ਅੰਦਰਲੀ ਕੋਰ ਦੀ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਤੋਂ ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਥੈਲੀਅਮ ਵਿੱਚ ਮੌਜੂਦ ਵਾਧੂ 10 *d*-ਇਲੈਕਟ੍ਰਾਂਨ ਵਧੇ ਹੋਏ ਨਿਉਕਲੀ ਚਾਰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਉੱਤੇ ਦੁਰਬਲ ਸ਼ੀਲਡਿੰਗ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ (ਯੁਨਿਟ-3 ਵੇਖੋ)।ਪਹਿਣਾਮ ਸਰੂਪ ਗੈਲੀਅਮ ਦਾ ਪਰਮਾਣੂ ਅਰਧਵਿਆਸ (135 pm) ਅਲੂਮੀਨਿਅਮ (143 pm) ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਹੁੰਦਾ ਹੈ।

11.1.3 ਆਇਨਨ ਐਨਥੈਲਪੀ

ਆਇਨਨ ਐਨਥੈਲਪੀ, ਜਿਵੇਂ ਸਧਾਰਣ ਪ੍ਰਵਿਰਤੀ ਵਿੱਚ ਆਸ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਘਟਦੀ ਹੈ। B ਤੋਂ Al ਵਿੱਚ ਕਮੀਂ, ਅਕਾਰ ਵਿੱਚ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ ਜੁੜੀ ਹੋਈ ਹੈ। Al ਅਤੇ Ga ਦੇ ਵਿੱਚ ਅਤੇ In ਅਤੇ Tl ਦੇ ਵਿੱਚ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੀ ਪ੍ਰੇਖਿਤ ਅ-ਨਿਰੰਤਰਤਾ d- ਅਤੇ f-ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਕਾਰਣ ਹੈ, ਜਿਨ੍ਹਾਂ ਦਾ ਸ਼ੀਲਡਿੰਗ ਪ੍ਰਭਾਵ ਵਧੇ ਹੋਈ ਨਿਊਕਲੀ ਚਾਰਜ ਦੀ ਕਮੀਂ ਪੂਰੀ ਕਰਨ ਦੇ ਲਈ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਕ੍ਰਮ $\Delta_i H_1 < \Delta_i H_2 < \Delta_i H_3$ ਹੈ, ਜਿਵੇਂ ਕਿ ਆਸ ਹੈ। ਹਰ ਇੱਕ ਤੱਤ ਦੀਆਂ ਪਹਿਲੀਆਂ ਤਿੰਨ ਐਨਥੈਲਪੀਆਂ ਦਾ ਯੋਗ ਉੱਚਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਇਨ੍ਹਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਨਜਰ ਆਵੇਗਾ।

11.1.4 ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ

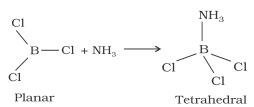
ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ B ਤੋਂ Al ਤੱਕ ਘਟਦੀ ਹੈ। ਉਸਦੇ ਬਾਅਦ ਅੰਸ਼ਿਕ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਪਰਮਾਣਵੀਂ ਅਕਾਰ ਵਿੱਚ ਅਨਿਯਮਿਤ ਵਾਧੇ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।

11.1.5 ਭੌਤਿਕ ਗੁਣ

ਬੋਰਾੱਨ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਅਧਾਤਵੀ ਤੱਤ ਹੈ। ਇਹ ਕਾਲੇ ਰੰਗ ਦੀ ਅਤੇ ਬਹੁਤ ਸਖਤ ਹੁੰਦੀ ਹੈ। ਇਸਦੇ ਅਨੇਕ ਭਿੰਨ ਰੂਪ ਮਿਲਦੇ ਹਨ। ਕ੍ਰਿਸਟਲੀ ਲੈਟਿਸ ਰਚਨਾ ਦੇ ਕਾਰਣ ਬੋਰਾੱਨ ਦਾ ਪਿਘਲਣ ਅੰਕ ਅਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਉੱਚਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਤੱਤ ਘੱਟ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉੱਚ ਬਿਜਲਈ ਚਾਲਕਤਾ ਵਾਲੇ ਮੁਲਾਇਮ ਠੋਸ ਹੁੰਦੇ ਹਨ। ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਗੈਲੀਅਮ ਦਾ ਪਿਘਲਣ ਅੰਕ ਬਹੁਤ ਘੱਟ (303 K) ਹੁੰਦਾ ਹੈ। ਇੰਜ ਗਰਮੀਆਂ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਇਹ ਦ੍ਵਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਇਸ ਦਾ ਉੱਚਾ ਉਬਲਣ ਅੰਕ (2676 K) ਉੱਚੇ ਤਾਪਮਾਨਾਂ ਨੂੰ ਮਾਪਨ ਦੇ ਲਈ ਇਸ ਨੂੰ ਲਾਹੇਵੰਦਾ ਪਦਾਰਥ ਬਣਾਉਂਦਾ ਹੈ। ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੀ ਘਣਤਾ ਗਰੁਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਬੋਰਾੱਨ ਤੋਂ ਥੈਲੀਅਮ ਤੱਕ ਵਧਦੀ ਹੈ।

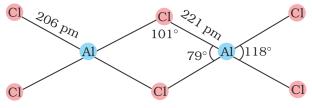
11.1.6 ਰਸਾਇਣਿਕ ਗੁਣ

ਅੱਕਸੀਕਰਣ ਅਵਸਥਾ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਸ਼ੀਲਤਾ ਵਿੱਚ ਪ੍ਰਵਿਰਤੀ :—ਛੋਟੇ ਅਕਾਰ ਦੇ ਕਾਰਣ ਬੋਰਾੱਨ ਦੀਆਂ ਪਹਿਲੀਆਂ ਤਿੰਨ ਆਇਨਨ ਐਨਥੈਲਪੀਆਂ ਦਾ ਜੋੜ ਬਹੁਤ ਉੱਚਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਇਸ ਨੂੰ ਨਾ ਸਿਰਫ +3 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਆਉਣ ਤੋਂ ਰੋਕਦੀਆਂ ਹਨ, ਬਲਕਿ ਸਿਰਫ ਸਹਿ ਸੰਯੋਜਕ ਯੋਗਿਕ ਬਨਾਉਣ ਦੇ ਲਈ ਮਜਬੂਰ ਵੀ ਕਰਦੀ ਹੈ। ਪਰੰਤੂ ਜਦੋਂ ਅਸੀਂ B ਤੋਂ Al ਤੱਕ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ Al ਦੀਆਂ ਪਹਿਲੀਆਂ ਤਿੰਨ ਆਇਨਨ ਐਨਥੈਲਪੀਆਂ ਦਾ ਜੋੜ ਕਾਫੀ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ Al³⁺ ਆਇਨ ਬਣਨ ਦੀ ਸਮਰਥਾ ਰੱਖਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ Al ਇੱਕ ਉੱਚ ਇਲੈਕਟ੍ਰੋਪਾਂਜੇਟਿਵ ਤੱਤ ਹੈ।


ਫਿਰ ਵੀ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ *d* ਅਤੇ *f* ਆੱਰਬਿਟਲਾਂ ਦੇ ਦੁਰਬਲ ਸ਼ੀਲਡਿੰਗ ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਣ, ਵਧਿਆ ਹੋਇਆ ਨਿਊਕਲੀ ਚਾਰਜ *ns* ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਮਜਬੂਤੀ ਨਾਲ ਬੰਨ੍ਹ ਕੇ ਰੱਖਦਾ ਹੈ (ਜੋ ਅਕਿਰਿਆ ਯੂਗਮ ਪ੍ਰਭਾਵ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੰਧਨ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੇ ਯੋਗਦਾਨ ਉੱਤੇ ਨਿਯੰਤਰਣ ਕਰਦਾ ਹੈ। ਪਰਿਣਾਮ ਸਰੂਪ ਬੰਧਨ ਵਿੱਚ ਸਿਰਫ *p*-ਆੱਰਬਿਟਲ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਅਸਲ ਵਿੱਚ Ga, In ਅਤੇ Tl ਵਿੱਚ +1 ਅਤੇ +3 ਦੋਵੇਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਪ੍ਰੇਖਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਬਾਅਦ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਲਈ +1 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਾ ਸਥਾਈਪਨ ਸਿਲਸਿਲੇਵਾਰ ਵਧਦਾ ਜਾਂਦਾ ਹੈ : Al<Ga<In<Tl ਥੈਲੀਅਮ ਵਿੱਚ +1 ਅਵਸਥਾ ਸਥਾਈ ਹੈ, ਜਦਕਿ +3 ਅਵਸਥਾ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਉੱਚ ਆੱਕਸੀਕਾਰਕ ਹੈ। ਊਰਜਾ ਸਬੰਧੀ ਕਾਰਣਾਂ ਤੋਂ +1 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਾਲੇ ਯੋਗਿਕ +3 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਾਲੇ ਯੋਗਿਕਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਵਧੇਰੇ ਆਇਨਿਕ ਹੁੰਦੇ ਹਨ।

ਇਨਾਂ ਤੱਤਾਂ ਦੀ ਤਿੰਨ ਸੰਯੋਜੀ ਅਵਸਥਾ ਵਿੱਚ ਅਣੂਆਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨਾ ਦੀ ਸੰਖਿਆ 6 ਹੁੰਦੀ ਹੈ (ਉਦਾਹਰਣ ਵਜੋਂ— BF₃ ਵਿੱਚ ਬੋਰਾੱਨ)। ਅਜਿਹੇ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਨ ਅਣੂ ਸਥਾਈ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰਕੇ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।

ਗਰੁੱਪ ਵਿੱਚ ਉਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਅਕਾਰ ਵਿੱਚ ਵਾਧੇ ਦੇ


311

ਕਾਰਣ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਰਨ ਦੀ ਪ੍ਵਿਰਤੀ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ।ਬੋਰਾੱਨ ਟ੍ਰਾਈਕਲੋਰਾਈਡ ਅਸਾਨੀ ਨਾਲ ਅਮੋਨੀਆ ਤੋਂ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰਕੇ BCl₃·NH₃ ਉਪਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕ ਬਣਾਉਂਦਾ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ AlCl₃ ਚੌਫਲਕੀ ਡਾਈਮਰ ਬਣਾ ਕੇ ਸਥਾਈ ਹੋ ਜਾਂਦਾ ਹੈ।

ਕਿਉਂਕਿ ਤਿੰਨ ਸੰਯੋਜੀ ਅਵਸਥਾ ਵਿੱਚ ਵਧੇਰੇ ਯੋਗਿਕ

Tetrahedral

ਸਹਿਸੰਯੋਜਕ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਉਹ ਜਲਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਜੋਂ-ਧਾਤਵੀ ਟ੍ਰਾਈਕਲੋਰਾਈਡ ਜਲ ਅਪਘਟਨ ਨਾਲ ਚੌਫਲਕੀ ਸਪੀਸ਼ੀਜ $[M(OH)_4]^-$ ਬਣਾਉਂਦੇ ਹਨ, ਜਿੱਥੇ M ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ sp^3 ਹੁੰਦੀ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ ਤੇਜਾਬੀ ਜਲ-ਅਪਘਟਨ ਕਰਨ ਤੇ ਅਸ਼ਟਫਲਕੀ ਆਇਨ $[A1(H_2O)_6]^{3+}$ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਕੰਪਲੈਕਸ ਆਇਨ ਵਿੱਚ Al ਦੇ 3*d* ਆੱਰਬਿਟਲ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਇਸ ਵਿੱਚ Al ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ sp^3d^2 ਹੈ।

ਉਦਾਹਰਣ 11.1

 Al^{3+}/Al ਅਤੇ Tl^{3+}/Tl ਦੇ ਲਈ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸ਼ਲ E^{\ominus} ਕ੍ਰਮਵਾਰ -1.66 V ਅਤੇ +1.26 V ਹਨ। ਘੋਲ ਵਿੱਚ M^{3+} ਆਇਨ ਬਣਨ ਦਾ ਅਨੁਮਾਨ ਲਾਓ ਅਤੇ ਦੋਵਾਂ ਧਾਤਾਂ ਦੇ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਗੁਣ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਹੱਲ

ਦੋਵਾਂ ਅਰਧ ਸੈੱਲਾਂ ਦੀਆਂ ਸਟੈਂਡਰਡ ਇਲੈਕਟ੍ਰਾੱਡ ਪੋਟੈਂਸ਼ਲਾਂ ਦੱਸਦੀਆਂ ਹਨ ਕਿ ਅਲੂਮੀਨਿਅਮ ਵਿੱਚ Al³⁺(aq) ਆਇਨ ਬਨਾਉਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਵਧੇਰੇ ਹੈ, ਜਦਕਿ Tl³⁺ ਘੋਲ ਵਿੱਚ ਨਾ ਸਿਰਫ ਅਸਥਾਈ ਹੈ, ਬਲਕਿ ਪ੍ਰਬਲ ਆੱਕਸੀਕਾਰਕ ਵੀ ਹੈ। ਇਸ ਲਈ ਘੋਲ ਵਿੱਚ Tl³⁺ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ Al³⁺ ਵਧੇਰੇ ਸਥਾਈ ਹੈ। +3 ਆਇਨ ਬਨਾਉਣ ਦੇ ਕਾਰਣ ਐਲੂਮੀਨਿਅਮ ਥੈਲੀਅਮ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਹੈ।

(i) ਹਵਾ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ

ਕ੍ਰਿਸਟਲੀ ਸਰੂਪ ਵਿੱਚ ਬੋਰਾੱਨ ਅਕਿਰਿਆਸ਼ੀਲ ਹੈ। ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਨਾਲ ਐਲੂਮੀਨਿਅਮ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਆੱਕਸਾਈਡ ਦੀ ਪਤਲੀ ਪਰਤ ਬਣ ਜਾਂਦੀ ਹੈ ਜੋ ਹੋਰ ਵਧੇਰੇ ਕਿਰਿਆ ਹੋਣ ਤੋਂ ਧਾਤ ਨੂੰ ਰੋਕਦੀ ਹੈ। ਅਕ੍ਰਿਸਟਲੀ ਬੋਰਾੱਨ ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਹਵਾ ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਕ੍ਰਮਵਾਰ B₂O₃ ਅਤੇ Al₂O₃ ਬਣਾਉਂਦੇ ਹਨ। ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਇਹ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਾਉਣ ਤੇ ਨਾਈਟ੍ਰਾਈਡ ਬਣਾਉਂਦੇ ਹਨ।

$$\begin{array}{ll} 2\mathrm{E}\left(\mathrm{s}\right) + 3\mathrm{O}_{2}\left(\mathrm{g}\right) & \xrightarrow{\Delta} & 2\mathrm{E}_{2}\mathrm{O}_{3}\left(\mathrm{s}\right) \\ 2\mathrm{E}\left(\mathrm{s}\right) + \mathrm{N}_{2}\left(\mathrm{g}\right) & \xrightarrow{\Delta} & 2\mathrm{EN}\left(\mathrm{s}\right) \end{array} \quad (\mathrm{E} = \Bar{\mathtt{J}} \\ \end{array}$$

ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਇਨ੍ਹਾਂ ਦੇ ਆੱਕਸਾਈਡਾਂ ਦਾ ਸੁਭਾਅ ਬਦਲਦਾ ਜਾਂਦਾ ਹੈ। ਬੋਰਾੱਨ ਟ੍ਰਾਈਆੱਕਸਾਈਡ ਤੇਜਾਬੀ ਸੁਭਾਅ ਦਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਖਾਰੀ (ਧਾਤਵੀ) ਆੱਕਸਾਈਡ ਨਾਲ ਕਿਰਿਆ ਕਰ ਕੇ ਧਾਤਵੀ ਬੋਰੇਟ ਬਣਾਉਂਦਾ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਗੈਲੀਅਮ ਦੇ ਆੱਕਸਾਈਡ ਐਂਫੋਟੈਰਿਕ ਹਨ ਜਦਕਿ ਇੰਡੀਅਮ ਅਤੇ ਥੈਲੀਅਮ ਦੇ ਆੱਕਸਾਈਡ ਖਾਰੀ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ।

(ti) ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤਿਕਿਰਿਆਸ਼ੀਲਤਾ

ਬੋਰਾੱਨ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੇ ਨਾਲ ਕੋਈ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ ਹੈ, ਪਰੰਤੂ ਐਲੂਮੀਨਿਅਮ ਖਣਿਜ ਤੇਜਾਬਾਂ ਅਤੇ ਜਲੀ ਖਾਰਾਂ ਵਿੱਚ ਘੁੱਲ ਜਾਂਦਾ ਹੈ। ਫਲਸਰੂਪ ਐਲੂਮੀਨਿਅਮ ਐਂਫੋਟੈਰਿਕ ਗੁਣ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਹਲਕੇ HCl ਵਿੱਚ ਘਲਕੇ ਹਾਈਡੋਜਨ ਨਿਸ਼ਕਾਸ਼ਿਤ ਕਰਦਾ ਹੈ।

ਘੁਲਕੇ ਹਾਈਡ੍ਰੋਜਨ ਨਿਸ਼ਕਾਸ਼ਿਤ ਕਰਦਾ ਹੈ। 2Al(s) + 6HCl (aq) → 2Al³⁺ (aq) + 6Cl⁻ (aq) + $3H_2$ (g)

ਗਾੜ੍ਹਾ HNO₃Al ਦੀ ਸਤ੍ਹਾ ਉਤੇ ਆੱਕਸਾਈਡ ਦੀ ਸਤ੍ਹਾ ਬਣਾਕੇ ਇਸ ਨੂੰ ਨਿਸ਼ਕਿਰਿਆ ਕਰ ਦਿੰਦਾ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਜਲੀ ਖਾਰਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਿੰਦਾ ਹੈ।

(iii) ਹੈਲੋਜਨਾਂ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ

Tl ਨੂੰ ਛੱਡ ਕੇ ਗਰੁੱਪ 13 ਦੇ ਤੱਤ ਹੈਲੋਜਨਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਟ੍ਰਾਈਹੇਲਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। 2E(s) + 3 X₂ (g) → 2EX₃ (s) (X = F, Cl, Br, I)

312

ਉਦਾਹਰਣ 11.2

ਨਿਰਜਲੀ ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ ਦੀ ਬੋਤਲ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਚਿੱਟਾ ਧੂਆਂ ਬਣ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਦਸੋ ?

ਹੱਲ

ਨਿਰਜਲੀ ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ ਵਾਯੂਮੰਡਲੀ ਨਮੀਂ ਦੇ ਨਾਲ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਜਲ ਅਪਘਟਿਤ ਹੋ ਕੇ HCl ਗੈਸ ਵਿਸਰਜਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਨਮੀਂ ਯੁਕਤ HCl ਸਫੇਦ ਧੁਏਂ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ।

11.2 ਬੋਰਾੱਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਅਤੇ ਅਨਿਯਮਿਤ ਵਿਹਾਰ

ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਵਿਹਾਰ ਦਾ ਅਧਿਐਨ ਕਰਨ ਨਾਲ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਤੱਥ ਸਾਹਮਣੇ ਆਉਂਦੇ ਹਨ। ਇਸ ਗਰੁੱਪ ਦੇ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਟ੍ਰਾਈਕਲੋਰਾਈਡ, ਬ੍ਰੋਮਾਈਡ ਅਤੇ ਆਇਓਡਾਈਡ ਸਹਿਸੰਯੋਜਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੋਣ ਦੇ ਕਾਰਣ ਜਲਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਬੋਰਾੱਨ ਤੋਂ ਇਲਾਵਾ ਦੂਜੇ ਸਾਰੇ ਤੱਤਾਂ ਦੀ ਚੌਫਲਕੀ ਸਪੀਸ਼ੀਜ $[M(OH)_4]^{-}$ ਅਤੇ ਅਸ਼ਟਫਲਕੀ $[M(H_2O)_6]^{3+}$ ਸਪੀਸ਼ੀਜ ਜਲੀ ਘੋਲ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ।

ਤੱਤਾਂ ਦੇ ਮੋਨੋਮਰ (monomer) ਟ੍ਰਾਈਹੇਲਾਈਡ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਨ ਹੋਣ ਕੇ ਕਾਰਣ ਪ੍ਰਬਲ ਲੁਈਸ ਐਸਿਡ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ। ਲੁਈਸ ਖਾਰ (ਜਿਵੇਂ—NH₃ ਆਦਿ) ਇਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਪ੍ਰਦਾਨ ਕਰਕੇ ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦਾ ਅਸ਼ਟਕ ਪੂਰਣ ਕਰਦੇ ਹਨ।

 $F_{3}B \hspace{.1in} + : NH_{3} \hspace{.1in} \rightarrow \hspace{.1in} F_{3}B \leftarrow NH_{3}$

ਬੋਰਾੱਨ ਵਿੱਚ *d*-ਆੱਰਬਿਟਲ ਨਹੀਂ ਹੁੰਦੇ। ਫਲਸਰੂਪ ਇਸ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਯੋਜਕਤਾ 4 ਹੋ ਸਕਦੀ ਹੈ। ਕਿਉਂਕਿ ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਦੂਜੇ ਤੱਤਾਂ ਵਿੱਚ *d*-ਆੱਰਬਿਟਲ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ ਇਸ ਤਰ੍ਹਾਂ ਇਨ੍ਹਾਂ ਦੀ ਅਧਿਕਤਮ ਸੰਯੋਜਕਤਾ 4 ਤੋਂ ਵੱਧ ਹੋ ਸਕਦੀ ਹੈ। ਵਧੇਰੇ ਦੂਜੇ ਧਾਤ ਹੇਲਾਈਡ (ਉਦਾਹਰਣ ਵਜੋਂ—AICl₃) ਪੁਲ ਬੰਧਨ ਹੈਲੋਜਨ ਪਰਮਾਣੂ ਦੁਆਰਾ ਡਾਈਮਰ ਬਣ ਜਾਂਦੇ ਹਨ (Al₂Cl₆)। ਇਨ੍ਹਾਂ ਧਾਤ ਯੋਗਿਕਾਂ ਵਿੱਚ ਪੁਲਬੰਧਨ ਹੈਲੋਜਨ ਅਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਆਪਣਾ ਅਸ਼ਟਕ ਪੁਰਾ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ 11.3 ਬੋਰਾੱਨ BF₆³⁻ ਆਇਨ ਨਹੀਂ ਬਣ ਸਕਦਾ ਹੈ। ਇਸ ਦੀ ਵਿਆਖਿਆ ਕਰੋ। ਹੱਲ

ਬੋਰਾੱਨ ਵਿੱਚ *d-*ਆਰਬਿਟਲਾਂ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਆਪਣੇ ਅਸ਼ਟਕ ਦਾ ਪਰਸਾਰ ਕਰਨ ਵਿੱਚ ਅਸਮਰਥ ਹੁੰਦਾ ਹੈ। ਇੰਜ ਇਸ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਯੋਜਕਤਾ 4 ਹੀ ਹੋ ਸਕਦੀ ਹੈ।

11.3 ਬੋਰਾੱਨ ਦੇ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ

ਬੋਰਾੱਨ ਦੇ ਕੁਝ ਉਪਯੋਗੀ ਯੋਗਿਕ ਬੋਰੈਕਸ, ਔਰਥੋਬੋਰਿਕ ਐਸਿਡ ਅਤੇ ਡਾਈਬੋਰੇਨ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਰਸਾਇਣ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਸੰਖੇਪ ਵਿੱਚ ਕਰਾਂਗੇ।

11.3.1 ਬੋਰੈਕਸ

ਇਹ ਬੋਰਾੱਨ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ ਹੈ। ਇਹ ਸਫੇਦ, ਕ੍ਰਿਸਟਲੀ, ਠੋਸ ਹੈ, ਜਿਸਦਾ ਫਾਰੱਮੂਲਾ $Na_2B_4O_7 \cdot 10H_2O$ ਹੁੰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਇਸ ਕੋਲ ਟੈਟ੍ਰਾਨਿਊਕਲੀ ਯੁਨਿਟ $\left[B_4O_5(OH)_4\right]^{2^-}$ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸਹੀ ਫਾਰਮੂਲਾ $Na_2[B_4O_5(OH)_4].8H_2O$ ਹੈ।ਬੋਰੈਕਸ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਕੇ ਖਾਰੀ ਘੋਲ ਬਣਾਉਂਦਾ ਹੈ।

$$Na_2B_4O_7 + 7H_2O \rightarrow 2NaOH + 4H_3BO_3$$

ਔਰਥੋਬੋਰਿਕ ਐਸਿਡ

ਗਰਮ ਕਰਨ ਤੇ ਬੋਰੈਕਸ ਪਹਿਲਾਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦਾ ਨਿਸ਼ਕਾਸਣ ਕਰਦਾ ਹੈ ਅਤੇ ਫੁੱਲ ਜਾਂਦਾ ਹੈ। ਮੁੜ ਗਰਮ ਕਰਨ ਤੇ ਇਹ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਦ੍ਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਕੱਚ ਵਾਂਗ ਇੱਕ ਠੋਸ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਉਸ ਨੂੰ ਬੋਰੈਕਸ ਮਣਕਾ (Borax Bead) ਕਹਿੰਦੇ ਹਨ।

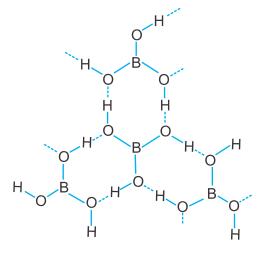
ਭਿੰਨ-ਭਿੰਨ ਅੰਤਰਕਾਲੀ ਤੱਤਾਂ ਦੇ ਮੈਟਾਬੋਰੇਟ ਦਾ ਵਿਸ਼ਿਸ਼ਟ ਰੰਗ ਹੰਦਾ ਹੈ, ਜਿਸ ਦੇ ਅਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਪਛਾਣ ਵਿੱਚ ਬੋਰੈਕਸ ਮਣਕਾ ਟੈਸਟ (Borax Bead Test) ਦੀ ਵਰਤੋਂ ਪ੍ਯੋਗਾਸ਼ਾਲਾਵਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ— ਜਦੋਂ ਬੋਰੈਕਸ ਨੂੰ ਕੋਬਾਲਟ ਆੱਕਸਾਈਡ CoO ਦੇ ਨਾਲ ਬੁਨਸਨ ਬਰਨਰ ਉੱਤੇ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਨੀਲੇ ਰੰਗ ਦਾ ਮਣਕਾ Co(BO₂)₂ ਬਣਦਾ ਹੈ।

11.3.2 ਔਰਥੋਬੋਰਿਕ ਐਸਿਡ

ਔਰਥੋਬੋਰਿਕ ਐਸਿਡ H₃BO₃ ਇਕ ਸਫੇਦ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਹੁੰਦਾ ਹੈ, ਜਿਸਦਾ ਸਾਬਣੀ ਸਪਰਸ਼ ਹੁੰਦਾ ਹੈ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਅਲਪ ਘੁਲਦਾ ਹੈ ਪਰੰਤੂ ਗਰਮ ਪਾਣੀ ਵਿੱਚ ਪੂਰਾ ਘੁੱਲ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਬੋਰੈਕਸ ਦੇ ਜਲੀ ਘੋਲ ਨੂੰ ਤੇਜਾਬੀ ਕਰਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

 $Na_2B_4O_7 + 2HCl + 5H_2O \rightarrow 2NaCl + 4B(OH)_3$

ਇਸ ਨੂੰ ਬੋਰੈਕਸ ਦੇ ਵਧੇਰੇ ਯੋਗਿਕਾਂ (ਜਿਵੇਂ—ਹੇਲਾਈਡ, ਹਾਈਡਾਈਡ ਆਦਿ) ਦੇ ਜਲ ਅਪਘਟਨ ਦੁਆਰਾ (ਪਾਣੀ ਅਤੇ ਦੁਰਬਲ ਤੇਜਾਬ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ) ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੀ ਪਰਤੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ BO₃ ਦੀਆਂ ਇਕਾਈਆਂ ਹਾਈਡੋਜਨ ਬੰਧਨ ਦੁਆਰਾ ਜੁੜੀਆਂ ਰਹਿੰਦੀਆਂ


313

ਹਨ (ਚਿੱਤਰ 11.1)। ਬੋਰਿਕ ਐਸਿਡ ਇੱਕ ਦੁਰਬਲ ਖਾਰੀ ਤੇਜਾਬ ਹੈ। ਇਹ ਪ੍ਰੋਟੋਨੀ ਤੇਜਾਬ ਨਹੀਂ ਹੈ, ਪਰੰਤੂ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨਾਂ ਤੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰਨ ਦੇ ਕਾਰਣ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ।

 $B(OH)_3 + 2HOH \rightarrow [B(OH)_4]^- + H_3O^+$

370K ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ਤੇ ਗਰਮ ਕਰਨ ਨਾਲ ਅੱਰਥੋਬੋਰਿਕ ਐਸਿਡ ਮੈਟਾਬੋਰਿਕ ਐਸਿਡ (HBO₂) ਬਣਾਉਂਦਾ ਹੈ, ਜੋ ਹੋਰ ਗਰਮ ਕਰਨ ਤੇ ਬੋਰਿਕ ਆੱਕਸਾਈਡ (B₂O₃) ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ।

$$H_3BO_3 \xrightarrow{\Delta} HBO_2 \xrightarrow{\Delta} B_2O_3$$

ਚਿੱਤਰ 11.1 ਬੋਰਿਕ ਐਸਿਡ ਦੀ ਰਚਨਾ ਵਿੱਚ ਡਾੱਟਿਡ ਲਾਈਨਾਂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ।

ਉਦਾਹਰਣ 11.4

ਬੋਰਿਕ ਐਸਿਡ ਨੂੰ ਇੱਕ ਦੁਰਬਲ ਐਸਿਡ ਕਿਉਂ ਮੰਨਿਆ ਗਿਆ ਹੈ ?

ਹੱ ਲ

ਬੋਰਿਕ ਐਸਿਡ ਨੂੰ ਇੱਕ ਦੁਰਬਲ ਐਸਿਡ ਇਸ ਲਈ ਮੰਨਿਆ ਗਿਆ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਆਪਣੇ ਪ੍ਰੋਟਾਨ ਦਾ ਨਿਸ਼ਕਾਸਨ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਇਹ ਪਾਣੀ ਦੇ ਅਣੂ ਤੋਂ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨ (OH⁻) ਲੈ ਕੇ ਆਪਣਾ ਅਸ਼ਟਕ ਪੂਰਾ ਕਰਦਾ ਹੈ ਅਤੇ H⁺ ਨਿਸ਼ਕਾਸਿਤ ਕਰਦਾ ਹੈ।

11.3.3 ਡਾਈਬੋਰੇਨ, B₂H₆

ਬੋਰਾੱਨ ਦਾ ਗਿਆਤ ਸਭ ਤੋਂ ਸਰਲ ਹਾਈਡ੍ਰਾਈਡ ਡਾਈਬੋਰੇਨ ਹੈ। ਇਸ ਨੂੰ ਡਾਈਈਥਾਈਲ ਈਥਰ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਬੋਰੱਾਨ ਟ੍ਰਾਈਫਲੋਰਾਈਡ ਦੀ LiAlH₄ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

 $4BF_3 + 3 LiAlH_4 \rightarrow 2B_2H_6 + 3LiF + 3AlF_3$ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਡਾਈਬੋਰੇਨ ਬਨਾਉਣ ਲਈ ਸੋਡੀਅਮ

ਬੋਰੋਹਾਈਡ੍ਰਾਈਡ ਦਾ ਆੱਕਸੀਕਰਣ ਆਇਓਡੀਨ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $2\text{NaBH}_4 + \text{I}_2 \rightarrow \text{B}_2\text{H}_6 + 2\text{NaI} + \text{H}_2$

ਉਦਯੋਗਿਕ ਪੱਧਰ ਤੇ ਡਾਈਬੋਰੇਨ ਬੋਰਾੱਨ ਟ੍ਰਾਈਫਲੋਰਾਈਡ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡ੍ਰਾਈਡ ਦੀ ਕਿਰਿਆ ਦੁਆਰਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

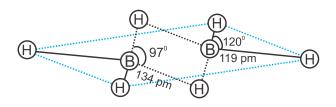
 $2BF_3 + 6NaH \xrightarrow{450K} B_2H_6 + 6NaF$

ਡਾਈਬੋਰੇਨ ਅਤਿਅੰਤ ਜਹਰੀਲੀ ਰੰਗਹੀਣ ਗੈਸ ਹੈ, ਜਿਸਦਾ ਉਬਲਣ ਅੰਕ 180 K ਹੈ। ਇਹ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਤੇ ਖੁਦ ਜਲ ਪੈਂਦੀ ਹੈ। ਇਹ ਆੱਕਸੀਜਨ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਊਰਜਾ ਪੈਦਾ ਕਰਦੇ ਹੋਏ ਜਲਦੀ ਹੈ।

$$B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O;$$

 $\Delta_c H^{\circ} = -1976 \text{ kJ mol}^{-1}$

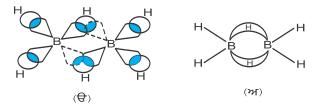
ਵਧੇਰੇ ਉੱਚ ਬੋਰੇਨ ਵੀ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਤੇ ਖੁਦ ਜਲਨ ਲੱਗ ਪੈਂਦੇ ਹਨ। ਬੋਰੇਨ ਪਾਣੀ ਦੇ ਨਾਲ ਤੇਜੀ ਨਾਲ ਜਲ ਅਪਘਟਿਤ ਹੋ ਕੇ ਬੋਰਿਕ ਐਸਿਡ ਦਿੰਦੇ ਹਨ। $B_2H_6(g) + 6H_2O(l) \rightarrow 2B(OH)_3(aq) + 6H_2(g)$

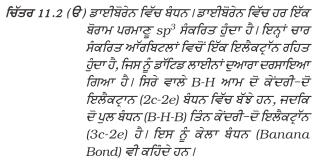

ਡਾਈਬੋਰੇਨ ਲੁਈਸ ਖਾਰਾਂ (L) ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਇੱਕ ਬੋਰਾੱਨ ਜੋੜਾਤਮਕ ਉਪਜ (BH₃·L) ਦਿੰਦਾ ਹੈ।

 $B_2H_6 + 2 \text{ NMe}_3 \rightarrow 2BH_3 \cdot NMe_3$

 $B_2H_6 + 2 CO \rightarrow 2BH_3 \cdot CO$

ਡਾਈਬੋਰੇਨ ਤੇ ਅਮੋਨੀਆ ਦੀ ਪਤੀਕਿਰਿਆ ਨਾਲ ਸ਼ੁਰੂ ਵਿੱਚ B₂H₆.2NH₃ ਬਣਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਸੂਤਰ [BH₂(NH₃)₂]⁺ [BH₄]⁻ ਦੁਆਰਾ ਪ੍ਰਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਹੋਰ ਜਿਆਦਾ ਗਰਮ ਕਰਨ ਤੇ B₃N₃H₆ ਦਿੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਏਕਾਂਤਰ BH ਅਤੇ NH ਗਰੁੱਪ ਦੇ ਨਾਲ ਰਿੰਗ ਬਣਤਰ ਦੇ ਕਾਰਣ ਅਕਾਰਬਨਿਕ ਬੈਨਜ਼ੀਨ (Inorganic Benzene) ਦੇ ਰੁਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।


ਡਾਈਬੋਰੇਨ ਦੀ ਰਚਨਾ ਨੂੰ ਚਿੱਤਰ 11.2 (ੳ) ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਇਸ ਵਿੱਚ ਸਿਰੇ ਵਾਲੇ ਚਾਰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਦੋ ਬੋਰਾੱਨ ਪਰਮਾਣੂ ਇੱਕ ਹੀ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।ਇਸ ਤਲ ਦੇ ਉੱਪਰ ਅਤੇ ਹੇਠਾਂ ਦੋ ਪੁਲਬੰਧਨ (Bridging) ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ।ਸਿਰੇ ਵਾਲੇ ਚਾਰ B-H ਬੰਧਨ ਸਧਾਰਣ ਦੋ ਕੇਂਦਰੀ-ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ (Two Centre-Two Electron) ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਜਦ ਕਿ ਦੋ ਪੁਲ ਬੰਧਨ



ਚਿੱਤਰ 11.2 (ੳ) ਡਾਈਬੋਰੇਨ $B_{q}H_{p}$ ਦੀ ਰਚਨਾ

314

(B-H-B) ਭਿੰਨ ਕਿਸਮ ਦੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤਿੰਨ ਕੇਂਦਰੀ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧਨ ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 11.2 (ਅ)।

ਬੋਰਾੱਨ ਹਾਈਡ੍ਰਾਈਡੋਬੋਰੇਟ ਦੀ ਇਕ ਲੜੀ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਚੌਫਲਕੀ [BH₄]⁻ ਆਇਨ ਪ੍ਰਮੁੱਖ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਧਾਤਾਂ ਦੇ ਟੈਟ੍ਰਾਹਾਈਡ੍ਰੋਬੋਰੇਟ ਗਿਆਤ ਹਨ। ਲੀਥਿਅਮ ਅਤੇ ਸੋਡੀਅਮ ਦੇ ਟੈਟ੍ਰਾਹਾਈਡ੍ਰੋਬੋਰੇਟ ਨੂੰ ਬੋਰੋਹਾਈ ਡਰਾਈਡ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਧਾਤ ਹਾਈਡ੍ਰਾਈਡ ਦੀ ਡਾਈ ਈਥਾਈਲ ਈਥਰ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਡਾਈਬੋਰੇਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

 $2MH + B_2H_6 \rightarrow 2 M^+ [BH_4]^-$ (M = Li or Na)

ਕਾਰਬਨਿਕ ਸੰਸਲੇਸ਼ਣਾਂ ਵਿੱਚ ਦੋਵੇਂ LiBH₄ ਅਤੇ NaBH₄ ਦੀ ਵਰਤੋਂ ਲਘੂਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਹੋਰ ਧਾਤਵੀ ਬੋਰੋਹਾਈਡ੍ਰਾਈਡ ਬਨਾਉਣ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਸ਼ੁਰੂਆਤੀ ਪਦਾਰਥ (Starting Material) ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

11.4 ਬੋਰਾੱਨ, ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਲਾਭ

ਉੱਚ ਪਿਘਲਣ ਅੰਕ, ਨਿਮਨ ਘਣਤਾ, ਨਿਮਨ ਬਿਜਲੀ ਚਾਲਕਤਾ ਅਤੇ ਬਹੁਤ ਜਿਆਦਾ ਸਖਤ (Refractory) ਹੋਣ ਦੇ ਕਾਰਣ ਬੋਰਾੱਨ ਦੀ ਬਹੁਤ ਜਿਆਦਾ ਵਰਤੋਂ ਹੈ। ਬੋਰਾੱਨ ਤੰਤੂਆਂ (Fibres) ਦੀ ਵਰਤੋਂ ਬੁਲੱਟ ਪੂਰਫ ਜੈਕਟ ਬਨਾਉਣ ਵਿੱਚ ਅਤੇ ਹਵਾਈ ਜਹਾਜਾਂ ਦੇ ਹਲਕੇ ਕੰਪੋਜਿਟ ਪਦਾਰਥਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਬੋਰਾੱਨ-10 (¹⁰B) ਸਮਸਥਾਨਿਕ ਵਿੱਚ ਨਿਊਟ੍ਰਾਨ ਸੋਖਣ ਦੀ ਬਹੁਤ ਜਿਆਦਾ ਸਮਰਥਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਨਿਊਕਲੀਅਰ ਉਦਯਗਾਂ ਵਿੱਚ ਧਾਤਵੀ ਬੋਰਾਈਡਾਂ ਦੀ ਵਰਤੋਂ ਬਚਾਅ ਕਵਚ (Protective shield) ਅਤੇ ਨਿਯੰਤਰਕ ਛੜਾਂ (Control rods) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਬੋਰੈਕਸ ਅਤੇ ਬੋਰਿਕ ਐਸਿਡ ਦਾ ਮੁੱਖ ਉਦਯੋਗਿਕ ਉਪਯੋਗ ਉੱਚ ਤਾਪ ਸਹਿ ਕੱਚ (Heat Resistant Glasses) ਜਿਵੇਂ—ਪਾਈਰੈਕਸ (Pyrex) ਗਲਾਸਵੂਲ ਅਤੇ ਫਾਈਬਰ ਗਲਾਸ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਬੋਰੈਕਸ ਦੀ ਵਰਤੋਂ ਧਾਤਾਂ ਨੂੰ ਟਾਂਕਾ ਲਾਉਣ (Soldering) ਦੇ ਲਈ ਗਾਲਕ (Flux) ਦੇ ਰੂਪ ਵਿੱਚ, ਤਾਪ, ਧੱਬਾ (Stain) ਅਤੇ ਨਿਸ਼ਾਨ (Scrach) ਪ੍ਰਤੀਰੋਧੀ, ਮਿੱਟੀ ਦੇ ਬਰਤਨ ਬਨਾਉਣ ਅਤੇ ਮੈਡੀਕੇਟਿਡ ਸਾਬਣ ਵਿੱਚ ਘਟਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਬੋਰਿਕ ਐਸਿਡ ਦੇ ਜਲੀ ਘੋਲ ਦੀ ਵਰਤੋਂ ਐਂਟੀਸੈਪਟਿਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਐਲੁਮੀਨਿਅਮ ਚਾਂਦੀ ਵਾਂਗ ਸਫੇਦ (Silvery white) ਰੰਗ ਦੀ ਇੱਕ ਚਮਕੀਲੀ ਧਾਤ ਹੈ, ਜਿਸ ਵਿੱਚ ਉੱਚ ਤਣਾਓ ਸਮਰੱਥਾ (Tensile strength) ਹੁੰਦੀ ਹੈ। ਇਸ ਦੀ ਬਿਜਲਈ ਅਤੇ ਤਾਪ ਚਾਲਕਤਾ ਉੱਚੀ ਹੁੰਦੀ ਹੈ। ਭਾਰ ਨਾਲ ਭਾਰ ਅਧਾਰ (Weight to Weight basis) ਤੇ ਐਲੂਮੀਨਿਅਮ ਦੀ ਚਾਲਕਤਾ ਕਾੱਪਰ ਨਾਲੋਂ ਦੁਗਣੀ ਹੁੰਦੀ ਹੈ। ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਅਤੇ ੳਦਯੋਗਾਂ ਵਿੱਚ ਐਲੁਮੀਨਿਯਮ ਦੀ ਵਰਤੋਂ ਬਹਤ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ। ਇਹ Cu, Mn, Mg, Si ਅਤੇ Zn ਦੇ ਨਾਲ ਮਿਸ਼ਰਤ ਧਾਤ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ। ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਇਸ ਦੀਆਂ ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਨੂੰ (alloy) ਵਿਸ਼ਿਸਟ ਆਕ੍ਰਿਤੀ (ਜਿਵੇਂ—ਪਾਈਪ, ਟਿਊਬ, ਛੜ, ਪੱਤੀ, ਤਾਰ, ਪਲੇਟ ਆਦਿ) ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਨਾਲ ਇਸ ਦੀ ਵਰਤੋਂ ਬਰਤਨ ਬਨਾਉਂਣ ਦੇ ਕਾਰਜ, ਨਿਰਮਾਣ, ਪੈਕਿੰਗ, ਹਵਾਈ ਜਹਾਜ ਅਤੇ ਟਰਾਂਸਪੋਰਟੇਸ਼ਨ ੳਦਯੋਗਾਂ ਵਿੱਚ ਹੰਦੀ ਹੈ। ਕਿੳਂਕਿ ਐਲੂਮੀਨਿਅਮ ਦੀ ਪ੍ਰਕਿਰਤੀ ਜਹਿਰੀਲੀ (Toxic Nature) ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਘਰੇਲੂ ਕਾਰਜਾਂ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਇਸ ਦੇ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤੋਂ ਘੱਟ ਹੋਣ ਲੱਗੀ ਹੈ।

11.5 ਗਰੁੱਪ-14 ਦੇ ਤੱਤ : ਕਾਰਬਨ ਪਰਿਵਾਰ

ਕਾਰਬਨ (C), ਸਿੱਲੀਕਾੱਨ (Si), ਜਰਮੇਨਿਅਮ (Ge), ਟਿਨ (Sn) ਅਤੇ ਲੈੱਡ (Pb) ਗਰੂਪ 14 ਦੇ ਤੱਤ ਹਨ। ਕਾਰਬਨ ਭੂਮੀ ਦੀ ਪਰਤ ਵਿੱਚ ਮਿਲਦਾ ਹੈ, ਇਹ 17ਵਾਂ ਅਤਿ ਭਰਪਰ (Most Abundant) ਤੱਤ ਹੈ। ਇਹ ਪਰਕਿਰਤੀ ਵਿੱਚ ਸਤੰਤਰ ਅਤੇ ਸੰਯੋਜਤ ਅਵਸਥਾ ਵਿੱਚ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਤੱਤ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਕੋਲਾ, ਗੇਫਾਈਟ ਅਤੇ ਹੀਰਾ ਦੇ ਰਪ ਵਿੱਚ ਵਿੱਚ ਮਿਲਦਾ ਹੈ, ਜਦਕਿ ਸੰਯੋਜਤ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਥਾਤ ਕਾਰਬੋਨੇਟ ਅਤੇ ਹਵਾ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਗੈਸ (0.03%) ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਇਹ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਕਾਰਬਨ ਸੰਸਾਰ ਦਾ ਸਭ ਤੋਂ ਚੰਚਲ ਤੱਤ ਹੈ, ਜੋ ਹੋਰ ਤੱਤਾਂ (ਜਿਵੇਂ-ਡਾਈਹਾਈਡੋ਼ਜਨ,ਡਾਈਆਕਸੀਜਨ,ਕਲੋਰੀਨ,ਸਲਫਰ ਆਦਿ) ਨਾਲ ਜੁੜ ਕੇ ਜੀਵਤ ਟੀਸ਼ ਤੋਂ ਦਵਾਈਆਂ ਅਤੇ ਪਲਸਟਿਕ ਤੱਕ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ। ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਵਿਗਿਆਨ ਕਾਰਬਨ ਦੇ ਯੋਗਿਕਾਂ ੳਤੇ ਹੀ ਅਧਾਰਿਤ ਹੈ। ਇਹ ਜੀਵਿਤ ਪ੍ਰਾਣੀਆਂ ਦਾ ਜਰੂਰੀ ਘਟਕ ਹੈ। ਪ੍ਰਾਕਿਰਤਿਕ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਦੋ ਸਥਾਈ ਸਮਰਥਾਨਿਕ 12 C ਅਤੇ 13 C ਮਿਲਦੇ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਇੱਕ ਹੋਰ ਸਮਸਥਾਨਿਕ $^{14}\mathrm{C}$ ਵੀ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਇਹ ਇੱਕ ਰੇਡੀਓਐਕਟਿਵ ਸਮਸਥਾਨਿਕ ਹੈ ਜਿਸ ਦੀ ਅਰਧ ਆਯੂ 5770 ਸਾਲ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਰੇਡੀਓ ਕਾਰਬਨ ਅੰਕਨ (Radio Carbon Dating) ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਸਿੱਲੀਕਾੱਨ ਭੂ-ਪਰਤ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਮਿਲਣ ਵਾਲਾ (27.7% ਭਾਰ ਅਨੁਸਾਰ) ਦੂਜਾ ਤੱਤ ਹੈ। ਇਹ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਸਿੱਲੀਕਾਨ ਅਤੇ ਸਿੱਲੀਕੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ।

ਇਹ ਸਿੱਲੀਕਾਨ, ਸਿਰੈਮਿਕ, ਕੱਚ ਅਤੇ ਸੀਮੈਂਟ ਦਾ ਮਹੱਤਵਪੂਰਣ ਘਟਕ ਹੈ। ਜਰਮੇਨਿਅਮ ਅਤਿ ਸੂਖਮ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਮੁਖ ਰੂਪ ਵਿੱਚ ਟਿਨ ਸਟੋਨ (ਕੇਸਿਟੇਰਾਈਟ), SnO₂ ਤੋਂ ਟਿਨ ਅਤੇ ਗੈਲੀਨਾ PbS ਖਣਿਜ ਤੋਂ ਲੈੱਡ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਰਮੇਨਿਅਮ ਅਤੇ ਸਿੱਲੀਕਾਨ ਦੀ ਸਭ ਤੋਂ ਸ਼ੁੱਧ ਅਵਸਥਾ ਦੀ ਵਰਤੋਂ ਟ੍ਰਾਂਜਿਸਟਰ ਅਤੇ ਅਰਧ ਚਾਲਕ ਜੁਗਤ (Semi Conductor Device) ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਗਰੁੱਪ–14 ਦੇ ਤੱਤਾਂ ਦੇ ਮਹੱਤਵਪੂਰਣ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਸਾਰਣੀ 11.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਕੁਝ ਪਰਮਾਣਵੀਂ, ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀ ਵਿਆਖਿਆ ਹੇਠਾਂ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ।

11.5.1 ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਗਰੁੱਪ 14 ਦੇ ਤੱਤਾਂ ਦੀ ਸੰਯੋਜਕਤਾ ਕੋਸ਼ (Valence shell) ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ *ns²np²* ਹੁੰਦੀ ਹੈ। ਇਸ ਗਰੁੱਪ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਵਿੱਚ ਵੀ ਅੰਦਰਲੀ ਕੋਰ ਭਿੰਨ ਹੰਦੀ ਹੈ।

11.5.2 ਸਹਿਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ

ਕਾਰਬਨ ਤੋਂ ਸਿੱਲੀਕਾੱਨ ਦੇ ਸਹਿਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਉਸ ਤੋਂ ਬਾਅਦ Si ਤੋਂ Pb ਤੱਕ ਸਹਿਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਅੰਸ਼ਿਕ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। d ਅਤੇ f ਆੱਰਬਿਟਲਾਂ ਦੇ ਪੂਰੇ ਭਰੇ ਹੋਣ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ।

11.5.3 ਆਇਨਨ ਐਨਥੈਲਪੀ

ਗਰੁੱਪ 14 ਦੇ ਤੱਤਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਗਰੁੱਪ 13 ਦੇ ਸੰਗਤ ਤੱਤਾਂ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦੇ ਹਨ।

ਇਥੇ ਵੀ ਅੰਦਰਲੇ ਕੋਰ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਪ੍ਰਭਾਵ ਨਜਰ ਆਉਂਦਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਆਇਨਨ ਐਨਥੈਲਪੀ ਘਟਦੀ ਹੈ। Si ਤੋਂ Ge, Ge ਤੋਂ Sn ਤੱਕ ਅਲਪ ਘੱਟ ਅਤੇ Sn ਤੋਂ Pb ਤੱਕ ਅਲਪ ਵਾਧਾ, ਵਿੱਚ ਆਉਣ ਵਾਲੇ *d* ਅਤੇ *f* ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਦੁਰਬਲ ਸ਼ੀਲਰਿੰਗ ਪ੍ਰਭਾਵ ਅਤੇ ਪਰਮਾਣੂ ਦੇ ਵੱਡੇ ਅਕਾਰ ਦਾ ਸਿੱਟਾ ਹੈ।

11.5.4 ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ

ਛੋਟੇ ਅਕਾਰ ਦੇ ਕਾਰਣ ਗਰੁੱਪ 14 ਦੇ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ ਗਰੁੱਪ 13 ਦੇ ਸੰਗਤ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੇ ਮਾਨ ਤੋਂ ਥੋੜਾ ਵੱਧ ਹੁੰਦਾ ਹੈ। Si ਤੋਂ Pb ਤੱਕ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ ਲਗਪਗ ਸਮਾਨ ਹੰਦਾ ਹੈ।

11.5.5 ਭੌਤਿਕ ਗੁਣ

ਗੁਰੱਪ 14 ਦੇ ਸਾਰੇ ਤੱਤ ਠੋਸ ਹਨ। ਕਾਰਬਨ, ਸਿੱਲੀਕਾਨ ਅਧਾਤਾਂ ਅਤੇ ਜਰਮੇਨੀਅਮ ਉਪਧਾਤ ਹੈ, ਜਦਕਿ ਟਿਨ ਅਤੇ ਲੈੱਡ ਨੀਵੇਂ ਪਿਘਲਣ ਅੰਕ ਵਾਲੀਆਂ ਮੁਲਾਇਮ ਧਾਤਾਂ ਹਨ।

		Element					
ਗੁਣ		ਕਾਰਬਨ	ਸਿਲੀਕਾੱਨ	ਜਰਮੇਨੀਅਮ	ਟਿਨ	ਲੈੱਡ	
		C	Si	Ge	Sn	Pb	
ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ		6	14	32	50	82	
<mark>ਪਰਮਾਣੂ ਪੁੰਜ (</mark> g	mol ⁻¹)	12.01	28.09	72.60	118.71	207.2	
ਇਲੈਕਟ੍ਰਾੱਨਿਕ		[He] $2s^22p^2$	[Ne] $3s^23p^2$	$[Ar]3d^{10}4s^24p^2$	$[Kr]4d^{10}5s^25p^2$	$[Xe]4f^{14}5d6s^{2}6p^{2}$	
ਤਰਤੀਬ							
ਸਹਿਸੰਯੋਜਕ ਅਰਧ	ਵਿਆਸ/ pm^a	77	118	122	140	146	
ਆਇਨੀ ਅਰਧਵਿ	ਆਸ $\mathrm{M}^{ ext{4+}}/\mathrm{pm}^{\mathrm{b}}$	-	40	53	69	78	
ਆਇਨੀ ਅਰਧਵਿ	ਆਸ $\mathrm{M}^{^{2+}}/\mathrm{pm}^{^{\mathrm{b}}}$	-	-	73	118	119	
ਆਇਨਨ	$\Delta_t H_1$	1086	786	761	708	715	
ਐਨਥੈਲਪੀ/	$\Delta_t H_2$	2352	1577	1537	1411	1450	
kJ mol ⁻¹	$\Delta_i H_3$	4620	3228	3300	2942	3081	
	$\Delta_i H_4$	6220	4354	4409	3929	4082	
ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ	ਤਾ ^c	2.5	1.8	1.8	1.8	1.9	
ਘਣਤਾ ^d /g cm	-3	3.51^{e}	2.34	5.32	$7.26^{ m f}$	11.34	
ਪਿਘਲਣ ਅੰਕ/K		4373	1693	1218	505	600	
ਉਬਲਣ ਅੰਕ/K	ਉਬਲਣ ਅੰਕ/K		3550	3123	2896	2024	
ਬਿਜਲਈ ਪ੍ਤੀਰੋਧ ohm cm (293		$10^{14} - 10^{16}$	50	50	10^{-5}	2×10^{-5}	

ਸਾਰਣੀ 11.3 ਗਰੂਪੱ 14 ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਭੌਤਿਕ ਗੁਣ

^a M^{IV} ਅੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦੇ ਲਈ; ^b6–ਉਪਸਹਿਸੰਯੋਜਕ ਤਾਂ; ^c ਪਾੱਲਿੰਗ ਅਪਕ੍ਰਮ; ^d 293 K; ^e ਹੀਰੇ ਦੇ ਲਈ; ਗ੍ਰੇਫਾਈਟ ਦੀ ਘਣਤਾ 2.22 ਹੈ; ^fβ-ਰੁਪ (ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸਥਾਈ)

316

ਗਰੁੱਪ 14 ਦੇ ਤੱਤਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਪਲਣ ਅੰਕ ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵੱਧ ਹੁੰਦੇ ਹਨ।

11.5.6 ਰਸਾਇਣਿਕ ਗੁਣ

ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਸ਼ੀਲਤਾ ਵਿੱਚ ਪ੍ਰਵਿਰਤੀ

ਗਰੁੱਪ 14 ਦੇ ਤੱਤਾਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈਲ ਵਿੱਚ ਚਾਰ ਇਲੈਕਟ਼ਾੱਨ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੁਆਰਾ ਆਪ +4 ਅਤੇ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਕਾਰਬਨ ਰਿਣਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵੀ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਕਿਉਂਕਿ ਪਹਿਲੀਆਂ ਚਾਰ ਆਇਨਨ ਐਨਥੈਲਪੀਆਂ ਦਾ ਜੋੜ ਅਤਿ ਉੱਚ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਵਧੇਰੇ ਯੋਗਿਕ ਸਹਿਸੰਯੋਜਕ ਪਕਿਰਤੀ ਦੇ ਹੰਦੇ ਹਨ। ਇਸ ਗਰੁੱਪ ਦੇ ਅਗਲੇ ਤੱਤਾਂ ਵਿੱਚ Ge<Sn<Pb ਕ੍ਰਮ ਵਿੱਚ +2 ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਸਹਿਸੰਯੋਜਕ ਸੈੱਲ ਵਿੱਚ ns² ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਬੰਧਨ ਵਿੱਚ ਭਾਗ ਨਾ ਲੈਣ ਦੇ ਕਾਰਣ ਇਹ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾ ਦੋ ਆੱਕਸੀਕਰਣ ਅਵਸੱਥਾਵਾਂ ਦਾ ਸਾਪੇਖਿਤ ਸਥਾਈਪਨ ਗਰੁੱਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੰਦਾ ਹੈ। ਕਾਰਬਨ ਅਤੇ ਸਿੱਲੀਕਾੱਨ ਮੱਖ ਰੂਪ ਵਿੱਚ +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ, ਜਦ ਕਿ ਕਝ ਯੋਗਿਕਾਂ ਵਿੱਚ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਤਾ ਵੀ ਮਿਲਦੀ ਹੈ। ਟਿਨ ਅਜਿਹੀਆਂ ਦੋਵਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਯੋਗਿਕ ਬਣਾਉਂਦਾ ਹੈ (+2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਟਿਨ ਲਘਕਾਰਕ ਦੇ ਰੁਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦਾ ਹੈ। +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਲੈੱਡ ਦੇ ਯੋਗਿਕ ਸਥਾਈ ਹੁੰਦੇ ਹਨ, ਜਦਕਿ ਇਸਦੀ +4 ਅਵਸਥਾ ਪ੍ਰਬਲ ਆੱਕਸੀਕਾਰਕ ਹੈ। ਚਾਰ ਸੰਯੋਜੀ ਅਵਸਥਾ ਵਿੱਚ ਅਣੂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉੱਤੇ ਅੱਠ ਇਲੈਕਟ਼ਾੱਨ ਹੁੰਦੇ ਹਨ (ਉਦਾਹਰਣ ਵਜੋਂ- CCl₄) ਇਲੈਕਟ੍ਰਾੱਨ ਪੁਰਣ ਹੋਣ ਦੇ ਕਾਰਣ ਆਮਤੌਰ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣੀ ਜਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾਤਾ ਦੀ ਉਮੀਦ ਇਨ੍ਹਾਂ ਤੋਂ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਭਾਵੇਂ ਕਾਰਬਨ ਆਪਣੀ ਸੰਯੋਜਕਤਾ +4 ਤੋਂ ਵਧਾ ਨਹੀਂ ਸਕਦਾ, ਪਰੰਤੂ ਗਰੁੱਪ ਦੇ ਦੂਜੇ ਮੈਂਬਰ ਅਜਿਹਾ ਕਰਦੇ ਹਨ। ਇਹ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਵਿੱਚ d-ਆਰਬਿਟਲਾਂ ਦੀ ਮੌਜਦਗੀ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਅਜਿਹੇ ਤੱਤਾਂ ਦੇ ਹੇਲਾਈਡ ਜਲਅਪਘਟਨ ਤੋਂ ਬਾਅਦ ਦਾਤਾ ਸਪੀਸ਼ੀਜ (Donor species) ਤੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਕੰਪਲੈਕਸ ਬਣਾਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਕੁਝ ਸਪੀਸ਼ੀਜ (ਜਿਵੇਂ—[SiF₆]²⁻, [GeCl₆]², $\left[\operatorname{Sn}(\operatorname{OH})_{6}\right]^{2-}$ where $\left[\operatorname{Sn}(\operatorname{OH})_{6}\right]^{2-}$ where $\operatorname{Sn}(\operatorname{OH})_{6}$ ਪਰਮਾਣੂ $sp^{3}d^{2}$ ਸੰਕਰਿਤ ਹੁੰਦੇ ਹਨ।

(i) ਆਕਸੀਜਨ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ

ਇਸ ਗਰੁੱਪ ਦੇ ਸਾਰੇ ਮੈਂਬਰ ਆੱਕਸੀਜਨ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਗਰਮ ਕਰਨ ਤੇ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਹੁੰਦੇ ਹਨ–ਮੋਨੋਆੱਕਸਾਈਡ ਅਤੇ ਡਾਈਆੱਕਸਾਈਡ।ਇਨ੍ਹਾਂ ਦੇ ਸੂਤਰ ਕ੍ਰਮਵਾਰ MO ਅਤੇ MO₂ ਹਨ।SiO ਦੀ ਹੋਂਦ ਸਿਰਫ਼ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਹੁੰਦੀ ਹੈ।ਉੱਚੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਾਲੇ ਆੱਕਸਾਈਡ ਨੀਵੀਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਾਲੇ ਆੱਕਸਾਈਡਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਤੇਜਾਬੀ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ।ਡਾਈਆੱਕਸਾਈਡ (ਜਿਵੇਂ— CO₂, SiO₂ ਅਤੇ GeO₂) ਤੇਜਾਬੀ ਹਨ, ਜਦਕਿ SnO₂ ਅਤੇ PbO₂ ਐਂਫੋਟੈਰਿਕ ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ। ਮੋਨੋਆੱਕਸਾਈਡਾਂ ਵਿੱਚ CO ਉਦਾਸੀਨ ਅਤੇ GeO ਤੇਜਾਬੀ ਹੈ, ਜਦਕਿ SnO ਅਤੇ PbO ਐਂਫੋਟੈਰਿਕ ਹਨ।

ਉਦਾਹਰਣ 11.5

ਗਰੁੱਪ 14 ਵਿਚੋਂ ਉਸ ਮੈਂਬਰ (ਜਾਂ ਮੈਂਬਰਾਂ) ਨੂੰ ਚੁਣੋ, ਜੋ (i) ਸਭ ਤੋਂ ਵੱਧ ਤੇਜਾਬੀ ਡਾਈਆੱਕਸਾਈ ਬਣਾਉਂਦਾ ਹੈ; (ii) ਆਮ ਤੌਰ ਤੇ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦਾ ਹੈ; (iii) ਅਰਧਚਾਲਕ (ਜਾਂ ਅਰਧਚਾਲਕਾਂ) ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਹੱਲ

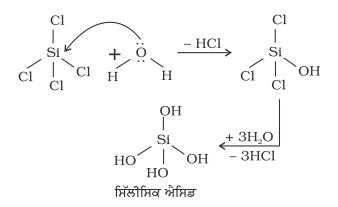
(i) ਕਾਰਬਨ (ii) ਲੈੱਡ (iii) ਸਿੱਲੀਕਾੱਨ ਅਤੇ ਜਰਮੇਨਿਅਮ

(ii) ਪਾਣੀ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤਿਕਿਰਿਆਸ਼ੀਲਤਾ

ਕਾਰਬਨ, ਸਿੱਲੀਕਾੱਨ ਅਤੇ ਜਰਮੇਨਿਅਮ ਪਾਣੀ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਟਿਨ, ਭਾਫ ਨੂੰ ਵਿਯੋਜਿਤ ਕਰਕੇ ਡਾਈਆੱਕਸਾਈਡ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦਿੰਦਾ ਹੈ।

 $\text{Sn} + 2\text{H}_2\text{O} \xrightarrow{\Delta} \text{SnO}_2 + 2\text{H}_2$

ਲੈੱਡ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ। ਅਜਿਹਾ ਸ਼ਾਇਦ ਆਕਸਾਈਡ ਦੀ ਸੁਰਖਿਆ ਫਿਲਮ (Protection film) ਬਣਨ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।


(iii) ਹੈਲੋਜਨਾਂ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤਿਕਿਰਿਆ

ਗਰੁੱਪ−14 ਦੇ ਤੱਤ MX₂ ਅਤੇ MX₄ (X = F, Cl, Br, I) ਕਿਸਮ ਦੇ ਹੇਲਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਕਾਰਬਨ ਦੇ ਇਲਾਵਾ ਬਾਕੀ ਸਾਰੇ ਮੈਂਬਰ ਢੁਕਵੀਆਂ ਪਰਿਸਿਥਤੀਆਂ ਵਿੱਚ ਹੈਲੋਜਨ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਸਿੱਧੇ ਹੇਲਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਵਧੇਰੇ MX₄ ਸਹਿਸੰਯੋਜਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਹੇਲਾਈਡਾਂ ਵਿੱਚ ਕੇਂਦਰੀ ਪਰਮਾਣੂ sp^3 ਸੈਕਰਿਤ ਅਵਸਤਾਂ ਵਿੱਚ ਅਤੇ ਅਣੁ ਚੌਫਲਕੀ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। SnF₄ ਅਤੇ PbF₄, ਅਪਵਾਦ ਹਨ। ਇਹ ਆਇਨਿਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ। PbI₄ ਦੀ ਹੋਂਦ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ Pb—I ਬੰਧਨ (ਜੋ ਸ਼ੁਰੂ ਵਿੱਚ ਬਣਦਾ ਹੈ) ਐਂਨੀ ਉਰਜਾ ਪੈਦਾ ਨਹੀਂ ਕਰ ਸਕਦਾ ਕਿ ਇਸ ਨਾਲ $6s^2$ ਇਲੈਕਟ਼ਾੱਨਾਂ ਦਾ ਵਿਯਗਮਨ ਹੋ ਸਕੇ ਅਤੇ ਉੱਚੇ ਆੱਰਬਿਟਲ ਵਿੱਚ ਉਤੇਜਨ ਨਾਲ ਚਾਰ ਅਯੁਗਮਤ ਇਲੈਕਟ੍ਰਾੱਨ ਪ੍ਰਾਪਤ ਹੋਣ। ਇਸ ਗਰੁੱਪ ਦੇ Ge ਤੋਂ Pb ਤੱਕ ਦੇ ਮੈਂਬਰ MX, ਕਿਸਮ ਦੇ ਹੇਲਾਈਡ ਬਨਾਉਣ ਦੀ ਵੀ ਪ੍ਵਿਰਤੀ ਰੱਖਦੇ ਹਨ। ਰਸਾਇਣਿਕ ਅਤੇ ਤਾਪੀ ਸਥਾਈਪਨ ਦੇ ਅਧਾਰ ਤੇ GeX₄ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ GeX_2 ਵਧੇਰੇ ਸਥਾਈ ਹੈ, ਜਦਕਿ PbX_2 ਦੀ ਤੁਲਨਾ ਵਿੱਚ PbX4 ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦਾ ਹੈ। CCl4 ਦੇ ਇਲਾਵਾ ਬਾਕੀ ਸਾਰੇ ਟੈਟ੍ਰਾਹੇਲਾਈਡ ਅਸਾਨੀ ਨਾਲ ਜਲ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਪਾਣੀ ਦੇ ਆੱਕਸੀਜਨ

317

ਦੇ ਪਰਮਾਣੂ d ਆੱਰਬਿਟਲ ਵਿੱਚ ਏਕਾਂਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰ ਸਕਦੇ ਹਨ।

SiCl₄ ਦੀ ਉਦਾਹਰਣ ਲੈ ਕੇ ਜਲ ਅਪਘਟਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜੇ Si ਦੇ *d*-ਆੱਰਬਿਟਲ ਵਿੱਚ ਪਾਣੀ ਦੇ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮ ਗ੍ਰਹਿਣ ਕਰਕੇ SiCl₄ ਸ਼ੁਰੂ ਵਿੱਚ ਜਲ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਅੰਤ ਵਿੱਚ Si(OH)₄ ਬਣਦਾ ਹੈ–

ਉਦਾਹਰਣ 11. 6

[SiF₆]²⁻ ਗਿਆਤ ਹੈ, ਜਦਕਿ [SiCl₆]²⁻ ਅਗਿਆਤ ਹੈ। ਇਸ ਦੇ ਸੰਭਾਵਿਤ ਕਾਰਣ ਦਿਓ।

ਹੱ ਲ

ਇਸ ਦੇ ਮੁੱਖ ਕਾਰਣ ਹੇਠ ਲਿਖੇ ਹਨ-

(i) Si ਪਰਮਾਣੂ ਅਕਾਰ ਦਾ ਛੋਟਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਕਲੋਰੀਨ ਦੇ ਛੇ ਵੱਡੇ ਅਕਾਰ ਦੇ ਪਰਮਾਣੂ ਵਿਵਸਥਿਤ ਨਹੀਂ ਹੋ ਸਕਦੇ।

(ii) ਕਲੋਰਾਈਡ ਆਇਨ ਦਾ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਅਤੇ Si⁴⁺ ਦੇ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ ਪ੍ਰਬਲ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।

11.6 ਕਾਰਬਨ ਦੀਆਂ ਮਹਤੱਵਪੂਰਣ ਪ੍ਵਿਰਤੀਆਂ ਅਤੇ ਅਨਿਯਮਿਤ ਵਿਹਾਰ

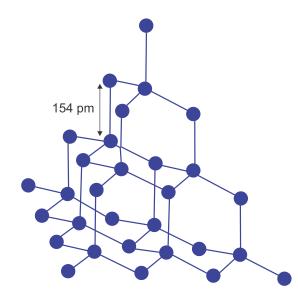
ਦੂਜੇ ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਮੈਂਬਰਾਂ ਵਾਂਗ ਇਸ ਗਰੁੱਪ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਕਾਰਬਨ ਆਪਣੇ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਮੈਂਬਰਾਂ ਤੋਂ ਭਿੰਨ ਵਿਹਾਰ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਇਸ ਦੇ ਛੋਟੇ ਅਕਾਰ, ਉੱਚੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ, ਉੱਚੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ *d*-ਆਰਬਿਟਲਾਂ ਦੀ ਗੈਰ ਮੌਜੁਦਗੀ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ।

ਕਾਰਬਨ ਵਿੱਚ ਸਿਰਫ s-ਅਤੇ p-ਆੱਰਬਿਟਲ ਹੀ ਬੰਧਨ ਦੇ ਲਈ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਆਪਣੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਸਿਰਫ ਚਾਰ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੀ ਟਿਕਾ (accommodate) ਸਕਦਾ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਇਸਦੀ ਅਧਿਕਤਮ ਸੰਯੋਜਕਤਾ ਚਾਰ ਹੁੰਦੀ ਹੈ, ਜਦਕਿ ਬਾਕੀ ਮੈਂਬਰ *d*-ਆੱਰਬਿਟਲਾਂ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਆਪਣੀ ਸੰਯੋਜਕਤਾ ਵਿੱਚ ਵਾਧਾ ਕਰ ਲੈਂਦੇ ਹਨ। ਕਾਰਬਨ ਵਿੱਚ ਆਪਣੇ ਨਾਲ ਅਤੇ ਛੋਟੇ ਅਕਾਰ ਅਤੇ ਉੱਚੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਾਲੇ ਹੋਰ ਪਰਮਾਣੂਆਂ ਨਾਲ $p\pi$ – $p\pi$ ਬਹੁ ਬੰਧਨ ਬਨਾਉਣ ਦੀ ਨਿਵੇਕਲੀ ਸਮਰਥਾ (Unique ability) ਹੁੰਦੀ ਹੈ।C=C, C = C, C = O, C = S, C = N ਆਦਿ ਇਸ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ। ਇਸ ਗਰੁਪ ਦੇ ਅਗਲੇ ਮੈਂਬਰ $p\pi$ – $p\pi$ ਬੰਧਨ ਨਹੀਂ ਬਣਾਉਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਵਡੇ ਅਤੇ ਵਿਸਰਿਤ (diffused) ਪਰਮਾਣਵੀਂ ਆੱਰਬਿਟਲ ਹੋਣ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਵਿੱਚ ਪਭਾਵ ਓਵਰਲੈਪਿੰਗ ਨਹੀਂ ਹੰਦੀ।

ਕਾਰਬਨ ਵਿੱਚ ਹੋਰ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੁਆਰਾ ਲੰਬੀ ਲੜੀ (chains) ਅਤੇ ਰਿੰਗ (rings) ਬਨਾਉਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਹੁੰ ਦੀ ਹੈ। ਇਸ ਪ੍ਰਵਿਰਤੀ ਨੂੰ ਕੈਟੇਨੇਸ਼ਨ (catenation) ਕਹਿੰਦੇ ਹਨ। C—C ਬੰਧਨ ਮਜਬੂਤ ਹੋਣ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਵਧਦਾ ਹੋਇਆ ਅਕਾਰ ਅਤੇ ਘਟਦੀ ਹੋਈ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੇ ਕਾਰਣ ਕੈਟੇਨੇਸ਼ਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਘਟਦੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਬੰਧਨ ਐਨਥੈਲਪੀ ਮਾਨ ਤੋਂ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਗਰੁੱਪ-14 ਵਿੱਚ ਕੈਟੇਨੇਸ਼ਨ ਦਾ ਕ੍ਰਮ C >> Si > Ge ≈ Sn ਹੁੰਦਾ ਹੈ। ਲੈੱਡ ਕੈਟੇਨੇਸ਼ਨ ਨਹੀਂ ਦਰਸਾਉਂਦਾ ਹੈ।

ਬੰਧਨ	ਬੰਧਨ ਐਨਥੈਲਪੀ / ${f kJ}$ mol $^{-1}$
C—C	348
Si —Si	297
Ge—Ge	260
Sn—Sn	240

ਕੈਟੇਨੇਸ਼ਨ ਅਤੇ *p*π− *p*π ਬੰਧਨ−ਨਿਰਮਾਣ ਦੇ ਕਾਰਣ ਕਾਰਬਨ ਭਿੰਨਰੁਪਤਾ ਦਰਸਾਉਂਦੀ ਹੈ।


11.7 ਕਾਰਬਨ ਦੇ ਭਿੰਨ ਰੂਪ

ਕਾਰਬਨ ਦੇ ਕ੍ਰਿਸਟਲੀ ਅਤੇ ਅਕ੍ਰਿਸਟਲੀ ਦੋਵੇਂ ਹੀ ਭਿੰਨ ਰੂਪ ਹੁੰਦੇ ਹਨ। ਹੀਰਾ ਅਤੇ ਗਰੇਫਾਈਟ ਕਾਰਬਨ ਦੇ ਦੋ ਪ੍ਰਮੁੱਖ ਕ੍ਰਿਸਟਲੀ ਰੂਪ ਹਨ। ਐਚ. ਡਲਲਿਊ. ਕ੍ਰੋਟੋ, ਈ. ਸਮੈਲੇ ਅਤੇ ਅਰ. ਐਫ. ਕਰਲ (H.W.Kroto, E.Smalley and R.F.Curl.) ਨੇ ਸੰਨ 1985 ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਇੱਕ ਹੋਰ ਰੂਪ ਫੁਲੇਰੀਨ (Fullerenes) ਦੀ ਖੋਜ ਕੀਤੀ। ਇਸ ਖੋਜ ਦੇ ਕਾਰਣ ਸੰਨ 1996 ਵਿੱਚ ਇਨ੍ਹਾਂ ਨੂੰ ਨੋਬਲ ਪੁਰਸਕਾਰ ਪ੍ਰਦਾਨ ਕੀਤਾ ਗਿਆ।

11.7.1 ਹੀਰਾ

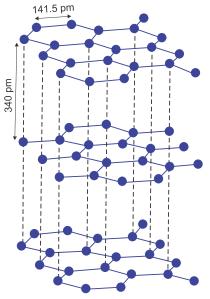
ਹੀਰੇ ਵਿੱਚ ਕ੍ਰਿਸਟਲੀ ਲੈਟਿਸ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਹਰ ਇੱਕ ਪਰਮਾਣੂ sp^3 ਸੰਕਰਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਚੌਫਲਕੀ ਜੋਮੈਟਰੀ ਨਾਲ ਹੋਰ ਚਾਰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਬੰਧਨ ਲੰਬਾਈ 154 pm ਹੁੰਦੀ ਹੈ। ਕਾਰਬਨ ਪਰਮਾਣੂ ਸਪੇਸ (space) ਵਿੱਚ ਮਜਬੂਤ ਤਿੰਨ ਵਿਧੀ ਲੈਟਿਸ (rigid three-dimensional network) ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਇਸ ਰਚਨਾ (ਚਿੱਤਰ 11.3) ਵਿੱਚ ਸੰਪੂਰਨ

318

ਚਿੱਤਰ 11.3 ਹੀਰੇ ਦੀ ਰਚਨਾ

ਲੈਟਿਸ ਵਿੱਚ ਦਿਸ਼ਾਤਮਕ ਸਹਿ ਸੰਯੋਜਕ ਬੰਧਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਵਿਸਤਰਿਤ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਨੂੰ ਤੋੜਨਾਂ ਮੁਸ਼ਕਿਲ ਕਾਰਜ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਹੀਰਾ ਧਰਤੀ ਉੱਤੇ ਮਿਲਣ ਵਾਲਾ ਸਭ ਤੋਂ ਸਖਤ ਪਦਾਰਥ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਧਾਰ ਤਿੱਖੀ ਕਰਨ ਦੇ ਲਈ ਅਪਘਰਸ਼ਕ (abrasive) ਦੇ ਰੂਪ ਵਿੱਚ, (dyes) ਬਨਾਉਣ ਵਿੱਚ ਅਤੇ ਬਿਜਲਈ ਪ੍ਰਕਾਸ਼ ਲੈਂਪ ਵਿੱਚ ਟੰਗਸਟਨ ਤੰਤੁ (filament) ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਣ 11.7

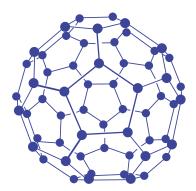

ਹੀਰੇ ਵਿੱਚ ਸਹਿਸੰਯੋਜਨ ਹੋਣ ਦੇ ਉਪਰੰਤ ਵੀ ਪਿਘਲਣ ਅੰਕ ਉੱਚ ਹੈ। ਕਿਉਂ ?

ਹੱਲ

ਹੀਰੇ ਵਿੱਚ ਮਜਬੂਤ C—C ਬੰਧਨਯੁਕਤ ਤਿੰਨ ਵਿਧੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਤੋੜਨਾ ਬਹੁਤ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਦਾ ਪਿਘਲਣ ਅੰਕ ਉੱਚਾ ਹੈ।

11.7.2 ਗਰੇਫਾਈਟ

ਗਰੇਫਾਈਟ ਦੀ ਪਰਤੀ ਰਚਨਾ (Layered structure) ਹੁੰਦੀ ਹੈ। ਇਹ ਪਰਤਾਂ ਵੈਂਡਰਵਾਲ ਬਲ ਦੁਆਰਾ ਜੁੜੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਦੋ ਪਰਤਾਂ ਵਿਚਲੀ ਦੂਰੀ 340 pm ਹੁੰਦੀ ਹੈ। ਹਰ ਪਰਤ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ ਛੇ ਕੋਣੀ ਰਿੰਗ (Hexagonal rings) ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਵਸਥਿਤ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ C—C ਬੰਧਨ ਲੰਬਾਈ 141.5 pm ਹੁੰਦੀ ਹੈ। ਛੇ ਕੋਣੀ ਰਿੰਗ ਵਿੱਚ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ sp² ਸੰਕਰਿਤ ਹੁੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਤਿੰਨ ਨੇੜਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਤਿੰਨ ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਸਦਾ ਚੌਥਾ ਇਲੈਕਟ੍ਰਾੱਨ π-ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਸੰਪੂਰਣ ਪਰਤ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਡੀਲੋਕੇਲਾਈਜ਼ਡ (delocalised) ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾੱਨ



ਚਿੱਤਰ 11.4 ਗਰੇਫਾਈਟ ਦੀ ਰਚਨਾ

ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਗਰੇਫਾਈਟ ਬਿਜਲੀ ਦਾ ਚਾਲਕ ਹੁੰਦਾ ਹੈ।ਗਰੇਫਾਈਟ ਦੀਆਂ ਪਰਤਾਂ ਦੇ ਭਲ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਤੋਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਗਰੇਫਾਈਟ ਮੁਲਾਇਮ (soft) ਅਤੇ ਚੀਕਣਾ (slippery) ਹੁੰਦਾ ਹੈ। ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਜਿਹੜੀਆਂ ਮਸ਼ੀਨਾਂ ਵਿੱਚ ਤੇਲ ਦੀ ਵਰਤੋਂ ਲੁਬਰੀਕੈਂਟ (lubricant) ਦੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਹੋ ਸਕਦੀ, ਉਨ੍ਹਾਂ ਵਿੱਚ ਗਰੇਫਾਈਟ ਖੁਸ਼ਕ ਲੁਬਰੀਕੈਂਟ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ।

11.7.3 ਫੁਲੇਰੀਨਜ਼ (Fullerenes)

ਹੀਲੀਅਮ, ਅਰਗਨ ਆਦਿ ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਜਦੋਂ ਗਰੇਫਾਈਟ ਨੂੰ ਬਿਜਲਈ ਆਰਕ (Electric arc) ਵਿੱਚ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਫੁਲੇਰੀਨ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ।ਵਾਸ਼ਪਿਤ ਛੋਟੇ Cⁿ ਅਣੂਆਂ ਨੂੰ ਸੰਘਣੇ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੱਜਲੀ ਪਦਾਰਥ (Sooty material) ਵਿੱਚ ਮੁੱਖ ਰੂਪ ਵਿੱਚ C₆₀ ਕੁਝ ਅੰਸ਼ C₇₀ ਅਤੇ ਅਤਿ ਸੁਖਮ ਮਾਤਰਾ ਵਿੱਚ 350 ਜਾਂ ਵੱਧ ਸੰਖਿਆ

ਚਿੱਤਰ.11.5 (C₆₀), ਬੱਕਮਿਨਸਟਰ ਫੁਲੇਰੀਨ ਦੀ ਰਚਨਾ : ਅਣੂ ਦੀ ਅਕ੍ਰਿਤੀ ਸਾੱਕਰ ਬਾਲ (ਫੁੱਟਬਾਲ) ਵਾਂਗ ਹੁੰਦੀ ਹੈ।

ਵਿੱਚ ਕਾਰਬਨ ਫੁਲੇਰੀਨ ਵਿੱਚ ਮਿਲੇ। ਫੁਲੇਰੀਨ ਕਾਰਬਨ ਸਭ ਤੋਂ ਦਾ ਸ਼ੁੱਧ ਰੂਪ ਹੈ, ਕਿਉਂਕਿ ਫੁਲੇਰੀਨ ਵਿੱਚ ਕਿਸੇ ਕਿਸਮ ਦਾ ਝੂਲਦਾ ਬੰਧਨ (dangling bonds) ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਫੁਲੇਰੀਨ ਦੀ ਰਚਨਾ ਪਿੰਜਰੇ ਵਾਂਗ ਹੁੰਦੀ ਹੈ। C₆₀ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਸਾੱਕਰ ਬਾਲ ਦੇ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਬਕਮਿਨਸਟਰ ਫੁਲੇਰੀਨ (Buckminster Fullerene) ਕਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 11.5)

ਇਸ ਵਿੱਚ ਛੇ ਮੈਂਬਰਾਂ ਵਾਲੀਆਂ 20 ਅਤੇ ਪੰਜ ਮੈਂਬਰਾਂ ਵਾਲੀਆਂ 12 ਰਿੰਗ (rings) ਹੁੰਦੀਆਂ ਹਨ। ਇੱਕ ਛੇ ਮੈਂਬਰੀ ਰਿੰਗ ਛੇ ਜਾਂ ਪੰਜ ਮੈਂਬਰੀ ਦੇ ਨਾਲ ਫਿਊਜ (Fuse) ਹੁੰਦੀ ਹੈ, ਜਦਕਿ ਪੰਜ ਮੈਂਬਰੀ ਰਿੰਗ ਸਿਰਫ ਛੇ ਮੈਂਬਰੀ ਰਿੰਗ ਦੇ ਨਾਲ ਫਿਊਜ਼ ਹੁੰਦੀ ਹੈ। ਸਾਰੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਸਮਾਨ ਹੁੰਦੇ ਹਨ ਅਤੇ sp^2 ਸੰਕਰਿਤ ਹੁੰਦੇ ਹਨ। ਹਰਇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਹੋਰ ਤਿੰਨ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਤਿੰਨ ਸਿਗਮਾ (sigma) ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਚੌਥਾ ਇਲੈਕਟ੍ਰਾੱਨ ਪੂਰੇ ਅਣੂ ਉੱਤੇ ਪਸਰਿਆ (delocalised) ਰਹਿੰਦਾ ਹੈ, ਜੋ ਅਣੂ ਨੂੰ ਐਰੋਮੈਟਿਕ ਗੁਣ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇਸ ਗੇਂਦ ਵਰੇਗੀ ਅਣੂ ਵਿੱਚ 60 ਕੋਣੇ (vertices) ਹੁੰਦੇ ਹਨ। ਹਰ ਇਕ ਕੋਣੇ ਉੱਤੇ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਦੋਵੇਂ ਇਕਰਿਰੇ ਅਤੇ ਦੂਹਰੇ ਬੰਧਨ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਦੀ C–C ਬੰਧਨ ਦੀ ਲੰਬਾਈ ਕ੍ਰਮਵਾਰ 143.5 pm ਅਤੇ 138.3 pm ਹੁੰਦੀ ਹੈ।ਗੋਲਾਕਾਰ ਫੁਲੇਗੇਨ ਨੂੰ 'ਬੱਕੀ ਬਾਲ' (Bucky balls) ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਇੱਕ ਮਹਤੱਵਪੂਰਣ ਤੱਥ ਇਹ ਹੈ ਕਿ ਤਾਪਗਤਿਕ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਭਿੰਨ ਰੂਪ ਗਰੇਫਾਈਟ ਹੈ। ਇਸ ਲਈ ਗਰੇਫਾਈਟ Δ_∫ H^θ ਨੂੰ ਸਿਫਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਹੀਰਾ ਅਤੇ ਫੁਲੇਰੀਨ ਦੇ Δ_∫ H^θ ਦੇ ਮਾਨ ਕ੍ਰਮਵਾਰ 1.90 ਅਤੇ 38.1 kJ mol⁻¹ ਹੁੰਦੇ ਹਨ।ਕਾਰਬਨ ਤੱਤ ਦੇ ਹੋਰ ਰੂਪ (ਜਿਵੇਂ— ਕਾਰਬਨ ਬਲੈਕ, ਕੋਕ, ਚਾਰਕੋਲ ਆਦਿ) ਗਰੇਫਾਈਟ ਅਤੇ ਫੁਲੇਰੀਨ ਦੇ ਅਸ਼ੁਧ ਰੂਪ ਹਨ। ਹਵਾ ਦੀ ਸੀਮਿਤ ਮਾਤਰਾ ਵਿੱਚ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਨੂੰ ਜਲਾਉਣ ਤੇ ਕਾਰਬਨ ਬਲੈਕ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਹਵਾ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਵਿੱਚ ਲੱਕੜੀ ਅਤੇ ਕੋਲੇ ਨੂੰ ਗਰਮ ਕਰਨ ਤੇ ਚਾਰਕੌਲ ਅਤੇ ਕੋਕ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

11.7.4 ਕਾਰਬਨ ਦੇ ਲਾਭ

ਪਲਾਸਟਿਕ ਪਦਾਰਥ ਵਿੱਚ ਜੜੇ ਹੋਏ ਗਰੇਫਾਈਟ ਤੰਤੂ ਉੱਚੀ ਸਮਰਥਾ ਵਾਲੀਆਂ ਹਲਕੀਆਂ ਵਸਤੂਆਂ ਬਣਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਸਤੂਆਂ ਦੀ ਵਰਤੋਂ ਮੱਛੀਆਂ ਫੜਨ ਵਾਲੀ ਰਾੱਡ (fishing rods), ਟੈਨਿਸ ਰੈਕਟ, ਹਵਾਈ ਜਹਾਜ ਅਤੇ ਡੋਂਗੀ (canoes) ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਬਿਜਲੀ ਦਾ ਚੰਗਾ ਚਾਲਕ ਹੋਣ ਦੇ ਕਾਰਣ ਗਰੇਫਾਈਟ ਦੀ ਵਰਤੋਂ ਬੈਟਰੀ ਦੇ ਇਲੈਕਟ੍ਰਾੱਡ ਬਨਾਉਣ ਵਿੱਚ ਅਤੇ ਉਦਯੋਗਿਕ ਬਿਜਲਈ ਅਪਘਟਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਗਰੇਫਾਈਟ ਦੁਆਰਾ ਨਿਰਮਿਤ ਕਰੂਸੀਬਲ (Crucibles) ਹਲਕੇ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੇ ਪ੍ਰਤੀ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀ ਹੈ।ਮੁਸਾਮਦਾਰ ਹੋਣ ਦੇ ਕਾਰਣ ਐਕਟੀਵੇਟਿਡ ਚਾਰਕੋਲ ਦੀ ਵਰਤੋਂ ਜਹਿਰੀਲੀਆਂ ਗੈਸਾਂ ਨੂੰ ਸੋਖਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਪਾਣੀ ਫਿਲਟਰ (water filters) ਵਿੱਚ ਕਾਰਬਨਿਕ ਅਸ਼ੂਧੀਆਂ ਨੂੰ ਦੂਰ ਕਰਨ ਅਤੇ ਏਅਰ ਕੰਡੀਸ਼ਨਰ ਵਿੱਚ ਗੰਧ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਕਾਰਬਨ ਕਾਲੀ (carbon black) ਦੀ ਵਰਤੋਂ ਕਾਲੀ ਸਿਆਹੀ ਬਨਾਉਣ ਲਈ ਅਤੇ ਆੱਟੋਮੋਬਾਈਲਾਂ ਦੇ ਟਾਇਰ ਵਿੱਚ ਪੂਰਕ ਦੇ ਤੌਰ ਤੇ ਹੁੰਦੀ ਹੈ। ਕੋਕ ਦੀ ਵਰਤੋਂ ਮੁੱਖ ਤੌਰ ਤੇ ਧਾਤਮਕ ਵਿੱਚ ਲਗੂਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਹੀਰਾ ਇੱਕ ਮਹਿੰਗਾ ਪੱਥਰ ਹੈ। ਜਿਸ ਦੀ ਵਰਤੋਂ ਗਹਿਣਿਆਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਕੈਰਟ (1 ਕੈਰੇਟ = 200 mg) ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ।

11.8 ਕਾਰਬਨ ਅਤੇ ਸਿੱਲੀਕਾੱਨ ਦੇ ਪ੍ਰਮੁੱਖ ਯੋਗਿਕ ਕਾਰਬਨ ਦੇ ਆੱਕਸਾਈਡ

ਕਾਰਬਨ ਦੇ ਦੋ ਮਹੱਤਵਪੂਰਣ ਆੱਕਸਾਈਡ ਕਾਰਬਨ ਮੋਨੋ– ਆੱਕਸਾਈਡ (CO) ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ (CO₂) ਹਨ।

11.8.1 ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ

ਆੱਕਸੀਜਨ ਜਾਂ ਹਵਾ ਦੀ ਸੀਮਿਤ ਮਾਤਰਾ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਸਿੱਧੇ ਆੱਕਸੀਕਰਣ ਨਾਲ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ–

$$2C(s) + O_2(g) \xrightarrow{\Delta} 2CO(g)$$

ਗਾੜ੍ਹਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੁਆਰਾ 373 K ਉੱਤੇ ਫਾੱਰਮਿਕ ਐਸਿਡ ਦੀ ਨਿਰਜਲੀਕਰਣ ਕਰਨ ਤੇ ਅਲਪ ਮਾਤਰਾ ਵਿੱਚ ਸ਼ੁਧ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਗੈਸ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

HCOOH
$$\xrightarrow{373K}_{\text{conc.H}_2\text{SO}_4}$$
 H₂O + CO

ਉਦਯੋਗਕ ਪੱਧਰ ਤੇ ਇਸ ਨੂੰ ਕੋਕ ਉੱਤੋਂ ਭਾਫ (steam) ਲੰਘਾ ਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ CO ਅਤੇ H₂ ਦਾ ਪ੍ਰਾਪਤ ਮਿਸ਼ਰਣ 'ਵਾਟਰ ਗੈਸ' ਜਾਂ ਸੰਸਲੇਸ਼ਣ ਗੈਸ (synthesis gas) ਅਖਵਾਓਂਦਾ ਹੈ।

$$C(s) + H_2O(g) \xrightarrow{473-1273K} CO(g) + H_2(g)$$

=rca din

ਜਦੋਂ ਭਾਫ ਦੀ ਥਾਂ ਹਵਾ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ CO ਅਤੇ N₂ ਦਾ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।ਇਸ ਨੂੰ ਪਰੋਡਯੂਸਰ ਗੈਸ ਕਹਿੰਦੇ ਹਨ।

ਵਾਟਰ ਗੈਸ ਅਤੇ ਪਰੋਡਯੂਸਰ ਗੈਸ ਮਹੱਤਵਪੂਰਣ ਉਦਯੋਗਿਕ ਬਾਲਣ ਹਨ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਦੇ ਹੋਰ ਜਲਣ ਨਾਲ ਕਾਰਬਨ ਡਾਈ-ਆੱਕਸਾਈਡ ਗੈਸ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਤਾਪ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਹੈ।ਇਹ ਰੰਗਹੀਣ ਅਤੇ ਗੰਧਹੀਣ ਗੈਸ ਹੈ। ਇਹ ਇੱਕ ਪ੍ਰਬਲ ਲਘੂਕਾਰਕ ਹੈ। ਇਹ ਖਾਰੀ ਧਾਤਾਂ, ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ, ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਕੁਝ ਅੰਤਰਕਾਲੀ ਤੱਤਾਂ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਤੱਤਾਂ ਦੇ ਆੱਕਸਾਈਡ ਨੂੰ ਲਘੂਕ੍ਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ। ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡਾਂ ਦੇ ਇਸ ਗੁਣ ਦੀ ਵਰਤੋਂ ਭਿੰਨ-ਭਿੰਨ ਧਾਤਾਂ ਦੇ ਆੱਕਸਾਈਡ ਕੱਚੀ

320

ਧਾਤ (Ore) ਤੋਂ ਧਾਤ ਨਿਸ਼ਕਰਸ਼ਣ (extraction) ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

 $\begin{array}{l} \operatorname{Fe}_{2}O_{3}\left(s\right) + 3\operatorname{CO}\left(g\right) \xrightarrow{\Delta} 2\operatorname{Fe}\left(s\right) + 3\operatorname{CO}_{2}\left(g\right) \\ \\ \operatorname{ZnO}\left(s\right) + \operatorname{CO}\left(g\right) \xrightarrow{\Delta} \operatorname{Zn}\left(s\right) + \operatorname{CO}_{2}\left(g\right) \end{array}$

ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਵਿੱਚ ਇੱਕ ਸਿਗਮਾ ਅਤੇ ਦੋ ਪਾਈ (:C ≡ O:) ਬੰਧਨ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਇੱਕ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਦਾਤਾ (donor) ਦੇ ਸਮਾਨ ਵਿਹਾਰ ਕਰਦੀ ਹੈ ਅਤੇ ਕਈ ਧਾਤਾਂ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਧਾਤ ਕਾਰਬੋਨਾਈਲ ਬਣਾਉਂਦੀ ਹੈ। CO ਦਾ ਅਤਿਅੰਤ ਜਹਿਰੀਲਾ ਸੁਭਾਅ ਹੀਮੋਗਲੋਬਿਨ ਦੇ ਨਾਲ ਇੱਕ ਕੰਪਲੈਕਸ ਬਨਾਉਣ ਦੇ ਇਸ ਦੇ ਗੁਣ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ, ਜੋਂ ਆੱਕਸੀਜਨ-ਹੀਮੋਗਲੋਬਿਨ ਕੰਪਲੈਕਸ ਨਾਲੋਂ 300 ਗੁਣਾ ਜਿਆਦਾ ਸਥਾਈ ਹੁੰਦਾ ਹੈ। ਇਹ ਲਾਲ ਖੂਣ ਰਕਤਾਣੂਆਂ ਵਿੱਚ ਮੌਜੂਦ ਹੀਮੋਗਲੋਬਿਨ ਨੂੰ ਸ਼ਰੀਰ ਵਿੱਚ ਆੱਕਸੀਜਨ ਲੰਘਣ ਤੋਂ ਰੋਕਦੀ ਹੈ। ਅੰਤ ਇਸ ਦਾ ਪਰਿਣਾਮ ਮੌਤ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

11.8.2 ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ

ਹਵਾ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਇਹ ਕਾਰਬਨ ਜਾਂ ਕਾਰਬਨ ਯੁਕਤ ਬਾਲਣ ਦੇ ਪੂਰਣ ਜਲਨ ਤੇ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

$$C(s) + O_2(g) \xrightarrow{\Delta} CO_2(g)$$

 $CH_4(g) + 2O_2(g) \xrightarrow{\Delta} CO_2(g) + 2H_2O(g)$

ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਇਸ ਨੂੰ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਉੱਤੇ ਹਲਕੇ HCl ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੁਆਰਾ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। $CaCO_3(s) + 2HCl (aq) \rightarrow CaCl_2 (aq) + CO_2 (g) + H_2O(l)$

ਉਦਯੋਗ ਰੂਪ ਵਿੱਚ ਚੂਨਾ ਪੱਥਰ (limestone) ਨੂੰ ਗਰਮ ਕਰਕੇ ਇਹ ਬਣਾਈ ਜਾਂਦੀ ਹੈ।

ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਇੱਕ ਰੰਗਹੀਣ, ਗੰਧਹੀਣ ਗੈਸ ਹੈ।ਪਾਣੀ ਵਿੱਚ ਅਲਪ ਘੁਲਣਸ਼ੀਲਤਾ ਇਸ ਦੇ ਜੈਵ ਰਸਾਇਣਿਕ (bio-chemical) ਅਤੇ ਭੂ-ਰਸਾਇਣਿਕ (geo-chemical) ਮਹੱਤਵ ਨੂੰ ਦੱਸਦੀ ਹੈ। ਪਾਣੀ ਦੇ ਨਾਲ ਇਹ ਕਾਰਬਾੱਨਿਕ ਐਸਿਡ ਬਣਾਉਂਦੀ ਹੈ, ਜੋ ਇੱਕ ਦੁਰਬਲ ਦੋ-ਖਾਰੀ ਤੇਜਾਬ ਹੈ। ਇਹ ਹੇਠ ਲਿਖੇ ਦੋ ਸਟੈੱਪਾਂ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੁੰਦਾ ਹੈ–

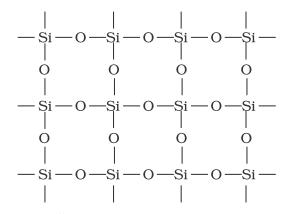
 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^{-}(aq) + H_3O^{+}(aq)$ $HCO_3^{-}(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^{+}(aq)$

 ${\rm H_2CO_3/HCO_3^-}$ ਦਾ ਬਫਰ ਘੋਲ ਖੂਣ ਦੀ pH ਨੂੰ 7.26 ਤੋਂ 7.42 ਦੇ ਵਿੱਚ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ। ਤੇਜਾਬੀ ਸੁਭਾਅ ਹੋਣ ਦੇ ਕਾਰਣ ਖਾਰਾਂ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਧਾਤ–ਕਾਰਬੋਨੇਟ ਬਣਾਉਂਦਾ ਹੈ।

ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ~ 0.03% (ਆਇਤਨ ਨਾਲ) ਮੌਜੂਦ ਰਹਿੰਦੀ ਹੈ, ਜਿਸਦੀ ਵਰਤੋਂ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ (photosynthesis) ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਹਰੇ ਪੌਦੇ ਵਾਯੂਮੰਡਲੀ CO₂ ਨੂੰ ਕਾਰਬੋਹਾਈਡ੍ਰੇਟ (ਜਿਵੇਂ ਗਲੂਕੋਜ਼) ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ–

 $6CO_2 + 12H_2O \xrightarrow{h\nu} C_6H_{12}O_6 + 6O_2 + 6H_2O$

ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਪੌਦੇ ਜੰਤੂਆਂ, ਮਨੁੱਖਾਂ ਅਤੇ ਖੁਦ ਦੇ ਲਈ ਭੋਜਨ ਬਣਾਉਂਦੇ ਹਨ। ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਤੋਂ ਉਲਟ ਇਹ ਜਹਿਰੀਲੇ ਸੁਭਾਅ ਦੀ ਨਹੀਂ ਹੁੰਦੀ, ਪਰੰਤੂ ਫਾੱਸਿਲ ਬਾਲਣ (fossil fuels) ਦੇ ਵਧਦੇ ਜਲਨ ਅਤੇ ਸੀਮੈਂਟ ਉਦਯੋਗ ਦੇ ਲਈ ਚੂਨਾ ਪੱਥਰ (limestone) ਦੇ ਵਿਘਟਨ ਦੇ ਕਾਰਣ ਵਾਯੂਮੰਡਲ ਵਿੱਚ CO₂ ਦੀ ਮਾਤਰਾ ਵਧਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਵਾਯੂਮੰਡਲ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ। ਇਸ ਨੂੰ ਹਰਾ-ਘਰ ਪ੍ਰਭਾਵ (Green House Effect) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੇ ਬੜੇ ਭੈੜੇ ਪਰਿਣਾਮ ਸਾਹਮਣੇ ਆਏ ਹਨ।


ਦ੍ਵਿਤ CO_2 ਦਾ ਪ੍ਰਸਾਰ ਤੇਜੀ ਨਾਲ ਹੋਣ ਦੇ ਕਾਰਣ CO_2 ਗੈਸ ਨੂੰ ਖ਼ੁਸ਼ਕ ਬਰਫ਼ (Dry ice) ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਖ਼ੁਸ਼ਕ ਬਰਫ ਦੀ ਵਰਤੋਂ ਆਈਸ ਕਰੀਮ ਅਤੇ ਫਰੋਜਨ ਫੂਡ (frozen food) ਦੇ ਲਈ ਠੰਡਾ ਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਗੈਸੀ CO_2 ਦੀ ਵਰਤੋਂ ਕਾਰਬੋਨੀਕ੍ਰਿਤ ਨਰਮ ਪੋਯ (soft drinks) ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਹਵਾ ਤੋਂ ਭਾਰੀ ਅਤੇ ਜਲਨ ਵਿੱਚ ਸਹਾਇਕ ਨਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਦੀ ਵਰਤੋਂ ਅੱਗ ਬੁਝਾਉ ਯੰਤਰ (fire extinguisher) ਵਿੱਚ ਹੁੰਦੀ ਹੈ। CO_2 ਦੀ ਵਰਤੋਂ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਯੂਰੀਆ ਬਨਾਉਣ ਵਿੱਚ ਹੰਦੀ ਹੈ।

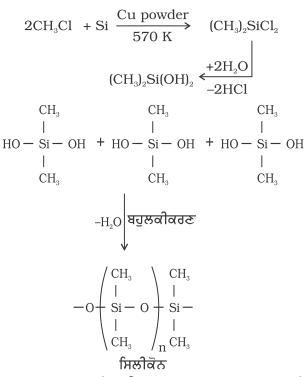
 CO_2 ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ sp ਸੰਕਰਿਤ (Hybridised) ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇਦੋ sp ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ, ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਦੇ ਦੋ p ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ ਦੋ ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ, ਜਦ ਕਿ ਕਾਰਬਨ ਦੇ ਬਾਕੀ ਦੋ ਆਰਬਿਟਲ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਦੇ ਨਾਲ $p\pi$ – $p\pi$ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਫਲਸਰੂਪ ਇਸ ਦੀ ਅਕ੍ਰਿਤੀ ਰੇਖੀ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਦੋਵਾਂ C–O ਬੰਧਨਾਂ ਦੀ ਲੰਬਾਈ ਬਰਾਬਰ (115 pm) ਹੁੰਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਕੋਈ ਦੋ ਧਰੁਵ ਮੋਮੈਂਟ (Dipole moment) ਨਹੀਂ ਹੁੰਦਾ। CO_2 ਦੀ ਅਨੁਨਾਦੀ (Resonance) ਰਚਨਾਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ—

11.8.3 ਸਿੱਲੀਕਾੱਨ ਡਾਈਆੱਕਸਾਈਡ (SiO₂)

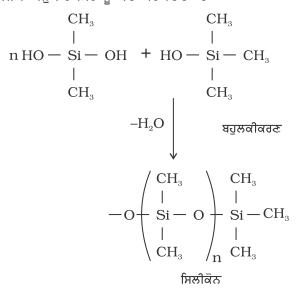
ਭੂ-ਪੇਪੜੀ ਦਾ 95% ਭਾਗ ਸਿਲੀਕਾ ਅਤੇ ਸਿੱਲੀਕੇਟ ਤੋਂ ਬਣਿਆ ਹੈ। ਸਿੱਲੀਕਾੱਨ ਡਾਈਆੱਕਸਾਈਡ ਜਿਸ ਨੂੰ ਆਮ ਤੌਰ ਤੇ 'ਸਿਲੀਕਾ' ਨਾਮ ਨਾਲ ਜਾਣਿਆਂ ਜਾਂਦਾ ਹੈ, ਅਨੇਕ ਕ੍ਰਿਸਟਲ ਰਚਨਾਤਮਕ (crystallographic) ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਸਿਲੀਕਾ ਦੇ ਕੁਝ ਰੂਪ ਕੁਆਰਟਜ਼ (quartz) ਕ੍ਰਿਸਟੋਬੇਲਾਈਟ (cristobalite) ਅਤੇ ਟ੍ਰਾਈਡਾਈਮਾਈਟ (tridymite) ਹਨ, ਜੋ ਉਚਿਤ ਤਾਪਮਾਨ ਤੇ ਅੰਤਰ-ਪਰਵਰਤਨੀ ਹੁੰਦੇ ਹਨ। ਸਿੱਲੀਕਾਂਨ ਡਾਈਆੱਕਸਾਈਡ ਇੱਕ ਸਹਿਸੰਯੋਜਕ ਤਿੰਨ ਵਿਧੀ ਲੈਟਿਸ ਯੁਕਤ ਠੋਸ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਿੱਲੀਕਾਂਨ ਚੌਫਲਕੀ ਰੁਪ

ਵਿੱਚ ਚਾਰ ਅੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਸਹਿਸੰਯੋਜਿਤ ਬੱਝਿਆ ਰਹਿੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਦੋ ਸਿੱਲੀਕਾੱਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੂੜਿਆ ਰਹਿੰਦਾ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 11.6 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਹਰ ਇੱਕ ਕੋਣਾ ਦੂਜੀ ਚੌਫਲਕੀ ਨਾਲ ਸਾਂਝਾ ਹੁੰਦਾ ਹੈ।ਸੰਪੂਰਣ ਕ੍ਰਿਸਟਲ ਨੂੰ ਇੱਕ ਅਜਿਹੇ ਵਿਸ਼ਾਲ ਅਣੂ ਦੇ ਰੂਪ ਵਿੱਚ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਿੱਲੀਕਾੱਨ ਅਤੇ ਆਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਏਕਾਂਤਰ ਕ੍ਰਮ ਵਿੱਚ ਅੱਠ ਮੈਂਬਰੀ ਰਿੰਗ ਬਣਦੀ ਹੈ।

ਚਿੱਤਰ 11.6 SiO₂ ਦੀ ਤਿੰਨ ਵਿਧੀ ਰਚਨਾ


ਸਿਲੀਕਾ ਆਪਣੇ ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਅਤਿ ਉੱਚ Si-O ਬੰਧਨ ਐਨਥੈਲਪੀ ਹੋਣ ਦੇ ਕਾਰਣ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦਾ ਹੈ। ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸਿੱਲੀਕਾ ਹੈਲੋਜਨ, ਹਾਈਡ੍ਰੋਜਨ, ਕਈ ਤੇਜਾਬਾਂ ਅਤੇ ਧਾਤਾਂ ਨਾਲ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ, ਹਾਲਾਂਕਿ HF ਅਤੇ NaOH ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।

$$\begin{split} &\text{SiO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \\ &\text{SiO}_2 + 4\text{HF} \rightarrow \text{SiF}_4 + 2\text{H}_2\text{O} \end{split}$$


ਕੁਆਰਟਜ਼ ਦੀ ਜਿਆਦਾ ਵਰਤੋਂ ਦਾਬ-ਬਿਜਲੀ (Piezoelectric) ਪਦਾਰਥ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਨਾਲ ਅਤਿ ਯਥਾਰਥ ਘੜੀਆਂ, ਆਧੁਨਿਕ ਰੇਡੀਓ ਅਤੇ ਦੂਰਦਰਸ਼ਨ ਪ੍ਰਸਾਰਣ, ਗਤੀਸ਼ੀਲ ਰੇਡੀਓ ਸੰਚਾਰ ਵਿਵਸਥਾ ਦਾ ਨਿਰਮਾਣ ਸੰਭਵ ਹੋ ਸਕਿਆ। ਸਿਲੀਕਾ ਜੈੱਲ ਦੀ ਵਰਤੋਂ ਖੁਸ਼ਕਕਾਰੀ ਪਦਾਰਥ (Drying agent), ਵਰਣਲੇਖੀ ਪਦਾਰਥ (Chromatographic materials) ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਸਿੱਲੀਕਾ ਦਾ ਇੱਕ ਅਕ੍ਰਿਸਟਲੀ ਰੂਪ (Amorphous form) ਕੀਸੇਲਗੂਰ (Kiesegur) ਦੀ ਵਰਤੋਂ ਫਿਲਟਰਨ ਯੰਤਰ (Filtration plants) ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

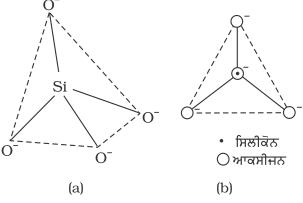
11.8.4 ਸਿੱਲੀਕੋਨ

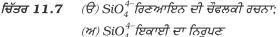
ਇਹ ਕਾਰਬਨ ਸਿੱਲੀਕੋਨ ਪਾਲੀਮਰਾਂ ਦਾ ਇੱਕ ਗਰੁੱਪ ਹੈ, ਜਿਸ ਵਿੱਚ {R₂SiO} ਇੱਕ ਮੁੜ ਅਵਰਤੀ ਇਕਾਈ (Repeating unit) ਹੁੰਦੀ ਹੈ। ਸਿੱਲੀਕੋਨ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਸ਼ੁਰੂਆਤੀ ਪਦਾਰਥ ਐਲਕਾਈਲ ਜਾਂ ਐਰਾਈਲ ਗਰੁੱਪ ਪ੍ਰਤੀ ਸਥਾਈ (Substituted) ਸਿਲੀਕੋਨ ਕਲੋਰਾਈਡ ਹੁੰਦਾ ਹੈ। R_nSiCl (4-n), ਜਿੱਥੇ R ਕੋਈ ਐਲਕਾਈਲ ਜਾਂ ਐਰਾਈਨ ਗਰੁੱਪ ਹੈ। ਜਦੋਂ 573K ਤਾਪਮਾਨ ਉਤੇ ਮੀਥਾਈਲ ਕਲੋਰਾਈਡ, ਕਾੱਪਰ ਉਤਪ੍ਰੇਰਕ ਦੀ ਹੋਂਦ ਵਿੱਚ ਸਿਲੀਕਾੱਨ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ, ਤਾਂ ਭਿੰਨ-ਭਿੰਨ ਮੀਥਾਈਲ ਪ੍ਰਤੀ ਸਥਾਈ ਕਲੋਰੋਸਾਈਲੇਨ (ਜਿਨ੍ਹਾਂ ਦਾ ਸੂਤਰ MeSiCl₃, Me₂SiCl₂, Me₃SiCl ਅਤੇ ਸੂਖਮ ਮਾਤਰਾ ਵਿੱਚ Me₄Si ਹੁੰਦਾ ਹੈ ਬਣਦੇ ਹਨ।ਡਾਈਮੀਥਾਈਲ ਕਲੋਰੋਸਾਈਲੇਨ (CH₃)₂SiCl₂ ਦੇ ਜਲ-ਅਪਘਟਨ ਦੇ ਉਪਰੰਤ ਸੰਘਣਨ ਪਾੱਲੀਮਰਾਈਜੇਸ਼ਨ ਦੁਆਰਾ ਚੇਨ ਪਾੱਲੀਮਰ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

(CH₃)₃SiCl ਮਿਲਾਉਣ ਨਾਲ ਬਹੁਲਕ (polymer) ਦੀ ਚੇਨ ਦੀ ਲੰਬਾਈ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਸਿਰੇ ਨੂੰ ਬੰਦ ਕਰ ਦਿੰਦਾ ਹੈ–

322

ਅਧਰੁਵੀ ਐਲਕਾਈਲ ਗਰੁਪਾਂ ਨਾਲ ਘਿਰੇ ਰਹਿਣ ਦੇ ਕਾਰਣ ਸਿਲੀਕੋਟ ਦੀ ਜਲ-ਪ੍ਤੀਕਰਸ਼ੀ (water repelling) ਪ੍ਰਕਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਉੱਚ ਤਾਪੀ ਸਥਾਈਪਨ, ਉੱਚ ਡਾਈਇਲੈਕਟ੍ਰਿਕ ਸਥਿਰ ਅੰਕ ਅਤੇ ਰਸਾਇਣਾਂ ਅਤੇ ਆੱਕਸੀਕਰਣ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਰੋਧਤਾ ਦਾ ਗੁਣ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਬਹੁਤ ਜਿਆਦਾ ਲਾਭ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਸੀਲਿਤ, ਗ੍ਰੀਸ (Sealant, greases), ਬਿਜਲਈ ਰੋਧੀ (Electrical insulators) ਅਤੇ ਵਾਟਰਪਰੂਫ ਕਪੜੇ (Water proofing fabrics) ਅਤੇ ਸਰਜੀਕਲ ਯੰਤਰ ਅਤੇ ਕਾੱਸਮੈਟਿਕਸ ਵਿੱਚ ਵੀ ਹੁੰਦੀ ਹੈ।


ਉਦਾਹਰਣ 11.8 ਸਿੱਲੀਕੋਨ ਕੀ ਹੈ ?


ਹੱਲ

ਆਮ ਤੌਰ ਤੇ ਸਿੱਲੀਕੋਣ $\begin{pmatrix} I \\ Si - 0 \\ I \end{pmatrix}_n$ ਚੇਨ ਯੁਕਤ ਉਹ ਯੋਗਿਕ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਐਲਕਾਈਲ ਜਾਂ ਐਰਾਈਲ ਗਰੁੱਪ ਸਿੱਲੀਕਾੱਨ ਪਰਮਾਣੂ ਦੇ ਨਾਲ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਜਲ ਵਿਰੋਧੀ (Hydrophobic) ਸੁਭਾਅ ਦੇ ਹੁੰਦੇ ਹਨ।

11.8.5 ਸਿੱਲੀਕੇਟ

ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਸਿੱਲੀਕੇਟ ਖਣਿਜ ਮਿਲਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਖਣਿਜ ਹਨ—ਫੈਲਡਸਪਾਰ (feldspar), ਜ਼ੀਓਲਾਈਟ (zeolites), ਸਫੇਦ ਅਬਰਕ (mica) ਅਤੇ ਐਸਬੈਸਟਾੱਸ (asbestos)। ਸਿੱਲੀਕੇਟ ਦੀ ਮੂਲ ਰਚਨਾਤਮਕ ਇਕਾਈ SiO₄⁴⁻ (ਚਿੱਤਰ 11.7) ਹੈ, ਜਿਸ ਵਿੱਚ ਸਿੱਲੀਕੇਟ ਪਰਮਾਣੂ ਚਾਰ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਚੌਫਲਕੀ ਰੂਪ ਵਿੱਚ ਬੰਧਿਤ ਰਹਿੰਦਾ ਹੈ। ਸਿੱਲੀਕੇਟ ਵਿੱਚ ਜਾਂ ਤਾਂ ਇੱਕ ਅਲੱਗ (discrete) ਇਕਾਈ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ, ਜਾਂ ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਕਈ ਇਕਾਈਆਂ ਪ੍ਰਤੀ ਸਿੱਲੀਕੇਟ ਇਕਾਈ ਦੀ 1, 2, 3 ਜਾਂ 4 ਆੱਕਸੀਜਣ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਸਾਂਝੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਜਦੋਂ ਸਿੱਲੀਕੇਟ ਇਕਾਈਆਂ ਆਪਸ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ, ਤਾਂ ਚੇਨ, ਰਿੰਗ, ਪਰਤ ਅਤੇ ਤਿੰਨ ਵਿਧੀ ਰਚਨਾ ਬਣਦੀ ਹੈ। ਸਿੱਲੀਕੇਟ ਰਚਨਾਂ ਵਿਚ ਰਿਣ ਚਾਰਜ

ਧਨ ਚਾਰਜਿਤ ਧਾਤ-ਆਇਨਾਂ ਦੁਆਰਾ ਉਦਾਸੀਨ ਹੁੰਦਾ ਹੈ।ਜੇ ਚਾਰੇ ਕੋਣੇ ਹੋਰ ਚੌਫਲਕੀ ਇਕਾਈਆਂ ਦੇ ਨਾਲ ਸਾਂਝੇ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਤਿੰਨ ਵਿਧੀ ਲੈਟਿਸ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ।

ਮਨੁੱਖ ਦੁਆਰਾ ਨਿਰਮਿਤ ਦੋ ਮਹੱਤਵਪੂਰਣ ਸਿੱਲੀਕੇਟ ਕੱਚ ਅਤੇ ਸੀਮੈਂਟ ਹਨ।

11.8.6 ਜ਼ੀਓਲਾਈਟ

ਜੇ ਸਿੱਲੀਕਾੱਨ ਡਾਈਆਂਕਸਾਈਡ ਦੇ ਤਿੰਨ ਵਿਧੀ ਲੈਟਿਸ ਵਿੱਚੋਂ ਕੁਝ ਸਿੱਲੀਕਾੱਨ ਪਰਮਾਣੂ ਐਲੂਮੀਨਿਅਮ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਪ੍ਰਾਪਤ ਸੰਪੂਰਣ ਰਚਨਾ ਨੂੰ ਐਲੂਮੀਨੋਸਿਲੀਕੇਟ ਕਹਿੰਦੇ ਹਨ, ਜਿਸ ਉੱਤੇ ਇੱਕ ਰਿਣ ਚਾਰਜ ਹੁੰਦਾ ਹੈ।Na⁺, K⁺, Ca²⁺ ਆਦਿ ਧਨਆਇਨ ਇਸ ਰਿਣ ਚਾਰਜ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹਨ। ਇਸ ਦੇ ਉਦਾਹਰਣ ਫੈਲਡ ਸਪਾਰ ਅਤੇ ਜ਼ੀਓਲਾਈਟ ਹਨ। ਇਸ ਦੇ ਉਦਾਹਰਣ ਫੈਲਡ ਸਪਾਰ ਅਤੇ ਜ਼ੀਓਲਾਈਟ ਹਨ। ਪੈਟ੍ਰੇਰਸਾਇਣ ਉਦਯੋਗ ਵਿੱਚ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਭੰਜਨ ਅਤੇ ਸਮਅੰਗੀਕਰਣ ਵਿੱਚ ਜ਼ੀਓਲਾਈਟ ਦੀ ਵਰਤੋਂ ਉਤਪ੍ਰੇਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ— ZSM-5 (ਇੱਕ ਜੀਓਲਾਈਟ ਦੀ ਕਿਸਮ) ਦੀ ਵਰਤੋਂ ਐਲਕੋਹਲ ਨੂੰ ਸਿੱਧੇ ਗੈਸੋਲੀਨ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਜਲਯੋਜਿਤ ਜੀਓਲਾਈਟ ਦੀ ਵਰਤੋਂ ਕਠੋਰ ਪਾਣੀ ਨੂੰ ਨਰਮ ਕਰਨ ਲਈ ਆਇਨ ਵਟਾਂਦਰਾ ਰੇਜ਼ਿਨ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਸਾਰਾਂਸ਼

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ p-ਬਲਾੱਕ ਸਭ ਕਿਸਮ ਦੇ ਤੱਤ—ਧਾਤ, ਅਧਾਤ ਅਤੇ ਉਪਦਾਤ ਦੇ ਹੋਣ ਕਾਰਣ ਵਿਲੱਖਣ ਹੈ।ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ p-ਬਲਾੱਕ ਤੱਤਾਂ ਦਾ ਅੰਕਨ ਛੇ ਗਰੁੱਪਾਂ ਵਿੱਚ 13 ਤੋਂ 18 ਤੱਕ ਕੀਤਾ ਗਿਆ ਹੈ। ਹੀਲੀਅਮ ਤੋਂ ਇਲਾਵਾ ਇਨ੍ਹਾਂ ਦਾ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ns²np¹⁻⁶ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੀ ਅੰਦਰਲੀ ਕੋਰ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨਤਾ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਬੜੇ ਜਿਆਦਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੇ ਹਨ। ਫਲਸਰੂਪ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਬੜੀ ਭਿੰਨਤਾ ਮਿਲਦੀ ਹੈ। ਗਰੁੱਪ ਆਕਸੀਕਰਣ ਅਵਸਥਾ (group oxidation state) ਦੇ ਇਲਾਵਾ ਇਹ ਤੱਤ ਹੋਰ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਵੀ ਮਿਲਦੇ ਹਨ, ਜੋ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਤੋਂ ਦੋ-ਇਕਾਈ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।ਗਰੁੱਪ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਹਲਕੇ ਤੱਤਾਂ ਦੇ ਲਈ ਸਥਾਈ ਹੁੰਦੀ ਹੈ, ਉੱਥੇ ਭਾਰੀ ਤੱਤਾਂ ਦੇ ਲਈ ਨਿਮਨ ਆੱਕਸੀਕਰਣ ਅਵਸੱਥਾ ਸਥਾਈ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ।ਅਕਾਰ ਅਤੇ d ਆੱਰਬਿਟਲਾਂ ਦੀ ਉਪਲਬਧਤਾ ਦਾ ਇਕੱਠਾ ਪ੍ਰਭਾਵ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ π-ਬੰਧਨ ਬਨਾਉਣ ਦੀ ਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ।ਹਲਕੇ ਤੱਤ pπ–pπ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ।ਉੱਥੇ ਅਗਲੇ

ਤੱਤ $d\pi$ – $p\pi$ ਅਤੇ $d\pi$ – $d\pi$ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਦੂਜੇ ਪੀਰਿਅਡ ਵਿੱਚ d ਆੱਰਬਿਟਲਾਂ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਇਨ੍ਹਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਯੋਜਕਤਾ ਨੂੰ ਚਾਰ ਤੇ ਸੀਮਿਤ ਰੱਖਦੀ ਹੈ, ਉੱਥੇ ਅਗਲੇ ਤੱਤ ਇਸ ਸੀਮਾਂ ਨੂੰ ਪਾਰ ਕਰਦੇ ਹਨ।

ਗਰੁੱਪ-13 ਵਿੱਚ ਬੋਰਾੱਨ ਅਧਾਤ ਹੈ, ਜਦਕਿ ਬਾਕੀ ਮੈਂਬਰ ਧਾਤਾਂ ਹਨ। ਬੰਧਨ ਬਨਾਉਣ ਵਾਲੇ ਚਾਰ ਆੱਰਬਿਟਲਾਂ (2s, 2p_x, 2p_y, 2p_z) ਵਿੱਚ ਕੇਵਲ ਤਿੰਨ ਸੰਜੋਗੀ ਇਲੈਕਟ੍ਰਾੱਨ (2s²2p¹) ਦੀ ਉਪਲਬਧਤਾ ਦੇ ਕਾਰਣ ਬੋਰਾੱਨ ਦੇ ਯੋਗਿਕ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਨ ਹੁੰਦੇ ਹਨ। ਇਹ ਨਿਊਨਤਾ ਬੋਰਾੱਨ ਯੋਗਿਕ ਨੂੰ ਉੱਤਮ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣੀ ਬਣਾ ਦਿੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੋਰਾੱਨ ਯੋਗਿਕ ਲੁਈਸ ਤੇਜਾਬ ਦੇ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ। ਬੋਰਾੱਨ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਾਲ ਸਹਿਸੰਯੋਜੀ ਯੋਗਿਕ ਬੋਰੇਨ ਬਣਾਉਂਦੇ ਹਨ।ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਸਭ ਤੋਂ ਸਰਲ ਡਾਈਬੋਰੇਨ B₂H₆ ਹੈ।ਡਾਈਬੋਰੇਨ ਵਿੱਚ ਦੋ ਬੋਰਾੱਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚ ਪੁਲ ਬੰਧਨ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ।ਇਸ ਪੁਲਬੰਧਨ ਨੂੰ ਤਿੰਨ ਕੇਂਦਰੀ ਦੋ ਇਲੈਕਟ੍ਰਾਨ ਬੰਧਨ ਮੰਨਿਆ ਗਿਆ ਹੈ।ਡਾਈਆੱਕਸੀਜਨ ਦੇ ਨਾਲ ਬੋਰਾੱਨ ਦੇ ਮਹਤੱਵਪੂਰਣ ਯੋਗਿਕ ਬੋਰਿਕ ਐਸਿਡ ਅਤੇ ਬੋਰੈਕਸ ਹਨ। ਬੋਰਿਕ ਐਸਿਡ B(OH)₃ ਇੱਕ ਦੁਰਬਲ ਇੱਕਖਾਰੀ ਤੇਜਾਬ ਹੈ। ਇਹ ਹਾੱਈਡ੍ਰਾੱਕਸਿਲ ਆਇਨ ਤੋਂ ਇਲੈਕਟ੍ਰਾਂਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ।ਬੋਰੈਕਸ Na₂[B₄O₅(OH)₄]⋅8H₂O ਇੱਕ ਸਫੇਦ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਹੈ।ਇਹ ਮਨਕਾ ਟੈਸਟ ਅੰਤਰਕਾਲੀ ਧਾਤਾਂ ਦੇ ਲਈ ਚਰਿਤਰਿਕ ਰੰਗ ਦਿੰਦਾ ਹੈ।

ਐਲੂਮੀਨਿਅਮ +3 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਭਾਰੀ ਤੱਤਾਂ ਦੀ +1 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਸਥਾਈ ਹੋ ਜਾਂਦੀ ਹੈ।ਇਹ ਅਕਿਰਿਆ ਯੁਗਮ ਪ੍ਰਭਾਵ ਦਾ ਪਰਿਣਾਮ ਹੁੰਦਾ ਹੈ।

ਕਾਰਬਨ ਇੱਕ ਭਿੰਨ ਰੁਪੀ ਅਧਾਤ ਹੈ, ਜੋ ਆਪਣੇ ਚਾਰੇ ਸੰਜੋਗੀ ਇਲੈਕਟ੍ਰਾੱਨਾ (2 $s^2 2p^2$) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਕੈਟੇਨੇਸ਼ਨ ਦਾ ਗੁਣ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਨਾ ਕੇਵਲ C–C ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਦੁਆਰਾ ਬਲਕਿ (C=C ਅਤੇ C=C) ਦੇ ਦੁਆਰਾ ਚੇਨ ਜਾਂ ਰਿੰਗ ਬਨਾਉਣ ਦੀ ਯੋਗਤਾ ਰੱਖਦਾ ਹੈ।ਕੈਟੇਨੇਸ਼ਨ ਦੀ ਪਵਿਰਤੀ ਇਸ ਕ੍ਰਮ ਵਿੱਚ ਘਟਦੀ ਹੈ C>>Si>Ge ~ Sn > Pb। ਭਿੰਨ ਰੁਪਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਵਾਲੇ ਤੱਤ ਦਾ ਉੱਤਮ ਉਦਾਹਰਣ ਕਾਰਬਨ ਹੈ। ਇਸ ਦੇ ਤਿੰਨ ਮਹੱਤਵਪੂਰਣ ਭਿੰਨ ਰੂਪ ਹੀਰਾ, ਗਰੇਫਾਈਟ ਅਤੇ ਫੁਲੇਰੀਨਜ਼ ਹਨ। ਕਾਰਬਨ ਪਰਿਵਾਰ ਦੇ ਮੈਂਬਰ +4 ਅਤੇ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਦਰਸ਼ਿਤ ਕਰਨ ਵਾਲੇ ਯੋਗਿਕ ਆਮ ਤੌਰ ਤੇ ਸਹਿ ਸੰਯੋਜਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ। ਅਗਲੇਰੇ ਤੱਤਾਂ ਦੇ ਦੁਆਰਾ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਲੈੱਡ ਦੀ +2 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਤੋਂ ਵਧੇਰੇ ਸਥਾਈ ਹੰਦੀ ਹੈ।ਕਾਰਬਨ ਰਿਣਾਤਮਕ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਵੀ ਪਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।ਕਾਰਬਨ ਦੋ ਮਹੱਤਵਪਰਣ ਆੱਕਸਾਈਡ CO ਅਤੇ CO, ਬਣਾਉਂਦਾ ਹੈ।ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਉਦਾਸੀਨ ਹੈ, ਜਦਕਿ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਤੇਜਾਬੀ ਸੁਭਾਅ ਦੀ ਹੁੰਦੀ ਹੈ।ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਵਿੱਚ ਕਾਰਬਨ ਉੱਤੇ ਏਕਾਕੀ ਇਲੈਕਟਾੱਨ ਯੁਗਮ ਦੇ ਦੁਆਰਾ ਇਹ ਧਾਤਵੀ ਕਾਰਬੋਨਾਈਲ ਬਣਾਉਂਦੀ ਹੈ। ਆੱਕਸੀ ਹੋਮੋਗਲੋਬਿਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ CO ਦਾ ਹੀਮੋਗਲੋਬਿਨ ਦੇ ਨਾਲ ਬਣਿਆ ਕੰਪਲੈਕਸ ਵਧੇਰੇ ਸਥਾਈ ਅਤੇ ਅਤਿਅੰਤ ਜਹਿਰੀਲਾ ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਮੁਲ ਰੂਪ ਵਿੱਚ ਜਹਿਰੀਲੀ ਨਹੀਂ ਹੁੰਦੀ, ਪਰੰਤੂ ਚੁਨਾ-ਪੱਥਰ ਦੇ ਵਧਦੇ ਅਪਘਟਨ ਅਤੇ ਫਾੱਸਿਲ ਬਾਲਣ ਦੇ ਜਲਨ ਦੇ ਕਾਰਣ ਵਾਯੁਮੰਡਲ ਵਿੱਚ CO, ਦੀ ਵਧਦੀ ਮਾਤਰਾ ਨੇ ਭੈ ਵਾਲੀ ਸਥਿਤੀ ਪੈਦਾ ਕਰ ਦਿੱਤੀ ਹੈ, ਜਿਸ ਨੂੰ ਹਰਾ-ਘਰ-ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨਾਲ ਵਾਯੁਮੰਡਲ ਦਾ ਤਾਪਮਾਨ ਵਧ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ਗੰਭੀਰ ਜਟਿਲਤਾਵਾਂ ਪੈਦਾ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।ਸਿੱਲੀਕਾ, ਸਿੱਲੀਕੋਨ ਐਤ ਸਿੱਲੀਕੇਟ ਮਹੱਤਵਪੂਰਣ ਯੋਗਿਕ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਉਦਯੋਗ ਅਤੇ ਤਕਨਾੱਲੋਜੀ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਅਭਿਆਸ

- 11.1 (ੳ) B ਤੋਂ Tl ਤੱਕ ਅਤੇ (ਅ) C ਤੋਂ Pb ਤੱਕ ਦੀਆਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਦੀ ਭਿੰਨਤਾ ਦੇ ਕ੍ਰਮ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 11.2 TICl₃ ਦੀ ਤੁਲਨਾ ਵਿੱਚ BCl₃ ਦੇ ਉੱਚੇ ਸਥਾਈਪਨ ਨੂੰ ਤੁਸੀਂ ਕਿਵੇਂ ਸਮਝਾਓਗੇ ?
- 11.3 ਬੋਰਾੱਨ ਟਰਾਈਫਲੋਰਾਈਡ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਿਉਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ ?
- 11.4 BCl₃ ਅਤੇ CCl₄ ਯੋਗਿਕਾ ੰਦੀ ਉਦਾਹਰਣ ਦਿੰਦੇ ਹੋਏ ਪਾਣੀ ਦੇ ਪ੍ਰਤੀ ਇਨ੍ਹਾਂ ਦੇ ਵਿਹਾਰ ਦੇ ਉਚਿਤ ਹੋਣ ਨੂੰ ਸਮਝਾਓ।
- 11.5 ਕੀ ਬੋਰਿਕ ਐਸਿਡ ਪ੍ਰੋਟਾਨੀ ਐਸਿਡ ਹੈ ? ਸਮਝਾਓ।
- 11.6 ਕੀ ਹੁੰਦਾ ਹੈ, ਜਦ ਬੋਰਿਕ ਐਸਿਡ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
- 11.7 BF, ਅਤੇ BH,⁻ ਦੀ ਅਕ੍ਰਿਤੀ ਦੀ ਵਿਆਖਿਆ ਕਰੋ। ਇਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ ਵਿੱਚ ਬੋਰਾੱਨ ਦੇ ਸੰਕਰਣ ਦੱਸੋ।

324

- 11.8 ਐਲੂਮੀਨਿਅਮ ਦੇ ਐਂਫੋਟੈਰਿਕ ਵਿਹਾਰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਪ੍ਤੀਕਿਰਿਆਂਵਾਂ ਲਿਖੋ।
- 11.9 ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਨ ਯੋਗਿਕ ਕੀ ਹੁੰਦੇ ਹਨ ? ਕੀ BCl₃ ਅਤੇ SiCl₄ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਨ ਯੋਗਿਕ ਹਨ ? ਸਮਝਾਉ।
- 11.10 CO_3^{2-} ਅਤੇ HCO_3^{-} ਦੀਆਂ ਅਨੁਨਾਦੀ ਰਚਨਾਵਾਂ ਲਿਖੋ।
- 11.11 (ੳ) CO₃²⁻(ਅ) ਹੀਰਾ ਅਤੇ (ੲ) ਗਰੇਫਾਈਟ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਕੀ ਹੁੰਦੀ ਹੈ ?
- 11.12 ਰਚਨਾ ਦੇ ਅਧਾਰ ਤੇ ਹੀਰਾ ਅਤੇ ਗਰੇਫਾਈਟ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਭਿੰਨਤਾ ਨੂੰ ਸਮਝਾਓ।
- 11.13 ਹੇਠ ਲਿਖੇ ਕਥਨਾ ਨੂੰ ਪ੍ਰਮਾਣਿਤ ਕਰੋ ਅਤੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦਿਓ— (ੳ) ਲੈੱਡ (II) ਕਲੋਰਾਈਡ Cl₂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ PbCl₄ ਦਿੰਦਾ ਹੈ। (ਅ) ਲੈੱਡ (IV) ਕਲੋਰਾਈਡ ਤਾਪ ਦੇ ਪ੍ਰਤੀ ਬੜਾ ਅਸਥਾਈ ਹੈ। (ੲ) ਲੈੱਡ ਇੱਕ ਆਇਓਡਾਈਡ PbI₄ ਨਹੀਂ ਬਣਾਉਂਦਾ ਹੈ।
- 11.14 ${
 m BF}_3$ ਵਿੱਚ ਅਤੇ ${
 m BF}_4^-$ ਵਿੱਚ ਬੰਧਨ ਲੰਬਾਈ ਕ੍ਰਮਵਾਰ $130~{
 m pm}$ ਅਤੇ $143~{
 m pm}$ ਹੋਣ ਦੇ ਕਾਰਣ ਦੱਸੋ।
- 11.15 B–Cl ਬੰਧਨ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਰੱਖਦਾ ਹੈ, ਪਰ BCl₃ ਅਣੂ ਦਾ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਸਿਫਰ ਹੁੰਦਾ ਹੈ। ਕਿਉਂ?
- 11.16 ਨਿਰਜਲੀ HF ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਟ੍ਰਾਈਫਲੋਰਾਈਡ ਅਘੁੱਲ ਹੈ, ਪਰੰਤੂ NaF ਮਿਲਾਉਣ ਦੇ ਘੁਲ ਜਾਂਦਾ ਹੈ।ਗੈਸੀ BF₃ਨੂੰ ਲੰਘਾਉਣ ਤੇ ਪਰਿਣਾਮੀ ਘੋਲ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਟ੍ਰਾਈਫਲੋਰਾਈਡ ਅਵਖੇਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।ਇਸ ਦਾ ਕਾਰਣ ਦੱਸੋ।
- 11.17 CO ਦੇ ਜਹਿਰੀਲੀ ਹੋਣ ਦਾ ਇੱਕ ਕਾਰਣ ਦੱਸੋ।
- 11.18 CO₂ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਗਲੋਬਲ ਤਾਪਮਾਨ ਵਾਧੇ ਦੇ ਲਈ ਕਿਵੇਂ ਜਿੰਮੇਵਾਰ ਹੈ।
- 11.19 ਡਾਈਬੋਰੇਨ ਅਤੇ ਬੋਰਿਕ ਐਸਿਡ ਦੀਆਂ ਰਚਨਾਵਾਂ ਸਮਝਾਓ।
- 11.20 ਕੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ-
 - (ੳ) ਬੋਰੈਕਸ ਨੂੰ ਜਿਆਦਾ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
 - (ਅ) ਬੋਰਿਕ ਐਸਿਡ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ।
 - (ੲ) ਐਲੂਮੀਨਿਅਮ ਨੂੰ ਹਲਕੇ NaOH ਨਾਲ ਕਿਰਿਆ ਕਰਵਾਈ ਜਾਂਦੀ ਹੈ।
 - (ਸ) BF₃ ਦੀ ਕਿਰਿਆ ਅਮੋਨੀਅਮ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- 11.21 ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਸਮਝਾਓ—
 - (ੳ) ਕਾੱਪਰ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਉੱਚੇ ਤਾਪਮਾਨ ਉਤੇ ਸਿਲੀਕਾਨ ਨੂੰ ਮੀਥਾਈਲ ਕਲੋਰਾਈਡ ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
 - (ਅ) ਸਿੱਲੀਕਾੱਨ ਡਾਈਆੱਕਸਾਈਡ ਦੀ ਕਿਰਿਆ ਹਾਈਡ੍ਰੋਜਨ ਫਲੋਰਾਈਡ ਦੇ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
 - (ੲ) CO ਨੂੰ ZnO ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
 - (ਸ) ਜਲੀ ਐਲੂਮੀਨਾ ਦੀ ਕਿਰਿਆ ਜਲੀ NaOH ਦੇ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- 11.22 ਕਾਰਣ ਦੱਸ—
 - (ੳ) ਗਾੜ੍ਹੇ HNO, ਦਾ ਪਰਿਵਹਨ ਐਲੂਮੀਨਿਅਮ ਦੇ ਬਰਤਨ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
 - (ਅ) ਹਲਕੇ NaOH ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਦੇ ਟੁਕੜਿਆਂ ਦੇ ਮਿਸ਼ਰਣ ਦੀ ਵਰਤੋਂ ਨਾਲੀ ਖੋਲਣ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
 - (ੲ) ਗਰੇਫਾਈਟ ਖ਼ੁਸ਼ਕ ਲੁਬਰੀਕੈਂਟ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।
 - (ਸ) ਹੀਰੇ ਦੀ ਵਰਤੋਂ ਘਸਾਊ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
 - ਹਵਾਈ ਜਹਾਜ ਬਨਾਉਣ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਮਿਸ਼ਰਤ ਧਾਤ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
 - (ਕ) ਪਾਣੀ ਨੂੰ ਐਲੂਮੀਨਿਅਮ ਦੇ ਬਰਤਨ ਵਿੱਚ ਪੂਰੀ ਰਾਤ ਨਹੀਂ ਰਖਣਾ ਚਾਹੀਦਾ।
 - ਸੰਚਰਣ ਕੇਬਲ ਬਨਾਉਣ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਤਾਰ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- 11.23 ਕਾਰਬਨ ਤੋਂ ਸਿੱਲੀਕਾੱਨ ਤਕ ਅਇਨੀਕਰਣ ਐਨਥੈਲਪੀ ਵਿੱਚ ਅਸਚਰਜ ਕਮੀਂ ਹੁੰਦੀ ਹੈ।ਕਿਉਂ ?
- 11.24 Al ਦੀ ਤੁਲਨਾ ਵਿੱਚ Ga ਦਾ ਘੱਟ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਨੂੰ ਤੁਸੀਂ ਕਿਵੇਂ ਸਮਝਾੳਗੇ ?
- 11.25 ਭਿੰਨ ਰੂਪ ਕੀ ਹਨ ? ਕਾਰਬਨ ਦੇ ਦੋ ਮਹਤੱਵਪੂਰਣ ਭਿੰਨ ਰੂਪ ਹੀਰਾ ਅਤੇ ਗਰੇਫਾਈਟ ਦੀ ਰਚਨਾ ਦਾ ਚਿੱਤਰ ਬਣਾਓ। ਇਨ੍ਹਾ ਦੋਵਾਂ ਭਿੰਨ ਰੂਪਾਂ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਉੱਤੇ ਰਚਨਾ ਦਾ ਕੀ ਪ੍ਰਭਾਵ ਹੈ ?
- 11.26 (ੳ) ਹੇਠ ਲਿਖੇ ਆੱਕਸਾਈਡਾਂ ਨੂੰ ਉਦਾਸੀਨ, ਖਾਰੀ ਅਤੇ ਐਂਫੋਟੈਰਿਕ ਆੱਕਸਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ—

325

CO, B₂O₃, SiO₂, CO₂, Al₂O₃, PbO₂, Tl₂O₃ (ਅ) ਇਨ੍ਹਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਲਿਖੋ। ਕੁਝ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਥੈਲਿਅਮ, ਐਲੂਮੀਨਿਅਮ ਨਾਲ ਸਮਾਨਤਾ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਦਕਿ ਹੋਰਾਂ ਵਿੱਚ ਇਹ 11.27 ਗਰੁੱਪ–1 ਦੀਆਂ ਧਾਤਾਂ ਨਾਲ ਸਮਾਨਤਾ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਥਾਂ ਨੂੰ ਕੁਝ ਪਰਮਾਣਾ ਦੁਆਰਾ ਸਿੱਧ ਕਰੋ। ਜਦੋਂ ਧਾਤ X ਦੀ ਕਿਰਿਆ NaOH ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਸਫੇਦ ਅਵਖੇਪ (A) ਪਾਪਤ ਹੰਦੇ ਹਨ, ਜੋ NaOH 11.28 ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਘੁਲ ਕੇ ਕੰਪਲੈਕਸ (B) ਬਣਾਉਂਦਾ ਹੈ। ਯੋਗਿਕ A ਹਲਕੇ ਹਾਈਡੋਕਲੋਰਿਕ ਐਸਿਡ ਵਿੱਚ ਘੁਲ ਕੇ ਯੋਗਿਕ (C) ਬਣਾਉਂਦਾ ਹੈ। ਯੋਗਿਕ (A) ਨੂੰ ਵਦੇਰੇ ਗਰਮ ਕਰਨ ਤੇ ਯੋਗਿਕ (D) ਬਣਦਾ ਹੈ ਜੋ ਇੱਕ ਨਿਸ਼ਕਰਸਤ ਧਾਤ ਦੇ ਰੁਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। (X), (A), (B), (C) ਅਤੇ (D) ਨੂੰ ਪਛਾਣੋ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਪਛਾਣ ਦੇ ਸਮਰਥਨ ਵਿੱਚ ਲੋੜੀਂਦੇ ਸਮੀਕਰਣ ਦਿਓ। 11.29 ਹੇਠ ਲਿਖਿਆਂ ਤੋਂ ਤਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? (ੳ) ਅਕਿਰਿਆ ਯੂਗਮ ਪ੍ਰਭਾਵ (ਅ) ਭਿੰਨ ਰੂਪ (ੲ) ਕੈਟੇਨੇਸ਼ਨ 11.30 ਇੱਕ ਲੁਣ 'X' ਹੇਠ ਲਿਖੇ ਪਰਿਣਾਮ ਦਿੰਦਾ ਹੈ— (ੳ) ਇਸ ਦਾ ਜਲੀ ਘੋਲ ਲਿਟਮਸ ਦੇ ਪਤੀ ਖਾਰਾ ਹੈ। (ਅ) ਜਿਆਦਾ ਗਰਮ ਕਰਨ ਤੇ ਇਹ ਕੱਚ ਵਰਗਾ ਠੋਸ ਬਣ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ X ਦੇ ਗਰਮ ਘੋਲ ਵਿੱਚ ਗਾੜ੍ਹਾ H₂SO₄ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇੱਕ ਤੇਜਾਬ Z ਦੇ ਸਫੇਦ ਕ੍ਰਿਸਟਲ (**र**) ਬਣਦੇ ਹਨ। ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਸਮੀਕਰਣ ਲਿਖੋ ਅਤੇ X, Y, Z ਨੂੰ ਪਛਾਣੋ। 11.31 ਸੰਤਲਿਤ ਸਮੀਕਰਣ ਦਿਓ- (Θ) BF₃ + LiH \rightarrow () $H_2H_6 + H_2O \rightarrow$ (𝔅) NaH + B₂H₆ → (π) $H_{a}BO_{a} \xrightarrow{\Delta}$ (\overline{a}) B_2H_6 + $NH_3 \rightarrow$ (\overline{J}) Al + NaOH \rightarrow 11.32 CO ਅਤੇ CO, ਦੇ ਸੰਸਲੇਸ਼ਣ ਦੇ ਲਈ ਇੱਕ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਅਤੇ ਇੱਕ ਉਦਯੋਗਿਕ ਵਿਧੀ ਦਿਓ। 11.33 ਬੋਰੈਕਸ ਦੇ ਜਲੀ ਘੋਲ ਦੀ ਪ੍ਤੀਕਿਰਿਆ ਕਿਹੜੀ ਹੁੰਦੀ ਹੈ-(ੳ) ੳਦਾਸੀਨ (ਅ) ਐਂਫੋਟੈਰਿਕ (प्र) डेनाघी
 (ੲ)
 ਖਾਰੀ
 11.34 ਬੋਰਿਕ ਐਸਿਡ ਦੇ ਬਹਲਕੀ ਹੋਣ ਦਾ ਕਾਰਣ (ੳ) ਇਸ ਦਾ ਤੇਜਾਬੀ ਸਭਾਅ ਹੈ (ਅ) ਇਸ ਵਿੱਚ ਹਾਈਡੋ਼ਜਨ ਬੰਧਨ ਦੀ ਮੌਜੂਦਗੀ ਹੈ (ੲ) ਇਸ ਦੀ ਇੱਕ-ਖਾਰੀ ਪ੍ਰਕਿਰਤੀ ਹੈ (ਸ) ਇਸਦੀ ਜੋਮੈਟਰੀ 11.35 ਡਾਈਬੋਰੇਨ ਵਿੱਚ ਬੋਰਾੱਨ ਦਾ ਸੰਕਰਣ ਕਿਹੜਾ ਹੁੰਦਾ ਹੈ— (🕈) sp $(\mathcal{M}) sp^2$ (c) sp^3 $(\mathbf{H}) dsp^2$ 11.36 ਤਾਪਗਤਿਕੀ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਸਭ ਤੋਂ ਸਥਾਈ ਰੂਪ ਕਿਹੜਾ ਹੈ— (ੳ) ਹੀਰਾ (ਅ) ਗਰੇਫਾਈਟ (ਸ) ਕੋਲਾ (ੲ) ਫਲੇਰੀਨਜ਼ 11.37 ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਗਰੁੱਪ-14 ਦੇ ਤੱਤਾਂ ਦੇ ਲਈ ਕਿਹੜਾ ਕਥਨ ਸੱਚ ਹੈ ? (ੳ) +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। (ਅ) +2 ਅਤੇ +4 ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। (ੲ) M²⁻ ਅਤੇ M⁴⁺ ਆਇਨ ਬਣਾੳਂਦੇ ਹਨ। (ਸ) M²⁺ ਅਤੇ M⁴⁺ਆਇਨ ਬਣਾਉਂਦੇ ਹਨ।

11.38 ਜੇ ਸਿੱਲੀਕੋਨ ਨਿਰਮਾਣ ਵਿੱਚ ਮੁੱਢਲਾ ਪਦਾਰਥ RSiCl, ਹੈ ਤਾਂ ਬਣਨ ਵਾਲੀ ਉਪਜ ਦੀ ਰਚਨਾ ਦੱਸੋ।

ਯੁਨਿਟ 12

ਕਾਰਬਨਿਕ ਰਸਾਇਣ : ਕੁਝ ਮੁੱਢਲੇ ਸਿਧਾਂਤ ਅਤੇ ਤਕਨੀਕਾਂ ORGANIC CHEMISTRY – SOME BASIC PRINCIPLES AND TECHNIQUES

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ-

- ਕਾਰਬਨ ਦੀ ਚੌਸੰਯੋਜ ਕਤਾ ਅਤੇ ਕਾਰਬਨਿਕ ਅਣੂਆਂ ਦੀਆਂ ਕ੍ਰਿਤੀਆਂ ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਅਣੂਆਦੀਆ ਰਚਨਾਵਾਂ ਨੂੰ ਭਿੰਨ ਭਿੰਨ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕੋਗੇ;
- ਕਾਰਬ ਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਵਰਗੀ ਕਰਣ ਕਰ ਸਕੋਗੇ;
- ਨਾਮ ਕਰਣ ਦੀ IUPAC ਪਧੱਤੀ ਦੇ ਅਨੁਸਾਰ ਯੋਗਿਕਾਂ ਨੂੰ ਨਾਮ ਦੇ ਸਕੋਗੇ ਅਤੇ ਨਾਮਾ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਦੀ ਰਚਨਾ ਲਿਖ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਪ੍ਤੀਕਿਰਿਅਵਾਂ ਦੀ ਕਿਰਿਆ– ਵਿਧੀ ਦੀ ਧਾਰਣਾ ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਰਚਨਾ ਅਤੇ ਪ੍ਰਤੀ– ਕਿਰਿਆਸ਼ੀਲਤਾ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਵਿਸਥਾਪਨ ਦੇ ਪ੍ਰਭਾਵ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਨੂੰ ਪਛਾਣ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਸ਼ੁੱਧੀ ਕਰਣ ਦੀਆਂ ਤਕਨੀਕਾਂ ਨੂੰ ਸਿੱਥ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਗੁਣਾਤਮਕ ਵਿਸ਼-ਲੇਸ਼ਣ ਵਿੱਚ ਸ਼ਾਮਲ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ-ਕਿਰਿਆਵਾਂ ਨੂੰ ਲਿਖ ਸਕੋਗੇ;
- ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਮਾਤਰਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਸਿਧਾਂਤਾਂ ਨੂੰ ਸਮਝਸਕੋਗੇ।

ਪਿਛਲੇ ਯੁਨਿਟ ਵਿੱਚ ਤੁਸੀਂ ਸਿੱਖਿਆ ਕਿ ਕਾਰਬਨ ਦਾ ਇਕ ਅਨੋਖਾ ਗੁਣ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਕੈਟੇਨੇਸ਼ਨ (Catenation) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਕਾਰਣ ਇਹ ਹੋਰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਹੋਰ ਤੱਤਾ, ਜਿਵੇਂ ਹਾਈਡ੍ਰੋਜਨ, ਆੱਕਸ਼ੀਜਨ, ਨਾਈਟ੍ਰੋਜਨ ਸਲਫਰ, ਫਾੱਸਫੋਰਸ ਅਤੇ ਹੈਲੋਜਨਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਵੀ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਬਣਆਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦਾ ਅਧਿਐਨ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੀ ਇਕ ਵੱਖਰੀ ਸਾਖ ਦੇ ਅਧੀਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਇਕਾਈ ਵਿੱਚ ਕੁਛ ਮੁਢੱਲੇ ਸਿਧਾਂਤ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਤਕਨੀਕਾਂ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਿਰਮਾਣ ਤਕਨੀਕਾ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਗਣਾ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਜਰਰੀ ਹਨ।

12.1 ਆਮ ਜਾਣ-ਪਛਾਣ

ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਣ ਦੇ ਲਈ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਜਰੂਰੀ ਹਨ। ਇਸ ਦੇ ਅੰਤਰਗਤ, ਜਟਿਲ ਅਣੂ ਹਨ, ਜਿਵੇਂ ਅਨੁਵੰਸਿਕ ਸੂਚਨਾ ਵਾਲੇ ਡੀਆੱਕਸੀ ਰਾਈਬੋਨਿਊਕਲਿਅਕ ਐਸਿਡ (D.N.A) ਅਤੇ ਪ੍ਰੋਟੀਨ, ਜੋ ਸਾਡੇ ਖੂਨ ਪੱਠੇ ਚਮੜੀ ਦੇ ਜਰੂਰੀ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਕਪੜਾ, ਬਾਲਣ, ਬਹੁਲਕਾ, ਰੰਗਾ, ਦਵਾਈਆਂ ਆਦਿ ਪਦਾਰਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਇਹ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਖੇਤਰ ਹਨ।

ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਦਾ ਵਿਗਿਆਨ ਲਗਪਗ 200 ਸਾਲ ਪੁਰਾਣਾ ਹੈ। ਸੰਨ 1780 ਦੇ ਨੇੜੇ ਤੇੜੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀਕਾਂ ਨੇ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਅਤੇ ਖਣਿਜ ਸਰੋਤਾਂ ਤੋਂ ਬਣੇ ਅਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰ ਦਿੱਤਾ ਸੀ। ਸਵੀਡਿਸ ਵਿਗਿਆਨੀ ਬਰਜੀਲੀਅਸ ਨੇ ਪਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਜੈਵਸ਼ਕਤੀ (Vital Force) ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਜਿੰਮੈਵਾਰ ਹੈ। ਜਦੋਂ ਸੰਨ। 1828 ਵਿੱਚ ਐਫਵੋਹਲਰ ਨੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਯੂਰੀਆ ਦਾ ਸੰਸਲੇਸ਼ਣ ਅਕਾਰਬਨਿਕ ਯੋਗਿਕ ਅਮੋਨੀਅਮ ਸਾਇਆਨੇਟ ਤੋਂ ਕੀਤਾ ਤਾਂ ਇਹ ਧਾਰਣਾ ਗਲਤ ਸਿੱਧ ਹੋ ਗਈ।

 $NH_4CNO \xrightarrow{$ ਗਰਮ ਕਰਨ ਤੇ MH_2CONH_2 ਅਮੋਨੀਅਮ ਸਾਇਆਨੇਟ ਯੂਰੀਆ

ਕੋਲਬੇ (ਸੰਨ 1845) ਦੁਆਰਾ ਐਸਿਟਿਕ ਐਸਿਡ ਅਤੇ ਬਰਥਲਾਟ (ਸੰਨ 1856) ਦੁਆਰਾ ਮੀਥੇਨ ਦੇ ਨਵੇਂ ਸੰਸ ਲੇਸ਼ਣ ਦੇ ਪਰਿਣਾਮਸਰੂਪ ਦਰਸਾਇਆ ਗਿਆ ਕਿ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾ ਨੂੰ ਅਕਾਰਬਨਿਕ ਸਰੋਤਾਂ ਤੋਂ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ

ਸੰਸਲਿਸਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਸਿਧਾਂਤ ਨੇ ਵਿਕਾਸ ਨੇ ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਨੂੰ ਨਵਾਂ ਰੂਪ ਦਿੱਤਾ।

12.2 ਕਾਰਬਨ ਦੀ ਚੌਸੰਯੋਜਕਤਾ : ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ

12.2.1 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ

ਅਣਵੀਂ ਰਚਨਾ ਦੀਆਂ ਮੌਲਿਕ ਧਾਰਣਾਵਾਂ ਦਾ ਗਿਆਨ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਗੁਣਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਪੂਰਣਅਨੁਮਾਨ ਲਾਉਣ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਸੰਯੋਕਿਤਾ ਸਿਧਾਂਤ ਅਤੇ ਅਣਵੀਂ ਬਣਤਰ ਨੂੰ ਤੁਸੀਂ ਇਕਾਈ–4 ਵਿੱਚ ਸਮਝ ਚੁਕੇ ਹੋ। ਤੁਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹੋ ਕਿ ਕਾਰਬਨ ਦੀ ਚੋਸੰ ਯੋਜਕਤਾ ਅਤੇ ਇਸ ਦੇ ਦੁਆਰਾ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਨਿਰਮਾਣ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਅਤੇ s ਅਤੇ p ਅੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ (hybridisation) ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਤੁਹਾਨੂੰ ਇਹ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਮੀਥੇਨ (CH_4), ਈਥੀਨ (C_2H_4), ਅਤੇ ਈਥਾਈਨ (C_2H_2) ਦੇ ਸਮਾਨ ਅਣੂਆ ਦੀਆਂ ਅਕ੍ਰਿਤੀਆਂ ਨੂੰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਨਿਰਮਿਤ ਕ੍ਰਮਵਾਰ sp^3 , sp^2 ਅਤੇ sp ਸੰਕਰ ਅੱਰਬਿਟਲਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਪਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਸੰਕਰਣ ਕਿਸੇ ਕਾਰ ਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਬੰਧਨ ਲੰਬਾਈ ਅਤੇ ਬੰਧਨ ਐਨਥੈਲਪੀ (ਬੰਧਨ-ਸਮਰਥਾ) ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। sp ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਵਿੱਚ s ਗੁਣ ਵੱਧ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਨਿਊਕਲੀ ਅਸ ਕੇ ਨੇੜੇ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ sp ਸੰਕਰਿਤ ਅੱਰਬਿਟਲ ਦੁਆਰਾ ਨਿਰਮਿਤ ਬੰਧਨ sp³ ਸੈਕਰਿਤ ਆੱਰਬਿਟਲ ਦਆਰਾ ਨਿਰਮਿਤ ਬੰਧਨ ਨਾਲੋਂ ਵਧੇਰੇ ਨੇੜੇ ਅਤੇ ਵਧੇਰੇ ਮਜਬਤ ਹੁੰਦਾ ਹੈ। sp² ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਵਾਲੇ ਬੰਧਨਾਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਐਨਥੇਲਪੀ-ਦੋਵਾਂ ਦੇ ਵਿਚਕਾਰ ਹੁੰਦੀ ਹੈ। ਸੰਕਰਣ ਦਾ ਪਰਿਵਰਤਨ ਕਾਰਬਨ ਦੀ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਕਾਰਬਨ ਉੱਤੇ ਸਥਿਤ ਸੰਕਰਿਤ ਅੱਰਬਿਟਲ s ਪਕਿਰਤੀ ਵਧਣ ਤੇ ੳਸ ਦੀ ਇਲੈਕਟੋ ਨੈਗੇਟਿਵਤਾ ਵਿੱਚ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ sp ਸੰਕਰਿਤ ਅੱਰਬਿਟਲ ਜਿਸ ਵਿੱਚ s ਪ੍ਰਕਿਰਤੀ 50% ਹੈ। sp^2 ਅਤੇ sp^3 ਸੰਕਰਿਤ ਅੱਰਬਿਟਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਸੰਕਰਿਤ ਅੱਰਬਿਟਲਾਂ ਦੀ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾਂ ਦਾ ਪ੍ਰਭਾਵ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਭੋਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗਣਾਂ ਉੱਤੇ ਵੀ ਪੈਂਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦਾ ਵਰਣਨ ਅਉਣ ਵਾਲੇ ਯੁਨਿਟਾਂ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਹੈ।

12.2.2 π ਬੰਧਨਾਂ ਦੇ ਕੁਝ ਲੱਛਣ

π (ਪਾਈ) ਬੰਧਨ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਦੋ ਨੇੜਲੇ ਪਰਮਾਣੂਆਂ ਦੇ p ਆੱਰਬਿਟਲਾਂ ਦਾ ਸਮਾਨ ਅੰਤਰ ਦਿਸ਼ਾਮਾਨ ਪਾਸੇ ਪਰਨੇ ਓਵਰਲੈਪਿੰਗ ਦੇ ਲਈ ਜਰੂਰੀ ਹੈ। ਇਸ ਲਈ $H_2C=CH_2$ ਅਣੂ ਵਿੱਚ ਸਾਰੇ ਪਰਮਾਣੂ ਇਕ ਹੀ ਤਲ ਵਿੱਚ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸ ਅਣੂ ਦੇ ਹਰ ਇਕ ਕਾਰਬਨ ਉੱਤੇ ਮੌਜੂਦ p ਆੱਰਬਿਟਲ ਸਮਾਨ ਅੰਤਰ ਅਤੇ ਅਣੂ ਦੇ ਤਲ ਦੇ ਲੰਬਾਤਮਕ ਹੁੰਦੇ ਹਨ। ਇੱਕ CH_2 ਨੂੰ ਦੂਜੇ ਦੇ ਸਾਪੇਖ ਵਿੱਚ ਘੁੰਮਣ ਤੇ p ਆੱਰਬਿਟਲਾਂ ਦੇ ਅਧਿਕਤਮ ਓਵਰਲੈਪਿੰਗ ਵਿੱਚ ਰੁਕਾਵਟ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਫਲਸਰੂਪ (C = C) ਕਾਰਬਨ ਕਾਰਬਨ ਦੂਹਰੇ ਬੰਧਨ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਘੁੰਮਣ ਪ੍ਤੀਬੰਧਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। π ਬੰਧਨ ਦਾ ਇਲੈਕਟ੍ਰਾਨ ਚਾਰਜ ਕਲਾਊਡ ਬੰਧਿਤ ਪਰਮਾਣੂਆਂ ਦੇ ਤਲ ਦੇ ਉੱਤੇ ਅਤੇ ਹੇਠਾਂ ਸਥਿਤ ਹੁੰਦਾ ਹੈ। ਅਮ ਤੌਰ ਤੇ π ਬੰਧਨ ਬਹੁਬੰਧਨ ਯੁਕਤ ਯੋਗਿਕਾਂ ਦੇ ਮੁੱਖ ਕਿਰਿਆਸ਼ੀਲ ਕੇਂਦਰ ਉਪਲਬਧ ਕਰਵਾਉਂਦੇ ਹਨ। ਇਹ ਅਕਰਾਮਕ ਅਭਿਕਰਮਕਾ (Attacking Reagents) ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਉਪਲਬਧ ਕਰਵਾਉਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 12.1 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਵਿੱਚ ਕਿੰਨੇ σ ਅਤੇ π ਬੰਧਨ ਹਨ ? (ੳ) HC≡CCH=CHCH₃ (ਅ) CH₂=C=CHCH₃ ਹੱਲ

 $(\Theta) \sigma_{C-C}: 4; \sigma_{C-H}: 6; \pi_{C=C}: 1; \pi C \equiv C: 2$

(ਅ) σ_{C-C} : 3; σ_{C-H} : 6; $\pi_{C=C}$: 2.

ਉਦਾਹਰਣ 12.2

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹਰਇੱਕ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਕੀ ਹੈ ?

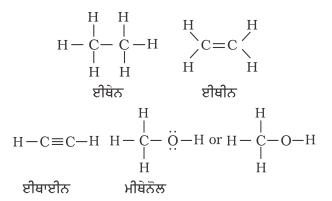
(ੳ) CH₃Cl, (ਅ) (CH₃)₂CO, (ੲ) CH₃CN,

(π) HCONH₂, (J) CH₃CH=CHCN

ਹੱਲ

(ੳ) sp^3 , (ਅ) sp^3 , sp^2 , (E) sp^3 , sp, (H) sp^2 , (J) sp^3 , sp^2 , sp^2 , sp

ਉਦਾਹਰਣ 12.3

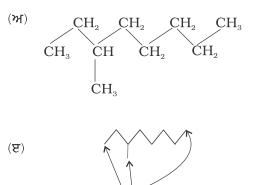

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਅਤੇ ਅਣਉਆਂ ਦੀਆਂ ਕ੍ਰਿਤੀ ਕੀ ਹੈ ?

(ੳ) $H_2C=O$, (ਅ) CH_3F , (ੲ) HC=N. ਹੱਲ

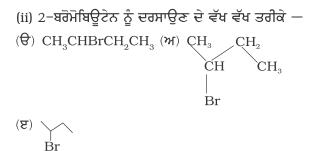
(ੳ) sp² ਸੰਕਰਿਤ ਕਾਰਬਨ, ਤ੍ਰਿਕੋਣੀ ਸਮਤਲ; (ਅ) sp³ ਸੰਕਰਿਤਕਾਰਬਨ, ਚੌਫਲਕੀ; (ੲ) sp ਸੰਕਰਿਤਕਾਰਬਨ, ਰੇਖੀ।

12.3 ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੀ ਬਣਤਰੀ ਨਿਰੂਪਣ 12.3.1 ਪੂਰਣ, ਸੰਘਣਾ ਅਤੇ ਬੰਧਨ ਰੇਖਾ ਸੂਤਰ

ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੇ ਸੂਤਰ ਲਿਖਣ ਦੀਆਂ ਕਈ ਵਿਧੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਕੁਝ ਵਿਧੀਆਂ ਲੁਈਸ ਰਚਨਾ ਜਾਂ ਬਿੰਦੂ ਰਚਨਾ, ਛੋਟੀ ਰੇਖਾ ਬੰਧਨ ਰਚਨਾ (Dash structure) ਸੰਘਣਿਤ ਰਚਨਾ (Condensed structure) ਅਤੇ ਬੰਧਨ ਰੇਖਾ ਰਚਨਾ ਹੈ।ਛੋਟੀ ਰੇਖਾਂ-ਰਚਨਾ (Dash structure) ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਨੂੰ ਦਰਸਾ ਕੇ ਲੂਈਸ ਰਚਨਾ ਸਰਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਬੰਧਨ ਬਨਾਉਣ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨ ਉੱਤੇ ਅਜਿਹੇ ਬਣਤਰੀ ਸੁਤਰ ਕੇਂਦਰਿਤ ਹੁੰਦੇ ਹਨ। ਇਕ ਤੀਹਰੇ ਬੰਧਨ, ਦੂਹਰੇ ਬੰਧਨ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨ ਨੂੰ ਕ੍ਰਮਵਾਰ ਇੱਕ ਛੋਟੀ ਰੇਖਾ (-), ਦੋ ਛੋਟੀਆਂ ਰੇਖਾਂ (=) ਅਤੇ ਤਿੰਨ ਛੋਟੀਆਂ ਰੇਖਾ (≡) ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਬਿਖਮ ਪਰ ਅਣੁਆਂ (ਜਿਵੇਂ ਅੱਕਸੀਜਨ, ਨਾਈਟ੍ਰੋਜਨ, ਸਲਫਰ, ਹੈਲੋਜਨ ਅਦਿ) ਉੱਤੇ ਮੌਜੂਦ ਏਕਾਕੀ ਇਲੈਕਟ਼ਾੱਨ ਯੂਗਮ ਨੂੰ ਦੋ ਬਿੰਦੂਆ (:) ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਪਰੰਤੂ ਕਦੇ ਕਦੇ ਅਜਿਹਾ ਨਹੀਂ ਵੀ ਹੁੰਦਾ। ਇਸ ਤਰਾਂ ਈਥੇਨ (C, H,), ਈਥੀਨ (C, H,), ਈਥਾਈਨ (C₂ H₂) ਅਤੇ ਮੀਥੇਨੋਲ (CH₂ OH) ਦੇ ਬਣਤਰੀ ਸੁਤਰਾਂ ਨੂੰ ਹੇਠ ਲਿਖੀ ਪ੍ਰਣਾਲੀ ਦੁਆਰਾ ਨਿਰੁਪਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਬਣਤਰੀ ਨਿਰੁਪਣਾਂ ਨੂੰ ਪੂਰਣ ਬਣਤਰੀ ਸੂਤਰ (Complete structural formula) ਕਿਹਾਂ ਜਾਂਦਾ ਹੈ।

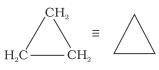

ਇਨ੍ਹਾਂ ਰਚਨਾ-ਸੂਤਰਾਂ ਨੂੰ ਕੁਝ ਜਾਂ ਸਾਰੇ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨਾਂ ਨੂੰ ਹਟਾ ਕੇ ਅਤੇ ਇੱਕ ਪਰਮਾਣੂ ਨਾਲ ਜੁੜੇ ਸਮਾਨ ਗਰੂਪ ਨੂੰ ਬਰੈਕਟ ਵਿੱਚ ਲਿਖ ਕੇ ਉਨ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਸਬਸ ਕ੍ਰਿਪਟ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕਰਕੇ, ਸੰਖੇਪ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਸੰਖੇਪ ਸੂਤਰਾਂ ਨੂੰ ਸੰਘਣਿਤ ਬਣਤਰ ਸੂਤਰ (Condensed structural formula) ਕਹਿੰਦੇ ਹਨ। ਇਸਲਈ ਈਥੇਨ, ਈਥੀਨ, ਈਥਾਈਨ ਅਤੇ ਮੀਥੇਨੋਲ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

CH ₃ CH ₃	$H_2C=CH_2$	HC≡CH	CH ₃ OH
ਈਥੇਨ	ਈਂਥੀਨ	ਈਥਾਈਨ	ਮੀਥੇਨੋਲ

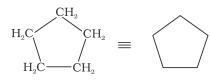

ਇਸਤਰ੍ਹਾਂ, CH₃CH₂CH₂CH₂CH₂CH₂CH₂ਨੂੰ ਹੋਰ ਵੀ ਸੰਘਣਿਤ ਰੂਪ ਵਿੱਚ CH₃(CH₂)₂CH₃. ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਹੋਰ ਸਰਲ ਬਨਾਉਣ ਦੇ ਲਈ ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੇ ਰਚਨਾਵਾਂ ਨੂੰ ਨਿਰੁਪਿਤ ਕਰਨ ਦੇ ਲਈ ਸਿਰਫ ਰੇਖਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ। ਇਸ ਨੂੰ ਬੰਧਨ ਰੇਖਾ ਬਣਤਰੀ ਸੂਤਰ (bond line structural formula) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ਼ੋਜਨ ਪਰਮਾਣਉਆਂ ਨੂੰ ਨਹੀਂ ਲਿਖਿਆ ਜਾਂਦਾ। ਇਸ ਵਿੱਚ ਕਾਰਬਨ ਕਾਰਬਨ ਬੰਧਨਾਂ ਨੂੰ ਟੇਢੀ ਮੇਢੀ (ਜਿਗਜੈਗ N) ਰੇਖਾਵਾਂ ਦੁਆਰਾ ਦਰਸ਼ਾਇਆ ਜਾਂਦਾ ਹੈ। ਸਿਰਫ ਅੱਕਸੀਜਨ ਕਲੋਰੀਨ ਨਾਈਟ੍ਰੋਜਨ ਆਦਿ ਪਰਮਾਣਉਆ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਸਿਰੇ ਤੇ ਸਥਿਤ ਰੇਖਾ ਮੀਥਾਈਲ (–CH੍ਕ) ਗਰੁੱਪ ਦੱਸਦੀ ਹੈ ਜਦ ਤੱਕ ਕਿਸੇ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦੁਆਰਾ ਨਾ ਦਰਸਾਇਆ ਗਿਆ ਹੋਵੇ। ਅੰਦਰਲੀਆਂ ਰੇਖਾਵਾਂ ਉਨ੍ਹਾਂ ਕਾਰਬਨ ਪਰਮਾਣੁਆਂ ਨੂੰ ਪ੍ਰਗਟ ਕਰਦੀਆਂ ਹਨ, ਜੋ ਅਪਣੀ ਸੰਯੋਜਕਤਾ ਨੂੰ ਪੂਰਣ ਕਰਨ ਦੇ ਲਈ ਲੋੜੀਂਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਬੰਧਿਤ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ

(1) 3 ਮੀਥਾਈਲ ਔਕਟੇਨ ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

$$\begin{array}{c} (\Theta) \quad \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \\ \mathrm{CH}_{3} \end{array}$$



ਸਿਰੇ ਮਿਥਾਈਲ ਗਰੁੱਪ ਦਰਸਾਉਂਦੇ ਹਨ



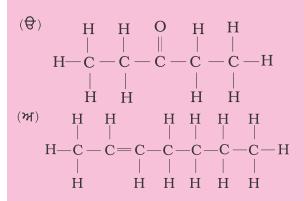
329


ਸਾਈਕਲਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਬੰਧਨ-ਰੇਖਾ ਸੁਤਰਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸਾਈਕਲੋਪੋਪੇਨ

ਸਾਈਕਲੋਪੈਨਟੇਨ

ਕਲੋਰੋਸਾਈਕਲੋਹੈਕਸੇਨ

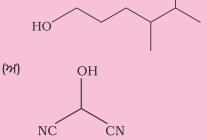

ਉਦਾਹਰਣ 12.4

ਹੇਠ ਲਿਖੇ ਸੰਘਣਿਤ ਸੁਤਰਾਂ ਨੂੰ ਪੂਰਣ ਬਣਤਰੀ ਸੂਤਰਾਂ ਵਿੱਚ ਲਿਖੋ।

 $(\Theta) CH_3 CH_2 COCH_2 CH_3$

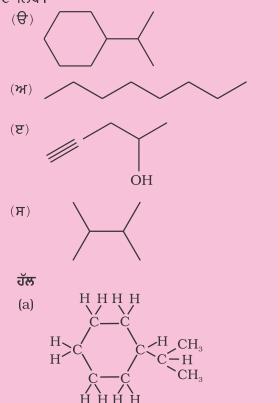
$$(\mathcal{M})$$
 CH₃CH=CH(CH₂)₃CH₃

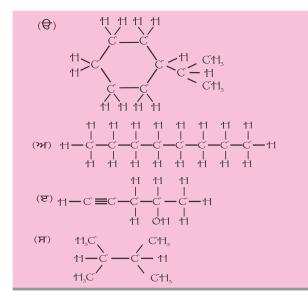
ਹੱਲ


ਉਦਾਹਰਣ 12.5

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦਾ ਰਚਨਾ-ਸੂਤਰ ਸੰਘਣਿਤ ਰੂਪ ਵਿੱਚ

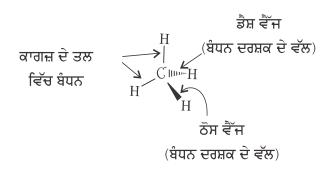
(Θ) HOCH₂CH₂CH₂CH(CH₃)CH(CH₃)CH₃


ਲਿਖੋ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਬੰਧਨ-ਰੇਖਾ ਸੁਤਰ ਵੀ ਦਿਓ।



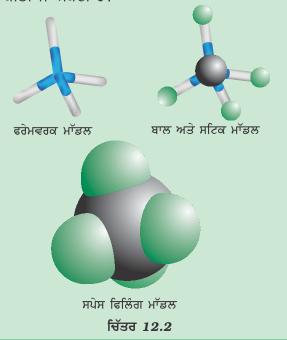
ਉਦਾਹਾਰਣ 12.6

ਹੇਠ ਲਿਖੇ ਬੰਧਨ-ਰੇਖਾ ਸੂਤਰਾਂ ਨੂੰ ਵਿਸਤਾਰਿਤ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਨਾਲ ਸਾਰੇ ਪਰਮਾਣੁਆਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹੋਏ ਲਿਖੋ।

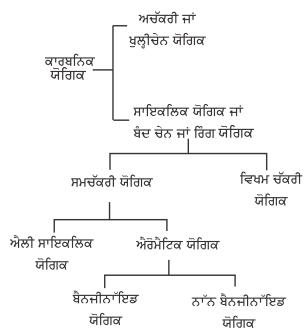


330

12.3.2 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਤ੍ਰੈਵਿਸੀ ਸੂਤਰ


ਕਾਗਜ ਉੱਤੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਤ੍ਰੈ ਵਿਧੀ ਸੂਤਰ (3-D) ਵਿੱਚ ਕੁਝ ਪੱਧਤੀਆਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਦੋ ਵਿਧੀ ਰਚਨਾ ਨੂੰ ਤ੍ਰੈ-ਵਿਧੀ ਰਚਨਾ ਵਿੱਚ ਵੇਖਣ ਦੇ ਲਈ ਠੋਸ ਅਤੇ ਡੈਸ਼ ਵੈੱਜ ਸੂਤਰ ਦੀ ਵਰਤੋ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਸੂਤਰਾਂ ਵਿੱਚ ਠੋਸ ਵੈਜੱ ਉਸ ਬੰਧਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਕਾਗਜ ਦੇ ਤਲ ਤੋਂ ਦਰਸ਼ਕ ਦੇ ਵੱਲ ਪ੍ਰਖਿਪਤ ਹੈ ਅਤੇ ਡੈਸ਼ ਵੈਜੱ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ, ਅਰਥਾਤ ਦਰਸ਼ਕ ਤੋਂ ਦੂਰ ਜਾਣ ਵਾਲੇ ਬੰਧਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਕਾਗਜ ਦੇ ਤਲ ਵਿੱਚ ਸਥਿਤ ਬੰਧਨ ਨੂੰ ਸਧਾਰਣ ਰੇਖਾ (—) ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ 12.1 ਵਿੱਚ ਮੀਥੇਨ ਅਣੂ ਦਾ ਤ੍ਰੈ-ਵਿਸੀ ਸੂਤਰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

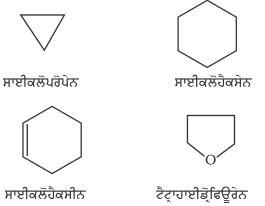
ਚਿੱਤਰ 12.1 CH, ਦੇ ਵੈਜ ਅਤੇ ਡੈਸ਼ ਸੁਤਰ


ਅਣਵੀਂ ਮਾੱਡਲ

ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਤੈ-ਵਿਸੀ ਆਕ੍ਰਿਤੀ ਅਣਵੀਂ ਮਾੱਡਲ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝੀ ਜਾ ਸਕਦੀ ਹੈ। ਲਕੜੀ, ਪਲਾਸਟਿਕ ਜਾਂ ਧਾਤ ਦੇ ਬਣੇ ਇਹ ਮਾੱਡਲ ਬਜਾਰ ਵਿੱਚ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਤਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਅਣਵੀਂ ਮਾਡੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ–: (1) ਫਰੇਮਵਰਕ ਅਰਥਾਤ ਢਾਂਚਾ ਗਤ ਮਾਡਲ (2) ਬਾਲ ਅਤੇ ਸੱਟਿਕ ਅਰਥਾਤ ਗੇਂਦ ਅਤੇ ਛਡੀ ਮਾੱਡਲ ਅਤੇ (3) ਸਪੇਸ ਫਿਲਿੰਗ ਅਰਥਾਤ ਸਥਾਨ ਪੁਰਕ ਮਾੱਡਲ। ਫਰੇਮਵਰਕ ਮਾਡੱਲ ਅਣੂ ਵਿੱਚ ਸਿਰਫ ਬੰਧਨਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਨਹੀ ਵਿਖਾਏ ਜਾਂਦੇ । ਇਹ ਮਾਡੱਲ ਅਣੂ ਦੇ ਪਰਮਾਣਉਆਂ ਦੇ ਅਕਾਰ ਦੀ ਅਣਦੇਖੀ ਕਰਦੇ ਹੋਏ ਬੰਧਨਾ ਦਾ ਪੈਟਰਨ ਦਰਸਾਉਂਦਾ ਹੈ।ਬਾਲ ਅਤੇ ਸਟਿੱਕ ਮਾੱਡਲ ਵਿੱਚ ਬੰਧਨ ਅਤੇ ਪਰਮਾਣੂ-ਦੋਵਾਂ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਬਾਲ ਪਰਮਾਣ[ੂ]ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ ਜਦ ਕਿ ਸਟਿੱਕ ਬੰਧਨ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਅਸੰਤ੍ਰਿਪਤ ਅਣੁਆਂ (ਜਿਵੇਂ— C=C) ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਸਟਿੱਕ ਦੀ ਥਾਂ ਤੇ ਸਪਰਿੰਗ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਸਪੇਸ ਫਿਲਿੰਗ ਮਾੱਡਲ ਵਿੱਚ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਆਪੇਖਕ ਅਕਾਰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਦਾਂ ਹੈ, ਜੋ ਉਸ ਦੇ ਵਾਂਡਰ ਵਾਲ ਅਰਧ ਵਿਆਸ ਤੇ ਅਧਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਮਾੱਡਲ ਵਿੱਚ ਬੰਧਨ ਨਹੀਂ ਵਿਖਾਏ ਜਾਂਦੇ। ਇਹ ਅਣੂ ਵਿੱਚ ਹਰਇੱਕ ਪਰਮਾਣੂ ਦੁਆਰਾ ਘੇਰੇ ਗਏ ਅਇਤਨ ਨੂੰ ਪਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਮਾਡੱਲਾਂ ਦੇ ਇਲਾਵਾ ਅਣਵੀਂ ਮਾੱਡਲ ਦੇ ਲਈ ਕੰਪਿਊਟਰ ਗਰਾਫਿਕਸ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

12.4 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਵਰਗੀਕਰਣ

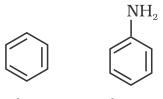
ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤਮਾਨ ਵੱਡੀ ਸੰਖਿਆ ਅਤੇ ਵਧਦੀ ਹੋਈ ਸੰਖਿਆ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਨੂੰ ਰਚਨਾਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਵਰਗੀ ਕਰਣ ਕਰਨਾ ਜਰੂਰੀ ਹੋ ਗਿਆ ਹੈ। ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਮੋਟੇ ਤੌਰ ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਤੈ-ਵਿਧੀ ਅਕ੍ਰਿਤੀ ਅਣਵੀਂ ਮੱਡਲਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝੀ ਜਾ ਸਕਦੀ ਹੈ। ਲਕੜੀ, ਪਲਾਸਟਿਕ ਜਾਂ ਧਾਤ ਦੇ ਬਣੇ ਇਹ ਮੱਾਡਲ ਬਜਾਰ ਵਿੱਚ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ। ਆਮਤੌਰ ਤੇ ਤਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਬਣੇ ਇਹ ਮੱਾਡਲ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

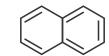

I. ਅਚੱਕਰੀ ਜਾਂ ਖੁਲ੍ਹੀ ਚੇਨ ਯੋਗਿਕ

ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਨੂੰ ਐਲੀ ਫੈਟਿਕ ਯੋਗਿਕ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਿੱਧੇ ਜਾਂ ਸ਼ਾਖਦਾਰ ਚੇਨ ਯੋਗਿਕ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ

II ਸਾਈਕਲਿਕ ਯੋਗਿਕ ਜਾਂ ਬੰਦ ਚੇਨ ਜਾਂ ਰਿੰਗ ਯੋਗਿਕ

ਐਲੀਸਾਈਕਲਿਕ (ਐਲੀ ਫੈਟਿਕ ਚਕੱਰੀ) ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ ਜੁੜ ਦੇ ਇੱਕ ਸਮ ਚਕੱਰੀ (Homocyclic) ਰਿੰਗ ਬਣਾਉਂਦੇ ਹਨ। ਕਦੇ ਕਦੇ ਰਿੰਗ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਇਲਾਵਾ ਹੋਰ ਪਰਮਾਣੂ ਜੁੜ ਕੇ ਵਿਖਮ ਚੱਕਰੀ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਇਸ ਤਰ੍ਹਾਂ ਹਨ।

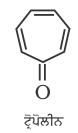



ਇਹ ਐਲੀਫੈਟਿਕ ਯੋਗਿਕਾਂ ਵਾਲੇ ਗੁਣ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ

ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ ਇਕ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦੇ ਯੋਗਿਕ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਸੀਂ ਇਕਾਈ 13 ਵਿੱਚ ਵਿਸਥਾਰ ਵਿੱਚ ਅਧਿਐਨ ਕਰੋਗੇ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਬੋਨਜ਼ੀਨ ਅਤੇ ਹੋਰ ਸਬੰਧਿਤ ਯੋਗਿਕ (ਬੈਨਜੀਨਾੱਇਡ) ਸ਼ਾਮਲ ਹਨ। ਐਲੀਸਾਈਕਲਿਕ ਯੋਗਿਕਾਂ ਦੇ ਸਮਾਨ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਦੀ ਰਿੰਗ ਵਿੱਚ ਬਿਖਮ ਪਰਮਾਣੂ ਹੋ ਸਕਦੇ ਹਨ। ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਨੂੰ ਬਿਖਮ ਚੱਕਰੀ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕੁਝ ਉਹਾਦਰਣਾਂ ਹਨ।

ਬੈਨਜੀਨਾੱਇਡ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ



ਬੈਨਜ਼ੀਨ ਐਨੀਲੀਨ

ਨੈਫਥੈਲੀਨ

Downloaded from https:// www.studiestoday.com

331

332

ਬਿਖਮਚੱਕਰੀ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ

ਿਊਰੈਨ ਥਾਇਓਫੀਨ

ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸਮਜਾਤੀ ਲੜੀਆਂ homologous series ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ

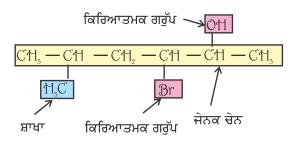
ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਵਿਸ਼ਿਸਟ ਤਰ੍ਹਾਂ ਨਾਲ ਜੁੜਿਆ ਪਰਮਾਣੂ ਜਾਂ ਪਰਮਾਣੂ ਸਮੂਹ, ਜੋ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਲਛੱਣਿਕ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹੁੰਦਾ ਹੈ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ (Functional Group) ਅਖਵਾਉਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵੱਜੋ ਹਾਈਡ੍ਰੋਕਸਿਲ ਗਰੁੱਪ (–OH), ਐਲਡੀਹਾਈਡ ਗਰੁੱਪ (–CHO) ਕਾਰਬੋਕਸਲਿਕ ਐਸਿਡ ਗਰੁੱਪ (–COOH) ਆਦਿ।

ਸਮਜਾਤੀ ਲੜੀਆਂ

ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਸਮੂਹ ਜਾਂ ਅਜਿਹੀ ਲੜੀ ਜਿਸ ਵਿੱਚ ਇੱਕ ਵਿਸ਼ਿਸਟ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਹੋਵੇ ਸਮਜਾਤੀ ਲੜ੍ਹੀ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਦੇ ਮੈਂਬਰਾਂ ਨੂੰ ਸਮਜਾਤੀ (Homologous) ਕਹਿੰਦੇ ਹਨ। ਸਮਜਾਤੀ ਲੜੀ ਦੇ ਮੈਂਬਰਾਂ ਨੂੰ ਇਕ ਆਮ ਸੂਤਰ ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਕ੍ਰਮ ਅਨੁਸਾਰ ਮੈਂਬਰਾਂ ਦੇ ਅਣੂ ਸੂਤਰਾਂ ਦੇ ਵਿੱਚ –CH₂ ਇਕਾਈ ਦਾ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕਈ ਸਮਜਾਤੀ ਲੜੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਹਨ–ਐਲਕੇਨ, ਐਲਕੀਨ, ਐਲਕਾਈਨ, ਐਲਕਾਈਲ ਹੇਲਾਈਡ, ਐਲਕੋਨੋਲ, ਐਲਕੇਨਲ,

12.5 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮਕਰਣ

ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਲੱਖਾਂ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਉਨ੍ਹਾਂ ਦੀ ਸਪਸ਼ਟ ਪਛਾਣ ਦੇ ਲਈ ਯੋਗਿਕਾਂ ਦੇ ਨਾਮ ਕਰਣ ਦੀ ਇਕ ਨਿਯਮਿਤ ਵਿਧੀ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਹੈ, ਜਿਸ ਨੂੰ ਆਈ. ਯੂ.ਪੀ.ਏ.ਸੀ IUPAC (International Union of Pure and Applied Chemistry) ਵਿਧੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨਿਯਮਿਤ ਨਾਮਕਰਣ ਪ੍ਰਣਾਲੀ ਦੇ ਨਾਮ ਨੂੰ ਉਸ ਦੀ ਰਚਨਾ ਨਾਲ ਸਹਿਸਬੰਧਿਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਿਸ ਨਾਲ ਪੜ੍ਹਨ ਜਾਂ ਸੁਣਨ ਵਾਲਾ ਵਿਅਕਤੀ ਯੋਗਿਕ ਦੇ ਨਾਮ ਦੇ ਅਧਾਰ ਤੇ ਉਸ ਦੀ ਰਚਨਾ ਬਣਾ ਸਕੇ।


ਆਈ.ਯੂ.ਪੀ.ਏ.ਸੀ. ਪਧੱਤੀ ਤੋਂ ਪਹਿਲਾਂ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮ ਉਨ੍ਹਾਂ ਦੇ ਸਰੋਤ ਜਾਂ ਕਿਸੇ ਗੁਣ ਦੇ ਅਧਾਰ ਤੇ ਦਿੱਤਾ ਜਾਂਦਾ ਸੀ।ਉਦਾ ਹਰਣ ਵਜੋਂ-ਸਿਟਰਿਕ ਐਸਿਡ ਦਾ ਨਾਮ ਉਸ ਦੇ ਸਿਟਰਸ ਫਲਾਂ ਵਿੱਚ ਮਿਲਣ ਦੇ ਕਾਰਣ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਭੂਰੀ ਕੀੜੀ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਤੇਜਾਬ ਦਾ ਨਾਮ 'ਫਾਰਮਿਕ ਐਸਿਡ' ਦਿੱਤਾ ਗਿਆ ਹੈ, ਕਿਉਂਕਿ ਕੀੜੀ ਦੇ ਲਈ ਲੈਟਿਨ ਸ਼ਬਦ 'ਫਾੱਰਮਿਕਾ' (Formica) ਹੈ। ਇਹ ਨਾਮ ਪਰੰਪਰਿਕ ਹਨ। ਇਹ ਨਿਗੂਣਾ (Trivial) ਜਾਂ ਸਧਾਰਣ (Common) ਨਾਮ ਅਖਵਾਉਂਦੇ ਹਨ। ਵਰਤਮਾਨ ਸਮੇਂ ਵਿੱਚ ਵੀ ਕੁਝ ਯੋਗਿਕਾਂ ਨੂੰ ਸਧਾਰਣ ਨਾਮ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਕੁਝ ਸਾਲ ਪਹਿਲਾਂ ਪ੍ਰਾਪਤ ਕਾਰਬਨ ਦੇ ਇੱਕ ਨਵੇਂ ਰੂਪ C₆₀ ਗੁੱਛੇ (Cluster) ਦਾ ਨਾਮ ਬੱਕ ਮਿਨਸਟਰ ਫੁਲੇਰੀਨ (Buck minster fullerene) ਰੱਖਿਆ ਗਿਆ ਕਿਊਂਕਿ ਇਸ ਦੀ ਅਕ੍ਰਿਤੀ ਅਲਪਅੰਤਰੀ ਗੁੰਬਦਾ (Geodesic Domes) ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਹੈ।ਪ੍ਰਸਿੱਧ ਅਮਰੀਕੀ ਆਰਕੀਟੈਕਟ ਬੱਕ ਮਿਨਸਟਰ ਫੁਲਰ (R.Buckminster fuller) ਨੇ ਇਨ੍ਹਾਂ ਨੂੰ ਲੋਕ ਪਿਆਰਾ ਬਣਾਇਆ ਸੀ।ਕੁਝ ਯੋਗਿਕਾਂ ਦੇ ਸਬੰਧ ਵਿੱਚ ਆਈ. ਯੂ.ਪੀ.ਏ.ਸੀ. ਨਾਮ ਵਧੇਰੇ ਲੰਮੇ ਅਤੇ ਗੁੰਝਲਦਾਰ ਹੁੰਦੇ ਹਨ। ਇਸ ਕਾਰਣ ਵੀ ਉਨ੍ਹਾਂ ਦਾ ਸਧਾਰਣ ਨਾਮ ਰਖਣਾ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ।

ਸਾਰਣੀ 12.1 ਕੁਝ ਯੋਗਿਕਾਂ ਦੇ ਸਧਾਰਣ ਜਾਂ ਨਿਗੂਣੇ ਨਾਮ

Compound	Common name
CH ₄	ਮੀਥੇਨ
$H_3CCH_2CH_2CH_3$	ⁿ −ਬਿਊਟੇਨ
(H ₃ C) ₂ CHCH ₃	ਆਇਸੋਬਿਊਟੇਨ
(H ₃ C) ₄ C	ਨੀਔਪੈਟੇਨ
$H_3CCH_2CH_2OH$	<i>n</i> -ਪ੍ਰੋਪਾਇਲ ਐਲਕੋਹਲ
НСНО	ਫਾਰਮੈਲਡੀਹਾਈਡ
$(H_3C)_2CO$	ਐਸੀਟੋਨ
CHCl ₃	ਕਲੋਰੋਫਾਰੱਮ
CH ₃ COOH	ਐਸਿਟਿਕ ਐਸਿਡ
C_6H_6	ਬੈਨਜ਼ੀਨ
C ₆ H ₅ OCH ₃	ਐਨੀਸੋਲ
$C_6H_5NH_2$	ਐਨੀਲੀਨ
$C_6H_5COCH_3$	ਐਸੀਟੋਫਿਨੋਨ
CH ₃ OCH ₂ CH ₃	ਈਥਾਈਲ ਮਿਥਾਈਲ ਇਥਰ

12.5.1 ਆਈ.ਯੂ.ਪੀ.ਏ.ਸੀ ਨਾਮਕਰਣ

ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਨੂੰ ਨਿਯਮਿਤ ਨਾਮ ਦੇਣ ਦੇ ਲਈ ਮੂਲ ਹਾਈਡ੍ਰੋਕਾਬਨ ਅਤੇ ਉਸ ਦੇ ਨਾਲ ਜੁੜੇ ਕਿਰਿਆਤਮ ਗਰੁੱਪਾਂ ਦੀ ਪਛਾਣ ਕਰਨੀ ਹੁੰਦੀ ਹੈ। ਹੇਠਾਂ ਦਿੱਤੀ ਹੋਈ ਉਦਾਹਰਣ ਨੂੰ ਵੇਖੋ।

ਜਨਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਨਾਮ ਵਿੱਚ ਸਹੀ ਅਗੇਤਰ ਅਤੇ ਪਛੇਤਰ ਲਾ ਕੇ ਯੋਗਿਕ ਦਾ ਵਾਸਤਵਿਕ ਨਾਮ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਿਰਫ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਯੁਕਤ ਯੋਗਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਅਖਵਾਉਂਦੇ ਹਨ। ਕਾਰਬਨ-ਕਾਰਬਨ ਇਕਹਿਰੇ ਬੰਧਨ ਵਾਲੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਨੂੰ ਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਕਹਿੰਦੇ ਹਨ।ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਦੀ ਸਮਜਾਤੀ ਲੜੀ ਦੇ ਨਿਯਮਿਤ IUPAC ਨਾਮ ਨੂੰ ਐਲਕੇਨ ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦਾ ਪਹਿਲਾ ਨਾਮ ਪੈਰਾਫਿਨ (ਲੈਟਿਨ) ਲਿਟਿਲ ਐਫਿਰਨਿਟੀ ਅਰਥਾਤ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਸੀ। ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਇੱਕ ਕਾਰਬਨ-ਕਾਰਬਨ ਦੂਹਰਾ ਬੰਧਨ ਜਾ ਤੀਹਰਾ ਬੰਧਨ ਹੁੰਦਾ ਹੈ।

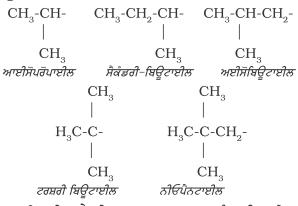
12.5.2 ਐਲਕੇਨਾਂ ਦਾ IUPAC ਨਾਮਕਰਣ

ਸਿੱਧੀ ਚੇਨ ਹਾਈਡ੍ਰੋਕਾਰਬਨ : ਮੀਥੇਨ ਤੋਂ ਬਿਊਟੇਨ ਵਿਚਲੇ ਐਲਕੇਨਾਂ ਤੋਂ ਇਲਾਵਾ ਬਾਕੀ ਯੋਗਿਕਾਂ ਦੇ ਨਾਮ ਸਿੱਧੀ ਚੇਨ-ਰਚਨਾ ਉੱਤੇ ਅਧਾਰਿਤ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਪਛੇਤਰ ਵਿੱਟ 'ਏਨ' (ane) ਅਤੇ ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਲੜੀ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਸੰਗਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਕੁਝ ਸੰਤ੍ਰਿਪਤ ਸਿੱਧੀ ਚੇਨ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ IUPAC ਨਾਮ ਸਾਰਣੀ 12.2 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਸ ਸਾਰਣੀ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਐਲਕੇਨਾਂ ਦੇ ਕ੍ਰਮਾਗਤ ਦੇ ਵਿੱਚ ਸਿਰਫ CH₂ ਦਾ ਅੰਤਰ ਹੈ। ਇਹ ਐਲਕੇਨ ਲੜੀ ਦੇ ਸਮਜਾਤ (Homologues) ਹਨ।

ਸਾਰਣੀ 12.2	IUPAC	Names	of	Some
	Unbranched		Saturated	
	Hydroca	rbons		
	•			

ਨਾਮ	ਅਣਵੀਂ ਸੂਤਰ	ਨਾਮ	ਅਣਵੀਂ ਸੂਤਰ
ਮੀਥੇਨ	CH ₄	ਹੈਪਟੇਨ	$C_{7}H_{16}$
ਈਥੇਨ	C_2H_6	ਆੱਕਟੇਨ	$C_{8}H_{18}$
ਪ੍ਰੋਪੇਕ	C ₃ H ₈	ਨੋਨੇਕ	$C_{9}H_{20}$
ਬਿਊਟੇਨ	C_4H_{10}	ਡੀਕੇਨ	$C_{10}H_{22}$
ਪੈਨਟੇਨ	C_5H_{12}	ਆਈਕੋਸੇਨ	$C_{20}H_{42}$
ਹੈਕਸੇਨ	$C_{6}H_{14}$	ਟ੍ਰਾਈਕੋਨਟੇਨ	$C_{30}H_{62}$

ਸ਼ਾਖਿਤ ਚੇਨ ਯੁਕਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨ : ਸ਼ਾਖਿਤ ਚੇਨ (Branched chain) ਵਾਲੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਛੋਟੀਆਂ ਚੇਨਾਂ ਜਨਕ ਚੇਨ ਦੇ ਇੱਕ ਜਾਂ ਕਈ ਕਾਰਬਨ ਨਾਲ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਛੋਟੀ ਕਾਰਬਨ ਚੇਨ (ਸ਼ਾਖਾਵਾਂ) ਐਲਕਾਈਲ ਗਰੁਪ ਅਖਵਾਉਂਦੀ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ।


 $\begin{array}{cccc} {\rm CH}_{3}{\rm -CH}{\rm -CH}_{2}{\rm -CH}_{3} & {\rm CH}_{3}{\rm -CH}{\rm -CH}_{2}{\rm -CH}{\rm -CH}_{3} \\ | & | & | \\ {\rm CH}_{3} & {\rm CH}_{2}{\rm CH}_{3} & {\rm CH}_{3} \\ ({\ensuremath{\Theta}}) & ({\ensuremath{\aleph}}) \end{array}$

ਅਜਿਹੇ ਯੋਗਿਕ ਦਾ ਨਾਮ ਦੇਣ ਦੇ ਲਈ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦਾ ਨਾਮ ਅਗੇਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਜਨਕ (parent) ਐਲਕੇਨ ਦੇ ਨਾਮ ਦੇ ਨਾਲ ਜੋੜ ਦਿੰਦੇ ਹਨ। ਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਕਾਰਬਨ ਨਾਲੋਂ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਹਟਾਉਣ ਦੇ ਨਾਲ ਐਲਕਾਈਲ ਗਰੁੱਪ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ CH₄ ਤੋਂ –CH₃ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਮੀਥਾਈਲ ਗਰੁੱਪ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਐਲਕਾਈਲ ਗਰੁੱਪ ਦਾ ਨਾਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਸਬੰਧਿਤ ਐਲਕੇਨ ਦੇ ਨਾਮ ਤੋਂ ਏਨ (ane) ਨੂੰ ਆਈਲ (yl) ਦੁਆਰਾ ਵਿਸਥਾਪਿਤ ਕਰਦੇ ਹਨ। ਕੁਝ ਐਲਕਾਈਲ ਗਰੁੱਪਾਂ ਦੇ ਨਾਮ ਸਾਰਣੀ 12.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਾਰਣੀ 12.3 ਕੁਝ ਐਲਕਾਈਲ ਗਰੁੱਪ

ਐਲਕੇਨ		ਐਲਕਾਏ	ੀਲ ਗਰੁੱਪ
ਅਣਵੀਂ	ਐਲਕੇਨ ਦਾ	ਰਚਨਾ ਸੂਤਰ	ਐਲਕਾਈਲ
ਸੁਤਰ	ਨਾਮ		ਗਰੁੱਪ ਦਾ ਨਾਮ
CH ₄	ਮੀਥੇਨ	-CH ₃	ਮੀਥਾਈਲ
C_2H_6	ਈਥੇਨ	-CH ₂ CH ₃	ਈਥਾਈਲ
C ₃ H ₈	ਪ੍ਰੋਪੇਕ	-CH ₂ CH ₂ CH ₃	ਪ੍ਰੋਪਾਈਲ
C_4H_{10}	ਬਿਊਟੇਨ	-CH ₂ CH ₂ CH ₂ CH ₃	ਬਿਊਟਾਈਲ
$C_{10}H_{22}$	ਡੀਕੇਨ	-CH ₂ (CH ₂) ₈ CH ₃	ਡੀਸਾਈਲ

ਕੁਝ ਐਲਕਾਈਲ ਗਰੁੱਪਾ ਦੇ ਨਾਮ ਛੋਟੇ ਰੂਪ ਵਿੱਚ ਵੀ ਲਿਖੇ ਜਾਂਦੇ ਹਨ। ਜਿਵੇਂ ਮੀਥਾਈਲ ਨੂੰ Me, ਈਥਾਈਲ ਨੂੰ Et, ਪ੍ਰੋਪਾਈਲ ਨੂੰ Pr ਅਤੇ ਬਿਊਟਾਈਲ ਨੂੰ Bu ਲਿਖਦੇ ਹਨ। ਐਲਕਾਈਲ ਗਰੁੱਪ ਸ਼ਾਖਿਤ ਵੀ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ ਹੇਠਾਂ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਸਧਾਰਣ ਸ਼ਾਖਿਤ ਗੁਰੱਪਾਂ ਦੇ ਵਿਸ਼ਿਸਟ ਨਿਗੂਣੇ ਨਾਮ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ. ਬਿਊਟਾਈਲ ਗਰੁੱਪਾਂ ਦੇ ਨਾਮ ਸੈਕੰਡਰੀ ਬਿਊਟਾਈਲ, ਅਈਸੋਬਿਊਟਾਈਨ ਅਤੇ ਟਰਸ਼ਰੀ ਬਿਊਟਾਈਲ ਹਨ। –CH₂C(CH₃)₃ ਰਚਨਾ ਦੇ ਲਈ ਨਿਉਪੈਨਟਾਈਲ ਗਰੁੱਪ ਨਾਮ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਸ਼ਾਖਿਤ ਚੇਨ ਐਲਕੇਨਾ ਦਾ ਨਾਮਕਰਣ : ਸਾਨੂੰ ਸ਼ਾਖਿਤ ਚੇਨ ਵਾਲੇ ਐਲਕੇਨ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੇ ਨਾਮ ਕਰਣ ਦੇ ਨਿਯਮ ਹੇਠ ਲਿਖੇ ਹਨ।

 ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਣੂ ਵਿੱਚ ਸਭ ਤੋਂ ਲੰਬੀ ਕਾਰਬਨ ਚੇਨ ਦੀ ਚੋਣ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅੱਗੇ ਲਿਖਿਤ ਉਦਾਹਰਣ (I) ਵਿੱਚ ਸਭ ਤੋਂ ਲੰਬੀ ਚੇਨ ਵਿੱਚ ਨੌ ਕਾਰਬਨ ਹਨ। ਇਹ ਹੀ ਜਨਕ ਚੇਨ (parent chain) ਹੈ। ਰਚਨਾ (II) ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਜਨਕ ਚੇਨ ਦੀ ਚੋਣ ਸਹੀ ਨਹੀਂ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਸਿਰਫ ਅੱਠ ਹੀ ਕਾਰਬਨ ਹਨ।

2. ਜਨਕ ਐਲਕੇਨ ਨੂੰ ਪਛਾਣਨ ਦੇ ਲਈ ਜਨਕ ਚੇਨ ਦੇ ਕਾਰਬਨ ਪਰ ਮਾਣੂਆਂ ਦਾ ਅੰਕਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਨ ਵਾਲੇ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੇ ਕਾਰਣ ਸ਼ਾਖਿਤ ਹੋਣ ਵਾਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਸਥਾਨ ਦਾ ਪਤਾ ਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਕ੍ਰਮ ਅੰਕਨ ਉਸ ਸਿਰੇ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਸ਼ਾਖਿਤ ਕਾਰਬਨੀ ਪਰਮਾਣੂਆਂ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟਾ ਅੰਕ ਮਿਲੇ। ਇਸ ਤਰ੍ਹਾਂ ਉੱਪਰ ਦਿੱਤੀ ਉਦਾਹਰਣ ਵਿੱਚ ਕ੍ਰਮ ਅੰਕਨ ਖੋਬੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ (ਕਾਰਬਨ 2 ਅਤੇ 6) ਉੱਤੇ ਸ਼ਾਖਾ) ਨਾ ਕਿ ਸੱਜੇ ਤੋਂ ਖੋਬੇ ਵੱਲ (ਜਦੋਂ ਸ਼ਾਖਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨੂੰ 4 ਅਤੇ 8 ਸੰਖਿਆ ਮਿਲੇਗੀ)

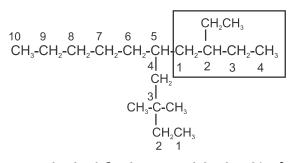
3. ਮੂਲ ਐਲਕੇਨ ਦੇ ਨਾਮ ਵਿੱਚ ਸ਼ਾਖਾ ਦੇ ਰੂਪ ਵਿੱਚ ਐਲਕਾਈਲ ਗਰੁੱਪਾਂ ਦੇ ਨਾਮ ਅਗੇਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਜੋੜਦੇ ਹਨ ਅਤੇ ਪ੍ਰਤੀ ਸਥਾਈ ਗਰੁੱਪਾਂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਸਹੀ ਸੰਖਿਆ ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਭਿੰਨ ਐਲਕਾਈਲ ਗਰੁੱਪਾਂ ਦੇ ਨਾਵਾਂ ਨੂੰ ਅੰਗ੍ਰਜੀ ਵਰਣ ਮਾਲਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖਿਆਂ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਉਪਰੋਕਤ ਯੋਗਿਕ ਦਾ ਨਾਂ 6– ਈਥਾਈਲ–2 ਮੀਥਾਈਲ ਨੋਨੇਨ ਹੋਵੇਗਾ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਗਰੁੱਪ ਅਤੇ ਸੰਖਿਆ ਦੇ ਵਿੱਚ ਸੰਯੋਜਕ ਰੇਖਾ (Hyphen) ਅਤੇ ਮੀਥਾਈਲ ਅਤੇ ਨੋਨੇਨ ਨੂੰ ਮਾਲ ਮਿਲਾ ਕੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

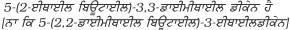
4. ਜੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਸਮਾਨ ਪ੍ਰਤੀਸਥਾਪੀ ਗੱਰੁਪ ਹੋਣ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਕੌਮਾ (,) ਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਸਮਾਨ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪਾਂ ਦੇ ਨਾ ਨੂੰ ਦੁਬਾਰਾ ਨਾ ਲਿਖ ਕੇ ਸਹੀ ਅਗੇਤਰ, ਜਿਵੇਂ-ਡਾਈ (2 ਦੇ ਲਈ), ਟ੍ਰਾਈ (3 ਦੇ ਲਈ), ਟੈਟ੍ਰਾ (4 ਦੇ ਲਈ), ਪੈਂਟਾ (5 ਦੇ ਲਈ), ਹੈਕਸਾ (6 ਦੇ ਲਈ) ਆਦਿ ਵਰਤ ਦੇ ਹਨ, ਪਰੰਤੂ ਨਾਂ ਲਿਖਦੇ ਸਮੇਂ ਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁੱਪਾਂ ਦੇ ਨਾਵਾਂ ਨੂੰ ਅੰਗ੍ਰੇਜੀ ਵਰਣਮਾਲਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖਦੇ ਹਨ। ਹੇਠ ਲਿਖੀਆਂ ਉਦਾਹਰਣਾਂ ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਨੂੰ ਸਪਸ਼ਟ ਕਰਦੀ ਹਨ।

$$\begin{array}{cccc} \mathrm{CH}_3 & \mathrm{CH}_3 & \mathrm{CH}_3 & \mathrm{CH}_3 \\ | & | & | & | \\ \mathrm{CH}_3\mathrm{-CH}\mathrm{-CH}_2\mathrm{-CH}\mathrm{-CH}_3 & \mathrm{CH}_3\mathrm{--C}\mathrm{--CH}_2\mathrm{--CH}\mathrm{--CH}_3 \\ | \\ \mathrm{CH}_3 \end{array}$$

2,4-ਡਾਈਮੀਥਾਈਲ ਪੈੱਨਟੇਨ 2,2,4 ਟ੍ਰਾਈਮੀਥਾਈਲ ਪੈੱਨਟੇਨ

$$\begin{array}{cccc} \mathbf{H_3C} \mathbf{H_2C} & \mathbf{CH_3} \\ & | & | \\ \mathbf{CH_3-CH_2-CH-C-CH_2-CH_2-CH_3} \\ & | \\ & \mathbf{CH_3} \end{array}$$

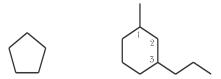

3-ਈਥਾਈਲ-4,4-ਡਾਈਮੀਥਾਈਲ ਹੈਪਟੇਨ


5. ਜੇ ਦੋ ਪ੍ਰਤੀ ਸਥਾਪੀਆਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਬਰਾਬਰ ਹੋਣ, ਤਾਂ ਅੰਗ੍ਰੇਜੀ ਵਰਣ ਮਾਲਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਪਹਿਲਾਂ ਅਉਣ ਵਾਲੇ ਅਖੱਰ ਨੂੰ ਛੋਟਾ ਅੰਕ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹੇਠ ਲਿਖੇ ਯੋਗਿਕ ਦਾ ਸਹੀ ਨਾਂ 3-ਈਥਾਈਲ-6-ਮੀਥਾਈਲ ਔਕਟੇਨ ਹੈ, ਨਾਂ ਕਿ 6-ਈਥਾਈਲ -3 ਮੀਥਾਈਲ ਔਕਟੇਨ

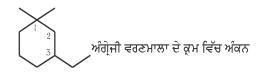
 ਸ਼ਾਖਿਤ ਐਲਕਾਇਲ ਗਰੁੱਪ ਦਾ ਨਾਂ ਉਪਰੋਕਤ ਨਿਯਮਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਸ਼ਾਖਿਤ ਚੇਨ ਦਾ ਕਾਰਬਨ ਪਰਮਾਣੂ ਜੋ ਜਨਕ ਚੇਨ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ, ਨੂੰ ਇਸ ਉਦਾਹਰਣ ਦੀ ਤਰ੍ਹਾਂ ਸੰਖਿਆਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ।

ਅਜਿਹੀ ਸ਼ਾਖਿਤ ਚੇਨ ਗਰੁੱਪ ਦੇ ਨਾਂ ਨੂੰ ਬਰੇਕਟ ਵਿੱਚ ਲਿਖਿਆਂ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁਪਾਂ ਦੇ ਨਿਗੂਣੇ ਨਾ ਵਰਣਅਲਾ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖਦੇ ਸਮੇਂ ਆਈਸੋ (iso) ਅਤੇ ਨੀਓ (Neo) ਅਗੇਤਰਾਂ ਨੂੰ ਮੂਲ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੇ ਨਾਂ ਦਾ ਹਿੱਸਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਪਰੰਤੂ ਸੈਕੰਡਰੀ ਅਤੇ ਟਰਸ਼ਰੀ ਅਗੇਤਰਾਂ ਨੂੰ ਮੂਲ ਐਲਕਾਈਲ ਗਰੁਪ ਦੇ ਨਾਂ ਦਾ ਹਿੱਸਾ ਨਹੀਂ ਮੰਨਿਆ ਜਾਂਦਾ। ਆਈਸੋ ਅਤੇ ਹੋਰ ਸਬੰਧਿਤ ਅਗੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਆਈ.ਯੂ.ਪੀ.ਏ ਸੀ. ਪਧੱਤੀ ਵਿੱਚ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਲੇਕਿਨ ਓਦੋਂ ਤਕ, ਇਹ ਹੋਰ ਅੱਗੇ ਸ਼ਾਖਿਤ ਨਾ ਹੋਣ ਬਹੁ ਪ੍ਰਤੀਸ਼ਥਾਪਿਤ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਨਿਯਮਾਂ ਨੂੰ ਤੁਸੀਂ ਯਾਦ ਰੱਖੋ।

- ਜੇ ਸਮਾਨ ਸੰਖਿਆ ਦੀਆਂ ਦੋ ਚੇਨਾਂ ਹੋਣ, ਤਾਂ ਵਧੇਰੇ ਸਾਈਡ ਚੇਨ ਵਾਲੀ ਚੇਨ ਦੀ ਚੋਣ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ।
- ਚੇਨ ਦੀ ਚੋਣ ਤੋਂ ਬਾਅਦ ਕ੍ਰਮ ਅੰਕਣ ਉਸ ਸਿਰੇ ਤੋਂ ਸ਼ੁਰੂ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਸ ਸਿਰੇ ਤੋਂ ਪ੍ਰਤੀ ਸਥਾਪੀ ਨੇੜੇ ਹੋਵੇ।



5-sec-ਬਿਊਟਾਈਲ-4-ਆਈਸੋਪ੍ਰੋਪਾਈਲ ਡੀਕੇਨ


$$\begin{array}{c}1&2&3&4&5&6&7&8&9\\ CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}\\ & & \\$$

5-(2,2-ਡਾਈਮੀਥਾਈਲ ਪ੍ਰੋਪਾਈਲ)-ਨੋਨੇਨ

ਚੱਕਰੀ ਯੋਗਿਕ : ਇੱਕ ਚੱਕਰੀ ਸੰਤ੍ਰਿਪਤ ਯੋਗਿਕ ਦਾ ਨਾਂ ਸਬੰਧਿਤ ਸਿੱਧੀ ਚੇਨ ਐਲਕੇਨ ਦੇ ਨਾਂ ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਸਾਈਕਲੋ ਅਗੇਤਰ ਲਾ ਕੇ ਪ੍ਰਾਪਤ ਹਨ।ਜੇ ਸਾਈਡ–ਚੇਨ ਮੌਜੂਦ ਹੋਣ, ਤਾਂ ਉਪਰੋਕਤ ਨਿਯਮਾਂ ਦੀ ਪਾਲਨਾ ਅਸੀਂ ਕਰਦੇ ਹਾਂ।ਕੁਝ ਚੱਕਰੀ ਯੋਗਿਕਾਂ ਦੇ ਨਾਂ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ–

ਸਾਈਕਲੋ ਪੈਂਨਟੇਨ 1-ਮੀਥਾਈਲ-3-ਪ੍ਰੋਪਾਈਲ ਸਾਈਕਲੋ ਹੈਕਸੇਨ

3-ਈਥਾਈਨ-1,1-ਡਾਈਮੀਥਾਈਲ ਸਾਈਕਲੋ ਹੈਕਸੇਨ (1-ਈਥਾਈਲ-3,3-ਡਾਈਮੀਥਾਈਲ ਸਾਈਕਲੋ ਹੈਕਸੇਨ ਗਲਤ ਹੈ)

ਉਦਾਹਰਣ 12.7

ਕੁਝ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ IUPAC ਨਾਂ ਅਤੇ ਬਣਤਰਾਂ ਹੇਠਾਂ ਦਿਤੀਆਂ ਗਈਆਂ ਹਨ। ਕਾਰਣ ਸਹਿਤ ਦੱਸੋ ਕਿ ਬਰੈਕਟ ਵਿੱਚ-ਦਿੱਤੇ ਗਏ ਨਾਮ ਗਲਤ ਕਿਉਂ ਹਨ।

(a) CH_3 -CH- CH_2 - CH_2 -CH-CH- CH_2 - CH_3 | | | CH_3 CH_3 CH_3

> 2,5,6- ਟ੍ਰਾਈਮੀਥਾਈਲ ਔਕਟੇਨ [3,4,7-ਟ੍ਰਾਈਮੀਥਾਈਲ ਔਕਟੇਨ ਗਲਤ ਹੈ]

(b)
$$CH_3-CH_2-CH-CH_2-CH_3-CH_3$$

 $|$ $|$ $|$ CH_2CH_3 CH_3

3-ਈਥਾਈਲ-5-ਮੀਥਾਈਲਹੈਪਟੇਨ [5-ਈਥਾਈਲ-3-ਮੀਥਾਈਲ ਹੈਪਟੇਨ ਗਲਤ ਹੈ]

ਹੱਲ

(a) 2,5,6 ਲਘੁਤਮ ਅੰਕ 3,5,7 ਨਾਲੋਂ ਛੋਟੇ ਹਨ। (b) ਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁੱਪ ਬਰਾਬਰ ਸਥਿਤੀਆਂ ਉੱਤੇ ਹਨ। ਇਸ ਹਾਲਤ ਵਿੱਚ ਕ੍ਰਮਅੰਕਨ ਉਸ ਸਿਰੇ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਨ ਜਿਸ ਸਿਰੇ ਤੋਂ ਵਰਣ ਮਾਲਾ ਕ੍ਰਮ ਵਿੱਚ ਪਹਿਲਾਂ ਆਉਣ ਵਾਲੇ ਗਰੁੱਪ ਨੂੰ ਛੋਟਾ ਅੰਕ ਮਿਲੇ।

12.5.3 ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਵਾਲੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮਕਰਣ

ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਪਰਮਾਣੂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦਾ ਸਮੂਹ ਜਿਸ ਦੇ ਕਾਰਣ ਉਹ ਯੋਗਿਕ ਵਿਸ਼ਿਸਟ ਪ੍ਤੀ ਕਿਰਿਆਂ ਸ਼ੀਲਤਾ ਪ੍ਰਦਰਸਿਤਕਰਦਾ ਹੈ, ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ

Downloaded from https:// www.studiestoday.com

335

336

Functional Group ਅਖਵਾਉਂਦਾ ਹੈ। ਸਮਾਨ ਉਂਦਾ ਹੈ। ਸਮਾਨ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਵਾਲੇ ਯੋਗਿਕ ਸਮਾਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ CH₃OH, CH₃CH₂OH, and (CH₃)₂CHOH ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਵਿੱਚ OH ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਹੈ, ਜਿਸ ਦੇ ਕਾਰਣ ਇਹ ਸਾਰੇ ਸੋਡੀਅਮ ਧਾਤ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਮੁਕਤ ਕਰਦੇ ਹਨ। ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਕ੍ਰਮ ਅਨੁਸਾਰ ਭਿੰਨ ਭਿੰਨ ਗਰੁੱਪਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੁਝ ਕਿਰਿਆ ਤਮਕ ਗਰੁੱਪ ਉਨਆਂ ਦੇ ਅਗੇਤਰ ਅਤੇ ਪਛੇਤਰ ਅਤੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਾਮ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਉਹ ਮੌਜੂਦ ਹਨ, ਸਾਰਣੀ 12.4 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੌਜੂਦ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦੀ ਪਛਾਣ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਕਿ ਸਹੀ ਪਛੇਤਰ ਦੀ ਚੋਣ ਹੋ ਸਕੇ। ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦੀ ਸਥਿਤੀ ਦਰਸਾਉਣ ਦੇ ਲਈ ਸਭ ਤੋਂ ਲੰਬੀ ਚੇਨ ਦਾ ਕ੍ਰਮ ਅੰਕਨ ਉਸ ਸਿਰੇ ਤੋਂ ਕਰਦੇ ਹਨ, ਤਾਂ ਕਿ ਉਸ ਕਾਰਬਨ ਜਿਸ ਨਾਲ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਜੁੜਿਆ ਹੈ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟਾ ਅੰਕ ਮਿਲੇ ਸਾਰਣੀ. 12.4 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਪਛੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਯੋਗਿਕ ਦਾ ਨਾਂ ਪ੍ਰਾਪਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਬਹੁ ਕਿਰਿਆਤਮਕ ਗੱਰੁਪਾਂ ਵਾਲੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਕਿਰਿਆਤਮਕ ਗਰੂੱਪ ਨੂੰ ਮੁੱਖ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਮੰਨ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸ ਅਧਾਰ ਤੇ ਯੋਗਿਕ ਦਾ ਨਾਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਸਹੀ ਅਗੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬਚੇ ਹੋਏ ਕਿਰਿਆਤਮਕ ਗਰੁਪਾਂ ਨੂੰ ਪ੍ਰਤੀ ਸਥਾਪੀ ਵਜੋਂ ਨਾਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਮੁੱਖ ਕਿਰਿਆਤਮਕ ਗੁੱਰਪ ਦੀ ਚੋਣ ਤਰਜੀਹ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਕੁਝ ਕਿਰਿਆਤਮਕ ਗੁਰੁੱਪਾਂ ਦਾ ਘਟਦਾ ਹੋਇਆ ਤਰਜੀਹ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ

-COOH, –SO₃H, -COOR (R=ਐਲਕਾਈਲ ਗਰੁਪ), COCl, -CONH₂, -CN,-CHO, >C=O, -OH, -NH₂, >C=C<, -C=C- –R, C₆H₅-, ਹੈਲੋਜਨ (F, Cl, Br, I), –NO₂, ਐਲਕੌਰਸੀ ਆਦਿ ਨੂੰ ਹਮੇਸ਼ਾ ਪ੍ਰਤੀਸਥਾਪੀ ਅਗੇਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਜੇ ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਐਲਕੋਹਲ ਅਤੇ ਕੀਟੋ ਗਰੁੱਪ ਦੋਵੇ ਹੋਣ, ਤਾਂ ਉਸ ਨੂੰ 'ਹਾਈਡ੍ਰੋਕਸੀ ਐਲਕੋਨੋਨ' ਨਾਂ ਹੀ ਦਿੱਤਾ ਜਾਵੇਗਾ, ਕਿਉਂਕਿ ਹਾਈਡ੍ਰੋਕਸੀ ਗਰੁੱਪ ਨਾਲੋਂ ਕੀਟੋ ਗਰੁੱਪ ਨੂੰ ਉੱਚ ਤਰਜੀਹ ਪ੍ਰਾਪਤ ਹੈ।

ਉਦਾਹਰਣ ਵਜੋਂ HOCH₂(CH₂)₃CH₂COCH₃ ਦਾ ਨਾਮ 7-ਹਾਈਡ੍ਰੋਕਸੀ ਹੈਪਟੇਨ-2-ਓਨ ਹੋਵੇਗਾ, ਨਾ ਕਿ 2-ਔਕਸੋ ਹੈਪਟੇਨ-7- ਉਲ। ਇਸੇ ਤਰ੍ਹਾਂ BrCH₂CH=CH₂ ਦਾ ਸਹੀ ਨਾਂ 3-ਬ੍ਰੋਮੋਪਰੋਪ-1- ਈਨ ਹੈ ਨਾ ਕਿ 1-ਬ੍ਰੋਮੋਪਰੋਪ -2- ਈਨ।

ਜੇ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪਾ ਦੀ ਸੰਖਿਆ ਇੱਕ ਤੋਂ ਵੱਧ ਹੋਵੇ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਉਣ ਦੇ ਲਈ ਲੋੜੀਂਦਾ ਅਗੇਤਰ ਡਾਈ,ਟ੍ਰਾਈ ਆਦਿ ਗਰੁੱਪ ਅਗੇਤਰ ਤੋਂ ਪਹਿਲਾਂ ਲਿਖਿਆਂ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਵਿੱਚ ਗਰੁੱਪ ਅਗੇਤਰ ਤੋਂ ਪਹਿਲਾਂ ਮੂਲ ਐਲਕੇਨ ਦਾ ਰੂਪਣ ਨਾਂ ਲਿਖਦੇ ਹਨ ਉਦਾਹਰਣ ਵਜੋਂ— $CH_2(OH)CH_2(OH)$ ਦਾ ਨਾਂ ਈਥੇਨ -1,2 ਡਾਈ ਓਲ ਹੈ, ਪਰੰਤੂ ਇੱਕ ਤੋਂ ਵੱਧ ਦੂਹਰੇ ਬੰਧਨ ਜਾਂ ਤੀ ਹਰੇ ਬੰਧਨ ਹੋਣ ਤੇ ਐਲਕੇਨ ਦਾ ਨਹੀ ਵਰਤਿਆ ਜਾਂਦਾ । ਜਿਵੇਂ ਦਾ ਨਾਂ ਬਿਊਟਾ -1,2 ਡਾਈ ਓਲ ਹੈ, ਪਰੰਤੂ ਇੱਕ ਤੋਂ ਵੱਧ ਦੂਹਰੇ ਬੰਧਨ ਜਾਂ ਤੀ ਹਰੇ ਬੰਧਨ ਹੋਣ ਤੇ ਐਲਕੇਨ ਦਾ ਨ ਨਹੀਂ ਵਰਤਿਆਂ ਜਾਂਦਾ । ਜਿਵੇ $CH_2(OH)CH_2(OH ਦਾ ਨਾਂ ਬਿਊਟਾ -1,3 ਡਾਈਈਨ$ ਹੈ।

ਉਦਾਹਰਣ 12.8

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ (1 ਤੋਂ 4) ਦੇ IUPAC ਨਾਂ ਲਿਖੋ

ਹੱਲ

- ਹਾਈਡ੍ਰੋਕਸੀ (OH) ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਹੋਣ ਦੇ ਕਾਰਣ ਪਛੇਤਰ ਓਲ ਲਗੇਗਾ।
- ਸਭ ਤੋਂ ਵੱਡੀ ਚੇਨ ਵਿੱਚ ਅੱਠ ਕਾਰਬਨ ਹਨ। ਇਸ ਲਈ ਮੁਲ ਹਾਈਡ਼ੋਕਾਰਬਨ ਔਕਟੇਨ ਹੈ।

(ii)
$$\begin{array}{ccc} O & O \\ \parallel & \parallel \\ CH_3 - CH_2 - C - CH_2 - C - CH_3 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{array}$$

 -OH ਕਾਰਬਨ-ਸੰਖਿਆ 3 ਉੱਤੇ ਹੈ। ਇੱਕ ਹੋਰ ਪ੍ਰਤੀ ਸਥਾਪੀ ਸੀਥਾਈ ਗਰੁੱਪ ਕਾਰਬਨ-6 ਉੱਤੇ ਹੈ। ਇਸ ਤਰ੍ਹਆਂ ਯੋਗਿਕ ਦਾ ਨਾਂ 6=ਮੀਥਾਈਲ ਔਕਟੇਨ-3-ਓਲ ਹੈ।

ਹੱਲ

ਕਿਰਿਆ ਤਮਕ ਗਰੁੱਪ ਕੀ ਟੋਨ (>C=O) ਹੋਣ ਦੇ ਕਾਰਣ ਪਛੇਤਰ ਓਨ ਹੋਵੇਗਾ। ਦੋ ਕੀਟੋ ਗਰੁੱਪ ਹੋਣ ਦੇ ਕਾਰਣ ਡਾਈਓਨ ਪਛੇਤਰ ਲਾਵਾਂਗੇ। ਕੀਟੋ ਗਰੁੱਪ ਦੀਆਂ ਸਥਿਤੀਆਂ 2 ਅਤੇ 4 ਹਨ. ਲੰਬੀ ਚੇਨ ਵਿੱਚ 6 ਕਾਰਬਨ ਪਰਮਾਣੂ ਹੋਣ ਦੇ ਕਾਰਣ ਮੂਕ ਐਲਕੇਕ ਹੋਨ ਸੇਨ ਹੈ। ਇਸਤਰਾਂ ਸਹੀ ਨਾ ਹੈਕਸੇ ਨ 2, 4, ਡਾਈਓਨ ਹੈ।

(iii) $\begin{array}{c} O \\ \parallel \\ CH_3 - C - CH_2 - CH_2 - CH_2 - COOH \\ 6 5 4 3 2 1 \end{array}$

	איפכו 12.4 פא ומוסאיצאמ טופע אצ מיפמה טוטומי צואי אַכואי					
	ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ	IUPAC	IUPAC	ਉਦਾਹਰਣ		
ਯੋਗਿਕ ਦੀ ਸ਼੍ਰੇਣੀ	ਦੀ ਰਚਨਾ	ਗਰੁੱਪ ਅਗੇਤਰ	ਗਰੁੱਪ ਪਿਛੇਤਰ	90000		
	-	_	⁻ ਈਨ	ਬਿਊਟੇਨ		
ਐਲਕੇਨ			819	$CH_3(CH_2)_2CH_3$		
ਐਲਕੀਨ	>C=C<	-	- ਈਨ	ਬਿਉਟ−1−ਈਨ CH₂=CHCH₂CH₃		
ਐਲਕਾਈਨ	-C≡C-	-	- ਅਈਨ	ਬਿਊਟ−1−ਆਈਨ CH≡CCH₂CH₃		
ਏਗੀਨ	-	-	-	ਬੈਨਜ਼ੀਨ ,		
ਹੇਲਾਈਡ	-X (X=F,Cl,Br,I)	ਹੈਲੋ	-	$^{1-}$ ਬਰੋਮੋਬਿਊਟੇਨ, CH ₃ (CH ₂) ₂ CH ₂ Br		
ਐਲਕੋਹਲ	-OH	ਹਾਈਡ੍ਰੋਕਸੀ	- ਓਲ	ਬਿਊਟੇਨ−2-ਉਲ CH₃CH2CHOHCH₃		
ਐਲਡੀਹਾਈਡ	-CHO	ਫਾੱਰਮਿਲ ਜਾਂ ਔਕਸੋ	- ਅਲ	ਬਿਊਟੇਨਲ CH ₃ (CH ₂) ₂ CHO		
ਕੀਟੋਨ	>C=O	ਔਕਸੋ	- ਓਨ	ਬਿਊਟੇਨ-2-ਓਨ, CH ₃ CH ₂ COCH ₃		
ਨਾਈਟ੍ਰਾਈਲ	-C≡N	ਸਾਇਨੋ	ਨਾਈਟ੍ਰਾਈਲ	ਪੈਨਟੇਨ ਨਾਈਟ੍ਰਾਈਲ CH ₃ CH ₂ CH ₂ CN		
ਈਥਰ	-R-O-R-	ਐਲਕੌਕਸੀ	-	ਈਥੋਕਸਈ ਈਥੇਨ CH ₃ CH ₂ OCH ₂ CH ₃		
ਕਾਰਬੌਕਸਿਲਿਕ ਐਸਿਡ	-СООН	ਕਾਰਬੌਕਸੀ	ਓਇਕ ਐਸਿਡ	ਬਿਊਟੇ ਨੋਇਕ ਐਸਿਡ CH ₃ (CH ₂) ₂ CO ₂ H		
ਕਾਰਬੋਕਸੀਲੇਟ ਆਇਨ	-COO ⁻	-	ਔਏਟ	ਸੋਡੀਅਮ ਬਿਊਟੇਨੋਏਟ, CH ₃ (CH ₂) ₂ CO ₂ Na+		
ਐਸਟਰ	-COOR	ਐਲਕੌਕਸੀ ਕਾਰਬੋਨਾਈਲ	ਔਏਟ	ਮੀਥਾਈਲ ਪ੍ਰੋਪੇਨੋਏਟ CH ₃ CH ₂ COOCH ₃		
ਐਸਿਡ ਹੇਲਾਈਡ	-COX (X=F,Cl,Br,I	ਹੈਲੋਕਾਰਬੋਨਾਈਲ	ਆੱਇਨ ਹੇਲਾਈਡ	ਬਿਊਟੇਨਾੱਇਲ ਕਲੋਰਾਈਡ, CH ₃ (CH ₂) ₂ COCl		
ਐਮੀਨ	-NH ₂ , >NH,>N-	ਐਮੀਨੋ	ਐਮੀਨ	2−ਬਿਊਟਫਨੇਮੀਨ CH₃CHNH₂CH₂CH₃		
ਐਮਾਈਡ	$-CONH_2, -CONHR, -CONR_2$	ਕਾਰਬਾਮੋਇਲ	ਔਮਾਈਡ	ਬਿਊਟੇਨੇਆਈਡ $CH_3(CH_2)_2CONH_2$		
ਨਾਈਟ੍ਰੋ	-NO ₂	ਨਾਈਟ੍ਰੋ	-	1-ਨਾਈਟ੍ਰੋਬਿਊਟੇਨ CH $_3$ (CH $_2$) $_3$ NO $_2$		
ਸਲਫਾੱਨਿਕ ਐਸਿਡ	–SO ₃ H	ਸਲਫੋ	ਸਲਫਾੱਸਿਕ ਐਸਿਡ	ਮੀਥਾਈਲ ਸਲਫਾਸਿਕ ਐਸਿਡ CH ₃ SO ₃ H		

ਸਾਰਣੀ 12.4 ਕੁੱਝ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਅਤੇ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੀਆਂ ਸ਼੍ਰੇਣੀਆਂ

Downloaded from https:// www.studiestoday.com

337

338

ਹਲ

ਇਸ ਯੋਗਿਕ ਵਿੱਚ ਦੋ ਕਿਰਿਆ ਤਮਕ ਗਰੁੱਪ ਕੀਟੋ ਅਤੇ ਕਾਰਬੋਕਸੀ ਹਨ, ਜਿਨਾਂ ਵਿੱਚੋਂ ਕਾਰਬੋਕਸੀ ਗਰੁੱਪ ਮੁੱਖ ਕਿਰਿਆ ਤਮਕ ਗਰੁੱਪ ਹੈ. ਇਸਲਈ ਚੇਨ ਵਿੱਚ ਪਛੇਤਰ ਓਇਨ ਐਸਿਡ ਲੱਗੇਗਾ। ਚੇਨ ਦਾ ਕ੍ਰਮਅੰਕਣ ਉਸ ਕਾਰਬਨ ਤੋਂ ਸ਼ੁਰੂ ਹੋਵੇਗਾ, ਜਿਸ ਵਿੱਚ –COOH ਗਰੁੱਪ ਹੈ। ਕਾਰਬਨ ਸੰਖਿਆ 5 ਉੱਤੇ ਸਥਿਤ ਕੀਟੋ ਗਰੁੱਪ ਨੂੰ ਔਕਸੋ ਨਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਸਭ ਤੋਂ ਵੱਡੀ ਚੇਨ ਜਿਸ ਵਿੱਚ ਕਿਰਿਆਭਮਕ ਗਰੁੱਪ ਹੈ, ਵਿੱਚ ਛੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਹਨ। ਫਲਸਰੂਪ ਇਸ ਦੇ ਮੂਲ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦਾ ਨਾਂ ਹੈਕਸੇਨ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦਾ ਨਾਮ 5-ਔਕਨੋ ਹੇਕਸੇ ਨੋਇਕ ਐਸਿਡ ਹੈ।

(iv)
$$CH \equiv C - CH = CH - CH = CH_2$$

6 5 4 3 2 1

ਹੱਲ

ਦੋ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ C=C ਕਾਰਬਨ 1 ਅਤੇ 3 ਉੱਤੇ ਹਨ, ਜਦ ਕਿ C≡C ਗਰੁੱਪ ਸਥਿਤੀ ਕਾਰਬਨ ਸੰਖਿਆ 5 ਸਭ ਤੋਂ ਲੰਬੀ ਤੋਂ ਲੰਬੀ ਚੇਨ ਵਿੱਚ ਛੇ ਕਾਰਬਨ ਹਨ। ਇਸ ਲਈ ਇਸ ਦਾ ਮੂਲ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਹੋਕਸੇਨ ਹੈ। ਇਸ ਲਈ ਨਾਮ ਹੈਕਸਾ−1,3 ਡਾਈਈਨ=5 ਅਈਨ ਹੋਵੇਗਾ।

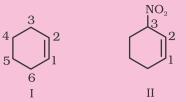
ਹੱਲ 12.9

ਹੇਠ ਲਿਖਿਆਂ ਦੀਆਂ ਰਚਨਾਵਾਂ ਲਿਖੋ।

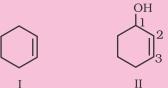
```
(i) 2 - ਕਲੋਰੋਹੈਕਸੇਨ
```

```
(ii) ਪੈਂਟ -4-ਈਨ-2-ਉਲ
```

- (iii) 3-ਨਾਈਟ੍ਰੋਸਾਈਕਲੋ ਹੈਕਸੀਨ
- (iv) ਸਾਈਕਲੋਹੈਕਸ-2-ਈਨ-1-ਓਲ
- (v) 6−ਹਾਈਡ੍ਰੋਕਸੀਹੈਪਟੇਨਲ


```
ਹੱਲ
```

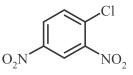
(i) ਹੈਕਸੇਨ ਤੋਂ ਸਪਸ਼ਟ ਕਿ ਸਭ ਤੋਂ ਚੇਨ ਵਿੱਚ 6 ਕਾਰਬਨ ਪਰਮਾਣੂ ਹਨ।ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦੀ ਸਥਿਤੀ 2 ਉਤੋ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦੀ ਰਚਨਾ CH₃CH₂CH₂CH₂CH(CI)CH₂ ਹੈ।


(ii) ਪੈਂਟ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਮੂਲ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਵਿੱਚ 5 ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਚੇਨ ਹੈ। ਈਨ ਅਤੇ ਉਲ ਕ੍ਰਮਵਾਰ >C=C< ਅਤੇ –OH ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਕ੍ਰਮਵਾਰ 4 ਅਤੇ 2 ਸਥਿਤੀਆਂ ਉੱਤੇ ਮੌਜੂਦ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦੀ ਰਚਨਾ

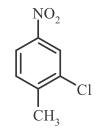
 $CH_2 = CHCH_2CH (OH)CH_3 ਹੈ।$

(iii) ਸਾਈਕਲੋ ਹੈ ਕਸੀਨ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਛੇ ਕਿ ਛੇ ਮੈਂਬਰੀ ਰਿੰਗ ਵਿੱਚ C = C ਮੌਜੂਦ ਹੈ, ਜਿਸ ਦਾ ਕ੍ਰਮ-ਅੰਕਨ (1) ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਹੈ। ਅਗੇਤਰ 3- ਨਾਈਟ੍ਰੋ ਇਹ ਦਸੱਦਾ ਹੈ ਕਿਸਥਿਤੀ 3 ਉੱਤੇ –NO₂ ਗਰੁੱਪ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦੀ ਰਚਨਾ (ii) ਹੈ। ਦੂਹਰਾ ਬੰਧਨ ਕਿਰਿਆ ਤਮਕ ਗਰੁੱਪ ਹੈ, ਇਸ ਲਈ ਦੂਹਰੇ ਬੰਧਨ ਨੂੰ NO₂ ਗਰੁੱਪ ਤੋਂ ਵੱਧ ਤਰਜੀਹ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ।

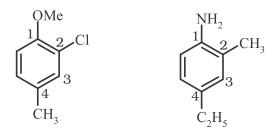
(iv) 1 ਓਲ ਤੋਂ ਭਾਵ ਹੈ ਕਿ -OH ਦੀ ਸਥਿਤੀ ਕਾਰਬਨ– 1 ਉੱਤੇ ਹੈ।–OH ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ C=C ਬੰਧਨ ਤੋਂ ਇਸ ਨੂੰ ਤਰਜੀਬ ਮਿਲੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦੀ ਰਚਨਾ (II) ਹੈ।

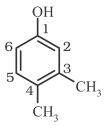

(v) ਹੈਪਟੇਨਲ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਯੋਗਿਕ ਇੱਕ ਐਲਡੀਹਾਈਡ ਹੈ ਜਿਸ ਵਿੱਚ ਸੱਤ ਕਾਰਬਨ ਪਰਮਾਣਊਆਂ ਦੀ ਚੇਨ ਹੈ। 6-ਹਾਈਡ੍ਰੋਕਸੀ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸਥਿਤੀ 6 ਉੱਤੇ –OH ਗਰੁੱਪ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਯੋਗਿਕ ਦਾ ਬਣਤਰੀ ਸੂਤਰ ਹੇਠ ਲਿਖਿਆ ਹੈ। CH₃CH(OH)CH₂CH₂CH₂CH₂CHO ਚੇਨ ਕੇ ਕ੍ਰਮ ਅੰਕਨ ਵਿੱਚ –CHO ਗਰੁੱਪ ਦਾ ਕਾਰਬਨ ਪਰਮਾਣੂ ਵੀ ਸ਼ਾਮਲ ਹੁੰਦਾ ਹੈ।

12.5.4 ਬੈਨਜ਼ੀਨ ਪ੍ਰਤੀਥਾਪਿਤਾਂ ਦਾ ਨਾਮਕਰਣ

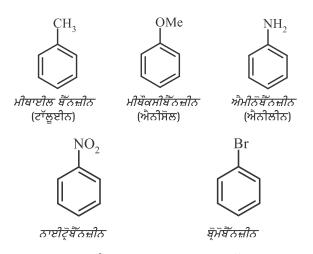

IUPAC ਪਧੱਤੀ ਵਿੱਚ ਬੈਨਜ਼ੀਨ ਪ੍ਰਤੀ ਸਥਾਪਿਤਾਂ ਦੇ ਨਾਂ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪ ਦਾ ਨਾਂ ਅਗੇਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਬੈਨਜ਼ੀਨ ਸ਼ਬਦ ਤੋਂ ਪਹਿਲਾਂ ਲਿਖਦੇ ਹਨ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੇ ਨਿਗੂਣੇ ਨਾਂ (ਜੋ ਬਰੈਕਟ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ) ਵੀ ਕਾਫੀ ਪ੍ਰਚਲਿਤ ਹਨ।

339

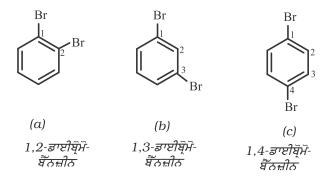

ਮੂਲ ਯੋਗਿਕ ਦੀ ਪ੍ਰਤੀਸਥਾਪੀ ਦੀ ਸਥਿਤੀ ਨੂੰ ਸੰਖਿਆ 1 ਦੇ ਕੇ ਇਸ ਤਰ੍ਹਾਂ ਕ੍ਰਮਅੰਕਨ ਕਰਦੇ ਹਨ ਕਿ ਬਾਕੀ ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਨੂੰ ਘੱਟ ਤੋਂ ਘੱਟ ਸੰਖਿਆਵਾਂ ਮਿਲਣ। ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦੇ ਨਾਂ ਅੰਗ੍ਰੇਜੀ ਵਰਣਮਾਲਾ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖੇ ਜਾਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਆਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਜਾ ਰਹੀਆਂ ਹਨ।


1-ਕਲੋਰੋ-2,4-ਡਾਈਨਾਈਟ੍ਰੋਬੈੱਨਜ਼ੀਨ (ਨਾਕਿ 4-ਕਲੋਰੋ,1,3-ਡਾਈਨਾਈਟ੍ਰੋਬੈੱਨਜ਼ੀਨ)

2-ਕਲੋਰੋ-1-ਮੀਥਾਈਲ-4-ਨਾਈਟ੍ਰੋਬੈੱਨਜ਼ੀਨ (ਨਾਕਿ 4-ਮੀਥਾਈਲ-5-ਕਲੋਰੋ-ਨਾਈਟ੍ਰੋਬੈੱਨਜ਼ੀਨ)

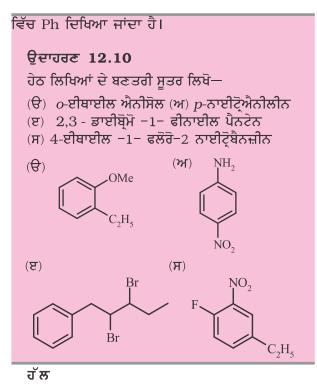


2-ਕਲੋਰੋ-4-ਮੀਥਾਈਲ ਐਨੀਸੋਲ 4-ਈਥਾਈਲ-2-ਮੀਥਾਈਲ ਐਨੀਸੋਲ



3,4-ਡਾਈਮੀਥਾਈਲ ਫੀਨੋਲ

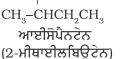
ਜਦੋਂ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਅਤੇ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਐਲਕੇਨ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਤਾਂ ਬੈੱਨਜ਼ੀਨ ਨੂੰ ਮੂਲ ਨਾ ਮੰਨ ਕੇ ਪ੍ਰਤੀਸਥਾਪੀ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਤੀਸਥਾਪੀ ਦੇ ਰੂਪ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਦਾ ਨਾਮ ਫੀਨਾਈਲ ਹੈ ਅਤੇ (C₆H₅- ਨੂੰ ਛੋਟੇ ਰੂਪ

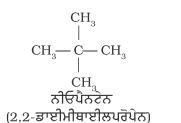


ਦੋ-ਪ੍ਰਤੀ ਸਥਾਪੀ ਬੈਨਜ਼ੀਨ ਪ੍ਰਤੀ ਸਥਾਪਿਨਾਂ ਵਿੱਚ ਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁੱਪਾਂ ਦੀਆਂ ਅਸੰਖਿਆਵਾਂ ਦੁਆਰਾ ਦਰਸਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਕ੍ਰਮ ਅੰਕਨ ਇਸ ਤਰ੍ਹਾਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਕਿਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁੱਪ ਵਾਲੀਆਂ ਸਥਿਤੀਆਂ ਨੂੰ ਛੋਟੀ ਸੰਖਿਆ ਮਿਲੇ। ਜਿਵੇਂ-ਇਸ ਯੋਗਿਕ (ਅ) ਦਾ ਨਾਮ 1,3 ਡਾਈਬ੍ਰੋਮੋਬੈਨਜ਼ੀਨ ਹੋਵੇਗਾ ਨਾ ਕਿ 1,5-ਡਾਈਬੋਮੋਬੈਨਜ਼ੀਨ

ਨਾਮਕਰਣ ਦੀ ਨਿਗੂਣੀ ਪੱਧਤੀ ਵਿੱਚ 1,2-;1,3-ਸਥਿਤੀਆਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਆੱਰਥੋ। ਮੈਟਾ (ਅ) ਅਤੇ ਪੈਰਾ (p) ਅਗੇ ਤਰਾਂ ਦੁਆਰਾ ਵੀ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ. ਇਸ ਤਰ੍ਹਾਂ 1,3- ਡਾਈਬ੍ਰੋਮੋਬੈਨਜ਼ੀਨ ਦਾ ਨਾਮ ਮੈਟਾ ਡਾਈਬ੍ਰੋਮੋਬੈਨਜ਼ੀਨ ਵੀ ਹੈ (ਮੈਟਾ ਦਾ ਸੰਖੇਪ ਰੂਪ ਅ ਹੈ ਅਤੇ ਡਾਈਬ੍ਰੋਮੋਬੈਨਜ਼ੀਨ ਦੇ ਦੂਜੇ ਯੋਗਿਕਾਂ (ੳ) 1,2 ਅਤੇ (ੲ) 1,4- ਡਾਈਬ੍ਰੋਮੋਬੈਨਜੀਨ ਨੂੰ ਕ੍ਰਮਵਾਰ ਆੱਰਥੋ (੦) ਅਤੇ ਪੈਰਾ p ਡਾਈਬ੍ਰੋਮੋਬੈਜ਼ੀਨ ਕਹਾਗੇ। ਇਨ੍ਹਾਂ ਅਗੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਤਿੰਨ ਜਾਂ ਵੱਧ ਪ੍ਰਤੀਸ਼ਥਾਪੀ ਬੈੱਨਜੀਨ ਕਹਾਂਗੇ। ਇਨ੍ਹਾਂ ਅਗੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਤਿੰਨ ਜਾਂ ਵੱਧ ਪ੍ਰਤੀਸਥਾਪੀ ਬੈਨਜੀਨ ਦੇ ਨਾਮਕਰਣ ਵਿੱਚ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਛੋਟੀ ਸੰਖਿਆ ਦੇ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਕਰਦੇ ਹੋਏ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਕਦੇ ਬੈੱਨਜ਼ੀਨ ਵਿਉਤਪੰਨ ਦੇ ਨਿਗੂਣੇ ਨਾਮ ਨੂੰ ਮੂਲ ਯੋਗਿਕ ਲਿਆ ਜਾਂਦਾ ਹੈ।

340

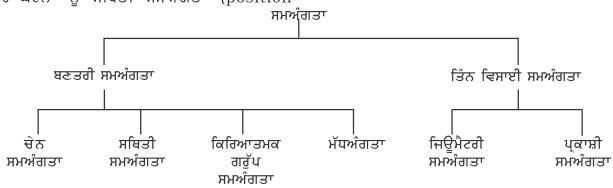

12.6 ਸਮਅੰਗਤਾ


ਦੋ ਜਾਂ ਦੋਂ ਤੋਂ ਵੱਧ ਯੋਗਿਕ, ਜਿਨ੍ਹਾਂ ਦੇ ਅਣਵੀਂ ਸੂਤਰ ਸਮਾਨ ਹੁੰਦੇ ਹਨ ਪਰੰਤੂ ਗੁਣ ਭਿੰਨ ਹੁੰਦੇ ਹਨ ਸਮਅੰਗਕ ਅਖਵਾਉਂਦੇ ਹਨ ਅਤੇ ਇਸ ਪਰਿਘਟਨਾ ਨੂੰ ਸਮਅੰਗਤਾ (Isomerism) ਕਿਹਿੰਦੇ ਹਨ। ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੀ ਸਮਅੰਗਤਾ ਨੂੰ ਇਸ ਵਿਧੀ ਕ੍ਰਮ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

(i) ਚੇਨਸਮਅੰਗਤਾ : ਸਮਾਨ ਅਣਵੀ ਸੂਤਰ ਅਤੇ ਭਿੰਨ ਕਾਰਬਨ ਢਾਂਚੇ ਵਾਲੇ ਦੋ ਜਾਂ ਦੋ ਤੋ ਵੱਧ ਯੋਗਿਕ ਚੰਨ ਸਮਅੰਗਕ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਪਰਿਘਟਨਾਂ ਨੂੰ ਚੇਨਸਮਅੰਗਤਾ ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ –C₅H₁₂ ਦੇ ਹੇਠ ਲਿਖੇ ਤਿੰਨਸਮ ਅੰਗਕ ਹਨ।

(ii) ਸਥਿਤੀ ਸਮਅੰਗਤਾ : ਜੇ ਸਮਅੰਗਕਾਂ ਵਿੱਚ ਭਿੰਨਤਾ ਪ੍ਤੀਸਥਾਪੀ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਦੀ ਸਥਿਤੀ-ਭਿੰਨਤਾ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਉਨ੍ਹਾਂ ਨੂੰ ਸਥਿਤੀ ਸਮਅੰਗਕ ਅਤੇ ਇਸ ਪਰਿ-ਘਟਨਾ ਨੂੰ ਸਥਿਤੀ ਸਮਅੰਗਤਾ (position Isomerism) ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋ− C₃H₈0 ਅਣਵੀਂ ਸੂਤਰ ਦੇ ਹੇਠ ਲਿਖੇ ਦੋ ਤਿੰਨ ਸਥਿਤੀ ਸਮਅੰਗਕ ਐਲਕੋਹਲ ਸੰਭਵ ਹਨ। CH₂

CH₃CH₂CH₂CH₂CH₃ ਪੈਨਟੇਨ



(iii) ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਸਮਅੰਗਤਾ : ਜੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਯੋਗਿਕਾਂ ਦੇ ਅਣਵੀ ਸੂਤਰ ਸਮਾਨ ਹੋਣ, ਪਰੰਤੂ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਭਿੰਨ ਭਿੰਨ ਹੋਣ, ਤਾਂ ਅਜਿਹੇ ਸਮਅੰਗਕਾਂ ਨੂੰ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਸਮਅੰਗਕ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਹ ਪਰਿਘਟਨਾ ਕਿਰਿਆਤਮਕ ਗੁੱਰਪ ਸਮਅੰਗਤਾ (Functional Group Isomeriom) ਅਖਵਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-C₃H₆O ਅਣਵੀਂ ਸੂਤਰ ਹੇਠ ਲਿਖੇ ਐਲਡੀਹਾਈਡ ਅਤੇ ਕੀਟੋਨ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

0	OH H
$\rm CH_3 CH_2 CH_2 OH$	CH ₃ –CH-CH ₃
ਪਰੋਪੇਨ-1-ਓਲ	ਪਰੋਪੇਨ-2-ਓਲ
 CH ₃ –C-CH ₃	 CH ₃ -CH ₂ -C= O
ਪਰੋਪੇਨੋਨ	ੂ ਪਰੋਪੇਨਲ

(iv) ਮੱਧ ਅੰਗਤਾ : ਕਿਰਿਆਤਮਕ ਗਰੁਪ ਨਾਲ ਜੁੜੀਆਂ ਭਿੰਨ ਐਲਕਾਈਲ ਚੇਨਾਂ ਦੇ ਕਾਰਣ ਇਹ ਸਮਅੰਗਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ— $C_4H_{10}O$ ਮੱਧ— ਅੰਗੀ ਮੀਥੌਕਸੀ ਪਰੋਪੇਨ ($CH_3O-C_3H_7$) ਅਤੇ ਈਥੌਕਸੀ ਈਥੇਨ ($C_2H_5OC_2H_5$) ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

12.6.2 ਤਿੰਨਵਿਮਾਈ ਸਮਅੰਗਤਾ

ਤਿੰਨ ਵਿਮਾਈ ਸਮਅੰਗਕ ਉਹ ਯੋਗਿਕ ਹਨ, ਜਿਨਾਂ ਵਿੱਚ ਬਣਤਰ ਅਤੇ ਪਰਮਾਣੂਆਂ ਦੇ ਬੰਧਨ ਦਾ ਕ੍ਰਮ ਤਾਂ ਸਮਾਨ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਪਰਮਾਣਊਆਂ ਜਾਂ ਗਰੁੱਪਾਂ ਦੀ ਤਿੰਨ ਵਿਮਾਈ ਸਥਿਤੀਆਂ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਵਿਸ਼ਿਸਟ ਕਿਸਮ ਦੀ ਸਮਅੰਗਤਾ ਭਿੰਨ ਵਿਮਾਈ ਸਮਅੰਗਤਾਂ (Stereoisomerism) ਅਖਵਾਉਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਜੁਮੈਟਰੱਈ ਅਤੇ ਪ੍ਰਕਾਸ਼ੀ ਸਮਅੰਗਤਾ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

12.7 ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਵਿੱਚ ਮੁਲਭੁਤ ਸੰਕਲਪ

ਕਿਸੇ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਕਾਰਬਨਿਕ ਅਣੂ ਜੋ ਕਿਰਿਆ ਧਾਰਕ ਵੀ ਅਖਵਾਉਂਦਾ ਹੈ ? ਕਿਸੇ ਸਹੀ ਅਭਿਕਰਮਕ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਪਹਿਲਾਂ ਇੱਕ ਵਧੇਰੇ ਮਧੱਵਰਤੀ ਅਤੇ ਅੰਤ ਵਿੱਚ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਉਪਜਾਂ ਦਿੰਦਾ ਹੈ।

ਇੱਕ ਸਧਾਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦੀ ਹੈ। :

ਨਵੇਂ ਬੰਧਨ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਪੂਰਤੀ ਕਰਨ ਵਾਲਾ ਪ੍ਰਤੀ ਕਿਰਿਅਕ ਕਿਰਿਆਧਾਰ (Substrate) ਅਤੇ ਦੂਜਾ 'ਪ੍ਰਤੀ ਕਿਰਿਅਕ ਅਭਿਕਰਮਕ' (Readegent) ਅਖਵਾਉਂਦਾ ਹੈ। ਜੋ ਦੋ ਵੇ ਪ੍ਰਤੀ ਕਿਰਿਅਕ (ਪ੍ਰਤੀਕਾਰਕ) ਨਵੇਂ ਬੰਧਨ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਪੂਰਤੀ ਕਰਦੇ ਹਨ, ਤਾਂ ਇਹ ਚੋਣ ਕਿਸੇ ਵੀ ਤਰੀਕੇ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਮੁੱਖਅਣੂ ਕਿਰਿਆਧਾਰ ਅਖਵਾਉਂਦਾ ਹੈ।

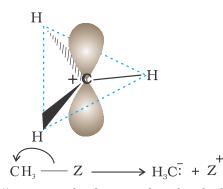
ਅਜਿਹੀ ਪ੍ਰਤੀਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਦੋ ਕਾਬਨ ਪਰਮਾਣੂਆਂ ਜਾਂ ਇੱਕ ਕਾਰਬਨ ਅਤੇ ਇੱਕ ਹੋਰ ਪਰਮਾਣੂ ਦੇ ਵਿੱਚ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਟੁੱਟ ਕੇ ਇਕ ਨਵਾਂ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਕਿਸੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਗਤੀ ਵਿਧੀ, ਬੰਧਨ-ਟੁੱਟਣਾ ਅਤੇ ਬੰਧਨ-ਨਿਰਮਾਣ ਦੇ ਸਮੇਂ ਦੀ ਗਤਿਕੀ ਅਤੇ ਉਪਜ ਬਣਨ ਦੇ ਸਮੇਂ ਦੀ ਵਿਸਥਾਰ ਪੂਰਵਕ ਜਾਣਕਾਰੀ ਅਤੇ ਕ੍ਰਮਬੱਧ ਅਧਿੈਨ ਉਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਕਿਰਿਆ ਵਿਧੀ (Mechamism) ਅਖਵਾਂਉਂਦੀ ਹੈ। ਕਿਰਿਆਵਿਧੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਯੋਗਿਕਾਂ ਦੀ ਕਿਰਿਆ ਸ਼ੀਲਤਾ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਅਤੇ ਨਵੇਂ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਦੀ ਰੂਪ ਰੇਖਾ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ।

ਹੇਠ ਲਿਖੇ ਭਾਗਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨਾਲ ਸਬੰਧਿਤ ਧਾਰਣਾਵਾਂ ਦੀ ਵਿਅਖਿਆ ਕੀਤੀ ਗਈ ਹੈ।

12.7.1 ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦਾ ਟੁੱਟਣਾ

ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦਾ ਟੁੱਟਣਾ (Cleavage) ਦੋ ਤਰੀਕਿਆਂ ਨਾਲ ਸੰਭਵ ਹੈ– (i) ਬਿਖਮਅੰਗੀ ਵਿਘਟਨ (ii) ਸਮਅੰਗੀ ਵਿਘਟਨ

ਬਿਖਮਅੰਗੀ ਵਿਘਟਨ ਵਿੱਚ ਟੁੱਟਣ ਵਾਲੇ ਬੰਧਨ ਦੇ ਦੋਵੇਂ ਇਲੈਕਟ੍ਰਾੱਨ ਉਨ੍ਹਾਂ ਵਿੱਚੋ ਕਿਸੇ ਇੱਕ ਪਰਮਾਣੂ ਉੱਤੇ ਚਲੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਪ੍ਰਤੀ ਕਾਰਨ ਨਾਲ ਬੰਧਿਤ ਸਨ।


ਬਿਖਮ ਅੰਗੀ ਵਿਘਟਨ ਦੇ ਬਾਅਦ ਇੱਕ ਪਰਮਾਣੂ ਉੱਤੇ ਛੇ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਧਨ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜੇ ਪਰਮਾਣੂ ਦਾ ਪੂਰਣ ਅਸ਼ਟਕ ਅਤੇ ਘੱਟੋ ਘੱਟ ਇਕ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਅਤੇ ਰਿਣਚਾਰਜ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬ੍ਰੋਮੋਮੀਥੇਨ ਦੇ ਬਿਖਮ ਅੰਗੀ ਵਿਘਟਨ ਨਾਲ CH_3 ਅਤੇ Br^- ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

$$H_{3}C \xrightarrow{f} Br \longrightarrow H_{3}C + Br$$

ਧਨ ਚਾਰਜਿਤ ਸਪੀਸ਼ੀਜ, ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਤੇ ਛੇ ਇਲੈਕਟ਼ਾੱਨ ਹੁੰਦੇ ਹਨ ਕਾਰਬ ਧਨ ਆਇਨ ਅਖਵਾਉਂਦਾ ਹੈ (ਇਸ ਨੂੰ ਪਹਿਲਾ ਕਾਰਬੋਨਿਅਮ ਆਇਨ ਕਿਹਾ ਜਾਂਦਾ ਸੀ। ČH, ਆਇਨ ਨੂੰ ਮੀਥਾਈਲ ਧਨ ਅਇਨ ਜਾਂ ਮੀਥਾਈਲ ਕਾਰਬ ਧਨ ਅਇਨ ਕਹਿੰਦੇ ਹਨ। ਧਨ ਚਾਰਜਿਤ ਕਾਰਬਨ ਦੇ ਨਾਲ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੁਆਂ ਦੇ ਅਧਾਰ ਤੇ ਕਾਰਬਨ ਧਨ ਆਇਨਾ ਨੂੰ ਪ੍ਰਾਈਮਰੀ, ਸੈਕੰਡਰੀ ਅਤੇ ਟਰਸ਼ਰੀ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਾਰਬ ਧਨਆਇਨਾ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾ ਹਨ। CH੍ਰ੯ੈH੍ਰ (ਈਥਾਈਲ ਧਨਆਇਨ-ਇੱਕ ਪ੍ਰਾਇਮਰੀ ਕਾਰਬ ਧਨ ਆਇਨ ਅਤੇ (CH_a)੍ਹਟੇH ਆਈਸੋਪਰੋਪਾਈਲ ਧਨ ਆਇਨ (ਇੱਕ ਸੈਕੰਡਰੀ ਕਾਰਬ ਧਨ ਆਇਨ ਅਤੇ (CH_a) ਨੂੰ ਆਈਸੋ ਬਿਊਟਾਈਲ ਧਨ ਅਇਨ (ਇੱਕ ਟਰਸ਼ਰੀਕਾਰ ਬਧਨਆਇਨ) ਕਾਰਬਧਨਆਨਿ ਵਧੇਰੇ ਅਸਥਾਈ ਅਤੇ ਕਿਰਿਆਸ਼ੀਲ ਸਪੀਸ਼ੀਜ ਹਨ। ਧਨ ਚਾਜਿਤ ਕਾਰਬਨ ਦੇ ਨਾਲ ਬੰਧਿਤ ਐਲਕਾਈਲ ਗਰੱਪ ਕਾਰਬਧਨਅਇਤ ਦੇ ਸਥਾਈ ਪੰਨ ਵਿੱਚ ਪੇਰਕ ਪ੍ਰਭਾਵ ਹਾਈਪਰ ਕੌਜੂਗੇਸ਼ਨ ਦੁਆਰਾ ਵਾਧਾ ਕਰਦੇ ਹਨ ਜਿਸ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤਸੀਂ ਭਾਗ 12.7.5 ਅਤੇ 12.7.9 ਵਿੱਚ ਅਧਿਐਨ ਕਰੋਗੇ। ਕਾਰਬਧਨ- ਅਇਨ ਦੇ ਸਥਾਈਪਨ ਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ— ČH₃ < CH₃ĊH₂ < (CH_) ČH < (CH_) Č ਇਨ੍ਹਾਂ ਕਾਰਬਧਨਆਇਨਾਂ ਦੀ ਅਕ੍ਰਿਤੀ ਤਿੰਨ ਫਲਕੀ ਸਮਤਲ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਧਨ ਚਾਰਜਿਤ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ sp^2 ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ${
m \dot{C}H_{\circ}}$ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਤਿੰਨ sp² ਸੰਕਰਿਤ ਅੱਰਬਿਟਲ ਹਾਈਡ੍ਰੋਜਨ ਦੇ 1s ਅੱਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ੳਵਰ ਲੈਪਿੰਗ ਕਰਕੇ C (sp²) — H (1s) ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਅ–ਸੰਕਰਿਤ ਕਾਰਬਨ ਅਰਬਿਟਲ ਇਸ ਤਲ ਦੇ ਲੰਬਾਤਮਕ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਕੋਈ ਇਲੈਕਟ੍ਰਾਨ ਨਹੀਂ ਹੁੰਦਾ (ਚਿੱਤਰ 12.3)। ਬਿਖਮਅੰਗੀ ਘਟਨ ਵਿੱਚ ਅਜਿਹਾ ਸਪੀਸ਼ੀਜ਼ ਨਿਰਮਿਤ ਹੋ ਸਕਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਨੂੰ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟਾਨ ਯੂਗਮ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

342

ਉਦਾਹਰਣ ਵਜੋਂ ਜਦੋ ਕਾਰਬਨ ਵਿੱਚ ਬੰਧਿਤ Z ਗਰੁੱਪ ਬਿਨਾਂ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਲਏ ਵੱਖ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਮੀਥਾਈਲ ਰਿਣਆਇਨ (: CH3) ਬਣਦਾ ਹੈ।

ਚਿੱਤਰ 12.3 ਮੀਥਾਈਲ ਧਨ ਆਇਨ ਦੀ ਆਕ੍ਰਿਤੀ

ਅਜਿਹੇ ਸ਼ਪੀਸ਼ੀਜ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਉੱਤੇ ਰਿਣਚਾਰਜ ਹੁੰਦਾ ਹੈ, ਕਾਰਬਰਿਣ ਆਇਨ (Carbanion) ਅਖਵਾਉਂਦਾ ਹੈ। ਕਾਰਬਰਿਣ ਆਇਨ ਵੀ ਅਸਥਾਈ ਅਤੇ ਕਿਰਿਆਸ਼ੀਲ ਸਪੀਸ਼ੀਜ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਜਿਸ ਵਿੱਚ ਬਿਖਮਅੰਗੀ ਅਪਘਟਨ ਹੁੰਦਾ ਹੈ, ਆਇਨੀਜਾਂ ਬਿਖਮ ਧਰੁਵੀ ਜਾਂ ਧਰਵੀ ਪਤੀ ਕਿਰਿਆਵਾਂ ਅਖਵਾ ਉਂਦੀਆਂ ਹਨ।

ਸਮ ਵਿਘਟਨੀ ਵਿਘਟਨ ਵਿੱਚ ਸਹਿਭਾਜਿਤ ਯੁਗਮ ਦਾ ਇੱਕ-ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਉਨ੍ਹਾਂ ਦੋਵਾਂ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਚਲਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਪ੍ਰਤੀ ਕਾਰਕ ਵਿੱਚ ਬੰਧਿਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸਮ ਵਿਘਟਨੀ ਵਿਘਟਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦੀ ਜਗਾਹ ਇੱਕ ਹੀ ਇਲੈਕਟ੍ਰਾਨ ਹਲਚਲ ਕਰਦਾ ਹੈ।ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਹਰਕਤ ਨੂੰ ਅਰਧ ਤੀਰ (ਫਿਸ਼ ਹੁੱਕ, Fish hook) ਦੁਆਰਾ ਦਰਸਾ ਉਂਦੇ ਹਨ। ਇਸ ਵਿਘਟਨ ਦੇ ਫਲਸਰੂਪ ਉਦਾਸੀਨ ਸ਼ਪੀਸ਼ੀਜ (ਪਰਮਾਣੂ ਜਾ ਪਰਮਾਣੂ ਸਮੂਹ) ਬਣਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਮੁਕਤ ਮੂਲਕ (Free Radicals) ਕਹਿੰਦੇ ਹਨ। ਕਾਰਬ ਧਨਆਇਨ ਅਤੇ ਕਾਰਬ ਰਿਣਆਂਇਨ ਦੇ ਵਾਂਗ ਮੁਕਤ ਮੂਲਕ ਵੀ ਅਤਿ ਕਿਰਿਆ ਸ਼ੀਲ ਹੁੰਦੇ ਹਨ। ਕੁਝ ਵਿਘਟਨੀ ਵਿਘਟਨ ਹੇਠਾਂ ਵਿਖਾਏ ਗਏ ਹਨ।

ਐਲਕਾਈਲ ਮੁਕਤ-ਮੂਲਕਾਂ ਨੂੰ ਪ੍ਰਾਈਮਰੀ,ਸੈਕੰਡਰੀ ਅਤੇ ਟਰਸ਼ਰੀ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂ ਸਕਦਾ ਹੈ। ਐਲਕਾਈਲ ਮੁਕਤ-ਮੂਲਕ ਪ੍ਰਾਈਮਰੀ ਤੋਂ ਟਰਸ਼ਰੀ ਵੱਲ ਵਧਣ ਤੇ ਐਲਭਾਈਲ ਮੂਲਕ ਦਾ ਸਥਾਈਪਨ ਵਧਦਾ ਹੈ।

\dot{C} H ₃ < \dot{C}	H_2CH_3	$<\dot{C}H(CH_3)$	$)_{2} < \dot{C} (CH_{3})_{3}$
ਮੀਥਾਈਲ	ਈਥਾਈਲਅ	ਆਈਸੋਪਰੋਪਾਈਲੇ	ਟਰਸ਼ਰੀਬਿਊਟਾਈਲ
ਮੁਕਤ	ਮੁਕਤ	ਮੁਕਤ	ਮੁਕਤ
ਮੁਲਕ	ਮੁਲਕ	ਮੁਲਕ	ਮੁਲਕ

ਸਮਅੰਗ ਵਿਘਟਨ ਦੁਆਰਾ ਹੋਣ ਵਾਲੀਆਂ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਮੁਕਤ ਮੂਲਕ ਜਾਂ ਸਮਧਰੁਵੀ ਜਾਂ ਅ-ਧਰੁਵੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਅਖਵਾਉਂਦੀਆਂ ਹਨ।

12.7.2 ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ

ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਪ੍ਰਦਾਨ ਕਰਨ ਵਾਲਾ ਅਭਿਕਰਮਕ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ, (Nucleophile, Nu :) (ਅਰਥਾਤ ਨਿਊਕਲੀਅਸ ਖੋਜਹਨ ਵਾਲਾ) ਅਖਵਾਉਂਦਾ ਹੈ, ਅਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਪ੍ਰਤੀਕਿਰਿਆ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਲੈ ਜਾਣ ਵਾਲੇ ਅਭਿਕਰਮਕ ਨੂੰ ਇਲੈਕਟ੍ਰਾਂਨ ਸਨੇਹੀ (Electrophile, E⁺) ਅਰਥਾਤ ਇਲੈਕਟ੍ਰਾਂਨ ਚਾਹੁਣ ਵਾਲਾ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਇਲੈਕਟ੍ਰਾਂਨ ਸਨੇਹੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਅਖਵਾਉਂਦੀ ਹੈ।

ਧਰੁਵੀ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਕਿਰਿਆਧਾਰਕ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਕੇਂਦਰ ਉਤੇ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਅਕਰਮਣ ਕਰਦਾ ਹੈ ਇਹ ਕਿਰਿਆ ਧਾਰਕ ਦਾ ਵਿਸ਼ਿਸਟ ਪਰਮਾਣੂ ਜਾਂ ਇਲੈਕਟਾਨ ਨਿਊਨ ਭਾਗ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਕਿਰਿਆਧਾਰਕਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਧਨੀ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਕੇਂਦਰ ਉਤੇ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਹਮਲਾ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੰਧਨ ਅੰਤਰ ਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਨ ਲੈਂਦਾ ਹੈ। ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਦੇ ਵੱਲ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਹਿਲੱਜੂਲ ਟੇਢੇ ਤੀਰ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹਾਈਡੋਕਸਾਈਡ (OH) ਸਾਇਅਨਾਈਡ ਆਇਨ (CN) ਅਤੇ ਕਾਰਬਰਿਣਆਇਨ (R₂C:) ਕੁਝ ਉਦਾਹਰਣਾ ਹਨ। ਉਦਾਸੀਨ ਅਣੂ (ਜਿਵੇਂ— $H_2O; R_3N; R_2NH, R_O; me)$ ਵੀ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਵਾਂਗ ਕੰਮ ਕਰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀਦੀਆਂ ਉਦਾਹਰਣਾ ਵਿੱਚ ਕਾਰਬਧਨਆਇਨ (: $\stackrel{-}{\mathrm{C}}\mathrm{H}_3$) ਅਤੇ ਕਾਰਬੋਨਾਈਲ ਗਰੁੱਪ (>C=O) ਅਤੇ ਐਲਕਾਈਲ ਹੇਲਾਈਡ (R₃C–X,X = ਹੈਲੋਜਨ ਪਰਮਾਣੂ ਵਾਲੇ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਸ਼ਾਮਲ ਹਨ। ਕਾਰਬਧਨ ਆਇਨ ਦਾ ਕਾਰਬਨ (ਸਿਰਫ ਛੇ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣ ਦੇ ਕਾਰਣ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਿਊਕ ਲੀਅਸ ਸਨੇਹੀ ਤੋਂ ਇਲੈਕਟ਼ਾੱਨ

ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰ ਸਕਦਾ ਹੈ।ਐਲਕਾਈਲ ਹੇਲਾਈਡ ਦਾ ਕਾਰਬਨ ਬੰਧਨ ਧਰੁਵਤਾ ਦੇ ਕਾਰਣ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਬਣ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਉਤੇ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਹਮਲਾ ਕਰ ਸਕਦਾ ਹੈ।

ਉਦਾਹਰਣ 12.11 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੇ ਬਿਖਮ ਵਿਘਟਨ ਵਿੱਚ ਸਕਿਰਿਆ ਮਧੱਵਰਤੀ ਦਾ ਨਿਰਮਾਣ ਟੇਢੇ ਤੀਰ ਦੀ ਸਹਾਇਤਾ ਦੇ ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰੋ। (ੳ) CH_3 - SCH_3 , (ਅ) CH_3 -CN, (ੲ) CH_3 -Cuਹੱਲ (ੳ) CH_3 -Cuਹੱਲ (ੳ) CH_3 \longrightarrow SCH_3 \longrightarrow SCH_3

ਉਦਾਹਰਣ 12.12

ਕਾਰਣ ਸਪਸ਼ਟ ਕਰਦੇ ਹੋਏ ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਵਿੱਚ ਵਰਗੀ ਕ੍ਰਿਤ ਕਰੋ।

 $HS^{-}, BF_{3}, C_{2}H_{5}O^{-}, (CH_{3})_{3}N^{2},$

 $C\dot{l}, CH_{\overline{3}}\dot{C} = O, H_2N\dot{l}, \dot{N}O_2$

ਹੱਲ

ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ:

 $HS^{-}, C_{2}H_{5}O^{-}, H_{2}N^{-}(CH_{3})_{3}N^{-}$

ਇਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ ਉੱਤੇ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੈ ਜੋ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ: $BF_3, C^{\dagger}, CH_3 - C = O, MO_2$. ਇਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਿਰਫ ਛੇ ਹਨ, ਜਿਸ ਦੇ ਕਾਰਣ ਇਹ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਤੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਗ੍ਰਹਿਣ ਕਰ ਸਕਦੇ ਹਨ।

ਉਦਾਹਰਣ 12.13

ਹੇਠ ਲਿਖਿਆ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਕੇਂਦਰ ਦੀ ਪਛਾਣ ਕਰੋ।CH₃CH=O, CH₃CN, CH₃I.

ਹੱਲ

ਤਾਰਾ−ਅੰਕਿਤ ਕਾਰਬਨ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਕੇਂਦਰ ਹਨ, ਕਿਉਕਿ ਬੰਧਨ−ਧਰੁਵਤਾ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਉੱਤੇ ਅੰਸ਼ਿਕ ਧਨ ਚਾਰਜ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। CH₃CH=O, H₃CC=N, H₃C–I,

12.7.3 ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਹਿੱਲਜੁਲ

ਕਾਰਬੁਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਹਿੱਲਜੁਲ (Movement) ਮੁੜੇ ਹੋਏ ਤੀਰਾਂ (Curved Arrows) ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਮੁੜ ਵਿਤਰਣ ਦੇ ਕਾਰਣ ਹੋਣ ਵਾਲੇ ਬੰਧਨ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਵਿਖਾਉਣ ਦੇ ਲਈ ਤੀਰ ਉਸ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਜੋ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਉਸ ਸਥਿਤੀ ਤੋਂ ਹਿਲੱਜੁਲ ਕਰ ਰਿਹਾ ਹੈ। ਜਿੱਥੇ ਇਹ ਯੁਗਮ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ ਉੱਥੇ ਤੀਰ ਦਾ ਅੰਤ ਹੁੰਦਾ ਹੈ।

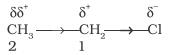
ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੇ ਵਿਸਥਾਪਨ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦੇ ਹਨ। (i) $= Y^{\underline{Y}} \longleftrightarrow - Y = \pi$ ਬੰਧਨ ਤੋਂ ਨੇੜਲੀ ਬੰਧਨ ਸਥਿਤੀ ਤੇ

(ii) $\stackrel{\checkmark}{=} \stackrel{\lor}{\lor}_{- \longleftarrow - \dot{\curlyvee}_{-} \pi}$ ਬੰਧਨ ਤੋਂ ਨੇੜਲੇ ਪਰਮਾਣੂ ਉਤੇ (iii) $\stackrel{\checkmark}{=} \stackrel{\checkmark}{\lor}_{- \curlyvee} \stackrel{\sim}{=} -\gamma =$ ਪਰਮਾਣੂ ਤੋਂ ਨੇੜਲੀ ਬੰਧਨ ਸਥਿਤੀ ਉਤੇ

ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਹਿਲੱਜੁਲ ਨੂੰ ਅਰਧਤੀਰ (Single barbed Half Headed) ਫਿਸ਼ਹੁੱਕ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਤੋਂ ਈਥੇਨੋਲ ਪ੍ਰਾਪਤ ਹੋਣ ਵਿੱਚ ਅਤੇ ਕਲੋਰੋਮੀਥੇਨ ਦੇ ਵਿਘਟਨ ਵਿੱਚ ਮੁੜੇ ਤੀਰਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਹਿਲੱਜੁਲ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

$$HO: + CH_{3} - HOH_{3} - CH_{3}OH_{3} + HOH_{3}OH_{3} + CH_{3}OH_{3} + CH_{3}OH_{3} + CH_{3}OH_{3} + CH_{3}OH_{3$$

12.7.2 ਸਹਿਸੰਯੋਜੀ ਬੰਧਨਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਦੇ ਪ੍ਰਭਾਵ


ਕਾਰਬਨਿਕ ਅਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਵਿਸਥਾਪਨ ਜਾਂ ਤਾ ਪਰਮਾਣੂ ਤੋਂ ਪ੍ਰਭਆਵਿਤ ਗਰਾਉਂਡ ਅਵਸਥਾ ਜਾਂ ਪ੍ਰਤੀ ਸਥਾਪੀ ਗਰੁੱਪ ਜਾਂ ਸਹੀ ਹਮਲਾਵਰ ਅਭਿਕਰਮਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਹੋ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਕਿਸੇ ਪਰਮਾਣੂ ਜਾਂ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪ ਦੇ ਪ੍ਰਭਾਵ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਬੰਧਨ ਵਿੱਚ ਸਥਾਈ ਧਰੁਵਣਤਾ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਪ੍ਰੇਰਕ ਪ੍ਰਭਾਵ (Inductive effect) ਅਤੇ ਅਨੁਨਾਦ ਪ੍ਰਭਾਵ (Resnace effect) ਇਸ ਕਿਸਮ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਸਥਾਨ ਅੰਤਰਣ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਅਭਿਕਰਮਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਪੈਦਾ ਅਸਥਾਈ ਇਲੈਕਟ੍ਰਾਨ ਪ੍ਰਭਾਵ ਨੂੰ ਅਸੀਂ ਧਰੁਵਣਤਾ ਪ੍ਰਭਾਵ ਵੀ ਕਹਿੰਦੇ ਹਾਂ। ਇਸ ਕਿਸਮ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਸਥਾਨ

344

ਅੰਤਰਣ ਨੂੰ ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ। ਅਸੀਂ ਹੇਠਲੇ ਭਾਗਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

12.7.5 ਪ੍ਰੇਰਕ ਪ੍ਰਭਾਵ

ਭਿੰਨ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਾਲੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਨਿਰਮਿਤ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਅ-ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਸਹਿ ਭਾਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਉੱਚੀ ਇਲੈਕਟ੍ਰੋ ਨੈਗੇਟਿਵਤਾ ਦੇ ਪਰਮਾਣੂ ਦੇ ਵੱਲ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਾਰਣ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਧਰੁਵੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਬੰਧਨ ਧਰੁਵਤਾ ਦੇ ਕਾਰਣ ਕਾਰਬਨ ਅਣੂਆਂ ਵਿੱਚ ਭਿੰਨ=ਭਿੰਨ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਪ੍ਰਭਾਵ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਕਲੋਰੋਈਥੇਨ (CH₃CH₂Cl) ਵਿੱਚ C-Cl ਬੰਧਨ ਧਰੁਵੀ ਹੈ। ਇਸ ਦੀ ਧਰੁਵਤਾ ਦੇ ਕਾਰਣ ਕਾਰਬਨ ਕ੍ਰਮਅੰਕ-1 ਉੱਤੇ ਅੰਸ਼ਿਕ ਧਨ ਚਾਰਜ (δ⁺) ਅਤੇ ਕਲੋਰੀਨ ਉੱਤੇ ਅੰਸ਼ਿਕ ਰਿਣ ਚਾਰਜ (δ⁻). ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅੰਸ਼ਿਕ ਚਾਰਜਾਂ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ δ (ਡੈਲਟਾ) ਚਿਨ੍ਹ ਵਰਤਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾਨ ਵਿਸਥਾਪਨ ਦਰਸਾਉਣ ਦੇ ਲਈ ਤੀਰ → ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜੋ δ⁺ ਤੋਂ δ⁻ ਦੇ ਵੱਲ ਹੁੰਦਾ ਹੈ।

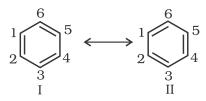
ਕਾਰਬਨ-1 ਆਪਣੇ ਅੰਸ਼ਿਕ ਧਨਚਾਰਚ ਦੇ ਕਾਰਣ ਨਾਲ ਦੇ C-C ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਆਪਣੇ ਵੱਲ ਅੱਕਰਸ਼ਿਤ ਕਰਨ ਲੱਗਦਾ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ ਕਾਰਬਨ-2 ਉੱਤੇ ਵੀ ਕੁਝ ਧਨਚਾਰਜ (δδ⁺) ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। C—1 ਉੱਤੇ ਧਨ ਚਾਰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ δδ⁺ ਘੱਟ ਧਨਚਾਰਜ ਦਰਸਾਉਂਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ C – Cl ਦੀ ਧਰੁਵਤਾ ਦੇ ਕਾਰਣ ਨਾਲ ਦੇ ਬੰਧਨ ਵਿੱਚ ਧਰਵਤਾ ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਨਾਲ ਦੇ σ ਬੰਧਨ ਦੇ ਕਾਰਣ ਅਗਲੇ σ[−] ਬੰਧਨ ਦੇ ਧਰੁਵੀ ਹੋਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਪ੍ਰੇਰਕ ਪ੍ਰਭਾਵ (Inductive effect) ਅਖਵਾਉਂਦੀ ਹੈ। ਇਹ ਪ੍ਰਭਾਵ ਅਗਲੇ ਬੰਧਨਾਂ ਵਿੱਚ ਵੀ ਹੁੰਦਾ ਹੈ, ਲੇਕਿਨ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਇਹ ਪ੍ਰਭਾਵ ਘੱਟ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਅਤੇ ਤਿੰਨ ਬੰਧਨਾਂ ਤੋਂ ਬਾਅਦ ਲਗਪਗ ਖਤਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਪ੍ਰੇਕ ਪ੍ਰਭਾਵ ਦਾ ਸਬੰਧ ਪ੍ਰਤੀਸਥਾਪੀ ਨਾਲ ਬੰਧਿਤਕਾਰਬਨ ਪਰਮਾਣੂ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨ ਪ੍ਰਦਾਨ ਕਰਨ ਜਾ ਅਪਣੇ ਵੱਲ ਅਕਰਸ਼ਿਤ ਕਰ ਲੈਣ ਦੀ ਯੋਗਤਾ ਨਾਲ ਹੈ। ਇਸ ਯੋਗਤਾ ਦੇ ਅਧਾਰ ਤੇ ਪ੍ਰਤੀ ਸਥਾਪੀਆਂ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਾਪੇਖ ਇਲੈਕਟ੍ਰਾੱਨ ਅਕਰਸ਼ੀ (Electron withdrawing) ਜਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦਾਤਾ (Electron Releasing ਗਰੁੱਪ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਗੀ ਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੈਲੋਜਨ ਅਤੇ ਕੁਝ ਹੋਰ ਗਰੁੱਪ ਜਿਵੇਂ-ਨਾਈਟ੍ਰੋ (- NO₂) ਸਾਇਨੋ (- CN), ਕਾਰਬੋਕਸੀ (- COOH), ਐਸਟਰ

(-COOR), ਐਰਿਲੈਕਸੀ (-OAr, ਇਲੈਕਟ੍ਰਾੱਨ–ਅਕਰਸ਼ੀ ਗਰੁੱਪ ਹਨ, ਜਦਕਿ ਐਲਕਾਈਲ ਗਰੁੱਪ ਜਿਵੇਂ ਮੀਥਾਈਲ (–CH₃) ਈਥਾਈਲ (–CH₃) ਆਦਿ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾਤਾ ਗਰੁੱਪ ਹਨ।

ਉਦਾਹਰਣ 12.14

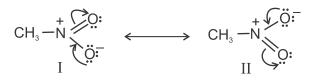
ਇਨ੍ਹਾਂ ਯੁਗਮਾਂ ਵਿੱਚ ਕਿਹੜਾ ਬੰਧਨ ਵਧੇਰੇ ਧਰੁਵੀ ਹੈ ? (ੳ) H₃C-H, H₃C-Br (ਅ) H₃C-NH₂, H₃C-OH (ੲ) H₃C-OH, H₃C-SH **ਹੱਲ** (ੳ) H₃C-Brਕਿਉਂਕਿ H ਨਾਲੋ Br ਵਧੇਰੇ ਇਲੈਕਟ੍ੋਨੈਗੇਟਿਵ ਹੈ। (ਅ) C-O, (ੲ) C-O **ਉਦਾਹਰਣ 12.15** CH₃CH₂CH₂Br ਦੇ ਕਿਸ ਬੰਧਨ ਦੀ ਧਰੁਵਤਾ ਨਿਉਨਤਮ ਹੋਵੇਗੀ ?

ਹੱ ਲੱ


ਜਿਵੇਂ ਜਿਵੇਂ ਦੂਰੀ ਵਧਦੀ ਹੈ, ਤਿਵੇਂ ਤਿਵੇ ਪ੍ਰੇਰਕ ਪ੍ਰਭਾਵ ਦੀ ਤੀਬਰਤਾ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਕਾਰਬਨ-3 ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਵਿੱਚ ਧਰੁਵਤਾ ਸਭ ਤੋਂ ਘੱਟ ਹੋਵੇਗੀ।

12.7.6 ਅਨੁਨਾਦ-ਰਚਨਾ

ਅਜਿਹੇ ਅਨੇਕਾਂ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਹਨ ਜਿਨ੍ਹਾਂ ਦਾ ਵਿਹਾਰ ਕੇਵਲ ਇੱਕ ਲੁਈਸ ਰਚਨਾ ਨਾਲ ਨਹੀ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ। ਇਸ ਦੀ ਇੱਕ ਉਹਾਹਰਣ ਬੈਨੱਜ਼ੀਨ ਹੈ। ਇਕਾਂਤਰ C–C ਅਤੇ C=C ਬੰਧਨ ਯੁਕਤ ਚਕੱਰੀ ਰਚਨਾ ਇਸ ਦੇ ਵਿਸ਼ਿਸਟ ਗੁਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਦੇ ਲਈ ਕਾਫੀ ਨਹੀ ਹੈ।


ਉੱਪਰ ਦਿੱਤੇ ਨਿਰੂਪਣ ਦੇ ਅਨੁਸਾਰ ਬੈਨਜ਼ੀਨ ਵਿੱਚ ਇਕਹਿਰੇ C-C ਅਤੇ ਦੂਹਰੇ C=C ਦੇ ਕਾਰਣ ਦੋ ਭਿੰਨ ਬੰਧਨ ਲੰਬਾਈਆਂ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਬੈੱਨਜ਼ੀਨ ਹਨ, ਲੇਕਿਨ ਪ੍ਰਯੋਗਤਮਕ ਨਿਰਧਾਰਣ ਤੋਂ ਇਹ ਪਤਾ ਲਗਿਆ ਹੈ। ਕਿ ਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਸਮਾਨ C-C ਬੰਧਨ ਲੰਬਾਈ 139 pm ਹੈ, ਜੋ ਇਕਹਿਰੇ ਬੰਧਨ (154 pm) ਅਤੇ ਦੂਹਰੇ ਬੰਧਨ C=C (134 pm) ਦਾ ਮੱਧਵਰਤੀ ਮਾਨ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੈਨਜ਼ੀਨ ਦੀ ਰਚਨਾ ਉੱਪਰ ਦਿੱਤੀ ਰਚਨਾ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀ ਕੀਤੀ ਜਾ ਸਕਦੀ। ਬੈਨਜ਼ੀਨ ਨੂੰ ਹੇਠ ਲਿਖਿਆਂ 1 ਅਤੇ 11 ਸਮਾਨ ਉਰਜਾ ਰਚਨਾਵਾਂ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਅਨੁਵਾਦ ਸਿਧਾਂਤ (ਯੁਨਿਟ 4) ਦੇ ਅਨੁਸਾਰ ਬੈਨੱਜ਼ੀਨ ਦੀ ਅਸਲੀ ਰਚਨਾ ਨੂੰ ਉਪਰੋਕਤ ਦੋਵਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਰਚਨਾ ਦੁਆਰਾ ਅਸੀਂ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰ ਸਕਦੇ।

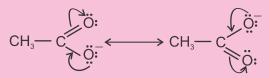
ਅਸਲ ਵਿੱਚ ਇਹ ਦੋਵੇ ਰਚਨਾਵਾਂ (1 ਅਤੇ 11) ਦੀ ਸੰਕਰ (hybrid) ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ (Resonance Structures) ਕਹਿੰਦੇ ਹਨ। ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ (ਕੈਨੋਨੀਕਲ ਰਚਨਾ ਜਾਂ ਯੋਗਦਾਨ ਕਰਨ ਵਾਲੀਆਂ ਰਚਨਾਵਾਂ ਕਾਲਪਨਿਕ ਹਨ। ਇਹ ਅਸਲੀ ਰਚਨਾ ਦੀ ਪ੍ਰਤੀ ਨਿਧਤਾ ਇੱਕਲੇ ਨਹੀਂ ਕਰ ਸਕਦੀਆਂ ਇਹ ਆਪਣੇ ਸਥਾਈ ਪਨ ਦੇ ਅਨੁਪਾਤ ਦੇ ਆਧਾਰ ਤੇ ਅਸਲੀ ਰਚਨਾ ਵਿੱਚ ਯੋਗਦਾਨ ਕਰਦੀਆਂ ਹਨ।

ਅਨੁਵਾਦ ਦੀ ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਨਾਈਟ੍ਰੋਮੀਥੇਨ ਹੈ, ਜਿਸਦੀਆਂ ਦੋ ਲੁਈਸ ਰਚਨਾਵਾ (1 ਅਤੇ 11) ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਰਚਨਾਵਾਂ ਵਿੱਚ ਦੋ ਕਿਸਮ ਦੇ N-O ਬੰਧਨ ਹਨ।

ਪਰੰਤੂ ਇਹ ਗਿਅਤ ਹੈ ਕਿ ਦੋਵਾਂ N–O ਬੰਧਨਾਂ ਦੀਆਂ ਲੰਬਾਈਆਂ ਸਮਾਨ ਹਨ, (ਜੋ N–O ਇਕਹਿਰੇ ਬੰਧਨ ਅਤੇ N– O ਦੂਹਰੇ ਬੰਧਨ ਦੇ ਮਧੱਵਰਤੀ ਹਨ। ਇੰਜ ਨਾਈਟ੍ਰੋਮੀਥੇਨ ਦੀ ਅਸਲੀ ਰਚਨਾ ਦੋ ਕੈਨੋਨੀਕਲ ਰੂਪਾ 1 ਅਤੇ 11 ਦੀ ਅਨੁਨਾਦ ਸੰਕਰ ਹੈ।

ਅਸਲੀ ਅਣੂ (ਅਨੁਨਾਦ ਸੰਕਰ) ਦੀ ਊਰਜਾ ਕਿਸੇ ਵੀ ਕੈਨੋਨੀਕਲ ਰਚਨਾ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਵਾਸਤਵਿਕ ਰਚਨਾ ਅਤੇ ਨਿਊਨਤਮ ਊਰਜਾ ਵਾਲੀ ਅਨੁਨਾਦ-ਰਚਨਾ ਵਿਚਲੀ ਊਰਜਾ ਦੇ ਅੰਤਰ ਨੂੰ ਅਨੁਨਾਦ ਸਥਾਈ ਕਰਣ ਊਰਜਾ (Resonace stabilisation Energy) ਜਾਂ ਅਨੁਨਾਦ ਊਰਜਾ ਉਨੀ ਹੀ ਜਿਆਦਾ ਹੋਵੇਗੀ। ਤੁਲ ਅੰਕੀ ਊਰਜਾ ਵਾਲੀਆਂ ਰਚਨਾਵਾਂ ਦੇ ਲਈ ਅਨੁਨਾਦ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਮਹੱਵਪੂਰਣ ਹੈ।

ਅਨੁਨਾਦ-ਰਚਨਾਵਾਂ ਨੂੰ ਲਿਖਦੇ ਸਮੇਂ ਹੇਠ ਲਿਖੇ ਨਿਯਮਾਂ ਦੀ ਪਾਲਨਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।


(1) ਅਨੁਨਾਦ-ਰਚਨਾਵਾਂ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਦੀ ਸਥਿਤੀ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ।

ਅਨੁਨਾਦ-ਰਚਨਾਵਾਂ ਵਿੱਚੋ ਉਹ ਰਚਨਾ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਵਧੇਰੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸਾਰੇ ਪਰਮਾਣੂ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਅਸ਼ਟਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਛੱਡ ਕੇ. ਜਿਸ ਵਿੱਚ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਉਲਟ ਚਾਰਜ ਦਾ ਵੱਖ ਰਹਿਣਾ ਘੱਟ ਹੁੰਦਾ ਹੈ ? ਜੇ ਰਿਣਤਮਕ ਚਾਰਜ ਹੈ, ਤਾਂ ਉਹ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਉੱਤੇ ਹੁੰਦਾ ਹੈ। ਜੇ ਧਨਾਤਮਕ ਚਾਰਜ ਹੈ, ਤਾਂ ਉਹ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਪਾੱਜੇ ਟਿਵ ਤੱਤ ਉੱਤੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ਵਧੇਰੇ ਚਾਰਜ ਪਰਸਾਰ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਣ 12.16

CH₃COO⁻ ਦੀਆਂ ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ ਲਿਖੋ ਅਤੇ ਟੇਢੇ ਤੀਰਾਂ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਹਿਲਜੁਲ ਵਿਖਾਓ। **ਹੱਲ**

ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਰਚਨਾ ਲਿਖ ਕੇ ਸਹੀ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਅ-ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਹਿਲ ਜੁਲਤੀਰ ਆਲ ਵਿਖਾਓ।

ਉਦਾਹਰਣ 12.17

CH₂=CH–CHO ਦੀਆਂ ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ ਲਿਖੋ ਅਤੇ ਭਿੰਨ ਭਿੰਨ ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ ਦੇ ਸਥਾਈਪਨ ਨੂੰ ਦਰਸਾਓ।

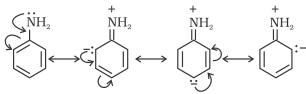
ਹੱਲ

[I: ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਹੈ, ਕਿਉਂਕਿ ਹਰ ਇੱਕ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦਾ ਅਸ਼ਟਕ ਪੁਰਾ ਹੈ ਅਤੇ ਕਾਰਬਨ

ਅਤੇ ਆਕਸੀਜਨ ਉੱਤੇ ਉਲਟ ਚਾਰਜ ਅਲੱਗ ਅਲੱਗ ਨਹੀਂ ਹਨ। II: ਰਿਣ ਚਾਰਜ ਇਲੈਕਟ੍ਰੌਨੈਗੇਟਿਵ ਪਰਮਾਣੂ ਅਤੇ ਧਨਚਾਰਜ ਇਲੈਕਟ੍ਰੋਪੈਜੈਟਿਵ ਪਰਮਾਣੂ ਉੱਤੇ ਹੈ।; III: ਸਭ ਤੋਂ ਘੱਟ ਸਥਾਈ ਹੈ, ਇਉਂਕਿ ਧਨਚਾਰਜ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੈਨੈਗੇਟਿਵ ਪਰਮਾਣੂ ਉੱਤੇ ਮੌਜੂਦ ਹੈ, ਜਦ ਕਿ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਕਾਰਬਨ ਉੱਤੇ ਰਿਣਚਾਰਜ ਮੌਜੂਦ ਹੈ।

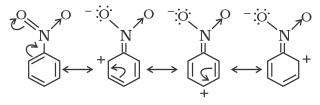
346

ਉਦਾਹਰਣ 12.18 ਹੇਠ ਲਿਖੀਆਂ ਰਚਨਾਵਾਂ (1) ਅਤੇ (11) $CH_{3}COOCH_{3}$ ਦੀ ਅਸਲੀ ਰਚਨਾ ਵਿੱਚ ਕੋਈ ਵਿਸ਼ੇਸ ਯੋਗਦਾਨ ਕਿਉਂ ਨਹੀ ਕਰਦੀਆਂ ? : \ddot{O} : : \ddot{O} : $CH_{3} - \overset{I}{C} - \ddot{O} - CH_{3} \longleftrightarrow CH_{3} - \overset{I}{C} = \overset{I}{O} - CH_{3}$ I II ਹੱਲ ਦੋਵਾਂ ਰਚਨਾਵਾਂ ਦਾ ਵਿਸ਼ੇਸ ਯੋਗਦਾਨ ਨਹੀਂ ਹੋਵੇਗਾ,


ਦਵਾ ਰਚਨਾਵਾ ਦਾ ਵਿਸ਼ਸ ਯਗਦਾਨ ਨਹੀਂ ਹਵੇਗਾ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚ ਉਲਟ ਚਾਰਜਾਂ ਨੂੰ ਅਲੱਗ ਅਲੱਗ ਕੀਤਾ ਹੈ। ਇਸਦੇ ਇਲਾਵਾ ਰਚਨਾ। ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਅਸ਼ਟਕ ਪੁਰਾ ਨਹੀਂ।

12.7.7 ਅਨੁਨਾਦ ਪ੍ਰਭਾਵ

ਦੋ π-ਬੰਧਨਾ ਦੀ ਅੰਤਰ ਕਿਰਿਆ ਜਾਂ π ਬੰਧਨ ਅਤੇ ਨੇੜਲੇ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੇ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ ਦੇ ਕਾਰਣ ਅਣੂ ਵਿੱਚ ਪੈਦਾ ਧਰੁਵਤਾ ਨੂੰ ਅਨੁਨਾਦ ਪਰਭਾਵ (Resonance Effect) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਪ੍ਰਭਾਵ ਚੇਨ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਦੋ ਕਿਸਮ ਦੇ ਅਨੁਨਾਦ ਜਾਂ ਮੀਸੋਮੈਰਿਕ ਪ੍ਰਭਾਵ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ R ਪ੍ਰਭਾਵ ਜਾਂ M ਪ੍ਰਭਾਵ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

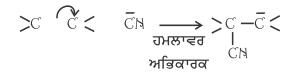

(i) ਧਨਾਤਮਕ ਅਨੁਨਾਦ ਪ੍ਰਭਾਵ (+R ਪ੍ਰਭਾਵ)

ਇਸ ਪ੍ਰਭਾਵ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਸੰਯੁਗਮਿਤ ਅਣੂ ਵਿੱਚ ਬੰਧਿਤ ਪਰਮਾਣੂ ਜਾਂ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪ ਤੋਂ ਦੂਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਦੇ ਕਾਰਣ ਅਣੂ ਵਿੱਚ ਕੁਝ ਸਥਿਤੀਆਂ ਉੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾਂ ਦੀਆਂ ਹੋ ਜਾਂ ਦੀਆਂ ਹਨ। ਐਨੀਲੀਨ ਵਿੱਚ ਇਸ ਪ੍ਰਭਾਵ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

(ii) ਰਿਣਾਤਮਕ ਅਨੁਨਾਦ ਪ੍ਰਭਾਵ (– R ਪ੍ਰਭਾਵ)

ਇਹ ਪ੍ਰਭਾਵ ਓਦੋਂ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਵਿਸਥਾਪਨ ਸੰਯੂਗਮਿਤ ਅਣੂ ਵਿੱਚ ਬੰਧਿਤ ਪਰਮਾਣੂ ਜਾਂ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪ ਦੇ ਵੱਲ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਨਾਈਟ੍ਰੋਬੈਨਜੀਨ ਵਿੱਚ ਇਸ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

+R ਅਤੇ –R ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਨ ਪ੍ਰਭਾਵ ਦਰਸਾਉਣ ਵਾਲੇ ਪਰਮਾਣੂ ਅਤੇ ਪ੍ਰਤੀਸਥਾਪੀ ਗਰੁੱਪ ਹੇਠ ਲਿਖੇ ਹਨ–

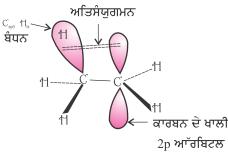

+R ਹੈਲੋਜਨ, –OH, –OR, –OCOR, –NH₂, –NHR, –NR₂, –NHCOR, – R – COOH, –CHO, >C=O, – CN, –NO₂

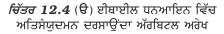
ਕਿਸੇ ਖੁਲ੍ਹੀ ਚੇਨ ਜਾਂ ਚੱਕਰੀ ਸਿਸਟਮ ਵਿੱਚ ਏਕਾਂਤਰੀ ਇਕਹਿਰੇ ਅਤੇ ਦੂਹਰੇ ਬੰਧਨ ਦੀ ਮੌਜੂਦਗੀ ਨੂੰ ਸੰਯੁਗਮਿਤ ਸਿਸਟਮ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਬਹੁਤ ਜਿਆਦਾ ਅਨਿਯਮਿਤ ਵਿਹਾਰ ਦਰਸਾਉਂਦੇ ਹਨ। 1, 3 ਬਿਊਟਾਡਾਈਨ, ਐਨੀਲੀਨ, ਨਾਈਟ੍ਰੋਬੈਨਜ਼ੀਨ ਆਦਿ ਇਸ ਦੀਆਂ ਉਦਾਹਰਣਆਂ ਹਨ।ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਸਥਾਪਿਤ (Delocalised) ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਧਰੁਵਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

12.7.8 ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ (E-ਪ੍ਰਭਾਵ)

ਇਹ ਇੱਕ ਅਸਥਾਈ ਪ੍ਰਭਾਵ ਹੈ। ਕੇਵਲ ਹਮਲਾਵਰ ਪ੍ਰਤਿਕਾਰਕਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਹ ਪ੍ਰਭਾਵ ਬਹੁ ਬੰਧਨ (ਦੂਹਰੇ ਬੰਧਨ ਜਾਂ ਤੀਹਰੇ ਬੰਧਨ) ਵਾਲੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਇਹ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਭਾਵ ਵਿੱਚ ਹਮਲਾਕਰਨ ਵਾਲੇ ਪ੍ਰਤੀਕਾਰਕ ਦੀ ਮੰਗ ਦੇ ਕਾਰਣ ਬਹੁ ਬੰਧਨ ਵਿਚੋਂ ਇਕ ਸਹਿਭਾਜਿਤ π -ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦਾ ਪੂਰਣ ਵਿਸਥਾਪਨ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਘੇਰੇ ਵਿੱਚੋ ਹਮਲਾਵਰ ਪ੍ਰਤੀਕਾਰਕ ਨੂੰ ਹਟਾਉਂਦੇ ਹੀ ਇਹ ਪ੍ਰਭਾਵ ਸਿਫਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ E ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਦ ਕਿ ਇਲੈਟ੍ਰਾਨਾਂ ਦੀ ਹਲਚਲ ਨੂੰ ਟੈਢੇਤੀਰ (). ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਪਸ਼ਟ ਹੈ ਕਿ ਦੋ ਕਿਸਮ ਦੇ ਇਿਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ ਹੁੰਦੇ ਹਨ ? (i) ਧਨਾਤਮਕ ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ (+E ਪ੍ਰਭਾਵ) ਇਸ ਪ੍ਰਭਾਵ ਵਿੱਚ ਬਹੁਬੰਧਨ ਦੇ π–ਇਲੈਕਟ੍ਰੱਨਾ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਉਸ ਪਰਮਾਣੂ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਹਮਲਾਵਰ ਅਭਿਕਰਮ ਬੰਧਿਤ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ।

(ii) ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ (–E ਪ੍ਰਭਾਵ) ਇਸ ਪ੍ਰਭਾਵ ਵਿੱਚ ਬਹੁ ਬੰਧਨ ਦੇ π -ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਉਸ ਪਰਮਾਣੂ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਹਮਲਾਵਰ ਅਭਿਕਰਮਕ ਬੰਧਿਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੀ ਉਦਾਹਰਣ ਇਹ ਹੈ।

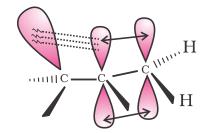

347


ਜਦੋਂ ਪ੍ਰੇਰਕ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ ਇੱਕ ਦੂਜੇ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਕਾਰਜ ਕਰਦੇ ਹਨ, ਤਾਂ ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਪ੍ਰਭਾਵ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ।

12.7.9 ਅਤਿਸੰਯੁਗਮਨ

ਅਤਿ ਸੰਯੁਗਮਨ ਇੱਕ ਸਧਾਰਣ ਅੰਤਰ ਕਿਰਿਆ ਹੈ। ਇਸ ਵਿੱਚ ਕਿਸੇ ਅਸੰਤ੍ਰਿਪਤ ਸਿਸਟਮ ਦੇ ਪਰਮਾਣੂ ਸਿੱਧੇ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੇ C-H ਬੰਧਨ ਅਤੇ ਅਸਹਿਭਾਜਿਤ *p* ਅੱਰਬਿਟਲ ਵਾਲੇ ਪਰਮਾਣੂ ਦੇ ਰ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਵਿਸਥਾਨੀ ਕਰਣ (Delocalization) ਹੋ ਜਾਂਦਾ ਹੈ। ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੇ C-H ਬੰਧਨ ਦੇ ਰ ਇਲੈਕਟ੍ਰਾਨ ਨੇੜਲੇ ਅਸੰਤ੍ਰਿਪਤ ਸਿਸਟਮ ਜਾਂ ਅ-ਸਹਿਭਾਜਿਤ *p* ਅੱਰਬਿਟਲ ਦੇ ਨਾਲ ਅੰਸ਼ਿਕ ਸੰਯੁਗਮਨ (partial conjugation) ਦਰਸਾਉਂਦੇ ਹਨ।ਅਤਿਸੰਯੁਗਮਨ ਇੱਕ ਸਥਾਈ ਪ੍ਰਭਾਵ ਹੈ।

ਅਤਿਸੰਯੁਗਮਨ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਸੀਂ $CH_3 \overset{+}{C}H_2$ (ਈਥਾਈਲਧਨਅਇਨ) ਦੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਧਨ ਚਾਰਜਿਤ ਕਾਰਬਨ ਉੱਤੇ ਇੱਕ ਖਾਲੀ p ਅੱਰਬਿਟਲ ਹੈ। ਮੀਥਾਈਲ ਗਰੁੱਪ ਦਾ ਇੱਕ C-H ਬੰਧਨ ਖਾਲੀ p ਅੱਰਬਿਟਲ ਦੇ ਤਲ ਦੇ ਸੰਰੇਖਣ ਵਿੱਚ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦੇ ਕਾਰਣ C-H ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਖਾਲੀ p ਅੱਰਬਿਟਲ ਵਿੱਚ ਹੋ ਜਾਂਦਾ ਹੈ, ਦਿੱਤ ਵਿੱਚ ਵਿਸਥਾਨੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿਵੇਂ ਚਿੱਤਰ 12.4 (ੳ) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।



ਇਸ ਤਰ੍ਹਾਂ ਓਵਲੈਪਿੰਗ ਨਾਲ ਕਾਰਬਧਨਆਇਨ ਦਾ ਸਥਾਈ ਧਨ ਵਧ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਨੇੜਲਾ ਬੰਧਨ ਧਨਚਾਰਜ ਦੇ ਵਿਸਥਾਨੀਕਰਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।

ਆਮ ਤੋਰ ਤੇ ਧਨ ਚਾਰਜਿਤ ਕਾਰਬਨ ਨਾਲਰ ਸੰਯੁਕਤ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੀ ਸੰਖਿਆ ਵਧਣ ਤੇ ਅਤਿਸੰਯੁਗਮਨ ਅੰਤਰ ਕਿਰਿਆ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ, ਜਿਸਦੇ ਕਾਰਣ ਕਾਰਬਧਨ ਆਇਨ ਦੀ ਸਥਿਰਤਾ ਵਧਦੀ ਹੈ।ਭਿੰਨ-ਭਿੰਨ ਕਾਰਬਧਨਆਇਨ ਦੇ ਸਥਾਈਪਨ ਦਾ ਕ੍ਰਮ ਇਸ ਤਰ੍ਹਾਂ ਹੈ :

$$CH_{3} - CH_{3} + CH_{3}CH_{2} + CH_{3}CH_{2} + CH_{3}CH_{2} + CH_{3}CH_{2} + CH_{3}CH_{2} + CH_{3}CH_{2} + CH_{3}CH_{3} + C$$

ਐਲਕੀਨਾਂ ਅਤੇ ਐਲਕਾਈਲ ਐਰੀਨਾਂ ਵਿੱਚ ਵੀ ਅਤਿ ਸੰਯੁਗਮਨ ਸੰਭਵ ਹੈ।ਐਲਕੀਨਾਂ ਵਿੱਚ ਅਤਿ ਸ਼ੁੰਯੁਗਮਨ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਵਿਸਥਾਨੀਕਰਣ ਇਸ ਚਿੱਤਰ 12.4 (ਅ) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 12.4 (ਅ) ਪਰੋਪੀਨ ਵਿੱਚ ਅਤਿੰਯੁਗਮਨ ਦਾ ਆਰਬਿਟਲ ਚਿੱਤਰ

ਅਤਿਸੰਯੁਗਮਨ ਪ੍ਰਭਾਵ ਨੂੰ ਸਮਝਣ ਦੇ ਕਈ ਤਰੀਕੇ ਹਨ।

$$H = H = H = H$$

$$H = C = C = C = H \iff$$

$$H = H = H$$

$$H = H$$

348

ਉਨ੍ਹਾਂ ਵਿੱਚੋ ਇੱਕ ਤਰੀਕੇ ਵਿੱਚ ਅਨੁਨਾਦ ਦੇ ਕਾਰਣ C-H ਬੰਧਨ ਵਿੱਚ ਅੰਸਿਕ ਆਇਨੀ ਕਰਣ ਹੋਣਾ ਮੰਨਿਆ ਗਿਆ ਹੈ।

ਉਦਾਹਰਣ 12.19

 $(CH_3)_3C$, CH_3CH_2 ਨਾਲੋਂ ਵਧੇਰੇ ਸਥਾਈ ਕਿਉਂ ਹੈ ਅਤੇ CH_3 ਦਾ ਸਥਾਈਪਨ ਸਭ ਤੋਂ ਘੱਟ ਕਿਉਂ ਹੈ ? **ਹੱਲ** $(CH_3)_3C$ ਵਿੱਚ ਨੋਂ C-H ਬੰਧਨ ਹੋਣ ਦੇ ਕਾਰਣ ਉਸ ਵਿੱਚ ਅਤਿਸੰਯੁਮਣ ਅੰਤਰ ਕਿਰਿਆ ਦੀ ਮਾਤਰਾ CH_3CH_2 ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਾਫੀ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ। CH_3 ਵਿੱਚ ਖਾਲੀ p ਅੱਰਬਿੰਟਲ C-H ਬੰਧਨ ਦੇ ਤਲ ਤੇ ਲੰਭ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਦੇ ਨਾਲ ਓਵਰ ਲੈਪਿੰਗ ਨਹੀਂ ਕਰ ਸਕਦੇ। ਇੰਝ ${}^+C-H_3$ ਵਿੱਚ ਅਤਿ ਸਯੁੰਮਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।

12.7.10 ਕਾਰਬਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਕਾਰਜਵਿਧੀਆਂ

ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਸ੍ਰੇਣੀਆਂ ਵਿੱਚ ਵਰਗੀ ਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

- (i) ਪ੍ਰਤੀ ਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ
- (ii) ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ
- (iii) ਵਿਲੋਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ
- (iv) ਰੀਅਰੇਂਜਮੈਂਟ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ
- ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਇਸ ਪੁਸਤਕ ਦੇ ਯੁਨਿਟ −13 ਅਤੇ ਜਮਾਤ 12 ਵਿੱਚ ਪੜੋਗੇ।

12.8 ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੇ ਸੋਧਣ ਦੀਆਂ ਵਿਧੀਆਂ

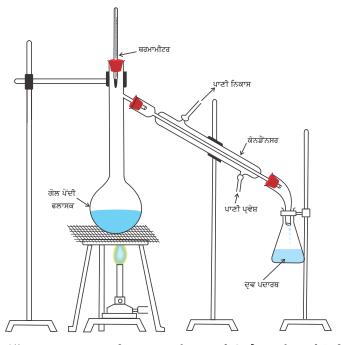
ਕਿਸੇ ਕੁਦਰਤੀ ਸਰੋਤ ਦੇ ਨਿਸ਼ਕਰਸ਼ਣ (Extraction) ਜਾ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਸੰਸਲੇਸ਼ਣ ਦੇ ਬਾਅਦ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਸੋਧਣ (Purification) ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਸੋਧਣ ਦੇ ਲਈ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਵਿਧੀਆਂ ਦੀ ਚੋਣ ਯੋਗਿਕ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਉਸ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਅਸ਼ੁੱਧੀਆਂ ਦੇ ਅਨੁਸਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਸੋਧਣ ਦੇ ਲਈ ਆਮ ਤੌਰ ਤੇ ਹੇਠ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

- (i) ਜੌਹਰ ਉਡਾਉਣਾ (Sublimation)
- (ii) ਕ੍ਰਿਸਟਲੀ ਕਰਣ (Crystallisation)
- (iii) ਕਸ਼ੀਦਣ (Distillation)
- (iv) ਵਿਭੇਦੀ ਨਿਸ਼ਕਰਸ਼ਣ (Differential extraction)

(v) ਵਰਣ ਲੇਖਣ (Chromatography) ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਅੰਤ ਵਿੱਚ ਯੋਗਿਕ ਦਾ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਗਿਆਤ ਕਰਕੇ ਉਸਦੀ ਸ਼ੁੱਧਤਾਂ ਦੀ ਪਰਖ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਵਧੇਰੇ ਸ਼ੁੱਧ ਯੋਗਿਕਾਂ ਦਾ ਪਿਘਲਣ ਅੰਕ ਜਾਂ ਉਬਲਣ ਅੰਕ ਤਿੱਖਾ (Sharp) ਹੁੰਦਾ ਹੈ।ਸ਼ੁੱਧਤਾ ਦੀ ਪਰਖ ਦੀਆਂ ਨਵੀਆਾਂ ਵਿਧੀਆਂ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੇ ਵਰਣ ਲੇਖਣ ਅਤੇ ਸਪੈਕਟ੍ਰੋ ਸਕੋਪੀ ਤਕਨੀਕਾਂ ਉੱਤੇ ਆਧਾਰਿਤ ਹਨ।

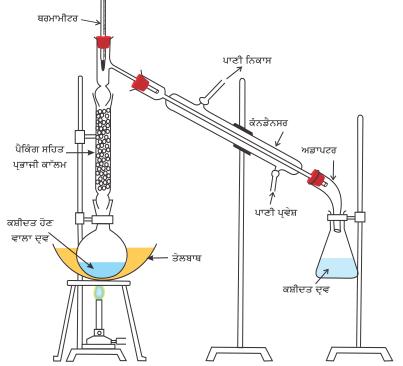
12.8.1 ਜੌਹਰ ਉਡਾਉਣਾ


ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕੁਝ ਠੋਸ ਪਦਾਰਥ ਗਰਮ ਕਰਨ ਤੇ ਬਿਨਾਂ ਦ੍ਰਵ ਬਣੇ ਸਿੱਧੇ ਵਾਸ਼ਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਪਰੋਕਤ ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਸੋਧਣ ਤਕਨੀਕ ਨੂੰ ਜੋਹਰ ਉਡਾ ਉਣਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੀ ਵਰਤੋਂ ਜੋਹਰ ਉਡੱਣ ਵਾਲੇ ਯੋਗਿਕ ਨੂੰ ਅਸ਼ੁਧੀਆਂ (ਜਿਨ੍ਹਾਂ ਦੇ ਜੋਹਰ ਨਹੀਂ ਉੱਡਦੇ) ਤੋਂ ਵੱਖ ਕਰਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

12.8.2 ਕ੍ਰਿਸਟਲੀਕਰਣ

ਇਹ ਠੋਸ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੇ ਸੋਧਣ ਦੀ ਢਕਵੀਂ ਵਿਧੀ ਹੈ। ਇਹ ਵਿਧੀ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਅਤੇ ਅਸ਼ੱਧੀ ਦੀ ਕਿਸੇ ਢੁਕਵੇਂ ਘੋਲਕ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੀਆਂ ਘੁਲਣਸ਼ੀਲਤਾਵਾਂ ਵਿੱਚ ਸਪਸ਼ਟ ਅੰਤਰ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਅਸ਼ੁਧ ਯੋਗਿਕ ਨੂੰ ਕਿਸੇ ਅਜਿਹੇ ਘੋਲਕ ਵਿੱਚ ਘੋਲਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਸਧਾਰਣ ਤਾਪਮਾਨ ਉੱਤੇ ਅਲਪ-ਘੁਲਣਸ਼ੀਲ (Sparingly soluble) ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਇਹ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ੳਹ ਘਲ ਜਾਂਦਾ ਹੈ। ੳਸ ਦੇ ਬਾਅਦ ਘੋਲ ਨੂੰ ਐਂਨਾ ਗਾੜ੍ਹਾ ਕਰਦੇ ਹਨ ਕਿ ਉਹ ਲਗਪਗ ਸੰਤ੍ਰਿਪਤ (saturate) ਹੋ ਜਾਏ। ਘੋਲ ਨੂੰ ਠੰਡਾ ਕਰਨ ਦੇ ਸ਼ੁੱਧ ਪਦਾਰਥ ਕ੍ਰਿਸਟਲਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸ ਨੂੰ ਫਿਲਟਰੇਸ਼ਨ ਦੁਆਰਾ ਵੱਖ ਕਰ ਲੈਂਦੇ ਹਨ। ਮਦਰ ਲਿਕਰ (Mother liquor) ਵਿੱਚ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਅਸ਼ੱਧੀਆ ਅਤੇ ਯੋਗਿਕ ਦੀ ਅਲਪਮਾਤਰਾ ਰਹਿ ਜਾਂਦੀ ਹੈ ਜੇ ਯੋਗਿਕ ਕਿਸੇ ਇੱਕ ਘੋਲਕ ਵਿੱਚ ਜਿਆਦਾ ਘਲਣਸ਼ੀਲ ਅਤੇ ਕਿਸੇ ਦੂਜੇ ਘੋਲਕ ਵਿੱਚ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦਾ ਹੈ। ਤਾਂ ਕ੍ਰਿਸਟਲੀਕਰਣ ਸਹੀ ਮਾਤਰਾ ਵਿੱਚ ਇਨ੍ਹਾਂ ਘੋਲਕਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਸਕਿਰਿਆ ਕ੍ਰਿਤ ਚਾਰਕੋਲ (Activated Charcoal) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਰੰਗਦਾਰ ਅਸ਼ੁੱਧੀਆਂ ਕੱਢੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਯੋਗਿਕ ਅਤੇ ਅਸ਼ੁੱਧੀਆਂ ਦੀਆਂ ਘਲਣਸ਼ੀਲਤਾਵਾਂ ਵਿੱਚ ਘੱਟ ਅੰਤਰ ਹੋਣ ਦੀ ਹਾਲਤ ਵਿੱਚ ਬਾਰ ਬਾਰ ਕ੍ਰਿਸਟਲੀਕਰਣ ਦੁਆਰਾ ਸ਼ੁੱਧ ਯੋਗਿਕ ਪਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

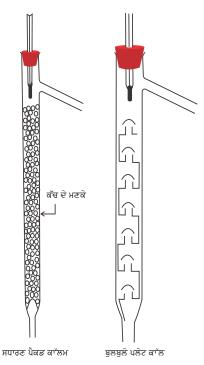
12.8.3 ਕਸ਼ੀਦਣ


ਇਸ ਮਹੱਤਵ ਪੂਰਣ ਵਿਧੀ ਦੀ ਸਹਾਇਤਾ ਨਾਂਲ (i) ਵਾਸ਼ਪਸ਼ੀਲ (Volatile ਦ੍ਵਾਂ ਨੂੰ ਅ-ਵਾਸ਼ਪਸ਼ੀਲ ਅਸ਼ੁੱਧੀਆਂ ਅਤੇ (ii) ਅਜਿਹੇ ਦ੍ਵਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਉਬਲਣਅੰਕ ਵਿੱਚ ਕਾਫੀ ਅੰਤਰ ਹੋਵੇ, ਨੂੰ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ। ਭਿੰਨ ਉਬਲਣ ਅੰਕਾਂ ਵਾਲੇ ਦ੍ਵ ਭਿੰਨ ਤਾਪਮਾਨ ਉੱਤੇ ਵਾਸ਼ਪਿਤ ਹੁੰਦੇ ਹਨ। ਵਾਸ਼ਪਾਂ ਨੂੰ ਠੰਡਾ ਕਰਨ ਤੇ ਪ੍ਰਾਪਤ ਦ੍ਵਾਂ ਨੂੰ ਵੱਕ ਵੱਖ ਇੱਕਠਾਂ ਕਰ ਲੈਂਦੇ ਹਨ। ਕਲੋਰੋਫਾਰਮ (ਉਬਲਣਅੰਕ 334 K) ਅਤੇ ਐਨੀਲੀਨ (ਉਬਲਣ ਅੰਕ 457 K) ਨੂੰ ਕਸ਼ੀਦਣ ਵਿਧੀ ਦੁਆਰਾ

ਚਿੱਤਰ 12.5 ਸਧਾਰਣ ਕਸ਼ੀਦਣ ਪਦਾਰਥ ਦੇ ਵਾਸ਼ਪਾ ਨੂੰ ਕੰਨਡੈਂਸ ਕਰਕੇ ਦ੍ਵ ਨੂੰ ਕੋਨੀਕਲ ਫਲਾਸਕ ਵਿੱਚ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਅਸਾਨੀ ਨਾਲ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ (ਚਿੱਤਰ 12.5) ਦ੍ਵ ਮਿਸ਼ਰਣ ਨੂੰ ਗੋਲ ਪੇਂਦੀ ਸੁਰਾ ਹੀ ਵਿੱਚ ਲੈਕੇ ਅਸੀ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਗਰਮ ਕਰਦੇ ਹਾਂ ਉਬਾਲਣ ਤੇ ਘੱਟ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦ੍ਵ ਦੇ ਵਾਸ਼ਪ ਪਹਿਲੇ ਬਣਦੇ ਹਨ। ਵਾਸ਼ਪਾਂ ਨੂੰ ਕੰਨਡੈਸ਼ਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਕੰਨਡੈਸ਼ ਕਰ ਕਰਕੇ ਪ੍ਰਾਪਤ ਦ੍ਵ ਨੂੰ ਗ੍ਰਹਿਣੀ ਵਿੱਚ ਇੱਕਠਾਂ ਕਰ ਲੈਂਦੇ ਹਨ। ਉੱਚੇ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਘਟਕ ਦੇ ਵਾਸ਼ਪ ਪਹਿਲਾਂ ਬਣਦੇ ਹਨ। ਵਾਸ਼ਪਾਂ ਨੂੰ ਕੰਨਡੈਸ਼ਰ ਦੀ ਸਹਾਇਤਾਂ ਨਾਲ ਕੰਨਡੈਂਸ਼ ਕਰਕੇ ਪ੍ਰਾਪਤ ਦ੍ਵ ਨੂੰ ਗ੍ਰਹਿਣੀ ਵਿੱਚ ਇਕੱਠਾ ਕਰ ਲੈਂਦੇ ਹਨ। ਉੱਚੇ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਘਟਕ ਦੇ ਵਾਸ਼ਪ ਬਾਅਦ ਵਿੱਚ ਬਣਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਾਸ਼ਪਾਂ ਨੂੰ ਕੰਨਡਸ਼ ਕਰਕੇ ਦੂਜੀ ਰਿਸੀਵਰ ਫਲਾਸਕ ਵਿੱਚ ਇੱਕਠਾ ਕਰ ਲੈਂਦੇ ਹਨ।

ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣ : ਦੋ ਦ੍ਵਾਂ ਦੇ ਉਬਲਣ ਅੰਕ ਵਿੱਚ ਸਹੀ ਅੰਤਰ ਨਾ ਹੋਣ ਦੀ ਹਾਲਤ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਸਧਾਰਣ ਕਸ਼ੀਦਣ ਦੁਆਰਾ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਅਜਿਹੇ ਦ੍ਵਾਂ ਦੇ ਵਾਸ਼ਪ ਸਮਾਨ ਤਾਪਮਾਨ ਰੇਂਜ ਵਿੱਚ ਬਣ ਜਾਂਦੇ ਹਨ ਅਤੇ ਨਾਲ ਨਾਲ ਸੰਘਣਿਤ (Condense) ਹੋ ਜਾਂਦੇ ਹਨ। ਅਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣ ਦੀ ਤਕਨੀਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਕਨੀਕ ਵਿੱਚ ਗੋਲ ਪੇਂਦੀ ਫਲਾਸਕ ਦੇ ਮੂੰਹ ਵਿੱਚ ਲੱਗੇ ਪ੍ਰਭਾਜੀ ਕਾਲਮ ਵਿੱਚੋਂ ਦ੍ਵ ਮਿਸ਼ਰਣ ਦੇ ਵਾਸ਼ਪ ਲੰਘਾਏ ਜਾਂਦੇ ਹਨ (ਚਿੱਤਰ 12.6)।


ਚਿੱਤਰ 12.6 ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣਾ ਨੀਵੇ ਉਬਲਣ ਪ੍ਰਭਾਜ ਦੇ ਵਾਸ਼ਪ ਕਾਲੱਮ ਦੇ ਸਿਰੇ ਤੱਕ ਪਹਿਲਾਂ ਪਹੁੰਚਦੇ ਹਨ। ਉਸ ਤੋਂ ਬਾਅਦ ਬੁੱਚੇ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦਵ ਦੇ ਵਾਸ਼ਪ ਪਹੁੰਚਦੇ ਹਨ।

Downloaded from https:// www.studiestoday.com

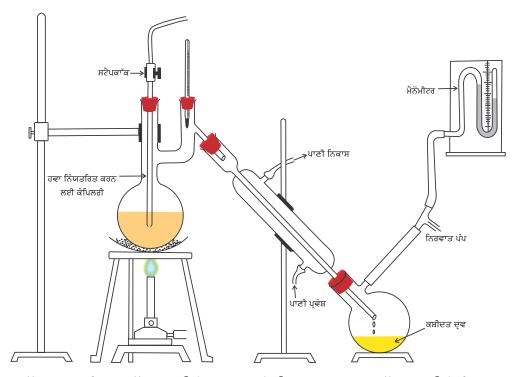
349

350

ਉੱਚੇ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦਵ ਦੇ ਵਾਸ਼ਪ ਨੀਵੇਂ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦਵ ਦੇ ਵਾਸ਼ਪ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਪਹਿਲਾਂ ਸੰਘਣਿਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਪਭਾਜੀ ਕਾੱਲਮ ਵਿੱਚ ਉਪੱਰ ਉਠਣ ਵਾਲੇ ਵਾਸ਼ਪਾਂ ਵਿੱਚ ਵਧੇਰੇ ਵਾਸ਼ਪਸ਼ੀਲ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਵਧੇਰੇ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਪਭਾਜੀ ਕਾੱਲਮ ਦੇ ਸਿਖਰ ਤੱਕ ਪਹੁੰਚਦੇ ਪਹੰਚਦੇ ਵਾਸ਼ਪਾਂ ਵਿੱਚ ਮੱਖ ਰਪ ਵਿੱਚ ਵਧੇਰੇ ਵਾਸ਼ਪਸ਼ੀਲ ਭਾਗ ਹੀ ਰਹਿ ਜਾਂਦਾ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਡੀਜਾਈਨ ਅਤੇ ਅਕਾਰ ਦੇ ਪਭਾਜੀ ਕਾੱਲਮ ਚਿੱਤਰ ਨੂੰ12.7 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਹਨ।ਪਭਾਜੀ ਕਾੱਲਮ ਵਿੱਚ ਉੱਪਰ ਉੱਠਦੇ ਵਾਸ਼ਪ ਅਤੇ ਹੇਠਾਂ ਡਿੱਗਦੇ ਦਵ ਦੇ ਵਿੱਚ ਤਾਪ ਵਟਾਂਦਰੇ ਦੇ ਲਈ ਕਈ ਤਲ (Surface) ਉਪਲਬਧ ਕਰਦਾ ਹੈ। ਪ੍ਰਭਾਜੀ ਕਾੱਲਮ ਵਿੱਚ ਸੰਘਣਿਤ ਦ੍ਵ ਉੱਪਰ ਉੱਠਦੇ ਵਾਸ਼ਪਾਂ ਤੋਂ ਤਾਪ ਲੈ ਕੇ ਮੁੜ ਵਾਸ਼ਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਵਾਸ਼ਪਾਂ ਵਿੱਚ ਘੱਟ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦਵ ਦੀ ਮਾਤਰਾ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਸ਼ਧ ਵਾਸ਼ਪ ਕਾੱਲਮ ਦੇ ਸਿਰੇ ਉੱਤੇ ਪਹੁੰਚਦੇ ਹਨ। ਦ੍ਵਣ ਯੰਤਰ (Condenser) ਵਿੱਚ ਸੰਘਣਿਤ ਹੋ ਕੇ ਇਹ ਸ਼ੁੱਧ ਦਵ ਦੇ ਰੂਪ ਵਿੱਚ ਰਿਸੀਵਰ ਵਿੱਚ ਇੱਕਠਾ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਵਾਰ ਕਸ਼ੀਦਣ ਦੇ ਉਪਰੰਤ ਕਸ਼ੀਦਣ ਫਾਲਾਸਕ ਦੇ ਬਾਕੀ ਦ੍ਵ ਵਿੱਚ ਉੱਚੇ ਉਬਲਣ ਅੰਕ ਵਾਲੇ ਦਵ ਦੀ ਮਾਤਰਾ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਹਰ ਇੱਕ ਸਿਲਸਿਲਾ ਸੰਘਨਨ ਅਤੇ ਵਾਸਪਨ ਨੂੰ ਥਿਊਰੈਟਿਕਲ ਪਲੇਟ (Theoretical plate) ਕਹਿੰਦੇ ਹਨ। ਵਪਾਰਿਕ ਪਧੱਰ ਉੱਤੇ ਵਰਤੋਂ ਦੇ ਲਈ ਸੈਂਕੜੇ ਪਲੇਟਾਂ ਵਾਲੇ ਕਾੱਲਮ ਉਪਲਬਧ ਹਨ।

ਚਿੱਤਰ 12.7 ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਪ੍ਰਭਾਜੀ ਕਾੱਲਮ

ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣ ਦੀ ਇੱਕ ਤਕਨੀਕੀ ਵਰਤੋਂ ਪੈਟ੍ਰੋਲੀਅਮ ਉਦਯੋਗ ਵਿੱਚ ਕੱਚੇ ਤੇਲ ਦੇ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਭਾਜਾ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।


ਨਿਮਨ ਦਾਬ ਉਤੱ ਕਸ਼ੀਦਣ : ਇਹ ਵਿਧੀ ਉਨ੍ਹਾਂ ਦ੍ਰਵਾਂ ਦੇ ਸੋਧਨ ਦੇ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਉਬਲਣ ਅੰਕ ਅਤਿ ਉੱਚੇ ਹੁੰਦੇ ਹਨ ਜਾਂ ਜੋ ਆਪਣੇ ਉਬਲਣ ਅੰਕ ਜਾਂ ਉਸ ਤੋਂ ਵੀ ਘੱਟ ਤਾਪਮਾਨ ਤੇ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਅਜਿਹੇ ਦ੍ਵਾਂ ਦੇ ਤਲ ਉੱਤੇ ਦਾਬ ਘੱਟ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦੇ ਉਬਲਣ ਅੰਕ ਤੋ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਉਬਾਲਿਆ ਜਾਂਦਾ ਹੈ। ਕੋਈ ਵੀ ਦ੍ਵ ਉਸ ਤਾਪਮਾਨ ਉੱਤੇ ਉਬਲਦਾ ਹੈ, ਜਿਸ ਉੱਤੇ ਉਸ ਦਾ ਵਾਸ਼ਪ ਦਾਬ ਬਾਹਰੀ ਦਾਬ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ। ਦਾਬ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਜਲ ਪੰਪ ਜਾਂ ਨਿਰਵਾਤ ਪੰਪ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ (ਚਿੱਤਰ 12.8) ਸਾਬਣ ਉਦਯੋਗਾਂ ਵਿੱਚ ਸਪੈਂਟ ਲਾਈ (Spent lye) ਤੋਂ ਗਲਿਸਰੋਲ ਵੱਖ ਦੇ ਲਈ ਇਸ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਭਾਫ ਕਸ਼ੀਦਣ : ਇਹ ਤਕਨੀਕ ਉਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਨੂੰ ਸੋਧਣ ਦੇ ਲਈ ਜਾਂਦੀ ਹੈ, ਜੋ ਭਾਫ਼ ਵਾਸ਼ਪਸ਼ੀਲ ਹੋਣ ਪਰੰਤੂ ਪਾਣੀ ਵਿੱਚ ਮਿਸ਼ਰਣ ਯੋਗ ਨਾ ਹੋਣ। ਭਾਫ ਕਸ਼ੀਦਣ ਵਿੱਚ ਅਸ਼ੁੱਧ ਦ੍ਵ ਨੂੰ ਫਲਾਸਕ ਵਿੱਚ ਗਰਮ ਕਰਦੇ ਇੱਕਠਾ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਉਸ ਤੋ ਬਾਅਦ ਦ੍ਵ ਅਤੇ ਪਾਣੀ ਨੂੰ ਨਖੇੜਕ ਕੀਫ਼ ਦੁਆਰਾ ਵੱਖ ਕਰ ਲੈਂਦੇ ਹਨ। ਭਾਫ ਕਸ਼ੀਦਣ ਵਿੱਚ ਕਾਰਬਨਿਕ ਦ੍ਵ pਅਤੇ ਪਾਣੀ (p_2) ਦੇ ਵਾਸ਼ਪ ਦਾਬ ਦਾ ਜੋੜ ਵਾਯੂਮੰਡਲੀ ਦਾਬ p ਦੇ ਬਰਾਬਰ ਹੋਣ ਤੇ ਦ੍ਵ ਉਬਲਦਾ ਹੈ, ਅਰਥਾਤ $p=p_1+p_2$ 1 ਕਿਉਂਕਿ p_1 ਦਾ ਮਾਨ p ਤੋਂ ਘੱਟ ਹੈ, ਇਸ ਲਈ ਦ੍ਵ ਆਪਣੇ ਉਬਲਣ ਅੰਕ ਨਾਲੋਂ ਨੀਵੇ ਤਾਪਮਾਨ ਉੱਤੇ ਹੀ ਵਾਸਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਅਤੇ ਉਸ ਵਿੱਚ ਅਘੁੱਲ ਪਦਾਰਤਾ ਦਾ ਮਿਸ਼ਰਣ 373k ਦੇ ਨੇੜੇ ਉਸ ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਹੀ ਉਬੱਲ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੇ ਪਦਾਰਥ ਅਤੇ ਪਾਣੀ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਇਸ ਵਿਧੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਐਨੀਲੀਨ ਪਾਣੀ ਦੇ ਮਿਸ਼ਰਣ ਵਿੱਚੋ ਵੱਖ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। (ਚਿੱਤਰ 12.9)।

12.8.4 ਵਿਭੇਦੀ ਨਿਸਕਰਸਣ

ਇਸ ਵਿਧੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਨੂੰ ਉਸ ਦੇ ਜਲੀ ਘੋਲ ਵਿਚੋਂ ਅਜਿਹੇ ਕਾਰਬਨਿਕ ਘੋਲਕ ਦੁਆਰਾ ਨਿਸ਼ਕਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਯੋਗਿਕ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਪਾਣੀ ਨਾਲੋਂ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ। ਜਲੀ ਘੋਲ ਅਤੇ ਕਾਰਬਨਿਕ ਘੋਲਕ ਮਿਸ਼ਰਤ ਨਹੀ ਹੋਣੇ ਚਾਹੀਦੇ, ਤਾਂ ਕਿ ਉਹ ਦੋ ਪਰਤਾਂ ਬਣਾ ਸਕਣ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਨਖੇੜਕ ਕੀਫ਼ ਦੁਆਰਾ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕੇ। ਉਸ ਤੋਂ ਬਾਅਦ ਯੋਗਿਕ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਕਾਰਬਨਿਕ ਘੋਲਕ ਨੂੰ ਕਸ਼ੀਕਣ ਦੁਆਰਾ ਦੂਰ ਕਰਕੇ ਸ਼ੁੱਧ ਯੋਗਿਕ

Fig.12.8 ਘੱਟ ਦਾਬ ਕਸ਼ੀਦਣ। ਘੱਟ ਦਾਬ ਉੱਤੇ ਦ੍ਰਣ ਆਪਣੇ ਉਬਲਣ ਅੰਕ ਨਾਲੋਂ ਘੱਟ ਤਾਪ ਉੱਤੇ ਇਬਲਣ ਲੱਗਦਾ ਹੈ।

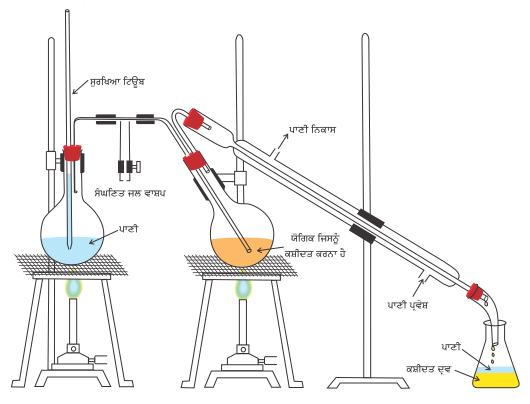
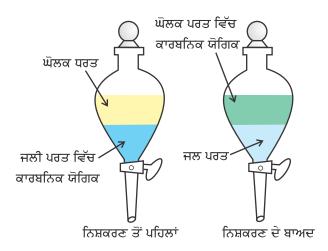



Fig.12.9 ਕਾਫਕਸ਼ੀਦਣ। ਤਾਫ਼ ਵਾਸ਼ਪਸ਼ੀਲ ਭਾਗ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋ ਕੇ ਕੰਨਡੈਸਰ ਵਿੱਚ ਸੰਘਣਿਤ ਹੁੰਦਾ ਹੈ। ਦ੍ਵ ਨੂੰ ਰਿਸੀਵਰ ਵਿੱਚ ਇੱਕਠਾ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

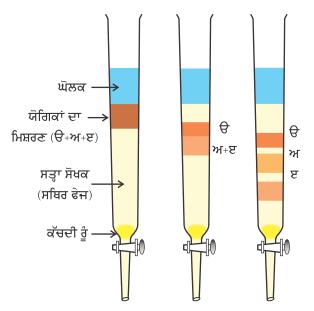
352

ਪ੍ਰਾਪਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਵਿਭੇਦੀ ਨਿਸ਼ਕਸ਼ਣ ਇੱਕ ਨਖੇੜਕ ਕੀਫ਼ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 12.10 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਕਾਰਬਨਿਕ ਘੋਲਕ ਵਿੱਚ ਯੋਗਿਕ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਅਲਪ ਹੋਮ ਦੀ ਹਾਲਤ ਵਿੱਚ ਇਸ ਵਿਧੀ ਵਿੱਚ ਘੋਲਕ ਦੀ ਕਾਫ਼ੀ ਮਾਤਰਾ ਵਿੱਚ ਲੋੜ ਪਵੇਗੀ। ਇਸ ਹਾਲਤ ਵਿੱਚ ਲਗਾਤਾਰ ਨਿਸ਼ਕਰਣ (Continuous Extraction) ਤਕਨੀਕ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਇਸ ਤਨਨੀਕ ਵਿੱਚ ਉਸੇ ਘੋਲਕ ਦੀ ਵਰਤੋਂ ਬਾਰ ਬਾਰ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ 12.10 ਵਿਭੇਦੀ ਨਿਸ਼ਕਰਸ਼ਣ। ਘਟਕਾਂ ਦਾ ਵੱਖ ਕਰਨਾ ਘੁਲਣਸ਼ੀਲਤਾ ਵਿੱਚ ਅੰਤਰ ਉੱਤੇ ਅਧਾਰਿਤ ਹੁੰਦਾ ਹੈ।

12.8.5 ਵਰਣਲੇਖਣ (ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ)

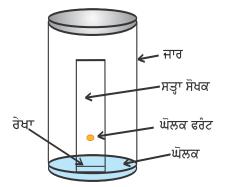
ਵਰਣਲੇਖਣ (ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ) ਸੋਧਣ ਦੀ ਇੱਕ ਬਹੁਤਹੀ ਮਹੱਤਵਪੂਰਣ ਤਕਨੀਕ ਹੈ, ਜਿਸ ਦੀ ਵਰਤੋਂ ਯੋਗਿਕਾਂ ਦੇ ਸੋਧਣ, ਕਿਸੇ ਮਿਸ਼ਰਣ ਦੇ ਘਟਕਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਅਤੇ ਯੋਗਿਕਾਂ ਦੀ ਸ਼ੁੱਧਤਾਂ ਦੀ ਪਰਖ ਕਰਨ ਦੇ ਲਈ ਵਿਸਤਰਿਤ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਵਿਧੀ ਦੀ ਸਭ ਤੋਂ ਪਹਿਲੀ ਵਰਤੋਂ ਪੌਦਿਆਂ ਵਿੱਚ ਮਿਲਣਵਾਲੇ ਰੰਗਦਾਰ ਪਦਾਰਥਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਕੀਤੀ ਗਈ ਸੀ। ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਗਰੀਕ ਸ਼ਬਦ ਕ੍ਰੋਮਾਂ (Chroma) ਤੋ ਬਣਿਆਂ ਹੈ, ਜਿਸ ਦਾ ਅਰਥ ਹੈ, ਰੰਗ। ਇਸ ਤਕਨੀਕ ਵਿੱਚ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਯੋਗਿਕਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਸਥਿਰ ਫੇਜ (stationary phase) ਉੱਤੇ ਪਾਇਆ ਜਾਂਦਾ ਹੈ। ਸਥਿਰ ਫੇਜ ਕੋਸ ਜਾਂ ਦ੍ਵ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਸਥਿਰ ਫੇਜ ਵਿੱਚੋਂ ਢੁਕਵਾਂ ਘੋਲਕ, ਘੋਲਕਾਂ ਦੇ ਮਿਸ਼ਰਣ ਜਾਂ ਗੈਸ ਨੂੰ ਹੌਲੀ ਹੌਲੀ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗ ਕ੍ਰਮਵਾਰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ। ਗਤੀ ਕਰਨ ਵਾਲੇ ਫੇਜ ਨੂੰ ਗਤੀਸ਼ੀਲ ਫੇਜ (mobile phase) ਕਹਿੰਦੇ ਹਨ।

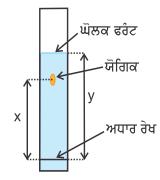

ਵਰਣਨ ਲੇਖਣ ਨੂੰ ਵਰਤੇਂ ਸਿਧਾਂਤਾਂ ਦੇ ਅਧਾਰ ਤੇ ਭਿੰਨ-ਭਿੰਨ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਨ੍ਹਾਂ ਵਿਚੋ ਦੋ ਹਨ—

- (ੳ) ਸਤ੍ਹਾ ਸੋਖਣ—ਵਰਣ ਲੇਖਣ Adsorption chromatography, and
- (ਅ) ਵੰਡ-ਵਰਣ ਲੇਖਣ Partition chromatography.
- (ੳ) ਸਤ੍ਹਾ ਸੋਖਣ-ਵਰਣ ਲੇਖਣ : ਇਹ ਇਸ ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ ਕਿਸੇ ਵਿਸ਼ਿਸਟ ਸਭਾ ਸੋਖਕ (Adsorbent) ਉੱਤੇ ਭਿੰਨ-ਭਿੰਨ ਯੋਗਿਕ ਭਿੰਨ-ਭਿੰਨ ਅੰਸ਼ਾਂ ਵਿੱਚ ਸਤ੍ਹਾ ਸੋਖਿਤ ਹੁੰਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਐਲੂਮੀਨਾ ਅਤੇ ਸਿੱਲੀਕਾ ਜੈੱਲ ਸਤ੍ਹਾ ਸੋਖਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੋਂ ਜਾਂਦੇ ਹਨ। ਸਥਿਤ ਫੇਜ (ਸਤ੍ਹਾ ਸੋਖਕ) ਉੱਤੇ ਗਤੀਸ਼ੀਲ ਫੇਜ਼ ਲੰਘਾਉਣ ਤੋਂ ਬਾਅਦ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗ ਸਥਿਰ ਫੇਜ ਉੱਤੇ ਵੱਖ-ਵੱਖ ਦੂਰੀ ਤੈਅ ਕਰਦੇ ਹਨ। ਹੇਠ ਲਿਖੀਆਂ ਦੋ ਕਿਸਮ ਦੀਆਂ ਵਰਣ ਲੇਖਣ ਤਕਨੀਕਾਂ ਹਨ, ਜੋ ਵਿਭੇਦੀ ਸਤ੍ਹਾ ਸੋਖਣ ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਹਨ-

(ੳ) ਕਾੱਲਮ-ਵਰਣ ਲੇਖਣ (Column chromatography)

(ਅ) ਪਤਲੀ ਪਰਤ ਵਰਣ ਲੇਖਣ (Thin layer Chromaography)


ਕਾੱਲਸ-ਵਰਣਲੇਖਣ : ਇਸ ਤਕਨੀਕ ਵਿੱਚ ਕੱਚ ਦੀ ਇਕ ਲੰਬੀ ਟਿਊਬ ਵਿੱਚ ਸਤ੍ਹਾਂ-ਸੋਖਕ (ਸਥਿਰ ਫੇਜ) ਭਰਿਆ ਜਾਂਦਾ ਹੈ। ਟਿਊਬ ਦੇ ਹੇਠਲੇ ਸਿਰੇ ਉੱਤੇ ਸੱਟਾਪ ਕਾੱਕ ਲੱਗਿਆ ਹੁੰਦਾ ਹੈ। (ਚਿੱਤਰ 12.11) ਯੋਗਿਕ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਢੁਕਵੇਂ ਘੋਲਕ ਦੀ ਨਿਉਤਮ ਸਤ੍ਹਾ ਵਿੱਚ ਘੋਲ


ਚਿੱਤਰ 12.11 ਕਾੱਲਮ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ।ਕਿਸੇ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗਾਂ ਦੇ ਨਖੇੜਨ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਸਥਿਤੀਆਂ

ਕੇ ਕਾੱਲਮ ਦੇ ਉਪਰਲੇ ਭਾਗ ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਉਸ ਦੇ ਬਾਅਦ ਇੱਕ ਢੁਕਵਾਂ ਐਲੂਐਂਟ (Eluant) ਜੋਂ ਦ੍ਵ ਜਾਂ ਦ੍ਵਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ। ਨੂੰ ਕਾੱਲਮ ਵਿੱਚ ਹੌਲੀ ਗਤੀ ਨਾਲ ਹੇਠਾਂ ਵੱਲ ਵਹਿਣ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਯੋਗਿਕਾਂ ਦੇ ਸਤ੍ਹਾਂ ਸੋਖਣ ਦੀ ਮਾਤਰਾ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਦਾ ਅੰਸ਼ਿਕ ਜਾਂ ਪੂਰਣ ਨਿਖੇੜਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਵਧੇਰੇ ਸੋਖਿਤ ਯੋਗਿਕ ਕਾੱਲਮ ਦੇ ਉੱਪਰ ਵਧੇਰੇ ਸਰਲਤਾ ਨਾਲ ਸੋਖੇ ਰਹਿ ਜਾਦੇ ਹਨ, ਜਦ ਕਿ ਦੂਜੇ ਯੋਗਿਕ ਕਾੱਲਮ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਦੂਰੀਆ ਤੱਕ ਹੇਠਾ ਆ ਜਾਂਦੇ ਹਨ ?(ਚਿੱਤਰ 12.11)?

ਪਤਲੀ ਪਰਤ ਵਰਣਲੇਖਣ : ਪਤਲੀ ਪਰਤ ਵਰਣਲੇਖਣ (Thin Layer Chromatography, TLC) ਇੱਕ ਹੋਕ ਕਿਸਮ ਦਾ ਸਤ੍ਹਾ ਸੋਖਣ ਵਰਣ ਲੇਖਣ ਹੈ। ਇਸ ਵਿੱਚ ਇੱਕ ਸਤ੍ਹਾ ਸੋਖਕ ਦੀ ਪਤਲੀ ਪਰਤ ਉੱਤੇ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗਾਂ ਦਾ ਨਖੇੜਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਕਨੀਕ ਵਿੱਚ ਕੱਚ ਦੀ ਇੱਕ ਛੋਟੀ ਪਲੇਟ ਉੱਤੇ ਸਤ੍ਹਾ ਸੋਖਕ (ਸਿੱਲੀ ਦਾ ਜੈੱਲ ਜਾਂ ਐਲੂਮੀਨਾ) ਦੀ ਪਤਲੀ (ਲਗਪਗ 0.2mm ਦੀ) ਪਰਤ ਵਿਛਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਪਤਲੀ ਪਰਤ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਪਲੇਟ ਕਹਿੰਦੇ ਹਨ। ਮਿਸ਼ਰਣ ਦੇ ਘੋਲਦਾ ਛੋਟਾ ਜਿਹਾ ਬਿੰਦੂ ਪਲੇਟ ਦੇ ਇੱਕ ਸਿਰੇ ਤੋਂ ਲਗਪਗ 2cm ਉੱਪਰ ਲਾਉਂਦੇ ਹਨ। ਪਲੇਟ ਨੂੰ ਹੁਣ ਕੁਝ ਉਚਾਈ ਤੱਕ ਘੋਲਕ ਨਾਲ ਭਰੇ ਇੱਕ ਬੰਦ ਜਾਰ ਵਿੱਚ ਖੜਾ ਕਰਦਿੰਦੇ ਹਨ। ਜਿਵੇਂ ਚਿੱਤਰ 12.12

ਚਿੱਤਰ 12.12 (ੳ) ਥਿਨ ਲੇਅਰ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਵਿੱਚ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਮ ਦਾ ਵਿਕਸਿਤ ਹੋਣਾ

ਚਿੱਤਰ 12.12 (ਅ) ਵਕਸਿਤ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਮ

(ੳ) ਵਿੱਚ ਵਿਖਾਇਆ ਹੈ। ਐਲੂਐਂਟ ਜਿਵੇਂ ਜਿਵੇਂ ਪਲੇਟ ਉੱਤੇ ਅੱਗੇ ਵਧਦਾ ਹੈ, ਤਿਉਂ-ਤਿਉਂ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗ ਵੀ ਐਂਟਮੈਂਟ ਦੇ ਨਾਲ-ਨਾਲ ਪਲੇਟ ਉੱਤੇ ਅੱਗੇ ਵਧਦੇ ਹਨ, ਪਰੰਤੂ ਸਤ੍ਹਾ ਸੋਖਣ ਦੀ ਤੀਬਰਤਾ ਦੇ ਅਧਾਰ ਤੇ ਉੱਤੇ ਜਾਣ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਗਤੀ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਾਰਣ ਉਹ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ। ਭਿੰਨ ਭਿੰਨ ਯੋਗਿਕਾਂ ਦੇ ਸਾਪੇਖ ਸਤ੍ਹਾ ਸੋਖਣ ਨੂੰ ਮੰਦਨ ਗੁਣਕ (Retardation Factor) ਅਰਥਾਤ Rf ਅਨਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ 12.12m।

R_f = ਅਧਾਰ ਰੇਖਾ ਤੋਂ ਯੋਗਿਕ ਦੇ ਵਧਣ ਦੀ ਦੂਰੀ (x) ਅਧਾਰ ਰੇਖਾ ਤੋਂ ਘੋਲਕ ਅੱਗੇ ਜਾਣ ਦੀ ਦੂਰੀ (y)

ਰੰਗਦਾਰ ਯੋਗਿਕਾਂ ਦੇ ਬਿੰਦੂਆਂ ਨੂੰ ਪਲੇਟ ਉੱਤੇ ਬਿਨਾ ਕਿਸੇ ਮੁਸ਼ਕਿਲ ਦੇ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪਰੰਤੂ ਰੰਗਹੀਣ ਅਤੇ ਪਰਾਬੈਗਣੀ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਪ੍ਰਤੀ ਦੀਪਤ (Fluoresce) ਹੋਣ ਵਾਲੇ ਯੋਗਿਕਾਂ ਦੇ ਬਿੰਦੂਆਂ ਨੂੰ ਪਲੇਟ ਉੱਤੇ ਪਰਾਬੈਂਗਨੀ ਪ੍ਰਕਾਸ਼ ਹੇਠਾ ਰੱਖ ਕੇ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਹੋਰ ਤਕਨੀਕ ਵਿੱਚ ਜਾਰ ਵਿੱਚ ਕੁਝ ਆਇਓਡੀਨ ਦੇ ਕ੍ਰਿਸਟਲ ਰੱਖਕੇ ਵੀ ਰੰਗਹੀਨ ਬਿੰਦੂਆਂ ਨੂੰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜੋ ਯੋਗਿਕ ਆਇਓਡੀਨ ਸੋਖਿਤ ਕਰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਦੇ ਬਿੰਦੂ ਭੂਰੇ ਵਿਖਾਈ ਦੇਣ ਲੱਗਦੇ ਹਨ। ਕਦੇ-ਕਦੇ ਸਹੀ ਅਭਿਕਰਮਕ ਦੇ ਘੋਲ ਨੂੰ ਪਲੇਟ ਉੱਤੇ ਛਿੜਕ ਕੇ ਵੀ ਬਿੰਦੂਆਂ ਨੂੰ ਵੇਖਿਆ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ-ਐਮੀਨੋ ਤੇਜਾਬਾਂ ਦੇ ਬਿੰਦੂਆਂ ਨੂੰ ਪਲੇਟ ਉੱਤੇ ਨਿਨਹਾਈਡ੍ਰਿਨ ਘੋਲ ਛਿੜਕ ਦੇ ਵੇਖਦੇ ਹਨ।

ਵਿਤਰਣ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ : ਵਿਤਰਣ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਸਥਿਰ ਅਤੇ ਗਤੀਸ਼ੀਲ ਫੇਜਾਂ ਦੇ ਵਿੱਚ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗ ਦੇ ਲਗਾਤਾਰ ਵਿਭੇਦੀ ਵਿਤਰਣ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਕਾਗਜ ਵਰਣ ਲੇਖਣ (Paper) Chromatography ਇਸ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਹੈ। ਇਸ ਵਿੱਚ ਇੱਕ ਵਿਸ਼ਿਸਟ ਪ੍ਰਕਾਰ ਦੇ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਕਾਗਜ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਕਾਗਜ ਦੇ ਛੇਕਾਂ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂ ਫਸੇ ਰਹਿੰਦੇ ਹਨ, ਜੋ ਸਥਿਰ ਫੇਜ ਦਾ ਕਾਰਜ ਕਰਦੇ ਹਨ।

ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਕਾਗਜ ਦੀ ਇੱਕ ਪੱਟੀ (Strip) ਦੇ ਅਧਾਰ ਉੱਤੇ ਮਿਸ਼ਰਣ ਦਾ ਬਿੰਦੂ ਲਾਕੇ ਉਸ ਨੂੰ ਜਾਰ ਵਿੱਚ ਲਟਕਾ ਦਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 12.13)। ਜਾਰ ਵਿੱਚ ਕੁੱਝ ਉਚਾਈ ਤਕ ਢੁਕਵਾ ਘੋਲਕ ਜਾਂ ਘੋਲਕਾਂ ਦਾ ਮਿਸਰਣ ਭਰਿਆ ਹੁੰਦਾ ਹੈ, ਜੋ ਗਤੀਸ਼ੀਲ ਫੇਜ ਦਾ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਕੇਸ਼ਿਕਾ ਕਿਰਿਆ ਦੇ ਕਾਰਣ ਪੇਪਰ ਦੀ ਪੱਟੀ ਉੱਤੇ ਘੋਲਕ ਉੱਪਰ ਚੜ੍ਹਦਾ ਹੈ ਅਤੇ ਬਿੰਦੂ ਉੱਤੇ ਵਹਿੰਦਾ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਯੋਗਿਕਾਂ ਦਾ ਦੋ ਫੇਜਾਂ ਵਿੱਚ ਵਿਤਰਣ ਭਿੰਨ ਭਿੰਨ ਹੋਣ ਦੇ ਕਾਰਣ ਉਹ ਵੱਖ-ਵੱਖ ਦੂਰੀਆਂ ਤੱਕ ਅੱਗੇ ਵਧਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਵਿਕਸਿਤ ਪੱਟੀ ਨੂੰ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਮ (Chromatogram) ਕਹਿੰਦੇ ਹਨ। ਪਤਲੀ ਪਰਤ ਦੇ ਵਾਂਗ ਪੇਪਰ ਦੀ ਪੱਟੀ ਉੱਤੇ ਭਿੰਨ-ਭਿੰਨ ਬਿੰਦੂਆਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਨੂੰ ਜਾਂ ਤਾ ਪਰਾਬੈਗਣੀ ਪ੍ਰਕਾਸ਼ ਦੇ ਹੇਠਾਂ ਰੱਖ ਕੇ ਜਾਂ ਢੁਕਵੇਂ ਅਭਿਕਰਮਕ ਦੇ ਘੋਲ ਨੂੰ ਛਿੜਕ ਕੇ ਅਸੀਂ ਵੇਖ ਲੈਂਦੇ ਹਾਂ।

Downloaded from https:// www.studiestoday.com

353

354

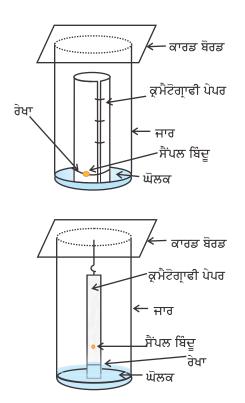


Fig.12.13 ਕਾਗਜ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ : ਦੋ ਭਿੰਨ-ਭਿੰਨ ਅਕ੍ਰਿਤੀਆਂ ਦਾ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਪੇਪਰ।

12.9 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਗੁਣਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ

ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤੋਂ ਬਿਨਾਂ ਇਨ੍ਹਾਂ ਵਿੱਚ ਆੱਕਸੀਜਨ, ਨਾਈਟ੍ਰੋਜਨ, ਸਲਫਰ, ਹੈਲੋਜਨ ਅਤੇ ਫਾੱਸਫੋਰਸ ਵੀ ਮੌਜੂਦ ਹੋ ਸਕਦੇ ਹਨ।

12.9.1 ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪਛਾਣ

ਇਸ ਦੇ ਲਈ ਯੋਗਿਕ ਨੂੰ ਕਾੱਪਰ (II) ਆੱਕਸਾਈਡ ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਕ੍ਰਮਵਾਰ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ (ਜੋ ਚੂਨੇ ਦੇ ਪਾਣੀ ਨੂੰ ਦੁਧੀਆਂ ਕਰ ਦਿੰਦੀ ਹੈ। ਅਤੇ ਪਾਣੀ (ਜੋ ਨਿਰਜਲ ਕਾੱਪਰ ਸਲਫੇਟ ਨੂੰ ਨੀਲਾ ਕਰ ਦਿੰਦਾ ਹੈ। ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

 $\begin{array}{ll} \mathrm{C} + 2\mathrm{CuO} & \stackrel{\Delta}{\longrightarrow} & 2\mathrm{Cu} + \mathrm{CO}_{2} \\ 2\mathrm{H} + \mathrm{CuO} & \stackrel{\Delta}{\longrightarrow} & \mathrm{Cu} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CO}_{2} + \mathrm{Ca(OH)}_{2} & \longrightarrow & \mathrm{CaCO}_{3} \downarrow + \mathrm{H}_{2}\mathrm{O} \end{array}$

$$5H_2O + CuSO_4 \longrightarrow CuSO_4.5H_2O$$

ਸਫ਼ੇਦ ਨੀਲਾ

12.9.2 ਹੋਰ ਤੱਤਾਂ ਦੀ ਪਛਾਣ

ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ ਸਲਫਰ ਹੈਲੋਜਨ ਅਤੇ ਫਾੱਸਫੋਰਸ ਦੀ ਪਛਾਣ ਲੈਸੇਗਨੀਜ਼–ਟੈਸਟ "Lassaigne's test" ਦੁਆਰਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਯੋਗਿਕ ਨੂੰ ਸੋਡੀਅਮ ਧਾਤ ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਤੱਤ ਸਹਿਸੰਯੋਜੀ ਰੂਪ ਤੋਂ ਆਇਨਿਕ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।ਇਨ੍ਹਾਂ ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਂਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।

$$\begin{array}{c} \operatorname{Na} + \operatorname{C} + \operatorname{N} & \stackrel{\Delta}{\longrightarrow} \operatorname{Na}\operatorname{CN} \\ \operatorname{2Na} + \operatorname{S} & \stackrel{\Delta}{\longrightarrow} \operatorname{Na}_2\operatorname{S} \\ \operatorname{Na} + \operatorname{X} & \stackrel{\Delta}{\longrightarrow} \operatorname{Na}\operatorname{X} \\ (\operatorname{X} = \operatorname{Cl}, \operatorname{Br} \operatorname{or} \operatorname{I}) \end{array}$$

C, N, S ਅਤੇ X ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤ ਹਨ।ਸੋਡੀਅਸ ਨਾਲ ਗਾਲਨ ਤੋਂ ਪ੍ਰਾਪਤ ਨਿਸ਼ਕਰਸ਼ (Extract) ਨੂੰ ਕਸ਼ੀਦਤ ਪਾਣੀ ਦੇ ਨਾਲ ਉਬਾਲਣ ਤੇ ਸੋਡੀਅਮ ਸਾਇਨਾਈਡ ਸਲਫਾਈਡ ਅਤੇ ਹੇਲਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਜਾਂਦੇ ਹਨ। ਇਸ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਸੋਡੀਅਮਗਲਨ ਨਿਸ਼ਕਰਸ਼ Sodium Fusion Extract) ਕਹਿੰਦੇ ਹਨ।

(ੳ) ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਟੈਸਟ

ਸੋਡੀਅਮ ਗਲਨ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਅਇਰਨ (II) ਸਲਫੇਟ ਦੇ ਨਾਲ ਉਬਾਲ ਕੇ ਘੋਲ ਨੂੰ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਨਾਲ ਤੇਜਾਬੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਪਰੱਸ਼ਿਅਨ ਬਲੂ (Prussian Blue) ਰੰਗ ਦਾ ਬਣਨਾ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਮੌਜੂਦਗੀ ਨਿਸ਼ਚਿਤ ਕਰਦਾ ਹੈ। ਸੋਡੀਅਮ ਸਾਇਆਨਾ ਈਡ ਅਇਰਨ (II) ਸਲਫੇਟ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਸੋਡੀਅਮ ਹੈਕਸਾਸਾਇਨੋਫੈਰਟ (II) ਬਣਾਉਂਦਾ ਹੈ। ਗਾੜੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਨਾਮ ਗਰਮ ਕਰਨ ਤੇ ਕੁਝ ਆਇਰਨ (II) ਆਇਰਨ ਵਿੱਚ ਅੱਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਸੋਡੀਅਮ ਹੈਕਸਾ ਸਾਇਨੋਫੈਰੇਟ (II) ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਅਇਰਨ (III) ਹੈਕਸਾਸਾਇਨੋਫੈਰੇਟ (II) ਫੈਰੀਫੈਰੋਸਾਇਨਾ ਈਡਾਬਣਾਉਂਦਾ ਹੈ, ਜਿਸ ਦਾ ਰੰਗ ਪੱਰਸ਼ਿਅਨ ਬਲੂ ਹੁੰਦਾ ਹੈ।

$$6\text{CN}^- + \text{Fe}^{2+} \longrightarrow [\text{Fe}(\text{CN})_6]^{4-}$$

 $3[\text{Fe}(\text{CN})_6]^{4-} + 4\text{Fe}^{3+} \xrightarrow{\text{xH}_2\text{O}} \text{Fe}_4[\text{Fe}(\text{CN})_6]_3.\text{xH}_2\text{O}$ ਪਰੱਸ਼ਿਅਨ ਬਲੂ

(ਅ) ਸਲਫਰ ਦਾ ਟੈਸਟ

 $S^{2-} + Pb^{2+} \longrightarrow PbS$ ਕਾਲਾ

355

(b) ਸੋਡੀਅਮ ਸੰਗਲਨ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਸੋਡੀਅਮ ਨਾਈਟ੍ਰੋਪਰੂਸਾਈਡ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਨ ਦੇ ਨਾਲ ਬੈਂਗਣੀ ਰੰਗ ਦਾ ਬਣਨਾ ਵੀ ਸਲਫਰ ਦੀ ਮੌਜੂਦਗੀ ਦਰਸਾਉਂਦਾ ਹੈ।

ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੋਵੇਂ ਹੀ ਜਦ ਮੌਜੂਦ ਹੋਣ, ਤਾਂ ਸੋਡੀ-ਥਆਇਓਸਾਇਨੇਟ ਬਣਦਾ ਹੈ, ਜੋ ਅਇਰਨ (II) ਸਲਫੇਟ ਨਾਲ ਗਰਮ ਕਰਨ ਨਾਲ ਖੂਨ ਵਾਂਗ ਲਾਲ ਰੰਗ ਬਣਦਾ ਹੈ। ਮੁਕਤ ਸਾਇਆਨਾਈਡ ਦੀ ਅਣਹੋਂਦ ਦੇ ਕਾਰਣ ਪਰੱਸ਼ਿਅਨ ਬਲੂ ਰੰਗ ਨਹੀ ਬਣਦਾ ਹੈ।

Na + C + N + S
$$\longrightarrow$$
 NaSCNS
Fe³⁺ +SCN⁻ \longrightarrow [Fe(SCN)]²⁺
ਖਨ ਵਾਂਗ ਲਾਲ

ਜੇ ਸੋਡੀਅਮ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਨੂੰ ਸੋਡੀਅਮ ਸੰਗਲਨ ਵਿੱਚ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਸਾਇਆਨਾਈਡ ਅਤੇ ਸਲਫਾਈਡ ਅਇਨਾ ਵਿੱਚ ਥਾਇਓਸਾਇਨੇਟ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਆਇਨ ਆਪਣੇ ਅਮ ਟੈਸਟ ਦਿੰਦੇ ਹਨ।

 $NaSCN + 2Na \longrightarrow NaCN + Na_2S$

(ੲ) ਹੈਲੋਜਨਾਂ ਦਾ ਟੈਸਟ

ਸੋਡੀਅਮ ਸੰਗਲਨ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਨਾਲ ਤੇਜਾਬੀ ਕਰਕੇ ਉਸ ਵਿੱਚ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਤਾਂ ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਸਫੇਦ ਅਵਖੇਪ ਕਲੋਰੀਨ ਦੀ ਮੌਜੂਦਗੀ ਨੂੰ ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਵਿੱਚ ਅਲਪ–ਘੁਲਣਸ਼ੀਲ ਹਲਕੇ ਪੀਲੇ ਅਵਖੇਪ ਬ੍ਰੋਮੀਨੀਨੂੰ ਅਤੇ ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਈਡ ਵਿੱਚ ਅਘੁੱਲ ਪੀਲੇ ਅਵਖੇਪ ਅਇਓਡੀਨ ਦੀ ਮੌਜੂਦਗੀ ਦਰਸਾਉਂਦਾ ਹੈ।

 $X^- + Ag^+ \longrightarrow AgX (X = Cl, Br, I)$

ਯੋਗਿਕ ਵਿਚ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੀ ਮੌਜੂਦਗੀ ਹੋਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਉਪਰੋਕਤ ਟੈਸਟ ਤੋਂ ਪਹਿਲਾਂ ਸੋਡੀਅਮ ਸੰਗਲਨ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਨਾਲ ਉਬਾਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਕਿ ਸਾਇਆ ਨਾਈਡ ਅਤੇ ਸਲਫਾਈਡ ਵਿਘਟਤ ਹੋ ਜਾਣ, ਨਹੀ ਤਾ ਇਹ ਆਇਨ ਹੈਲੋਜਨਾ ਦੇ ਸਿਲਵਰ ਨਾਈਟ੍ਰੈਟ ਟੈਸਟ ਵਿੱਚ ਰੁਕਾਵਟ ਪੈਦਾ ਕਰਦੇ ਹਨ।

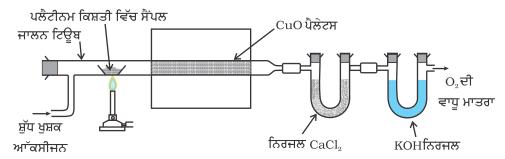
(ਸ) ਫਾੱਸਫੋਰਸ ਦਾ ਟੈਸਟ

ਆੱਕਸੀਕਾਰਕ (ਸੋਡੀੱਮ ਪਰਆੱਕਸਾਈਡ) ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਯੋਗਿਕ ਵਿਚਲੀ ਫਾੱਸਫੋਰਸ, ਫਾੱਸਫੇਟ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।ਘੋਲ ਨੂੰ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਨਾਲ ਉਬਾਲ ਕੇ ਅਮੋਨੀਅਮ ਮੋਲੀਬਡ੍ਰੇਟ ਮਿਲਾਉਣ ਨਾਲ ਪੀਲਾ ਰੰਗ ਜਾਂ ਅਵਖੇਪ ਬਣਦੇ ਹਨ, ਜੋ ਫਾੱਸਫੋਰਸ ਦੀ ਮੌਜੂਦਗੀ ਨੂੰ ਨਿਸ਼ਚਿਤ ਕਰਦਾ ਹੈ।

 $Na_3PO_4 + 3HNO_3 \longrightarrow H_3PO_4 + 3NaNO_3$ $H_3PO_4 + 12(NH_4)_2MoO_4 + 2HNO_3 \longrightarrow$ พาักโพห มีซโยฮิट

(NH₄)₃PO₄.12MoO₃ + 21NH₄NO₃ + 12H₂O ਅਮੋਨੀਅਮ ਫਾੱਸਫੋਮੋਲੀਬਡੇਟ

12.10 ਮਾਤਰਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ


ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਮੋਜੂਦ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪ੍ਰਤੀਸ਼ਤ-ਸੰਯੋਜਨ ਦਾ ਨਿਰਧਾਰਣ ਹੇਠ ਲਿਖੇ ਸਿਧਾਂਤਾ ਉੱਤੇ ਅਧਾਰਿਤ ਵਿਧੀਆਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

12.10.1 ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜ਼ਨ

ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ-ਦੋਵੇ ਤੱਤਾਂ ਦਾ ਅੰਕਲਨ ਇੱਕ ਹੀ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਗਿਆਤ ਮਾਤਰਾ ਨੂੰ ਕਾੱਪਰ (2) ਅੱਕਸਾਈਡ ਅਤੇ ਆੱਕਸੀਜਨ (ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਜਲਾਉਣ ਨਾਲ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਕ੍ਰਮਵਾਰ CO₂ ਅਤੇ H₂O ਵਿੱਚ ਅੱਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

 $C_xH_v + (x + y/4) O_2 \longrightarrow x CO_2 + (y/2) H_2O$

ਪੈਦਾ ਹੋਏ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰਨ ਦੇ ਲਈ ਮਿਸ਼ਰਣ ਨੂੰ ਨਿਰਜਲ ਕੈਲ-ਕਲੋਰਾਈਡ ਯੁਕਤ U ਟਿਊਬ ਵਿੱਚੋ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਲੜੀ ਵਿੱਚ ਜੁੜੀ ਦੂਜੀ U ਟਿਊਬ ਵਿੱਚ ਗਾੜ੍ਹਾ ਪੋਟਾਸ਼ਿਆਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਘੋਲ ਲੈਂਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਅੱਕਸਾਈਡ ਸੋਖਿਤ ਹੁੰਦੀ ਹੈ (ਚਿੱਤਰ 12.14) ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਪੋਟਾਸ਼ਿਸਰੂਪ ਬਣਿਆ ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਅੱਕਸਾਈਡ U ਟਿਊਬਾਂ ਵਿੱਚ ਲਏ ਗਏ ਨਿਰਜਲ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡੋਕਸਾਈਡ ਘੋਲਾਂ ਵਿੱਚ ਸੋਖੇ ਜਾਂਦੇ ਹਨ।

ਚਿੱਤਰ 12.14 ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਅਕਲਨ ਪਦਾਰਥ ਦੇ ਆੱਕਸੀਕਰਣ ਦੇ ਫਲਸਰੂਪ ਬਣਿਆ ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ U ਟਿਊਬਾਂ ਵਿੱਚ ਲਏ ਗਏ ਨਿਰਜਲ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਘੋਲਾਂ ਵਿੱਚ ਸੋਖੇ ਜਾਂਦੇ ਹਨ।

356

ਆਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਘੋਲਾਂ ਦੇ ਪੁੰਜਾ ਵਿੱਚ ਵਾਧੇ ਤੋਂ ਕ੍ਰਮਵਾਰ ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਅੱਕਸਾਈਡ ਦੀਆਂ ਮਾਤਰਾਵਾਂ ਗਿਆਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।ਇਨ੍ਹਾਂ ਤੋਂ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤ ਮਾਤਰਾ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਜੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ m ਗ੍ਰਾਮ ਅਤੇ ਬਣਨ ਵਾਲੇ ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਪੁੰਜ ਕ੍ਰਮਵਾਰ m₁ ਅਤੇ m₂ ਗ੍ਰਾਮ ਹੋਣ ਤਾਂ

ਕਾਰਬਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤ =
$$\frac{12 \times m_2 \times 100}{44 \times m}$$

ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤ = $\frac{2 \times m_1 \times 100}{18 \times m}$

ਉਦਾਹਰਣ 12.20

0.246 g ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੇ ਪੂਰਣ ਜਲਨ ਦੇ ਫਲਸਰੂਪ 0.1014g ਪਾਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਯੋਗਿਕ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀਆਂ ਪ੍ਰਤੀਸ਼ਤਾਵਾਂ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਕਾਰਬਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤ ਮਾਤਰਾ = $\frac{12 \times 0.198 \times 100}{44 \times 0.246}$ =21.95%

ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪ੍ਤੀਸ਼ਤ ਮਾਤਰਾ = $\frac{2 \times 0.1014 \times 100}{18 \times 0.246}$

= 4.58%

12.10.2 ਨਾਈਟ੍ਰੋਜਨ

ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਅੰਕਲਨ ਦੀਆਂ ਦੋ ਵਿਧੀਆਂ ਹਨ।: (i) ਡਿਊਮਾ ਵਿਧੀ Duma method ਅਤੇ (ii) ਜੈਲਡਾਹਲ ਵਿਧੀ Kjeldahl's method.

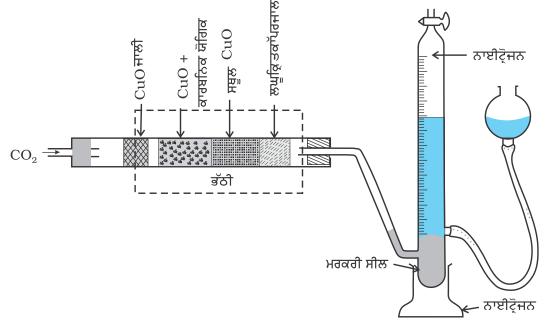
(i) ਡਿਊਮਾ ਵਿਧੀ: ਨਾਈਂਟ੍ਰੋਜਨ ਯੁਕਤ ਕਾਰਬਨਿਕ ਯੱਗਿਕ ਨੂੰ ਕਾਰਬਨ ਡਾਈਆਂਕਸਾਈਡ ਦੇ ਵਾਤਾਵਰਣ ਵਿੱਚ ਕਾੱਪਰ ਆਂਕਸਾਈਡ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਨਾਈਟ੍ਰੋਜਨ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਕ੍ਰਮਵਾਰ ਕਾਰਬਨ ਡਾਈ– ਆੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਪਰਿਵਰਤਿਨ ਹੋ ਜਾਂਦੇ ਹਨ। C_xH_yN_x + (2x + y/2) CuO —→

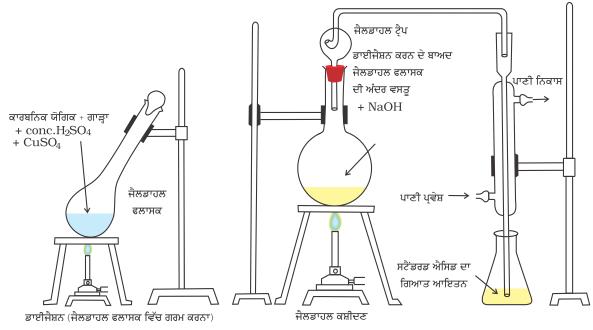
 $x CO_2 + y/2 H_2O + z/2 N_2 + (2x + y/2) Cu$

ਅਲਪ ਮਾਤਰਾ ਵਿੱਚ ਬਣੇ ਨਾਈਟ੍ਰੋਜਨ ਆੱਕਸਾਈਡਾ ਨੂੰ ਗਰਮ ਕਾੱਪਰ ਤਾਰ ਉਤੋ ਲੰਘਾ ਕੇ ਨਾਈਟ੍ਰੋਜਨ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਪ੍ਰਕਾਰ ਪ੍ਰਾਪਤ ਗੈਸੀ ਮਿਸ਼ਰਣ ਨੂੰ ਪੋਟਾਸ਼ਿਆਮ ਹਾਈਡ੍ਰੋ ਕਸਾਈਡ ਦੇ ਜਲੀ ਘੋਲ ਉੱਤੇ ਇੱਕਠਾ ਕਰਲਿਆ ਜਾਂਦਾ ਹੈ। ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪ੍ਰੋਟਾਸ਼ਿਅਮਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੁਆਰਾ ਸੋਖਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਅੰਸ਼ ਅੰਕਿਤ ਟਿਊਬ (Graduated tube) ਦੇ ਉਪਰਲੇ ਭਾਗ ਵਿੱਚ ਇੱਕਠੀ ਹੋ ਜਾਂਦੀ ਹੈ। (ਚਿੱਤਰ 12.15)।

ਮੰਨ ਲਓ ਕਿ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ $\,=\,m~{
m g}$




Fig.12.15 ਡਿਊਮਾ ਵਿਧੀ। ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਨੂੰ CO₂ ਗੈਸ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ copper(II) ਅੱਕਸਾਈਡ ਨਾਲ ਗਰਮਕਰਨ ਤੇ ਨਾਈਟ੍ਰੋਜਨ ਗੈਸ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੇ ਘੋਲ ਵਿਚੋ ਲੰਘ ਵਿਚੋ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ CO₂ ਸੋਖੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਆਇਤਮ ਆਪ ਲਿਆ ਜਾਂਦਾ ਹੈ।

357

ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਆਇਤਨ = $V_1 \,\mathrm{mL}$ ਨਾਈਡਟ੍ਰੋਜਨ ਦੇ ਪ੍ਰਤੀਸ਼ਤ ਦੀ ਗਣਨਾ ਕਰੋ (300K 314 ਕਮਰੇ ਦਾ ਤਾਪਮਾਨ = T₁K ਉੱਤੇ ਵਾਸ਼ਪ ਦਾਬ = 15 mm)? ਹੱਲ ਸਟੈਂ ਡਰਡ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਆਇਤਨ 300K ਤਾਪਮਾਨ ਅਤੇ 715mm ਦਾਬ ਉੱਤੇ ਇੱਕਠੀ $=\frac{p_1V_1 \times 273}{760 \times T_1}$ ਕੀਤੀ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਆਇਤਨ 50 mL ਅਸਲੀ ਦਾਬ = 715-15 = 700 mm (Let it be V mL) STP ਉੱਤੇ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਆਇਤਨ = $\frac{273 \times 700 \times 50}{273}$ p_1 ਅਤੇ V_1 ਕ੍ਰਮਵਾਰ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਦਾਬ ਅਤੇ ਆਇਤਨ ਹਨ। p_1 ਦਾਬ, ਜਿਸ ਉੱਤੇ ਨਾਈਟ੍ਰੋਜਨ ਇੱਕਠੀ ਕੀਤੀ ਗਈ ਹੈ, 300×760 ਵਾਯੂਮੰਡ ਨੀ ਦਾਬ ਤੋਂ ਭਿੰਨ ਹੈ ? p_1^{-} ਦਾ ਮਾਨ ਇਸ ਸਬੰਧ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। =41.9 mL 22,400mL ਨਾਈਟ੍ਰੋਜਨ ਦਾ STP ਉੱਤੇ ਪੁੰਜ=28g p₁= ਵਾਯੁਮੰਡਲੀ ਦਾਬ −ਵਾਸ਼ਪਦਾਬ ਇਸ ਲਈ 41.9 mL ਨਾਈਟ੍ਰੋਜਨ ਦਾ STP ਉੱਤੇ ਪੂੰਜ STP ਉੱਤੇ 22400 mL N_2 ਦਾ ਪੁੰਜ 28g ਹੈ। $=\frac{28\times41.9}{22400}$ g STP ਉੱਤੇ V mL N₂ ਦਾ ਪੁੰਜ = $\frac{28 \times V}{22400}$ g ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ = $\frac{28 \times 41.9 \times 100}{28 \times 100}$ 22400×0.3 ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ = $\frac{28 \times V \times 100}{22400 \times m}$ =17.46% ਉਦਾਹਰਣ 12.21 (ii) ਜੈਲਡਾਹਲ ਵਿਧੀ : ਇਸ ਵਿਧੀ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਯੁਕਤ

(ii) ਜੋਲਡਾਹਲ ਵਿਧੀ : ਇਸ ਵਿਧੀ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਯੁਕਤ ਯੋਗਿਕ ਨੂੰ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਫਲਸਰੂਪ ਯੋਗਿਕ ਦੀ ਨਾਈਟ੍ਰੋਜਨ, ਅਮੋਨੀਅਮ ਸਲਫੇਟ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਤਾਂ ਪ੍ਰਾਪਤ ਤਜਾਬੀ ਮਿਸ਼ਰਣ

ਨਾਈਟ੍ਰੋਜਨ ਅਨੁਮਾਪਨ ਡਿਊਮਾ ਵਿਧੀ ਵਿੱਚ 0.3 g ਕਾਰਬਨਿਕ ਯੋਗਿਕ 300K ਤਾਪਮਾਨ ਅਤੇ 715 mm ਦਾਬ ਉੱਤੇ 50 K ਨਾਈਡ੍ਰੋਜਨ ਦਿੰਦਾ ਹੈ। ਯੋਗਿਕ ਵਿੱਚ

ਚਿੱਤਰ 12.16 ਜੈਲਡਾਹਲ ਵਿਧੀ। ਨਾਈਟ੍ਰੋਜਨ ਯੁਕਤ ਯੋਗਿਕ ਨੂੰ ਗਾੜ੍ਹੇ H₂SO₄ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਅਮੋਨੀਅਮ ਸਲਫੇਟ ਬਣਦਾ ਹੈ, ਜੋ NaOH ਦੁਆਰਾ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨ ਤੇ NH₃ ਮੁਕਤ ਕਰਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਟੈਂਡਰਡ ਤੇਜਾਬ ਦੇ ਗਿਆਤ ਆਇਤਨ ਵਿੱਚ ਸੋਖਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

358

ਨੂੰ ਸੋਡੀਅਮ ਹਾਈਡੋ਼ਕਸਾਈਡ ਦੀ ਵਧੇਰੀ ਮਾਤਰਾ ਦੇ ਅਲ ਗਰਮ ਕਰਨ ਨਾਲ ਅਮੋਨੀਆ ਮੁਕਤ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਸਟੈਂਡਰਡ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਗਿਆਤ ਆਇਤਨ ਵਿੱਚ ਸੋਖਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਉਸ ਉਪਰੰਤ ਬਚੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਨੂੰ ਖਾਰ ਦੇ ਸਟੈਂਡਰਡ ਘੋਲ ਦੁਆਰਾ ਅਨੁਮਾਪਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਤੇਜਾਬ ਦੀ ਸ਼ੁਰੂ ਦੀ ਮਾਤਰਾ ਅਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਬਾਅਦ ਬਾਕੀ ਮਾਤਰਾ ਵਿੱਚ ਅੰਤਰ ਤੋਂ ਅਮੋਨੀਆ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕੀਤੇ ਤੇਜਾਬ ਦੀ ਮਾਤਰਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

ਕਾਰਬਨਿਕ ਯੋਗਿਕ + $H_2SO_4 \longrightarrow (NH_4)_2SO_4$ $\xrightarrow{2\text{NaOH}} \text{Na}_2\text{SO}_4 + 2\text{NH}_3 + 2\text{H}_2\text{O}$

 $2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$

ਮੰਨ ਲਓ ਕਿ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ = m g M ਮੋਲਰਤਾ ਵਾਲੇ H_2SO_4 ਦਾ ਲਿਆ ਗਿਆ ਆਇਤਨ = V mL

ਬਚੇ H₂SO₄ ਦੇ ਅਨੁਮਾਪਨ ਲਈ ਵਰਤੇ M ਮੋਲਰਤਾ ਦੇ NaOH ਦਾ ਆਇਤਨ = V_1 mL

M ਮੋਲਰਤਾ ਦਾ V₁mL ਸੋਡੀਅਮ ਹਾਈਡ੍ਰਾਕਸਾਈਡ

= M ਮੋਲਰਤਾ ਦਾ V_1 /2 mL H₂SO₄

M ਮੋਲਰਤਾ ਦਾ (V- $V_1/2$) mL H₂SO₄ = 2(V - $V_1/2$) NH₃ ਘੋਲ

 1 M NH_3 ਘੋਲ ਦੇ 1000 mL ਵਿੱਚ ਮੌਜੂਦ NH_3 =17g ਜਾਂ 14 g ਨਾਈਟ੍ਰੋਜਨ

1MN NH₃ ਘੋਲ ਦਾ 2(V-V₁/2) mL

$$= \frac{14 \times M \times 2(V - V_1 / 2)}{1000} g \text{ ਨਾਈਟ੍ਰੋਜਨ}$$

ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ

$$= \frac{\frac{14 \times M \times 2(V - V_1 / 2)}{1000} \times \frac{100}{m}}{\frac{1.4 \times M \times 2(V - V_1 / 2)}{m}}$$

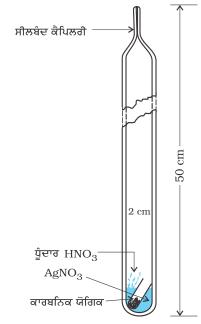
ਨਾਈਟ੍ਰੋਜਨ ਯੁਕਤ ਨਾਈਟ੍ਰੋ ਅਤੇ ਐਜੋ ਗਰੂਪ ਅਤੇ ਰਿੰਗ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ (ਉਦਾਹਰਣ ਵਜੋ-ਪਿਰੀਡੀਨ) ਵਿੱਚ ਜੈਲਡਾਰਲ ਵਿਧੀ ਲਾਗੂ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਇਨ੍ਹਾ ਹਲਾਤਾਂ ਵਿੱਚ ਇਹ ਯੋਗਿਕ ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਅਮੋਨੀਅਮ ਸਲਫੇਲ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਕਰ ਸਕਦੇ ਹਨ।

ਹੱਲ 12.22

ਨਾਈਟ੍ਰੋਜਨ ਅਕੰਲਨ ਦੀ ਜੈਲਡਾਰਹਲ ਵਿਧੀ ਵਿੱਚ 0.5g ਯੋਗਿਕ ਵਿੱਚ ਮੁਕਤ ਅਮੋਨੀਆ $10ML \mid MH_{2}SO_{4}$ ਨੂੰ ਉਦਾਸੀਨ ਕਰਦੀ ਹੈ। ਯੋਗਿਕ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

 $1 \text{ M of } 10 \text{ mL H}_2\text{SO}_4=1 \text{ M of } 20 \text{ mL NH}_3$


1000 mL of 1MNH₃ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ =14

ਇਸ ਤਰ੍ਹਾਂ 20ML IM NH₃ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ $\frac{14 \times 20}{1000}$ g

ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ= $\frac{14 \times 20 \times 100}{1000 \times 0.5}$ = 56.0%

12.10.3 ਹੈਲੋਜਨ

ਕੇਰਿਅਸ ਵਿਧੀ : ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਨੂੰ ਕੇਰਿਅਸ ਟਿਊਬ (ਸਖਤ ਕੱਚ ਦੀ ਟਿਊਬ। ਵਿੱਚ ਲੈ ਕੇ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਧੁੰਦਾਰਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਦੇ ਨਾਲ ਭੱਠੀ ਵਿੱਚ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। (ਚਿੱਤਰ 12.17) ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਇਨ੍ਹਾਂ ਹਲਾਤਾ ਵਿੱਚ ਕਰਮਵਾਰ ਕਾਰਬਨ ਡਾਈਅੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਵਿੱਚ

ਚਿੱਤਰ 12.17 ਕੇਰਿਅਸ ਵਿਧੀ। ਹੈਲੋਜਨ ਯੁਕਤ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਨੂੰ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਧੁੰਦਾਰ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਆਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ ਜਦ ਕਿ ਹੈਲੋਜਨ ਸੰਗਤ ਸਿਲਵਰ ਹੇਲਾਈਡ (Agx) ਵਿੱਚ ਪਰਿਵਰਤਿਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਵਖੇਪ ਨੂੰ ਫਿਲਟਰ ਕਰਕੇ ਅਤੇ ਸੁਖਾਉਣ ਬਾਅਦ ਤੋਲ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਯੋਗਿਕ ਦਾ ਪੁੰਜ = m g ਪ੍ਰਾਪਤ AgX ਦਾ ਪੁੰਜ = m₁ g

- 1 ਮੋਲ 1 AgX ਵਿੱਚ 1 ਮੋਲ×ਦੀ ਮਾਤਰਾ ਉਪਲਬਧ ਹੈ
- m₁g AgX ਵਿੱਚ ਹੈਲੋਜਨ ਦਾ ਪੁੰਜ

ਹੈਲੋਜਨ ਦਾ ਪ੍ਰਤੀਸ਼ਤ

=

 $= rac{X \text{ ਦਾ ਪਰਮਾਣਵੀਂ ਪੁੰਜ } imes m_1 imes 100}{ ext{AgX} imes m \text{ ਦਾ ਅਣਵੀਂ ਪੁੰਜ}}$

ਉਦਾਹਰਣ 12.23

ਹੈਲੋਜਨ ਦੇ ਅੰਕਲਨ ਦੀ ਕੇਰਿਅਸ ਵਿਧੀ ਵਿੱਚ 0.15 g ਕਾਰਬਨਿਕ ਯੋਗਿਕ 0.12 g AgBr ਦਿੰਦਾ ਹੈ। ਯੋਗਿਕ ਵਿੱਚ ਬ੍ਰੋਮੀਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤ ਗਿਆਤ ਕਰੋ। ਹੱਲ

AgBr ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 108 + 80 = 188 g mol⁻¹

188 g AgBr ਵਿੱਚ ਮੌਜੂਦ ਬ੍ਰੋਮੀਨ 80 g

0.12 g AgBr ਵਿੱਚ ਮੌਜੂ ਬ੍ਰੋਮੀਨ
$$\frac{80 \times 0.12}{188}$$
 g

ਬ੍ਰੋਮੀਨ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = $rac{80 imes 0.12 imes 100}{188 imes 0.15}$ =34.04%

12.10.4 ਸਲਫਰ

ਕੇਰਿਅਸ ਟਿਊਬ ਵਿੱਚ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਗਿਆਤ ਮਾਤਰਾ ਨੂੰ ਧੂੰਕਾਰ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਜਾਂ ਸੋਡੀਅਮ ਪਰ ਆਕਸਾਈਡ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਸਲਫਰ, ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਵਿੱਚ ਆਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਜਲੀ ਘੋਲਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਮਿਲਾਕੇ ਅਸੀਂ ਬੇਰੀਅਮ ਸਲਫੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਖੇਪਿਤ ਕਰ ਲੈਂਦੇ ਹਾਂ। ਅਵਖੇਪ ਨੂੰ ਫਿਲਟਰ ਕਰਨ, ਧੋਣ ਅਤੇ ਸੁਖਾਉਣ ਤੋਂ ਬਾਅਦ ਤੋਲ ਲੈਂਦੇ ਹਨ। ਬੇਰੀਅਮ ਸਲਫੇਟ ਦੇ ਮਾਨ ਤੋਂ ਸਲਫਰ ਦੀ ਪ੍ਤੀਸ਼ਤਤਾ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਮੰਨ ਲਓ ਕਿ ਲਏ ਗਏ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ = m g ਅਤੇ ਬੇਰੀਅਮ ਸਲਫੇਟ ਦਾ ਪੁੰਜ = m₁g 1 ਮੋਲ $BaSO_4 = 233 \text{ g } BaSO_4 = 32 \text{ g }$ ਸਲਫਰ $m_1 \text{ g } BaSO_4$ ਵਿੱਚ ਸਲਫਰ ਦੀ ਮਾਤਰਾ $\frac{32 \times m_1}{233} \text{ g}$

ਸਲਫਰ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = $\frac{32 \times m_1 \times 100}{233 \times m}$

ਉਦਾਹਰਣ 12.24

ਸਲਫਰ ਅੰਕਲਨ ਵਿੱਚ 0.157 g ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਤੋਂ 0.4813 g ਬੇਰੀਅਮ ਸਲਫੇਟ ਪ੍ਰਾਪਤ ਹੋਇਆ।ਯੋਗਿਕ ਵਿੱਚ ਸਲਫਰ ਦਾ ਪ੍ਰਤੀਸ਼ਤ ਕੀ ਹੈ ? ਹੱਲ BaSO₄ ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 137+32+64 = 233 g 233 g BaSO₄ ਵਿੱਚ ਮੌਜੂਦ ਸਲਫਰ 32 g 0.4813 g BaSO₄ ਵਿੱਚ ਮੌਜੂਦ ਸਲਫਰ

$$=\frac{32{\times}0.4813}{233}$$
 g

ਸਲਫਰ ਦਾ ਪਤੀਸ਼ਤ = $\frac{32 \times 0.4813 \times 100}{233 \times 0.157}$ = 42.10%

12.10.5 ਫਾੱਸਫੋਰਸ

ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਇੱਕ ਗਿਆਤ ਮਾਤਰਾ ਨੂੰ ਧੂੰਦਾਰ ਨਾਈਟ੍ਰਿਕਐਸਿਡ ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਫਾੱਸਫੋਰਸ, ਫਾਸਫੋਰਿਕ ਐਸਿਡ ਵਿੱਚ ਐਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਅਮੋਨੀਆ ਅਤੇ ਅਮੋਨੀਅਮ ਮਾੱਲੀਬਡੇਟ ਨਾਲ ਮਿਲਾ ਕੇ ਅਮੋਨੀਅਮ ਫਾਸਫੇਟੋ ਮੌਲੀਬਡੇਟ $(NH_4)_3$ $PO_4.12MoO_3$, ਦੇ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਅਵਖੇਪਿਤ ਕਰ ਲੈਂਦੇ ਹਾਂ, ਜਾਂ ਫਾਸਫੋਰਿਕ ਐਸਿਡ ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਆ ਮਿਸ਼ਰਣ ਮਿਲਾ ਕੇ MgNH₄PO₄ ਦੇ ਰੂਪ ਵਿੱਚ ਅਵਖੇਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਜਲਾਉਣ ਤੇ $Mg_2P_2O_7$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ = m g ਅਮੋਨੀਅਮ ਫਾਸਫੋਮੋਲੀਬਡੇਟ ਦਾ ਪੁੰਜ = m₁g $(NH_4)_3PO_4.12MoO_3$ ਦਾ ਮੋਲਰ ਪੁੰਜ = 1877 g ਹੈ

ਫਾਸਫੋਰਸ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = $\frac{31 \times m_1 \times 100}{1077}$ %

ਜੇ ਫਾਸਫੋਰਸ ਦਾ $Mg_2P_2O_7$, ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਕਲਨ ਕੀਤਾ ਜਾਏ ਤਾਂ

ਫਾਸਫੋਰਸ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = $rac{62 imes m_1 imes 100}{222 imes m} \%$

Downloaded from https:// www.studiestoday.com

359

360

ਜਿੱਥੇ Mg₂P₂O₇, ਦਾ ਮੋਲਰ ਪੁੰਜ 222 u ਲਏ ਗਏ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਦਾ ਪੁੰਜ *m*, ਬਣੇ ਹੋਏ Mg₂P₂O₇ ਦਾ ਪੁੰਜ *m*₁ ਅਤੇ Mg₂P₂O₇ ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਦੋ ਫਾਸਫੋਰਸ ਪਰਮਾਣੂਆਂ ਦਾ ਪੰਜ 62 ਹੈ।

12.10.6 ਆਕਸੀਜਨ

ਕਾਰਬਨਿ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆਕਸੀਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਦੀ ਗਣਨਾਂ ਕੁੱਲ ਪ੍ਰਤੀਸ਼ਤਤਾ (100 ਵਿੱਚੋਂ ਦੂਜੇ ਤੱਤਾਂ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾਵਾਂ ਦੇ ਜੋੜ ਨੂੰ ਘਟਾ ਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਆਕਸੀਜਨ ਦਾ ਸਿੱਧਾ ਅੰਕਲਨ ਹੇਠ ਲਿਖੀ ਵਿਧੀ ਨਾਲ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਨਾਈਟ੍ਰੋਜਨ ਗੈਸ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਗਰਮ ਕਰਕੇ ਅਪਘਟਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਆੱਕਸੀਜਨ ਸਹਿਤ ਪੈਦਾ ਗੈਸੀ ਮਿਸ਼ਰਣ ਨੂੰ ਲਾਲ–ਗਰਮ ਕੋਕ (coke) ਉੱਤੋਂ ਲੰਘਾਉਣ ਨਾਲ ਪੂਰੀ ਆੱਕਸੀਜਨ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਉਸ ਤੋਂ ਬਾਅਦ ਗੈਸੀਮਿਸ਼ਰਣ ਨੂੰ ਗਰਮ ਆਇਓਡੀਨ ਪੈਂਟਾਆੱਕਸਾਈਡ (I₂O₅) ਉੱਤੋਂ ਲੰਘਾਉਣ ਤੇ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਆਇਓਡੀਨ ਵੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

ਕਾਰਬਨਿਕ ਯੋਗਿਕ $_$ ਤਾਪ \rightarrow O_2 + ਹੋਰ ਗੈਸੀ ਉਪਜਾਂ

2C ·	+ O ₂ —	^{1373 K} →	2CO]× 5		(ੳ)
		-		~	(c - c)

$$I_2O_5 + 5CO \longrightarrow I_2 + 5CO_2] \times 2 \quad (\mathcal{M})$$

ਸਮੀਕਰਣ (ੳ) ਅਤੇ (ਅ) ਨੂੰ ਕ੍ਰਮਵਾਰ 5 ਅਤੇ 2 ਨਾਲ ਗੁਣਾਂ ਕਰਕੇ ਸਮੀਕਰਣ (ੳ) ਤੋਂ ਪੈਂਦਾ CO ਦੀ ਮਾਤਰਾ ਸਮੀਕਰਣ (ਅ) ਵਿੱਚ ਵਰਤੀ CO ਦੀ ਮਾਤਰਾ ਦੇ ਬਰਾਬਰ ਕਰਨ ਤੇ ਸਾਨੂੰ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਯੋਗਿਕ ਵਿਚੋਂ ਨਿਕਲੀ ਆਕਸੀਜਨ ਦੇ ਹਰ ਇੱਕ ਮੋਲ ਤੋਂ ਦੋ ਮੋਲ CO₂ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ 88 g ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਯੋਗਿਕ 2 ਤੋਂ ਨਿਕਲੀ 32 g ਆਕਸੀਜਨ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ।

ਮੰਨ ਲਓ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਪੁੰਜ = $m~{
m g}$

- ∴ m₁ g ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ
- ∴ m_1 g ਆੱਕਸੀਜਨ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ। $-\frac{32 \times m_1}{2}$ g \bigcirc ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ।

∴ ਯੋਗਿਕ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦਾ ਪ੍ਰਤੀਸ਼ਤ

$$=\frac{32\times m_1\times 100}{88\times m}\%$$

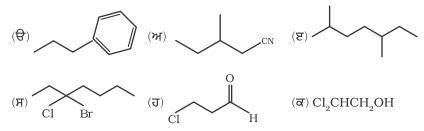
ਆਕਸੀਜਨ ਦੇ ਪ੍ਰਤੀਸ਼ਤ ਦਾ ਅੰਕਲਨ ਆਇਓਡੀਨ ਦੀ ਮਾਤਰਾ ਤੋਂ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

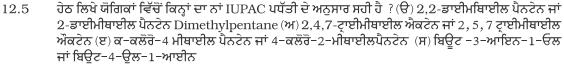
ਅੱਜਕਲ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਤੱਤਾਂ ਦਾ ਅੰਕਲਨ ਆੱਟੋਮੈਟਿਕ ਤਕਨੀਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਦਾਰਥਾਂ ਦੀ ਸੂਖਮ (ਮਾਈਕਰੋ ਮਾਤਰਾਂ ਲੈ ਕੇ ਕਰਦੇ ਹਨ। ਯੋਗਿਕਾਂ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ, ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਤੱਤਾਂ ਦਾ ਅੰਕਲਨ CHN ਤੱਤ ਵਿਸ਼ਲੇਸ਼ਣ (CHN elemental analyser) ਨਾਲ ਕਰਦੇ ਹਨ। ਇਸ ਉਪਕਰਣ ਵਿੱਚ ਪਦਾਰਥ ਦੀ ਮਾਈਕਰੋ ਮਾਤਰਾ (1-3 mg) ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕੁੱਝ ਸਮੇਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਪ੍ਤੀਸ਼ਤਸਕਰੀਨ ਉੱਤੇ ਆ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਵਿਧੀਆਂ ਦਾ ਵਿਸਖਾਰਿਤ ਵੇਰਵਾ ਇਸ ਪੁਸਤਕ ਦੇ ਪੱਧਰ ਤੋਂ ਉਚਾ ਹੈ।

ਸਾਰਾਂਸ਼

ਸਹਿਸੰਯੋਜਕਿ ਬੰਧਨ ਦੇ ਕਾਰਣ ਬਣੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀ ਰਚਨਾ ਕਿਰਿਆਸ਼ੀਲਤਾ ਸਬੰਧੀ ਮੂਲਭੂਤ ਸਿਧਾਂਤਾਂ ਤੇ ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਵਿਚਾਰ ਕੀਤਾ। ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਆੱਰਬਿਟਲ ਸੰਕਰਣ ਧਾਰਣਾ ਨਾਲ ਸਪਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸਦੇ ਅਨੁਸਾਰ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ, sp^3 , sp^2 ਅਤੇ sp ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਕ੍ਰਮਵਾਰ ਮੀਥੇਨ, ਈਥੀਨ ਅਤੇ ਈਥਾਈਨ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਧਾਰਣਾ ਦੇ ਅਧਾਰ ਤੇ ਮੀਥੇਨਈਥੀਨ ਅਤੇ ਈਥਾਈਨ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਧਾਰਣਾ ਦੇ ਅਧਾਰ ਤੇ ਮੀਥੇਨ ਦੀ ਚੌਫਲਕੀ, ਈਥੀਨ ਦੀ ਸਮਤਕ ਅਤੇ ਈਥਾਈਨ ਦੀ ਰੇਖੀ ਆਕ੍ਰਿਤੀ ਨੂੰ ਸਪਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਾਰਬਨ ਦਾ sp^3 ਆੱਰਬਿਟਲ ਹਾਈਡ੍ਰੋਜਨ ਦੇ 1s ਆੱਰਬਿਟਲ ਦੇ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ (C–H) ਇਕਹਿਰਾ (ਸਿਗਮਾ) ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਦੋ ਕਾਰਬਨਾਂ ਦੇ sp^2 ਆੱਰਬਿਟਲ ਆਪਸ ਵਿੱਚ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ ਕਾਰਬਨ–ਕਾਰਬਨ ਨ ਬੰਧਨ ਨਿਰਮਿਤ ਕਰਦੇ ਹਨ। ਦੋ ਨਿਕਟਵਰਤੀ ਕਾਰਬਨਾਂ ਦੇ m-ਸੰਕਰਿਤ p ਆੱਰਬਿਟਲ ਘੱਟ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਪਾਈ (π) ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਨੂੰ ਕਈ ਰਚਨਾ–ਸੂਤਰਾਂ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਤਿੰਨ ਵਿਮੀ ਸੂਤਰ 'ਵੈਜ' ਅਤੇ 'ਡੈਸ਼' ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

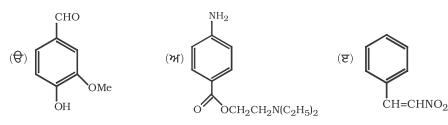
ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਬਣਤਰ ਅਤੇ ਕਿਰਿਆਤਮਕ ਸਮੂਹਾਂ ਦੇ ਅਧਾਰ ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਇੱਕ ਵਿਸ਼ਿਟ ਤਰੀਕ ਨਾਲ ਬੰਧਿਤ ਇੱਕ ਪਰਮਾਣੂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦਾ ਸਮੂਹ ਹੈ, ਜੋ ਯੋਗਿਕਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮਕਰਣ IUPAC ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਨਿਯਮਾਂ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। IUPAC ਨਾਮਕਰਣ ਵਿੱਚ ਨਾਂ ਅਤੇ ਰਚਨਾ ਦੇ ਵਿੱਚ ਦੇ ਸਹਿ ਸਬੰਧ ਪੜ੍ਹਣ ਵਾਲੇ ਨੂੰ ਰਚਨਾ ਬਨਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ।


ਕਿਰਿਆ ਧਾਰਕ ਅਣੂ ਦੀ ਬਣਤਰ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੇ ਵਿਖੰਡਨ ਹਮਲਾਵਰ ਅਭਿਕਰਮਕ, ਇਲੈਕਟ੍ਰਾਨ ਵਿਸਥਾਪਨ ਪ੍ਰਭਾਵ ਅਤੇ


ਪ੍ਰਤੀ ਕਿਰਿਆਂ ਦੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਉੱਤੇ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਕਿਰਆਵਿਧੀ ਅਧਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਕਾਰਬਨਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਬੰਧਨ ਦਾ ਟੁੱਟਣਾ ਅਤੇ ਬਣਨਾ ਹੁੰਦਾ ਹੈ। ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦਾ ਵਿਖੰਡਨ ਬਿਖਮ ਅਤੇ ਸਮਾਅੰਸ਼ ਤਰੀਕੇ ਨਾਲ ਹੋ ਸਕਦਾ ਹੈ। ਬਿਖਮਅੰਗੀ ਵਿਖੰਡਨ ਵਿੱਚ ਕਾਰਬਧਨ ਆਇਨ ਜਾਂ ਕਾਰਬਰਿਣ ਆਇਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ, ਜਦਕਿ ਸਮਅੰਗੀ ਵਿਖੰਡਨ ਨਾਲ ਮੁਕਤ ਮੂਲਕ ਬਣਦੇ ਹਨ। ਬਿਖਮਅੰਗੀ ਵਿਖੰਡਨ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਪੂਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇਣ ਵਾਲੇ ਨਿਊਕਲੀ ਅਸਸਨੇਹੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਨ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਕਾਰਕ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਪ੍ਰੇਰਕ, ਅਨੁਨਾਦ, ਇਲੈਕਟ੍ਰੋਮੈਰਿਕ ਅਤੇ ਅਤਿਸੰਯੁਗਮਨ ਪ੍ਰਭਾਵ ਕਾਰਬਨ ਕਾਰਬਨ ਜਾਂ ਹੋਰ ਪਰਮਾਣੂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਧਰੁਵਣਤਾ ਪੈਦਾ ਕਰਕੇ ਸਹਾਇਕ ਹੋ ਸਕਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਜਾਂ ਹੋਰ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਨਿਮਨ ਜਾਂ ਉੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਵਾਲੇ ਸਥਾਨ ਬਣ ਜਾਂਦੇ ਹਨ। ਕਾਰਬਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀਆਂ ਮੁੱਖ ਕਿਸਮਾਂ ਹਨ-ਪ੍ਰਤੀ ਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆ, ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ, ਵਿਲੋਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆ ਅਤੇ ਗੀਅਰੇਂਜਮੈਂਟ ਪ੍ਰਤੀਕਿਰਿਆ।

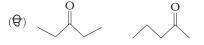
ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੀ ਰਚਨਾ ਗਿਆਤ ਕਰਨ ਦੇ ਲਈ ਉਸਦਾ ਸੋਧਨ ਅਤੇ ਗੁਣਾਤਮਕ ਅਤੇ ਮਾਤਰਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸੋਧਨ ਦੀਆਂ ਵਿਸ਼ਿਸ਼ਟ ਵਿਧੀਆਂ, ਜਿਵੇਂ-ਜੌਹਰ ਉਡਾਉਣਾ, ਕਸ਼ੀਦਣ ਅਤੇ ਵਿਭੇਦੀਨਿਸ਼ਕਰਣ ਯੋਗਿਕਾਂ ਦੇ ਇੱਕ ਜਾਂ ਵੱਧ ਭੌਤਿਕ ਗੁਣਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਯੋਗਿਕਾਂ ਦੇ ਨਖੇੜਣ ਅਤੇ ਸੋਧਨ ਦੇ ਲਈ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਇੱਕ ਬਹੁਤ ਹੀ ਲਾਭਦਾਇਕ ਤਕਨੀਕ ਹੈ। ਇਸ ਨੂੰ ਦੋ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ-ਸਤ੍ਹਾ ਸੋਖਣ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਅਤੇ ਵਿਤਰਣ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਸਤ੍ਹਾ ਸੋਖਣ ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ ਸਤ੍ਹਾ ਸੋਖਕ ਉੱਤੇ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗਾਂ ਦਾ ਲਗਾਤਾਰ ਵਿਤਰਣ ਹੁੰਦਾ ਹੈ। ਯੋਗਿਕ ਨੂੰ ਸੁਧ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰਨ ਤੋਂ ਬਾਅਦ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਨਿਰਧਾਰਣ ਦੇ ਲਈ ਉਸ ਦਾ ਗੁਣਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ, ਸਲਫਰ, ਹੈਲੋਜਨ ਅਤੇ ਫਾੱਸਫੋਰਸ ਲੈਸੇਗਨੀਜ਼ ਟੈਸਟ ਦੁਆਰਾ ਪਰਖੇ ਜਾਂਦੇ ਹਨ।ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪਛਾਣ ਇਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਕਾਰਬਨਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਅੰਕਲਨਡਿਊਮਾ ਅਤੇ ਜੈਲਡਾਹਲ ਵਿਧੀਆਂ ਦੁਆਰਾ ਅਤੇ ਹੈਲੋਜਨਾਂ ਨੂੰ ਕੇਰਿਅਸ ਵਿਧੀ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਲਫਰ ਅਤੇ ਫਾਸਫੋਰਸ ਨੂੰ ਕ੍ਰਮਵਾਰ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਅਤੇ ਫਾਸਫੋਰਿਕ ਐਸਿਡ ਵਿੱਚ ਅੱਕਸੀਕ੍ਰਿਤ ਕਰਕੇ ਅੰਕਲਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਆੱਕਸੀਜਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਕੁੱਲ ਪ੍ਰਤੀਸ਼ਤਤਾ (100) ਵਿੱਚੋਂ ਦੂਜੇ ਤੱਤਾਂ ਦੀਆਂ ਪ੍ਰਤੀਸ਼ਤਤਾਵਾਂ ਦੇ ਜੋੜ ਨੂੰ ਘਟਾ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

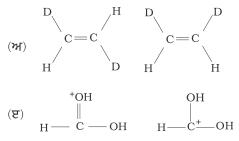
ਅਭਿਆਸ


- 12.1 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਕਾਰਬਨ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਦੱਸੋ— CH₂=C=O, CH₃CH=CH₂, (CH₃)₂COCH₂, CH₂=CHCN, C₆H₆
- 12.2 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਵਿੱਚ σ ਅਤੇ π ਬੰਧਨ ਦਰਸਾਓ— C₆H₆, C₆H₁₂, CH₂Cl₂, CH₂=C=CH₂, CH₃NO₂, HCONHCH₃
- 12.3 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਬੰਧਨ-ਰੇਖਾ-ਸੂਤਰ ਲਿਖੋ—
 ਆਈਸੋਪ੍ਰੋਪਾਈਲ ਐਲਕੋਹਲ, 2, 3-ਡਾਈਮੀਥਾਈਲ ਬਿਊਟੇਨਲ, ਹੈਪਟੇਨ-4-ਓਨ
- 12.4 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ IUPAC ਨਾਂ ਲਿਖੋ

362

- 12.6 ਹੇਠ ਲਿਖੀਆਂ ਸਮਜਾਤੀ ਲੜੀਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਦੇ ਪਹਿਲੇ ਪੰਜ ਸਮਜਾਤਾਂ ਦੇ ਰਚਨਾ-ਸੂਤਰ ਲਿਖੋ—(ੳ) H–COOH (ਅ) CH₃COCH₃ (ੲ) H–CH=CH₂
- 12.7 ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸੰਘਣਿਤ ਅਤੇ ਬੰਧਨ ਰੇਖਾ ਸੂਤਰ ਲਿਖੋ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਜੇ ਕੋਈ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਹੋਵੇ ਤਾਂ ਉਸ ਨੂੰ ਪਛਾਣੋ—
 - (ੳ) 2,2,4-ਟ੍ਰਾਈਮੀਥਾਈਲ ਪੈਨਟੇਨ
 - (ਅ) 2-ਹਾਈਡ੍ਰੋਕਸੀ-1,2,3 ਪਰੋਪੰਨ ਟ੍ਰਾਕਾਰਬੋਕਸਲਿਕ ਐਸਿਡ
 - (ੲ) ਹੈਕਸੇਨ ਡਾਈਅਲ
- 12.8 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਪਛਾਣੋ—




- 12.9 ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਵਧੇਰੇ ਸਥਾਈ ਹੈ ਅਤੇ ਕਿਉਂ $? O_2 NCH_2 CH_2 O^-$ or $CH_3 CH_2 O^-$
- 12.10 π ਸਿਸਟਮ ਨਾਲ ਬੰਧਿਤ ਹੋਣ ਤੇ ਐਲਕਾਈਲ ਗਰੁੱਪ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾਤਾ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਿਉਂ ਕਰਦੇ ਹਨ, ਸਮਝਾਓ।
- 12.11 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੀ ਅਨੁਨਾਦ ਰਚਨਾ ਲਿਖੋ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਵਿਸਥਾਪਨ ਮੁੜੇ ਤੀਰਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਦਰਸਾਓ—

(θ) С₆H₅OH (\mathcal{M}) С₆H₅NO₂ (\mathcal{E}) CH₃CH=CHCHO (\mathcal{F}) С₆H₅-CHO (\mathcal{J}) С₆H₅- $\overset{-}{C}$ H₂

 $(\overline{\alpha})$ CH₃CH = CHCH₂

- 12.12 ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਅਤੇ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਕੀ ਹਨ ?ਉਦਾਹਰਣ ਸਹਿਤ ਸਮਝਾਓ।
- 12.13 ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣਾਂ ਵਿੱਚ ਮੋਟੇ ਅੱਖਰਾਂ ਵਿੱਚ ਲਿਖੇ ਅਭਿਕਰਮਕਾਂ ਨੂੰ ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ—
 - $(\textcircled{P}) CH_3COOH + HO^- \rightarrow CH_3COO^- + H_2O$
 - (\mathcal{M}) CH₃COCH₃ + $\mathbf{C} \mathbf{N} \rightarrow (CH_3)_2 C(CN)(OH)$
 - (\mathfrak{E}) $C_6H_6 + CH_3CO \rightarrow C_6H_5COCH_3$
- 12.14 ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ—
 - $(\Theta) \operatorname{CH}_3\operatorname{CH}_2\operatorname{Br} + \operatorname{HS}^- \to \operatorname{CH}_3\operatorname{CH}_2\operatorname{SH} + \operatorname{Br}^-$
 - $(\mathcal{M}) \ \left(\mathrm{CH}_3\right)_2 \mathrm{C} = \mathrm{CH}_2 + \mathrm{HCl} \rightarrow \left(\mathrm{CH}_3\right)_2 \mathrm{ClC} \mathrm{CH}_3$
 - $(\mathfrak{F}) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{Br} + \mathrm{HO}^- \rightarrow \mathrm{CH}_2 = \mathrm{CH}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{Br}^-$
 - (\overline{H}) $(CH_3)_3 C CH_2OH + HBr \rightarrow (CH_3)_2 CBrCH_2CH_2CH_3 + H_2O$
- 12.15 ਹੇਠ ਲਿਖੇ ਯੁਗਮਾਂ ਵਿੱਚ ਮੈਂਬਰ-ਰਚਨਾਵਾਂ ਵਿੱਚ ਕਿਹੋ ਜਿਹਾ ਸਬੰਧ ਹੈ ? ਕੀ ਇਹ ਰਚਨਾਵਾਂ ਬਣਤਰੀ ਜਾਂ ਜੋਮੈਟਰੀਕਲ ਸਮਅੰਗਕ ਜਾਂ ਅਨੁਨਾਦ ਬਣਤਰਾਂ ਹਨ ?

12.16 ਹੇਠ ਲਿਖੇ ਬੰਧਨ ਵਿਘਟਨਾਂ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾੱਨ-ਵਿਸਥਾਪਨ ਨੂੰ ਮੁੜੇ ਤੀਰਾਂ ਦੁਆਰਾ ਦਰਸਾਓ ਅਤੇ ਹਰ ਇੱਕ ਵਿਘਟਨ ਨੂੰ ਸਮਅੰਗੀ ਜਾਂ ਬਿਖਮਅੰਗੀ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ। ਨਾਲ ਹੀ ਨਿਰਮਿਤ ਕਿਰਿਆਸ਼ੀਲ ਮੱਧਵਰਤੀ ਉਪਜਾਂ ਵਿੱਚ ਮੁਕਤ-ਮੁਲਕ, ਕਾਰਬਧਨਆਇਨ ਅਤੇ ਕਾਰਬਰਿਣ ਆਇਨ ਪਛਾਣੋ—

$$(\Theta)$$
 CH₃O – OCH₃ \rightarrow CH₃O + OCH₃

$$(\mathcal{M}) \geq 0 + OH \rightarrow \geq 0 + H_2O$$

$$(\mathbf{E}) \xrightarrow{\mathbf{Br}} \mathbf{F} + \mathbf{Br}$$

 (Θ) Cl₃CCOOH > Cl₂CHCOOH > ClCH₂COOH

$$(\mathcal{W}) \qquad \mathrm{CH_{3}CH_{2}COOH} > (\mathrm{CH_{3})_{2}CHCOOH} > (\mathrm{CH_{3})_{3}C.COOH}$$

- 12.18 ਹਰ ਇੱਕ ਦੀ ਉਦਾਹਰਣ ਦਿੰਦੇ ਹੋਏ ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਰਮਾਂ ਦੇ ਸਿਧਾਂਤਾਂ ਦਾ ਸੰਖੇਪ ਵਰਣਨ ਕਰੋ। (ੳ) ਕ੍ਰਿਸਟਲੀਕਰਣ (ਅ) ਕਸ਼ੀਦਣ (ੲ) ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ
- 12.19 ਅਜਿਹੇ ਦੋ ਯੋਗਿਕਾਂ, ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਘੁਲਣਸ਼ੀਲਤਾਵਾਂ ਘੋਲਕ S ਵਿੱਚ ਭਿੰਨ ਹਨ ਨੂੰ ਵੱਖ ਕਰਨ ਦੀ ਵਿਧੀ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 12.20 ਕਸ਼ੀਦਣ, ਘੱਟ ਦਾਬ ਉੱਤੇ ਕਸ਼ੀਦਣ ਅਤੇ ਭਾਫ਼ ਕਸੀਦਣ ਵਿੱਚ ਕੀਅੰਤਰ ਹੈ ? ਵਿਆਖਿਆ ਕਰੋ।
- 12.21 ਲੈਸੇਗਨੀਜ਼-ਟੈਸਟ ਦਾ <mark>ਰ</mark>ਸਾਇਣਸਿਧਾਂਤ ਸਮਝਾਓ।
- 12.22 ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਅੰਕਲਨ ਦੀ (i) ਡਿਊਮਾ ਵਿਧੀ ਅਤੇ (ii) ਜੈਲਡਾਹਲ ਵਿਧੀ ਦੇ ਸਿਧਾਂਤ ਦੀ ਰੂਪ ਰੇਖਾ ਸਮਝਾਓ।
- 12.23 ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ, ਹੈਲੋਜਨ, ਸਲਫਰ ਅਤੇ ਫਾੱਸਫੋਰਸ ਦੇ ਅੰਕਲਨ ਦੇ ਸਿਧਾਂਤ ਦਾ ਵਰਣਨ ਕਰੋ।
- 12.24 ਪੇਪਰ ਕ੍ਰੋਮੈਟੋਗਰਾਫ਼ੀ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਸਮਝਾਓ।
- 12.25 ਸੋਡੀਅਮ ਸੰਗਲਨ ਨਿਸ਼ਕਰਸ਼ ਵਿੱਚ ਹੈਲੋਜਨ ਦੇ ਟੈਸਟ ਦੇ ਲਈ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਮਿਲਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਨਾਈਟ੍ਰਿਨ ਐਸਿਡ ਕਿਉਂ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ।
- 12.26 ਨਾਈਟ੍ਰੋਜਨ, ਸਲਫਰ ਅਤੇ ਫਾੱਸਫੋਰਸ ਦੇ ਟੈਸਟ ਲਈ ਸੋਡੀਅਮ ਦੇ ਨਾਲ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦਾ ਸੰਗਲਨ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
- 12.27 ਕੈਲਸ਼ੀਅਮ ਸਲਫੇਟ ਅਤੇ ਕਪੂਰ ਦੇ ਮਿਸ਼ਰਣ ਦੇ ਭਾਗਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਦੇ ਲਈ ਢੁਕਵੀਂ ਤਕਨੀਕ ਦੱਸੋ।
- 12.28 ਭਾਫ–ਕਸੀਦਣ ਕਰਨ ਤੇ ਇੱਕ ਕਾਰਬਨਿਕ ਦ੍ਵ ਆਪਣੇ ਉਬਲਣ ਅੰਕ ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਕਿਉਂ ਹੋ ਜਾਂਦਾ ਹੈ ?
- 12.29 ਕੀ CCl₄ ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ AgCl ਦੇ ਸਫੇਦ ਅਵਖੇਪ ਦੇਵੇਗਾ ?ਆਪਣੇ ਉੱਤਰ ਨੂੰ ਕਾਰਣ ਸਹਿਤ ਸਮਝਾਓ।
- 12.30 ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਅੰਕਲਨ ਕਰਦੇ ਸਮੇਂ ਪੈਦਾ ਕਾਰਬਨਡਾਈਆੱਕਸਾਈਡ ਨੂੰ ਸੋਖਣ ਦੇ ਲਈ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਘੋਲ ਦੀ ਵਰਤੋਂ ਕਿਉਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?

12.31	ਸਲਫਰ ਦੇ ਲੈੱਡ ਐਸੀਟੇਟ ਦੁਆਰਾ ਟੈਸਟ ਵਿੱਚ ਸੋਡੀਅਮ ਸੰਗਠਨ ਨਿਸ਼ਕਰਸ਼ ਨੂੰ ਐਸਿਟਿਕ ਐਸਿਡ ਦੁਆਰਾ ਉਦਾਸੀਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਨਾਂ ਕਿ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੁਆਰਾ। ਕਿਉਂ ?
12.32	ਇੱਕ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ 69% ਕਾਰਬਨ 4.8% ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਬਾਕੀ ਆੱਕਸੀਜਨ ਹੈ। ਇਸ ਯੋਗਿਕ ਦੇ 0.20 g ਦੇ ਪੂਰਣ ਜਲਨ ਤੋਂ ਪੈਕਾ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਦੀਆਂ ਮਾਤਰਾਵਾਂ ਦੀ ਗਣਨਾ ਕਰੋ।
12.33	0.50 g ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਨੂੰ ਜੈਲਡਾਹਲ ਵਿਧੀ ਦੇ ਅਨੁਸਾਰ ਕਿਰਿਆ ਕਰਨ ਤੇ ਪ੍ਰਾਪਤ ਅਮੋਨੀਆ ਨੂੰ 0.5 M H2SO4 ਦੇ 50 mL ਵਿੱਚ ਸੋਖਿਤ ਕੀਤਾ ਗਿਆ। ਅਣਕਿਰਿਆ ਕੀਤੇ ਤੇਜਾਬ ਦੇ ਉਦਾਸੀ ਨੀਕਰਣ ਦੇ ਲਈ 0.5 M NaOH ਦੇ 50m ਦੀ ਜਰੂਰਤ ਪਈ। ਯੋਗਿਕ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਪ੍ਤੀਸ਼ਤਤਾ ਦੀ ਗਣਨਾ ਕਰੋ।
12.34	ਕੇਰਿਅਸ ਅੰਕਲਨ ਵਿੱਚ 0.3780 g ਕਾਰਬਨਿਕ ਕਲੋਰੋ ਯੋਗਿਕ ਤੋਂ 0.5740 g ਸਿਲਵਰ ਕਲੋਰਾਈਡ ਪ੍ਰਾਪਤ ਹੋਇਆ। ਯੋਗਿਕ ਵਿੱਚ ਕਲੋਰੀਨ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਦੀ ਗਣਨਾ ਕਰੋ।
12.35	ਕੇਰਿਅਸ ਵਿਧੀ ਦੁਆਰਾ ਸਲਫਰ ਦੇ ਅੰਕਲਨ ਵਿੱਚ 0.468 g ਸਲਫਰ ਯੁਕਤ ਕਾਰਬਨ ਯੋਗਿਕ ਤੋਂ 0.668g ਬੇਰੀਅਮ ਸਲਫੇਟ ਪ੍ਰਾਪਤ ਹੋਇਆ।ਦਿੱਤੇ ਗਏ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਸਲਫਰਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਦੀ ਗਣਨਾ ਕਰੋ।
12.36	CH ₂ = CH – CH ₂ – CH ₂ – C ≡ CH, ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ C ₂ – C ₃ ਬੰਧਨ ਕਿਹੜੇ ਸੰਕਰਿਤ ਆਰਬਿਟਲਾਂ ਦੇ ਯੁਗਮ ਤੋਂ ਨਿਰਮਿਤ ਹੁੰਦਾ ਹੈ ?
	$(egle) sp - sp^2$ (羽) $sp - sp^3$ (宅) $sp^2 - sp^3$ (用) $sp^3 - sp^3$
12.37	ਕਿਸੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਵਿੱਚ ਲੈਸੇਗਨੀਜ਼ ਦੁਆਰਾ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪਰਖ ਵਿੱਚ ਪਰੱਸਿਅਨ ਬਲੂ ਰੰਗ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੇ ਕਾਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ?
	$(\Theta) \operatorname{Na}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}] (\Im) \operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3} (\Xi) \operatorname{Fe}_{2}[\operatorname{Fe}(\operatorname{CN})_{6}] (\Pi) \operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{4}$
12.38	ਹੇਠ ਲਿਖੇ ਕਾਰਬਨਆਇਨਾਂ ਵਿਚੋਂ ਕਿਹੜਾ ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਹੈ ?
	(ੳ) (CH ₃) ₃ C. ⁺ CH ₂ (ਅ) (CH ₃) ₃ ⁺ C (ੲ) CH ₃ CH ₂ ⁺ CH ₂ (用) CH ₃ ⁺ CH ₂ CH ₃ CH ₂ CH ₃
12.39	ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਨਖੇੜਨ ਅਤੇ ਸੋਧਨ ਦੀ ਸਰਬ ਉੱਤਮ ਅਤੇ ਅਧੁਨਿਕਤਮ ਤਕਨੀਕ ਕਿਹੜੀ ਹੈ ?
	(ੳ) ਕ੍ਰਿਸਟਲੀਕਰਣ (ਅ) ਕਸ਼ੀਦਣ (ੲ) ਜੌਹਰ ਉਡਾਉਣਾ (ਸ) ਕ੍ਰੋਮੈਟੋਗ੍ਰਾਫੀ
12.40	$CH_3CH_2I + KOH(aq) \rightarrow CH_3CH_2OH + KI$
	ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਹੇਠ ਦਿੱਤੀਆਂ ਕਿਸਮਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ—
	(ੳ) ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਪ੍ਤੀਸਥਾਪਨ (ਅ) ਨਿਊਕਲੀਅਸ ਸਨੇਹੀ ਪ੍ਤੀਸਥਾਪਨ
	(ੲ) ਵਿਲੋਪਨ (ਸ) ਜੋੜਾਤਮਕ

ਯੁਨਿਟ 13

ਹਾਈਡ੍ਰੋਕਾਰਬਨ HYDROCARBONS

ਉਦੇਸ਼

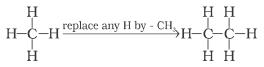
ਇਹ ਯੁਨਿਟ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ-

- ਨਾਮਕਰਣ ਦੀਆਂ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਪੱਧਤੀ ਦੇ ਅਨੁਸਾਰ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦਾ ਨਾਂ ਦੱਸ ਸਕੋਗੇ;
- ਐਲਕੇਨ, ਐਲਕੀਨ, ਐਲਕਾਈਨ ਅਤੇ ਐਰੋਮੈਟਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ ਸਮਾਅੰਗਕਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕੋਣਗੇ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਬਣਤਰ ਲਿਖ ਸਕੋਗੇ;
- ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਨਿਰਮਾਣ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਵਿਧੀਆਂ ਦੇ ਬਾਰੇ ਸਿੱਖੋਗੇ;
- ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਐਲਕੇਨ, ਐਲਕੀਨ, ਐਲਕਾਈਨ ਅਤੇ ਐਰੋਮੈਟਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ;
- ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੀ ਭੂਮਿਕਾ ਦਾ ਊਰਜਾ ਦੇ ਸਹੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਹੋਰ ਉਦਯੋਗਿਕ ਲਾਭਾਂ ਵਿੱਚ ਮਹੱਤਵ ਦੱਸ ਸਕੋਗੇ;
- ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਕਿਰਿਆ ਵਿਧੀ ਦੇ ਅਧਾਰ ਤੇ ਅਸਸਮਿਤ ਐਲਕੀਨਾਂ ਅਤੇ ਐਲਕਾਈਨਾਂ ਦੀਆਂ ਜੋੜਾਤਮਕ ਉਪਜਾਂ ਦੇ ਬਣਨ ਦਾ ਅਨੁਮਾਨ ਲਾ ਸਕੋਗੇ;
- ਬੈਨੇਜਾਨ ਦੀ ਬਣਤਰ ਦਾ ਵਰਣਨ ਐਰੋਮੈਟਿਕਤਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਕਿਰਿਆਵਿਧੀ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਇੱਕਲੇ ਪ੍ਰਤੀਸਥਾਈ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਉੱਤੇ ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦੇ ਨਿਰਦੇਸ਼ਾਤਮਕ ਪ੍ਰਭਾਵ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ; ਅਤੇ
- ਕੈਂਸਰ ਪ੍ਰਭਾਵ ਅਤੇ ਜਹਿਰੀਲੇ ਪ੍ਰਭਾਵ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਸਿੱਖ ਸਕੋਗੇ।

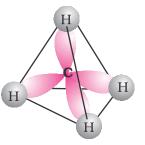
🌜 ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਊਰਜਾ ਦੇ ਮੁੱਖ ਸਰੋਤ ਹਨ।

ਹਾਈਡੋਕਾਰਬਨ ਟਰਮ ਆਪਣੇ ਆਪ ਸਪਸ਼ਟ ਹੈ, ਜਿਸ ਦਾ ਅਰਥ ਸਿਰਫ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡੋ਼ਜਨ ਦੇ ਬਣੇਯੋਗਿਕ ਹਨ।ਸਾਡੇ ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਹਾਈਡੋ਼ਕਾਰਬਨ ਦਾ ਮਹੱਤਵਪੂਰਣ ਯੋਗਦਾਨ ਹੈ। ਤੁਸੀਂ ਐਲ. ਪੀ. ਜੀ., ਸੀ. ਐਨ. ਜੀ ਆਦਿ ਸੰਖੇਪ ਸ਼ਬਦਾਂ ਤੋਂ ਜਾਣੂ ਹੋ, ਜੋ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਐਲ. ਪੀ. ਜੀ. ਦਵਿਤ ਪੈਟ੍ਰੌਲੀਅਮ ਗੈਸ ਦਾ, ਜੁੰਦ ਕਿ. ਸੀ. ਐਨ. ਜੀ. ਸੰਘਣਿਤ ਕੁਦਰਤੀ ਗੈਸ ਦਾ ਸੰਖੇਪ ਰੂਪ ਹੈ। ਅੱਜਕਲ ਦੂਜਾ ਸੰਖੇਪ ਸ਼ਬਦ ਐਲ. ਐਨ. ਜੀ (ਦ੍ਵਿਤ ਪ੍ਰਕਿਰਤਕ ਗੈਸ) ਪ੍ਰਚਲਿਤ ਹੈ। ਇਹ ਵੀ ਬਾਲਣ ਹੈ ਜੋ ਪ੍ਰਕਿਰਤਿਕ ਗੈਸ ਦੇ ਦਵੀਕਰਣ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਪੈਟ੍ਰੋਲੀਅਮ ਜੋ ਭੂ–ਪਰਤ ਦੇ ਹੇਠਾਂ ਮਿਲਦਾ ਹੈ, ਦੇ ਅੰਸ਼ਿਕ ਕਸ਼ੀਦਣ (Fractional Distillation) ਨਾਲ ਪੈਟ੍ਰੋਲ, ਡੀਜ਼ਲ ਅਤੇ ਕੈਰੋਸੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਕੋਲਗੈਸ, ਕੋਲੇ ਦੇ ਭੰਜਕ ਕਸ਼ੀਦਣ (Destructive Distilation) ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਕਿਰਤਕ ਗੈਸਾਂ ਤੇਲ ਦੇ ਖੂਹਾਂ ਦੀ ਖੁਦਾਈ ਦੇ ਦੌਰਾਨ ਉਤਲੀ ਸਤ੍ਹਾ ਤੇ ਮਿਲਦੀਆਂ ਹਨ। ਨਪੀੜਨ ਤੋਂ ਬਾਅਦ ਪ੍ਰਾਪਤ ਗੈਸਾਂ ਨੂੰ ਨਪੜੀਨ ਪ੍ਰਕਿਰਤਕ ਗੈਸ ਕਹਿੰਦੇ ਹਨ। ਐਲ ਪੀ ਜੀ ਦੀ ਵਰਤੋਂ ਘਰੇਲੂ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਜੋ ਸਭ ਤੋਂ ਘੱਟ ਪ੍ਰਦੂਸ਼ਣ ਵਾਲੀ ਗੈਸ ਹੈ। ਕੈਰੋਸੀਨ ਦੀ ਵੀ ਵਰਤੋਂ ਘਰੇਲੂ ਬਾਲਣ ਵਜੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਲੇਕਿਨ ਇਸ ਤੋਂ ਕੁਝ ਪ੍ਰਦੂਸ਼ਣ ਫੈਲਦਾ ਹੈ। ਆੱਟੋਮੋਬਾਈਲ ਵਾਹਨਾਂ ਵਿੱਚ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਪੈਟ੍ਰੋਲ, ਡੀਜ਼ਲ ਅਤੇ ਸੀ. ਐਨ. ਜੀ. ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਪੈਟ੍ਰੋਲ ਅਤੇ ਸੀ. ਐਨ. ਜੀ. ਨਾਲ ਚੱਲਣ ਵਾਲੇ ਆੱਟੋਮੋਬਾਈਲ ਵਾਹਨ ਘੱਟ ਪ੍ਰਦੂਸ਼ਣ ਫੈਲਾਉਂਦੇ ਹਨ। ਇਹ ਸਾਰੇ ਬਾਲਣ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ ਮਿਸ਼ਰਣ ਹੁੰਦੇ ਹਨ, ਜੋ ਉਰਜਾ ਦੇ ਸਰੋਤ ਹਨ। ਹਾਈਡੋਕਾਰਬਨ ਦੀ ਵਰਤੋਂ ਪਾੱਲੀਥੀਨ, ਪਾੱਲੀਪਰੋਪੇਨ ਪਾੱਲੀ-ਸਟਾਈਰੀਨ ਆਦਿ ਪਾੱਲੀਮਰਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉੱਚੇ ਅਣਵੀਂ ਭਾਰ ਵਾਲੇ ਹਾਈ੍ਰਕਾਰਬਨਾਂ ਦੇ ਵਰਤੋਂ ਪੇਂਟ ਵਿੱਚ ਘੋਲਕ ਰੂਪ ਵਿੱਚ ਅਤੇ ਰੰਗਕ ਅਤੇ ਦਵਾਈਆਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਸ਼ੁਰੂਅਤੀ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਹੁਣ ਤੁਸੀਂ ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਮਹੱਤਵ ਪੂਰਣ ਲਾਭ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝ ਗਏ ਹੋ। ਇਸ ਯੂਨਿਟ ਵਿੱਚ ਹਾਈਡੋ਼ਕਾਰਬਨਾਂ ਦੇ ਬਾਰੇ ਹੋਰ ਵਧੇਰੇ ਸਮਝੋਗੇ

13.1 ਵਰਗੀਕਰਣ


ਹਾਈਡੋ੍ਕਾਰਬਨ ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ।ਕਾਰਬਨ-ਕਾਰਬਨ ਬੰਧਨਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਅਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਤਿੰਨ ਸਮੂਹਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ- (1) ਸੰਤ੍ਰਿਪਤ (2) ਅਸੰਤ੍ਰਿਪਤ ਅਤੇ (3) ਐਰੋਮੈਟਿਕ

366


ਹਾਈਡੋਕਾਰਬਨ ਸੰਤ੍ਰਿਪਤ ਹਾਈਡੋਕਾਰਬਨ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਅਤੇ ਕਾਰਬਨ-ਹਾਈਡੋ਼ਜਨ ਇਕਹਿਰੇ ਬੰਧਨ ਹੁੰਦੇ ਹਨ। ਜੇ ਭਿੰਨ-ਭਿੰਨ ਕਾਰਬਨ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਇਕਹਿਰੇ ਬੰਧਨ ਨਾਲ ਜੁੜ ਕੇ ਖੁਲ੍ਹੀ ਚੇਨ ਬਣਾਉਂਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਨੂੰ ਐਲਕੇਨ ਕਹਿੰਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਯੁਨਿਟ-12 ਵਿੱਚ ਪੜ੍ਹ ਚੁਕੇ ਹੋ। ਦੂਜੇ ਪਾਸੇ ਜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਬੰਦ ਚੇਨ ਜਾਂ ਰਿੰਗ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਨੂੰ ਸਾਈਕਲੋ ਐਲਕੇਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਬਹੁਬੰਧਨ ਜਿਵੇਂ ਦੁਹਰਾ ਬੰਧਨ, ਤੀਹਰਾ ਬੰਧਨ ਜਾਂ ਦੋਵੇਂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਐਰੋਮੈਟਿਕ ਹਾਈਡੋਕਾਰਬਨ ਰਿੰਗ ਯੋਗਿਕਾਂ ਦੀ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਹੈ।ਤੁਸੀਂ ਕਾਰਬਨ ਦੀ ਚੰਸੰਯੋਜਕਤਾ (tetracovalency) ਅਤੇ ਹਾਈਡੋਜਨ ਦੀ ਇਕਹਿਰੀ ਸੰਯੋਜਕਤਾ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ (ਖੁਲ੍ਹ ਚੇਨ ਜਾਂ ਬੰਦ ਚੇਨ) ਅਨੇਕਾਂ ਅਣੁਆਂ ਦੇ ਮਾੱਡਲ ਬਣਾ ਸਕਦੇ ਹੋ। ਐਲਕੇਨਾਂ ਦੇ ਮਾੱਡਲ ਬਨਾਉਣ ਦੇ ਲਈ ਬੰਧਨਾਂ ਦੇ ਲਈ ਟੱਥ ਪਿੱਕ ਅਤੇ ਪਰਮਾਣਆਂ ਦੇ ਲਈ ਪਲਾਸਟਿਕ ਦੀਆਂ ਗੇਂਦਾਂ ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਕਰ ਸਕਦੇ ਹਾਂ। ਐਲਕੀਨ, ਐਲਕਾਈਨ ਅਤੇ ਐਰੋਮੈਟਿਕ ਹਾਈਡੋਕਾਰਬਨਾਂ ਦੇ ਲਈ ਸਪਰਿੰਗ ਮਾੱਡਲ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ।

13.2 ਐਲਕੇਨ

ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚੁਕਿਆ ਹੈ, ਐਲਕੇਨ ਕਾਰਬਨ, ਕਾਰਬਨ ਇਕਹਿਰੇ ਬੰਧਨਯੁਕਤ ਸੰਤ੍ਰਿਪਤ ਖੁਲ੍ਹੀ ਚੇਨ ਵਾਲੀਆਂ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਹਨ।ਮੀਥੇਨ (CH₄) ਇਸ ਪਰਿਵਾਰ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਹੈ। ਮੀਥੇਨ ਇੱਕ ਗੈਸ ਹੈ, ਜੋ ਕੋਲੇ ਦੀ ਖਾਨਾਂ ਅਤੇ ਦਲਦਲੀ ਖੇਤਰਾਂ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਜੇ ਤੁਸੀਂ ਮੀਥੇਨ ਦੇ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਕਾਰਬਨ ਦੇ ਦੁਆਰਾ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਕੇ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੁਆਂ ਦੀ ਲੋੜੀਂਦੀ ਸੰਖਿਆ ਜੋੜਕੇ ਦੂਜੇ ਕਾਰਬਨ ਦੀ ਚੌ ਸੰਯਜਨਕਤਾ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦੇ ਹੋ, ਤਾਂ ਤੁਹਾਨੂੰ ਕੀ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ ? ਤੁਹਾਨੂੰ C₂H₆ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਉਹ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਜਿਸ ਦਾ ਸੂਤਰ \check{C}_2H_6 ਹੈ ਈਥੇਨ ਅਖਵਾਉਂਦੀ ਹੈ। ਇੰਜ ਤੁਸੀਂ CH_4 ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਨੂੰ - CH_3 ਗਰੁੱਪ ਦੁਆਰਾ ਪ੍ਰਤੀਸਥਾਪਿੰਤ ਕਰਕੇ $C_2H_6^-$ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ। ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਨੂੰ ਮੀਥਾਈਲ (–CH₃) ਗਰੁੱਪ ਦੁਆਰਾ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਕਰਕੇ ਤੁਸੀਂ ਹੋਰ ਕਈ ਐਲਕੇਨਾਂ ਬਣਾ ਸਕਦੇ ਹੋ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਅਣੂ C₃H₈, C_4H_{10} ਆਦਿ ਹੋਣਗੇ।

ਇਹ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਸਧਾਰਣ ਹਾਲਤਾਂ ਵਿੱਚ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਤੇਜਾਬਾਂ ਅਤੇ ਹੋਰ ਅਭਿਕਰਮਨਾਂ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ। ਇਸ ਲਈ ਸ਼ੁਰੂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਨੂੰ ਪੈਰਾਫਿਨ (Parum = ਘੱਟ Affinis = ਕਿਰਿਆਸ਼ੀਲ) ਕਹਿੰਦੇ ਸਨ। ਕੀ ਤੁਸੀਂ ਐਲਕੇਨ ਪਰਿਵਾਰ ਜਾਂ ਸਮਜਾਤੀ ਲੜੀ (Homologous series) ਦੇ ਆਮਸੂਤਰ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕਝ ਅਨਮਾਨ ਲਾ ਸਕਦੇ ਹੋ। ਐਲਕੇਨ ਦਾ ਆਮ ਸੂਤਰ C_nH_{2n+2} ਹੈ। ਜਿੱਥੇ n ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਅਤੇ 2n+2 ਹਾਈਡ੍ਰੋਜ਼ਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਪ੍ਦਰਿਸ਼ਤ ਕਰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਮੀਥੇਨ ਦੀ ਰਚਨਾ ਨੂੰ ਯਾਦ ਕਰ ਸਕਦੇ ਹੋ ? ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਸਿਧਾਂਤ (VSEPR) ਦੇ ਅਨੁਸਾਰ (ਯੁਨਿਟ-4 ਵੇਖੋ) ਮੀਥੇਨ ਦੀ ਚੋਫਲਕੀ (tatrahedral) ਰਚਨਾ ਹੁੰਦੀ ਹੈ। (ਚਿੱਤਰ 13.1)। ਇਹ ਬਹੁਸਮਤਲੀ ਹੈ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ ਕੇਂਦਰ ਵਿੱਚ ਅਤੇ ਚਾਰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਸਮਚੌਫਲਕੀ ਦੇ ਚੌਹਾਂ ਕੋਣਿਆਂ ਉਤੋ ਸਥਿਤ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਇਕ ਬੰਧਨ ਕੋਣ 109.5° ਹੰਦਾ ਹੈ।

ਚਿੱਤਰ 13.1 ਮੀਥੇਨ (CH₄) ਦੀ ਚੌਫਲਕੀ ਰਚਨਾ

ਐਲਕੇਨਾਂ ਦੇ ਚੌਫਲਕ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ C-C ਅਤੇ C-H ਬੰਧਨ ਦੀਆਂ ਲੰਬਾਈਆਂ ਕ੍ਰਮਵਾਰ 154 pm ਅਤੇ112 pm ਹੁੰਦੀਆਂ ਹਨ।(ਯੁਨਿਟ-12 ਵੇਖੋ)। ਤੁਸੀਂ ਪਹਿਲਾਂ ਅਧਿਐਨ ਕਰ ਚੁਕੇ ਹੋ ਕਿ C-C ਅਤੇ C-H ਰ (ਸਿਗਮਾਂ) ਬੰਧਨ ਦਾ ਨਿਰਮਾਣ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ sp^3 ਸੰਕਰਿਤ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ 15 ਦੇ ਓਵਰ ਲੈਪਿੰਗ ਨਾਲ ਹੰਦਾ ਹੈ।

13.2.1 ਨਾਮਕਰਣ ਅਤੇ ਸਮਅੰਗਤਾ

ਯੁਨਿਟ-12 ਵਿੱਚ ਤੁਸੀਂ ਭਿੰਨ-ਭਿੰਨ ਯੋਗਿਕਾਂ ਦੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਦੀ ਨਾਮ ਪੱਧਤੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੋ। ਐਲਕੇਨ ਵਿੱਚ ਨਾਮ ਪੱਧਤੀ ਅਤੇ ਸਮਅੰਗਤਾ ਨੂੰ ਕੁਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਦੁਆਰਾ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸਧਾਰਣ ਨਾਮ ਬਰੈਕਟ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ ਪਹਿਲੇ ਤਿੰਨ ਮੈਂਬਰ ਮੀਥੇਨ, ਈਥੇਨ ਅਤੇ ਪਰੋਪੇਨ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਬਣਤਰ ਹੁੰਦੀ ਹੈ, ਜਦਕਿ ਉੱਚੀਆਂ ਐਲਕੇਨਾਂ ਵਿੱਚ ਇਕ ਤੋਂ ਵੱਧ ਬਣਤਰਾਂ ਵੀ ਹੋ ਸਕਦੀਆਂ ਹਨ। C₄H₁₀. ਦੀ ਰਚਨਾ ਲਿਖਣ ਤੇ ਚਾਰ ਕਾਰਬਨ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਸਿੱਧੀ ਲੜੀ ਜਾਂ ਸ਼ਾਖਿਤ ਲੜੀ ਦੇ ਦੁਆਰਾ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਰਚਨਾ I ਅਤੇ II ਦਾ ਸਮਾਨ ਹੈ, ਪਰ ਉਬਲਣ ਦਰਜਾ ਅਤੇ ਹੋਰ ਗੁਣ ਭਿੰਨ

ਬਿਊਟੇਨ (n- ਬਿਊਟੇਨ), (ਊਬਲਣ ਅੰਕ 273 K)

Π

ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਰਚਨਾਵਾਂ III, IV ਅਤੇ V ਦੇ ਅਣਵੀਂ ਸੂਤਰ ਸਮਾਨ ਹਨ, ਪਰ ਉਬਲਣ ਦਰਜਾ ਅਤੇ ਬਾਕੀ ਗੁਣ ਭਿੰਨ ਹਨ। ਰਚਨਾ I ਅਤੇ II ਬਿਉਟੇਨ ਦੇ ਸਮਅੰਗਕ ਹਨ,

Ш

H H H H H
H-C-C-C-C-C-C-C-H
H H H H H H
H H H H H H
(
$$\hat{V}$$
ਨਟੇਨ (n - \hat{V} ਨਟੇਨ)
(Θ ਬਲਣ ਦਰਜਾ 309 K)

IV

$$\begin{array}{ccccc} H & H & H & H \\ H - \overset{1}{\overset{1}{C}} & - \overset{2}{\overset{1}{C}} & - \overset{3}{\overset{1}{C}} & - \overset{4}{\overset{1}{C}} & - H \\ & & & & \\ H & H - \overset{1}{C} - H & H \\ & & & H \end{array}$$

2-ਮੀਥਾਈਲ ਬਿਊਟੇਨੇ (ਆਈਸੋਪੈਨਟੇਨ) (ਉਬਲਣ ਦਰਜਾ 301 K)

V

Η

ਜਦਕਿ ਰਚਨਾ III, IV ਅਤੇ V ਪੈਨਟੇਨ ਦੇ ਸਮਅੰਗਕ (Isomers) ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਇਨ੍ਹਾਂ ਦੀਆਂ ਰਚਨਾਵਾਂ ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਣ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਇਨ੍ਹਾਂ ਦੀਆਂ ਰਚਨਾਵਾਂ ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਣ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਬਣਤਰੀ ਸਮਅੰਕ (Structural Isomers) ਕਹਿਣਾ ਠੀਕ ਹੋਵੇਗਾ। I ਅਤੇ III ਵਿੱਚ ਸਿੱਧੀ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਲੜੀ ਹੈ, ਜਦ ਕਿ ਰਚਨਾ II, IV ਅਤੇ V ਵਿੱਚ ਸ਼ਾਖਿਤ ਕਾਰਬਨ ਲੜੀ ਹੈ। ਇਸ ਲਈ, ਅਜਿਹੇ ਬਣਤਰੀ ਸਮਅੰਗਕ, ਜੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਲੜੀ (Chain) ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਣ ਹੁੰਦੇ ਹਨ, ਨੂੰ ਚੇਨ ਸਮਅੰਗਕ (Chain Isomers) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਵੇਖਿਆ ਕਿ C₄H₁₀ ਅਤੇ C₅H₁₂ ਦੇ ਕ੍ਰਮਵਾਰ ਦੋ ਅਤੇ ਤਿੰਨ ਚੇਨ ਸਮਅੰਗਰ ਹੁੰਦੇ ਹਨ।

ਉਦਾਹਰਣ 13.1 ਅਣਵੀਂ ਸੂਤਰ C_6H_{14} ਵਾਲੀ ਐਲਕੇਨ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਚੇਨ ਸਮਔਗਕਾਂ ਦੀ ਰੰਚਨਾ ਅਤੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ ਲਿਖੋ। ਹੱਲ (i) $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ *n*-ਹੈਕਸੇਨ (ii) $CH_3 - CH - CH_2 - CH_2 - CH_3$ CH_3 2-ਮੀਥਾਈਲ ਪੈਨਟੇਨ (iii) $CH_3 - CH_2 - CH - CH_2 - CH_3$ CH_3 3-ਮੀਥਾਈਲ ਪੈਨਟੇਨ (iv) $CH_3 - CH - CH - CH_3$ CH₃ CH₃ 2,3-ਡਾਈਮੀਥਾਈਲ ਬਿਊਟੇਨ CH_3 (v) $CH_3 - C - CH_2 - CH_3$ CH_3 2,2 - ਡਾਈਮੀਥਾਈਲ ਬਿਊਟੇਨ

ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਜੁੜੇ ਹੋਏ ਹੋਰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਉੱਤੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਪ੍ਰਾਈਮਰੀ (1°), ਸੈਕੰਡਰੀ (2°), ਟਰਸ਼ਰੀ (3°) ਅਤੇ ਕੁਆਟਰਨਰੀ (4°). ਕਾਰਬਨ ਪਰਮਾਣੂ ਕਹਿੰਦੇ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂ (ਜੋ ਹੋਰ ਕਾਰਬਨ ਨਾਲ ਨਹੀਂ ਜੁੜਿਆ ਹੁੰਦਾ, ਜਿਵੇਂ-ਮੀਥੇਨ ਵਿੱਚ ਅਤੇ ਕੇਵਲ ਇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਜੁੜਿਆ ਹੋਵੇ, ਜਿਵੇਂ-ਈਥੇਨ ਵਿੱਚ ਉਸ ਨੂੰ ਪ੍ਰਾਈਮਰੀ ਕਾਰਬਨ ਕਹਿੰਦੇ ਹਨ। ਅੰਤਿਮ ਸਿਰੇ ਵਾਲੇ ਪਰਮਾਣੂ ਹਮੇਸ਼ਾ ਪ੍ਰਾਈਮਰੀ ਹੁੰਦੇ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂ, ਜੋ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੁੜਿਆ ਹੋਵੇ ਉਸ ਨੂੰ ਸੈਕੰਡਰੀ ਕਹਿੰਦੇ ਹਨ। ਟਰਸ਼ਰੀ ਕਾਰਬਨ ਤਿੰਨ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਅਤੇ ਕੁਆਟਰਨਰੀ ਜਾਂ ਨੀਓਕਾਰਬਨ ਚਾਰ ਹੋਰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਰਚਨਾਵਾਂ I ਤੋਂ V ਵਿੱਚ 1°, 2°, 3° ਅਤੇ 4° ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੱ ? ਜੇ ਉੱਚੀਆਂ ਐਲਕੇਨਾਂ ਦੀਆਂ ਬਣਤਰਾਂ ਬਣਾਉਂਦੇ ਰਹੋਗੇ, ਤਾਂ ਕਈ ਕਿਸਮ ਦੇ ਸਮਅੰਗਕ

Downloaded from https:// www.studiestoday.com

367

368

ਪ੍ਰਾਪਤ ਹੋਣਗੇ। C_6H_{14} ਦੇ ਪੰਜ, C_7H_{16} ਦੇ ਨੌਂ ਅਤੇ $C_{10}H_{22}$ ਦੇ 75 ਸਮਅੰਗਕ ਸੰਭਵ ਹਨ।

ਰਚਨਾ II, IV ਅਤੇ V, ਵਿੱਚ ਤੁਸੀਂ ਵੇਖਿਆ ਕਿ –CH₃ ਗਰੁੱਪ ਕਾਰਬਨ 1 ਕ੍ਰਮ ਅੰਕ -2 ਨਾਲ ਜੁੜਿਆ ਹੈ।ਐਲਕੇਨ ਦੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਜਾਂ ਹੋਰ ਵਰਗਾਂ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚ –CH₃, –C₂H₅, –C₃H₇ ਵਰਗੇ ਗਰੁੱਪਾਂ ਨੂੰ ਐਲਕਾਈਲ ਗਰੁੱਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਨੂੰ ਐਲਕੇਨ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਵਿਸਥਾਪਨ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਐਲਕਾਈਲ ਗਰੁੱਪ ਦਾ ਅਨਸੂਤਰ C_nH_{2n+1} (ਯੁਨਿਟ-12) ਹੈ।

ਉਦਾਹਰਣ 13.2 C_5H_{11} ਅਣਵੀਂ ਸੂਤਰ ਵਾਲੇ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਸਮਅੰਗਕਾਂ ਦੀਆਂ ਰਚਨਾਵਾਂ ਲਿਖੋ ਅਤੇ ਭਿੰਨ-ਭਿੰਨ ਕਾਰਬਨ ਚੇਨ ਵਿੱਚ –OH ਜੋੜਨ ਨਾਲ ਪ੍ਰਾਪਤ ਐਲਕੋਹਲਾਂ ਦੇ ਆਈ. ਯੂ.ਪੀ. ਸੀ ਨਾਂ ਦੱਸੋ।

$\mathbf{C_5}\mathbf{H_{11}}$ ਗਰੁੱਪ ਦੀ ਬਣਤਰ	ਸੰਗਤ ਐਲਕੋਹਲ	ਐਲਕੋਹਲ ਦਾ ਨਾਂ
(i) $CH_3 - CH_2 - CH_$	$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{OH}$	ਪੈਨਟੇਨ-1-ਓਲ
(ii) $CH_3 - CH - CH_2 - CH_2 - CH_3$	$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \\ I \\ OH \end{array}$	ਪੈਨਟੇਨ-2-ਓਲ
(iii) $CH_3 - CH_2 - CH - CH_2 - CH_2$	$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \\ I \\ OH \end{array}$	ਪੈਨਟੇਨ-3-ਓਲ
$\begin{array}{c} \mathrm{CH_3}\\ \mathrm{I}\\ \mathrm{(iv)}\ \mathrm{CH_3}-\mathrm{CH}-\mathrm{CH_2}-\mathrm{CH_2}-\end{array}$	$\begin{array}{c} \operatorname{CH}_3\\ I\\ \operatorname{CH}_3-\operatorname{CH}-\operatorname{CH}_2-\operatorname{CH}_2-\operatorname{OH}\end{array}$	3-ਮੀਥਾਈਲ- ਬਿਊਟੇਨ-1-ਓਲ
$\begin{array}{c} \mathrm{CH}_{3} \\ \mathrm{I} \\ \mathrm{(v)} \ \mathrm{CH}_{3} - \mathrm{CH}_{2} - \mathrm{CH} - \mathrm{CH}_{2} - \end{array}$	$\begin{array}{c} \mathrm{CH_3}\\ \mathrm{I}\\ \mathrm{CH_3}-\mathrm{CH_2}-\mathrm{CH}-\mathrm{CH_2}-\mathrm{OH} \end{array}$	2-ਮੀਥਾਈਲ- ਬਿਊਟੇਨ-1-ਓਲ
$\begin{array}{c} \mathrm{CH}_{3}\\ \mathrm{I}\\ \mathrm{(vi)}\ \mathrm{CH}_{3}- \underset{\mathrm{I}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\\ \end{array}$	$\begin{array}{c} \operatorname{CH}_3\\ I\\ \operatorname{CH}_3-\operatorname{C}-\operatorname{CH}_2-\operatorname{CH}_3\\ \operatorname{OH}\\ \end{array}$	2-ਮੀਥਾਈਲ- ਬਿਊਟੇਨ-2-ਓਲ
$\begin{array}{c} \mathrm{CH}_{3}\\ \mathrm{I}\\ \text{(vii)}\ \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2}-\\ \mathrm{I}\\ \mathrm{CH}_{3}\end{array}$	$CH_3 \\ I \\ CH_3 - C - CH_2OH \\ I \\ CH_3$	2,2- ਡਾਈਮੀਥਾਈਲ- ਪਰੋਪੇਨ-1-ਓਲ
CH ₃ (viii) CH ₃ – CH – CH –CH ₃	$\begin{array}{c} \mathrm{CH}_3 \mathrm{OH} \\ \mathrm{I} \mathrm{I} \\ \mathrm{CH}_3 - \mathrm{CH} - \mathrm{CH} - \mathrm{CH}_3 \end{array}$	3-ਮੀਥਾਈਲ- ਬਿਊਟੇਨ-2-ਓਲ

369

ਸਾਰਣੀ 13.1 ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮਕਰਣ				
ਬਣਤਰ ਅਤੇ ਆਈ ਯੂ.ਪੀ ਏ.ਸੀ. ਨਾਮ	ਟਿੱਪਣੀਆਂ			
$\begin{array}{c} CH_{3} & CH_{2} - CH_{3} \\ \downarrow & \downarrow \\ I \\ (\Theta) & {}^{1}CH_{3} - {}^{2}CH - {}^{3}CH_{2} - {}^{4}CH - {}^{5}CH_{2} - {}^{6}CH_{3} \end{array}$	ਘੱਟ ਤੋਂ ਘੱਟ ਜੋੜ ਅਤੇ ਵਰਣਮਾਲਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਾ			
(4 – ਈਥਾਈਲ – 2 – ਮਿਥਾਈਲ ਹੈਕਸੇਨ) CH ₂ – CH (ਅ) ⁸ CH ₃ – ⁷ CH ₂ – ⁶ CH ₂ – ⁵ CH – ⁴ CH – ³ C – ² CH (H ¹ CH ¹ CH ¹ CH ¹ CH ₃ CH ₃ CH ₂ – CH ₃	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow			
(3,3-ਡਾਈਈਥਾਈਲ-5-ਆਈਸੋਪਰੋਬਾਈਲ-4-ਮੀਥਾਈਲ) CH(CH ₃) ₂ ।				
(ੲ) ¹ CH ₃ - ² CH ₂ - ³ CH ₂ - ⁴ CH- ⁵ CH- ⁶ CH ₂ - ⁷ CH ₂ - ⁸ CH ₂ - ⁹ CI H ₃ C-CH-CH ₂ - CH ₃ 5- <i>sec</i> - ਬਊਟਾਈਲ-4-ਆਈਸੋਪਰੋਪਾਈਲ ਡੀਕੇਨ (ਸ) ¹ CH ₃ - ² CH ₂ - ³ CH ₂ - ⁴ CH ₂ - ⁵ CH- ⁶ CH ₂ - ⁷ CH ₂ - ⁸ CI	ੂੰ ਨਹੀਂ ਮੰਨਿਆ ਜਾਂਦਾ, ਆਇਸੋਪਰੋਪਾਈਲ ਨੂੰ ਇੱਕ ਸ਼ਬਦ ਮੰਨਦੇ ਹਨ। ਪਾਸੇ ਦੀ ਚੇਨ ਦੇ ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦਾ			
(ਤੂ ਨੂੰ ਸੂੜ ਅਕਨ ਵਰਣਮਾਲਾ ਦੇ ਤਰਜੀਹ ਕਮ ਵਿੱਚ			
ਉਦਾਹਰਣ 13.3 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦਾ ਆਈ.ਯੂ.ਪੀ.ਏ.ਸੀ. ਨਾਂ ਲਿਖੋ : (i) (CH ₃) ₃ C CH ₂ C(CH ₃) ₃ (ii) (CH ₃) ₂ C(C ₂ H ₅) ₂ (iii) ਟੈਟ੍ਰਾ ਟਰਸ਼ਰੀ ਬਿਊਟਾਈਲ ਮੀਥੇਨ ਹੱਲ (i) 2, 2, 4, 4-ਟੈਟ੍ਰਾ ਮੀਥਾਈਲ ਪੈਨਟੇਨ (ii) 3, 3-ਡਾਈਮੀਥਾਈਲ ਪੈਨਟੇਨ (iii) 3,3-ਡਾਈ (ਟਰਸ਼ਰੀ)-ਬਿਊਟਾਈਲ -2, 2, 4, 4 - ਟੈਟ੍ਰਾਮੀਥਾਈਲ ਪੈਨਟੇਨ	ਉਦਾਹਰਣ ਵਜੋਂ— 3-ਈਥਾਈਲ -2,2-2 ਡਾਈ ਮੀਥਾਈਲ ਪੈਨਟੇਨ ਦੀ ਰਚਨਾ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਟੈੱਪਾਂ ਦੁਆਰਾ ਸਪਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। i) ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਅੰਕਨ ਦਿਓ- C - C - C - C - C ii) ਕਾਰਬਨ-3 ਉੱਤੇ ਇੱਕ ਈਥਾਈਲ ਗਰੁੱਪ ਅਤੇ ਕਾਰਬਨ-2 ਉੱਤੇ ਦੋ ਮੀਥਾਈਲ ਗਰੁੱਪ ਜੋੜੋ : C ¹ - C ² - C ³ - C ⁴ - C ⁵			

370

iii) ਕਾਰਬਨ-3 ਉੱਤੇ ਇੱਕ ਈਥਾਈਲ ਗਰੁੱਪ ਅਤੇ ਕਾਰਬਨ 2 ਉੱਤੇ ਦੋ ਮੀਥਾਈਲ ਗਰੁਪ ਜੋੜੋ

iv) ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੀ ਸੰਯੋਜਕਤਾ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਲੋੜੀਂਦੀ ਸੰਖਿਆ ਨਾਲ ਸੰਤੁਸ਼ਟ ਕਰੋ।

$$\begin{array}{c} \mathrm{CH}_{3}\\ \mathrm{I}\\ \mathrm{CH}_{3} \ - \ \mathrm{C} \ - \ \mathrm{CH} \ - \ \mathrm{CH}_{2} \ - \ \mathrm{CH}_{3}\\ \mathrm{I}\\ \mathrm{CH}_{3} \ \mathrm{C}_{2}\mathrm{H}_{5} \end{array}$$

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸਹੀ ਰਚਨਾ ਤੇ ਪਹੁੰਚ ਜਾਂਦੇ ਹਾਂ। ਜੇ ਤੁਸੀਂ ਦਿੱਤੇ ਹੋਏ ਨਾਂ ਨੂੰ ਰਚਨਾ ਸੂਤਰ ਵਿੱਚ ਲਿਖਣਾ ਸਮਝ ਚੁਕੇ ਹੋ, ਤਾਂ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ-

ਉਦਾਹਰਣ 13.4

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਬਣਤਰੀ ਸੂਤਰ ਲਿਖੋ– (i) 3, 4, 4, 5–ਟੈਟ੍ਰਾਮੀਥਾਈਲ ਹੈਪਟੇਨ (ii) 2,5-ਡਾਈ ਮੀਥਾਈਲ ਹੈਕਸੇਨ

ਹੱ ਲ

(i)
$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

 $I - CH_3 - CH_2 - CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3 - CH_3$
(ii) $CH_3 - CH - CH_2 - CH_2 - CH_3 - CH_3$

ਉਦਾਹਰਣ 13.5

ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੀਆਂ ਬਣਤਰਾਂ ਲਿਖੋ। ਦਿੱਤੇ ਗਏ ਨਾਮ ਅਸ਼ੁੱਧ ਕਿਉਂ ਹਨ ? ਸਹੀ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ ਲਿਖੋ।

- (i) 2-ਈਥਾਈਲਪੈਨਟੇਨ
- (ii) 5-ਈਥਾਈਨ-3ਮੀਥਾਈਲ ਹੈਪਟੇਨ

ਹੱਲ

(i) $CH_3 - CH - CH_2 - CH_2 - CH_3$

 \dot{C}_2H_5

ਇਸ ਯੋਗਿਕ ਵਿੱਚ ਸਭ ਤੋਂ ਲੰਬੀ ਚੇਨ ਪੰਜ ਕਾਰਬਨਾਂ ਦੀ ਨਾ ਹੋ ਕੇ ਛੇ ਕਾਰਬਨਾਂ ਦੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਦਾ ਸਹੀ ਨਾਂ 3-ਮੀਥਾਈਲ ਹੈਕਸੇਨ ਹੈ।

ਇਸ ਯੋਗਿਕ ਵਿੱਚ ਅੰਕਨ ਉਸ ਸਿਰੇ ਤੋਂ ਸ਼ੁਰੂ ਕਰਾਂਗੇ, ਜਿਸ ਨਾਲ ਈਥਾਈਲ ਗਰੁੱਪ ਨੂੰ ਛੋਟਾ ਅੰਕ ਮਿਲੇ। ਇਸ ਲਈ ਸਹੀ ਨਾਂ 3-ਈਥਾਈਲ-5 ਮੀਥਾਈਲ ਹੈਪਟੇਨ ਹੈ।

13.2.2 ਤਿਆਰੀ

ਐਲਕੇਨਾਂ ਦੇ ਮੁੱਖ ਸਰੋਤ ਪੈਟ੍ਰੋਲੀਅਮ ਅਤੇ ਪ੍ਰਾਕਿਤਕ ਗੈਸ ਹਨ ਫਿਰ ਵੀ ਐਲਕੇਨਾਂ ਨੂੰ ਇਨ੍ਹਾਂ ਵਿਧੀਆਂ ਦੁਆਰਾ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

1. ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਤੋਂ

ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਸੂਖਮ ਵਿਭਾਜਿਤ ਉਤਪ੍ਰੇਰਕ (ਜਿਵੇਂ-ਪਲੈਟੀਨਮ, ਪਲੇਡੀਅਮ ਅਤੇ ਨਿੱਕਲ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਐਲਕੀਨ ਨਾਲ ਜੁੜ ਕੇ ਐਲਕੇਨ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਹਾਈਡ੍ਰੋਜੀਨੇਸ਼ਨ (Hydrogenation) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਧਾਤਾਂ ਗੈਸਾਂ ਨੂੰ ਆਪਣੀ ਸਤ੍ਹਾ ਤੇ ਸੋਖ ਲੈਂਦੀਆਂ ਹਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ-ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲ ਕਰਦੀਆਂ ਹਨ। ਪਲੈਟੀਨਮ ਅਤੇ ਪਲੇਡੀਅਮ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਹੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਉਤਪ੍ਰੇਰਿਤ ਕਰ ਦਿੰਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਨਿਕੱਲ ਉਤਪ੍ਰੇਰਕ ਲਈ ਕੁਝ ਉੱਚੇ ਤਾਪਮਾਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

$$CH_{2} = CH_{2} + H_{2} \xrightarrow{Pt/Pd/Ni} CH_{3} - CH_{3}$$

शीषीत शीषेत (13.1)

 CH_3 −CH= CH_2 + H_2 − $\xrightarrow{Pt/Pd/Ni}$ → CH_3 − CH_2 − CH_3 ਪਰੋਪੀਨ ਪਰੋਪੇਨ

(13.2)

$$CH_3 - C \equiv C - H + 2H_2 \xrightarrow{Pt/Pd/Ni} CH_3 - CH_2 - CH_3$$
ਪਰੋਪਾਈਨ ਪਰੋਪੇਨ

2. ਐਲਕਾਈਲ ਹੈਲਾਈਡਾਂ ਤੋਂ

ਐਲਕਾਈਲ ਹੇਲਾਈਡਾਂ (ਫਲੋਰਾਈਡਾਂ ਤੋਂ ਇਲਾਵਾ) ਦਾ ਜਿੰਕ ਅਤੇ ਹਲਕੇ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਦੁਆਰਾ ਲਘੁਕਰਣ ਕਰਕੇ ਐਲਕੇਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

 CH_3 −Cl + H_2 $\xrightarrow{Zn, H^+}$ CH_4 + HCl (13.4) ਕਲਰੋਮੀਬੇਨ ਮੀਬੇਨ

371

$$C_2H_5 - Cl + H_2 \xrightarrow{Zn, H^+} C_2H_6 + HCl$$

ਕਲੋਰੋਈਥੇਨ ਈਥੇਨ (13.5)
 $CH_3CH_2CH_2Cl + H_2 \xrightarrow{Zn, H^+} CH_3CH_2CH_3 + HCl$
1-ਕਲੋਰੋ ਪਰੋਪੇਨ ਪਰੋਪੇਨ

ਪਰੋਪੇਨ

ii) ਖੁਸ਼ਕ ਈਥਰੀ ਘੋਲ (ਨਮੀਂ ਤੋਂ ਮੁਕਤ)ਵਿੱਚ ਐਲਕਾਈਲ ਹੇਲਾਈਡ ਸੋਡੀਅਮ ਧਾਤ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਉਚੀਆਂ ਐਲਕੇਨਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਵੁਰਟਜ਼ ਪ੍ਤੀਕਿਰਿਆ (Wurtz reaction) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਸਮਕਾਰਬਨ ਪਰਮਾਣੂ ਸੰਖਿਆ ਵਾਲੀਆਂ ਉੱਚੀਆਂ ਐਲਕੇਨਾਂ ਬਨਾਉਣ ਦੇ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

CH₃Br+2Na+BrCH₃-<u>ਖੋਸ਼ਕ ਈਥਰ</u>→CH₃-CH₃+2NaBr ਬ੍ਰੋਮੋਮੀਥੇਨ ਈਥੇਨ

(13.7)

(13.6)

 $C_2H_5Br+2Na+BrC_2H_5$ - $\underline{4}$ на धोयन $C_2H_5-C_2H_5$ ਬੋਮੋਈਥੇਨ n-ਬਿਊਟੇਨ (13.8)

ਕੀ ਹੋਵੇਗਾਂ, ਜੇ ਦੋ ਅ-ਸਮਾਨ ਐਲਕਾਈਲ ਹੇਲਾਈਡ ਲੈਂਦੇ ਹਾਂ ?

ਕਾਰਬੋਕਸਿਲਿਕ ਤੇਜਾਬਾਂ ਤੋਂ

ਕਾਰਬੋਕਸਿਲਿਕ ਤੇਜਾਬਾਂ ਦੇ ਸੋਡੀਅਮ ਲੁਣ ਨੂੰ ਸੋਡਾ ਲਾਈਮ (ਸੋਡੀਅਮ ਹਾਈਡ਼ੋਕਸਾਈਡ ਅਤੇ ਕੈਲਸ਼ੀਅਮ ਆੱਕਸਾਈਡ ਦਾ ਮਿਸ਼ਰਣ) ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਕਾਰਬੋਕਸਿਲਿਕ ਐਸਿਡ ਤੋਂ ਇੱਕ ਘੱਟ ਕਾਰਬਨ ਪਰਮਾਣੂ ਵਾਲੀ ਐਲਕੇਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਕਾਰਬੋਕਿਸਿਲਿਕ ਐਸਿਡ ਦੇ ਇਸ ਵਿਲੋਪਨ ਨੂੰ ਡੀਕਾਰਬੋਕਸੀ ਲੇਸ਼ਣ (Decarboxylation) ਕਹਿੰਦੇ ਹਨ।

$$CH_3COO^-Na^+ + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

ਉਦਾਹਰਣ 13.6

ਪਰੋਪੇਨ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਕਿਸ ਤੇਜਾਬ ਦੇ ਸੋਡੀਅਮ ਲੂਣ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ? ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵੀ ਲਿਖੋ।

ਹੱਲ

ਬਿਊਟੇਨੋਇਕ ਐਸਿਡ,

 $CH_3CH_2CH_2COO^-Na^+ + NaOH \xrightarrow{CaO}$

CH₃CH₂CH₃+Na₂CO₃

ii) ਕੋਲਬੇ ਦੀ ਬਿਜਲਈ ਅਪਘਟਨ ਵਿਧੀ, ਕਾਰਬੋਕਸਿਲਿਕ ਐਸਿਡ ਦੇ ਸੋਡੀਅਮ ਜਾਂ ਪੋਟਾਸ਼ੀਅਮ ਲੁਣਾਂ ਦੇ ਜਲੀ ਘੋਲ ਦਾ ਬਿਜਲਈ ਅਪਘਟਨ ਕਰਨ ਤੇ ਐਨੋਡ ਉੱਤੇ ਸਮਕਾਰਬਨ ਪਰਮਾਣ ਸੰਖਿਆ ਵਾਲੀਆਂ ਐਲਕੇਨਾਂ ਪਾਪਤ ਹੰਦੀਆਂ ਹਨ।

ਇਹ ਪ੍ਰਤੀ ਕਿਰਿਆ ਹੇਠ ਲਿਖੇ ਸਟੈਂਪਾਂ ਵਿੱਚ ਪੂਰੀ ਹੁੰਦੀ ਹੈ-

$$\begin{array}{c} & \mathbf{O} \\ & \mathbf{1} \\ \mathbf{2} \mathbf{C} \mathbf{H}_{3} \mathbf{C} \mathbf{O} \mathbf{O}^{-} \mathbf{N} \mathbf{a}^{+} \rightleftharpoons \mathbf{2} \mathbf{C} \mathbf{H}_{3} - \mathbf{C} - \mathbf{O}^{-} + \mathbf{2} \mathbf{N} \mathbf{a}^{+} \end{array}$$

ii) ਐਨੋਡ ਉੱਤੇ

i)

$$\begin{array}{ccc} O & O \\ II & II \\ 2CH_3 - C - O & \xrightarrow{-2e^-} 2CH_3 - C - O \\ \vdots & \xrightarrow{-2CH_3} + 2CO_2 \\ \end{array}$$

iii)
$$H_3C + CH_3 \longrightarrow H_3C - CH_3^{\uparrow}$$

iv) At cathode : $H_2O+e^- \rightarrow OH+H$

 $2H \rightarrow H_2 \uparrow$

ਮੀਥੇਨ ਇਸ ਵਿਧੀ ਨਾਲ ਨਹੀਂ ਬਣਾਈ ਜਾ ਸਕਦੀ, ਕਿਉਂ ?

13.2.3 ਗਣ

ਭੌਤਿਕ ਗੁਣ

ਐਲਕੇਨ ਅਣੁਆਂ ਵਿੱਚ C-C ਅਤੇ C-H ਬੰਧਨ ਦੇ ਸਹਿਸੰਯੋਜਕ ਗੁਣ ਅਤੇ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੁਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਅੰਤਰ ਹੋਣ ਦੇ ਕਾਰਣ ਲਗਪਗ ਸਾਰੇ ਐਲਕੇਕ ਅ–ਧਰੁਵੀ ਹੁੰਦੇ ਹਨ।ਇਨ੍ਹਾਂ ਵਿੱਚ ਦੁਰਬਲ ਵਾਂਡਰਵਾਲਸ ਬਲ ਹੁੰਦੇ ਹਨ। ਦੁਰਬਲ ਬਲਾਂ ਦੇ ਕਾਰਣ ਐਲਕੇਨ ਪਰਿਵਾਰ ਦੇ ਪਹਿਲੇ ਚਾਰ ਮੈਂਬਰ C_1 ਤੋਂ C_4 ਤੱਕ ਗੈਸ, C_5 ਤੋਂ C₁₇ ਤੱਕ ਦ੍ਵ ਅਤੇ C₁₈ ਜਾਂ ਉਸ ਤੋਂ ਵੱਧ ਕਾਰਬਨ ਯੁਕਤ ਐਲਕੇਨ298 K ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਸੋਚਦੇ ਹੋ ? ਪੈਟ੍ਰੋਲ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦਾ ਮਿਸ਼ਰਣ ਹੈ, ਜਿਸ ਦੀ ਵਰਤੋਂ ਆਟੋਮੋਬਾਈਲ ਵਾਹਨਾਂ ਵਿੱਚ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪੈਟ੍ਰੋਲ ਅਤੇ ਨਿਯਮ ਪ੍ਰਭਾ ਜਾਂ ਦੀ ਵਰਤੋਂ ਕਪੜਿਆਂ ਉਤੋਂ ਗਗੀਸ ਦੇ ਦਾਗ ਹਟਾਉਣ, ਉਨ੍ਹਾਂ ਦੀ ਡ੍ਰਾਈ ਕਲੀਨਿੰਗ ਕਰਨ ਆਦਿ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਇਸ ਪੇਖਣ ਦੇ ਅਧਾਰ ਤੇ ਗਰੀਸੀ ਪਦਾਰਥਾਂ ਦੀ ਪਕਿਰਤੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਸੋਚਦੇ ਹੋ ? ਤੁਸੀਂ ਸਹੀ ਹੋ ਜੇ ਤੁਸੀਂ ਕਹਿੰਦੇ ਹੋ ਕਿ ਗਰੀਸ (ਉੱਚ ਐਲਕੇਨਾਂ ਦਾ ਮਿਸ਼ਰਣ) ਅਧਰਵੀ

372

ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਪਾਣੀ ਵਿਰੋਧੀ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੋਵੇਗਾ ਅਤੇ ਘੋਲਕਾਂ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਸਬੰਧ ਵਿੱਚ ਆਮ ਤੌਰ ਤੇ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਧਰੁਵੀ ਪਦਾਰਥ ਧਰੁਵੀ ਘੋਲਕਾਂ, ਜਦਕਿ ਅਧਰੁਵੀ ਪਦਾਰਥ ਅਧਰੁਵੀ ਘੋਲਕਾਂ ਵਿੱਚ ਘੁਲਦੇ ਹਨ, ਅਰਥਾਤ ਸਮਾਨ ਨੂੰ ਸਮਾਨ ਘੋਲਦਾ ਹੈ।

ਭਿੰਨ-ਭਿੰਨ ਐਲਕੇਨਾਂ ਦੇ ੳਬਲਣ ਦਰਜੇ ਸਾਰਣੀ 13.1 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ, ਜਿਨ੍ਹਾਂ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਅਣਵੀਂ ਪੁੰਜ ਦੇ ਵਾਧੇ ਦੇ ਨਾਲ ਨਾਲ ਉਨ੍ਹਾਂ ਦੇ ਉਬਲਣ ਦਰਜੇ ਵਿੱਚ ਵੀ ਨਿਸ਼ਚਿਤ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਇਸ ਤੱਥ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ ਅਣਵੀਂ ਅਕਾਰ ਜਾਂ ਅਣੂ ਦਾ ਸਤ੍ਹਾ ਖੇਤਰਫਲ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਉਨ੍ਹਾਂ ਵਿੱਚ ਅੰਤਰਅਣਵੀਂ ਵਾਂਡਰ ਵਾਲਸ ਬਲ ਵਧਦੇ ਹਨ। ਪੈਨਟੇਨ ਦੇ ਤਿੰਨ ਸਮਅੰਗਕ ਐਲਕੇਨਾਂ (ਪੈਨਟੇਨ, 2-ਮੀਥਾਈਲ ਬਿਊਟੇਨ, ਅਤੇ 2,2-ਡਾਈਮੀਥਾਈਲ ਪਰੋਪੇਨਾ ਦੇ ਉਬਲਣ ਅੰਕਾਂ ਨੂੰ ਵੇਖਣ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਪੈਨਟੇਨ ਵਿੱਚ ਪੰਜ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਇੱਕ ਸਿੱਧੀ ਚੇਨ ਦਾ ਉੱਚ ਉਲਬਣ ਅੰਕ (309.1K) ਹੈ, ਜਦਕਿ 2,2-ਡਾਈ ਮੀਥਾਈਲ ਪਰੋਪੰਨ 282.5K ਉੱਤੇ ਉਬਲਦੀ ਹੈ।ਸ਼ਾਖਿਤ ਚੇਨਾਂ ਦੀ ਸੰਖਿਆ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਲਗਪਗ ਗੋਲ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਗੋਲਾਕਾਰ ਅਣੂਆਂ ਵਿੱਚ ਘੱਟ ਆਪਸੀ ਸੰਪਰਕ ਸਥਲ ਅਤੇ ਦਰਬਲ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੇ ਉਬਲਣ ਦਰਜੇ ਘੱਟ ਹੁੰਦੇ ਹਨ।

ਰਸਾਇਣਿਕ ਗੁਣ

ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚੁੱਕਿਆ ਹੈ-ਤੇਜ਼ਾਬ, ਖਾਰਾਂ, ਆੱਕਸੀਕਾਰਕ (ਆੱਕਸੀਕਰਣ ਕਰਮਕ) ਅਤੇ ਲਘੂਕਾਰਕ (ਲਘੂਕਰਣ ਕਰਮਕ) ਪਦਾਰਥਾਂ ਦੇ ਪ੍ਰਤੀਐਲਕੇਨਾਂ ਆਮ ਤੌਰ ਤੇ ਅਕਿਰਿਆਸ਼ੀਲ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ।ਵਿਸ਼ੇਸ਼ ਹਾਲਤਾਂ ਵਿੱਚ ਐਲਕੇਨਾਂ ਇਨ੍ਹਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ।

1. ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ

ਐਲਕੇਨ ਦੇ ਇੱਕ ਜਾਂ ਵੱਧ ਹਾਈਡੋ੍ਰਜਨ ਪਰਮਾਣੂ , ਹੈਲੋਜਨ, ਨਾਈਟ੍ਰੋਗਰੁੱਪ ਅਤੇ ਸਲਫਾੱਨਿਕ ਐਸਿਡ ਗਰੁੱਪ ਦੁਆਰਾ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉੱਚੇ ਤਾਪਮਾਨ (573-773 K) ਜਾਂ ਸੂਰਜ ਦੇ ਪ੍ਰਸਾਰਿਤ ਪ੍ਰਕਾਸ਼ ਜਾਂ ਪਰਾ ਬੈਂਗਣੀ ਵਿਕੀਰਣਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਹੈਲੋਜੈਨੀਕਰਣ ਹੁੰਦਾ ਹੈ।ਘੱਟ ਅਣਵੀਂ ਭਾਰ ਵਾਲੀਆਂ ਐਲਕੇਨਾਂ ਨਾਈਟ੍ਰੀਕਰਣ ਅਤੇ ਸਲਫਾੱਨੀਕਰਣ ਨਹੀਂ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।ਉਹ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਐਲਕੇਨਾਂ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਪ੍ਰਤੀਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਨੂੰ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਮੀਥੇਨ ਦਾ ਕਲੋਰੀਕਰਣ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ–

ਹੈਲੋਜੀਨੇਸ਼ਨ

$$CH_4 + Cl_2 \xrightarrow{h\nu} CH_3Cl + HCl$$
ਕਲਰੋਮੀਥੇਨ (13.10)

$$CH_{3}Cl + Cl_{2} \xrightarrow{h\nu} CH_{2}Cl_{2} + HCl$$

ਡਾਈਕਲਰੋਮੀਥੇਨ (13.11)

$$CH_2Cl_2 + Cl_2 \xrightarrow{h\nu} CHCl_3 + HCl$$

ਟਰਾਈਕਲਰੋਮੀਥੇਨ (13.12)

$$CHCl_3 + Cl_2 \xrightarrow{h\nu} CCl_4 + HCl$$

(ਟੈਂਟਰਾਕਲੋਰੋਈਥੇਨ) (13.13)

		ਅਣੂ	ਉਬਲਣ ਅੰਕ	ਪਿਘਲਣ ਅੰਕ
ਸੂਤਰ		ਭਾਰ		
CH_4	ਮੀਥੇਨ	16	111.0	90.5
C ₂ H ₆	ਈਥੇਨ	30	184.4	101.0
C ₃ H ₈	ਪਰੋਪੇਨ	44	230.9	85.3
$C_{2}H_{6}$ $C_{3}H_{8}$ $C_{4}H_{10}$ $C_{5}H_{12}$	ਬਿਊਟੇਨ	58	272.4	134.6
$C_{5}H_{12}$	ਪੈਨਟੇਨ	72	309.1	143.3
C_H_	2-ਮੀਥਾਈਲ ਬਿਊਟੇਨ	72	300.9	113.1
$C_{5}H_{12}$	2,2- ਡਾਈਮੀਥਾਈਲ ਪ੍ਰੋਪੇਨ	72	282.5	256.4
$C_{6}H_{14}$	ਹੈਕਸੇਨ	86	341.9	178.5
$C_5 - 12$ $C_5 H_{12}$ $C_6 H_{14}$ $C_7 H_{16}$ $C_8 H_{18}$ $C_9 H_{20}$	ਹੈਪਟੇਨ	100	371.4	182.4
$C_{8}H_{18}^{10}$	ਔਕਟੇਨ	114	398.7	216.2
$C_{0}H_{20}$	ਨੋਨੇਨ	128	423.8	222.0
$C_{10}^{9}H_{22}^{20}$	ਡੀਕੇਨ	142	447.1	243.3
$C_{20}^{10}H_{42}^{22}$	ਆਈਕੇਸੇਨ	282	615.0	236.2

ਸਾਰਣੀ 13.2 ਐਲਕੇਨਾਂ ਦੇ ਉਬਲਣ ਅੰਕਾਂ ਅਤੇ ਪਿਘਲਣ ਅੰਕਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ

373

$$CH_3$$
- CH_3 + Cl_2 $\xrightarrow{h\nu}$ CH_3 - CH_2Cl + HCl
ਕਲੋਰੋਈਥੇਨ (13.14)

ਐਲਕੇਨਾਂ ਕੀ ਹੈਲੋਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਗਤੀ ਦਾ ਕ੍ਰਮ $F_2 > Cl_2 > Br_2 > I_2 ਹੈ। ਐਲਕੇਨਾਂ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ$ ਵਿਸਥਾਪਨ ਦੀ ਦਰ 3° > 2° > 1° ਹੈ। ਫਲੋਰੀਨੀਕਰਣ ਪ੍ਰਚੰਡਅਤੇ ਅ-ਨਿਯੰਤਰਿਤ ਹੁੰਦਾ ਹੈ ਜਦਕਿ ਆਇਓਡੀਨੀਕਰਣ ਬਹੁਤਧੀਮਾਂ ਹੁੰਦਾ ਹੈ। ਇਹ ਇੱਕ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ। ਇਹਕਿਰਿਆ ਅੱਕਸੀਕਾਰਕ (ਜਿਵੇਂ HIO₃ ਜਾਂ HNO₃) ਦੀ ਮੌਜੂਦਗੀਵਿੱਚ ਹੁੰਦੀ ਹੈ।

$$CH_4 + I_2 \rightleftharpoons CH_3 I + HI$$
 (13.15)

 $\mathrm{HIO}_{3} + 5\mathrm{HI} \rightarrow 3\mathrm{I}_{2} + 3\mathrm{H}_{2}\mathrm{O} \tag{13.16}$

ਹੈਲੋਜੀਨੀਕਰਣ ਮੁਕਤ ਮੂਲਕ ਚੇਨ ਕਿਰਿਆ ਵਿਧੀ ਦੁਆਰਾ ਇਨ੍ਹਾਂ ਤਿੰਨ ਸਟੈਂਪਾਂ-ਅਰੰਭ ਕਰਨਾ (Initiation) ਪ੍ਰਸਾਰਨ (Propagation) ਅਤੇ ਅੰਤ ਕਰਨਾ (Termination) ਦੇ ਦੁਆਰਾ ਪੁਰੀ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ ਵਿਧੀ

(i) ਸ਼ੁਰੂ ਕਰਨਾ-ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਹਵਾ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਕਲੋਰੀਨ ਅਣੂ ਦੇ ਸਮਅਪਘਟਨ (Homolysis) ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ। Cl–Cl ਬੰਧਨ, C–C ਅਤੇ C–H ਬੰਧਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਦੁਰਬਲ ਹੈ, ਇਸ ਲਈ ਇਹ ਅਸਾਨੀ ਨਾਲ ਟੁੱਟ ਜਾਂਦਾ ਹੈ।

(ii) ਪ੍ਰਸਾਰਨ-ਕਲੋਰੀਨ ਮੁਕਤ ਮੂਲਕ, ਮੀਥੇਨ ਅਣੂ ਉਤੇ ਹਮਲਾ ਕਰਕੇ C-H ਬੰਧਨ ਨੂੰ ਤੋੜਕੇ H-Cl ਬਣਾਉਂਦੇ ਹੋਏ ਮੀਥਾਈਲ ਮੁਕਤ ਮੂਲਕ ਬਣਾਉਂਦੇ ਹਨ, ਜੋ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਅਗ੍ਰ ਦਿਸ਼ਾ ਵਿੱਚ ਲੈ ਜਾਂਦੇ ਹਨ।

(a)
$$CH_4 + \dot{Cl} \xrightarrow{hv} \dot{CH}_3 + H - Cl$$

ਮੀਥਾਈਲ ਮੁਕਤ ਮੂਲਕ ਕਲੋਰੀਨ ਦੇ ਦੂਜੇ ਅਣੂ ਉੱਤੇ ਹਮਲਾ ਕਰਕੇ CH₃ – Cl ਅਤੇ ਇੱਕ ਹੋਰ ਕਲੋਰੀਨ ਮੁਕਤ ਮੂਲਕ ਬਣਾਉਦਾ ਹੈ, ਜੋ ਕਲੋਰੀਨ ਦੇ ਸਮਅਪਟੋਨ ਦੇ ਕਾਰਣ ਬਣਦੇ ਹਨ।

(b)
$$\dot{C}H_3 + Cl - Cl → hv → CH_3 - Cl + \dot{C}l$$

ਕਲੋਰੀਨ ਮੁਕਤ
ਮੁਲਕ

ਮੀਥਾਈਲ ਅਤੇ ਕਲੋਰੀਨ ਮੁਕਤ ਮੂਲਕ, ਜੋ ਉਪਰੋਕਤ ਸਟੈਂਪਾਂ (ੳ) ਅਤੇ (ਅ) ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ, ਮੁੜ ਵਿਵਸਥਿਤ ਹੋ ਕੇ ਚੇਨ ਪ੍ਰਤੀ ਕਿਰਿਆ ਸ਼ੁਰੂ ਕਰਦੇ ਹਨ ਪ੍ਸਾਰਨ ਸਟੈਂਪ (ੳ) ਅਤੇ (ਅ) ਸਿੱਧੇ ਹੀ ਮੁੱਖ ਉਪਜਾਂ ਦਿੰਦੇ ਹਨ ਪਰ ਹੋਰ ਕਈ ਪ੍ਸਾਰਨ ਸਟੈਂਪ ਸੰਭਵ ਹਨ। ਅਜਿਹੇ ਦੋ ਸਟੈਂਪ ਹੇਠ ਲਿਖਿਤ ਹੈ ਜੋ ਜਿਆਦਾ ਹੈਲੋਜਨ ਯੁਕਤ ਉਪਜਾਂ ਦੇ ਨਿਰਮਾਣ ਨੂੰ ਸਮਝਾਉਂਦੇ ਹਨ।

$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{Cl}+\dot{\mathrm{Cl}} &\rightarrow \dot{\mathrm{CH}}_{2}\mathrm{Cl} &+ \mathrm{HCl} \\ \dot{\mathrm{CH}}_{2}\mathrm{Cl} &+ \mathrm{Cl}-\mathrm{Cl} &\rightarrow \mathrm{CH}_{2}\mathrm{Cl}_{2} &+ \dot{\mathrm{Cl}} \end{array}$$

(iii) ਚੇਨ ਦਾ ਅੰਤ : ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਅਭਿਕਰਮਕ ਦੀ ਸਮਾਪਤੀ ਅਤੇ ਭਿੰਨ ਭਿੰਨ ਪਾਸੇ ਦੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਕਾਰਣ ਪ੍ਰਤੀ ਕਿਮਿਰਆ ਸਮਾਪਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਭਿੰਨ-ਭਿੰਨ ਸੰਭਾਵਿਤ ਚੇਨ ਅਤੇ ਸਟੈੱਪ ਹੇਠ ਲਿਖੇ ਹਨ-

$$(\Theta)$$
 $\dot{Cl} + \dot{Cl} \rightarrow Cl - Cl$

(
$$\mathfrak{M}$$
) $H_3C + CH_3 \rightarrow H_3C - CH_3$

 (\overline{e}) $H_3C + Cl \rightarrow H_3C-Cl$

ਭਾਵੇਂ ਸਟੈਂਪ (ੲ) ਵਿੱਚ CH₃ – Cl ਇੱਕ ਉਪਜ ਬਣਦੀ ਹੈ, ਪਰੰਤੂ ਅਜਿਹਾ ਹੋਣ ਨਾਲ ਮੁਕਤ ਮੂਲਕਾਂ ਦੀ ਕਮੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਮੀਥੇਨ ਦੇ ਕਲੋਰੀਨੀਕਰਣ ਦੇ ਦੌਰਾਨ ਈਥੇਨ ਇੱਕ ਸਹਿ ਉਪਜ ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਨ ਦੇ ਕਾਰਣ ਨੂੰ ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿਧੀ ਦੁਆਰਾ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

2 ਜਲਣ

ਐਲਕੇਨ ਹਵਾ ਅਤੇ ਡਾਈਆਕਸੀਜਨ ਦੀ ਮਜੂਦਗੀ ਵਿੱਚ ਗਰਮ ਕਰਨ ਤੇ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋਕੇ ਕਾਰਬਨਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਨਾਲ ਹੀ ਵੱਡੀ ਮਾਤਰਾ ਤਾਪ ੳਪਜਦਾ ਹੈ।

$$\begin{array}{rl} \mathrm{CH}_4(\mathrm{g}) + 2\mathrm{O}_2(\mathrm{g}) \ \rightarrow \ \mathrm{CO}_2(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{l}); \\ & & \Delta_{\mathrm{c}}H^{\odot} = - \, 890 \mathrm{kJmol}^{-1} \end{array}$$

(13.17)

 $\begin{array}{rl} {\rm C_4H_{10}(g)+13/2~O_2(g)} & \to {\rm 4CO_2(g)+5H_2O(l);} \\ & {\rm \Delta_c}H^{\odot}\!=\!-2875.84~{\rm kJ~mol^{-1}} \end{array}$

(13.18)

ਕਿਸੇ ਐਲਕੇਨ ਲਈ ਸਧਾਰਣ ਬਲਣਪ੍ਤੀ ਕਿਰਿਆ ਹੇਠ ਲਿਖੀ ਹੁੰਦੀ ਹੈ-

$$C_n H_{2n+2} + \left(\frac{3n+1}{2}\right) O_2 \rightarrow nCO_2 + (n+1) H_2O$$

(13.19)

ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਨਿਕਲਣ ਦੇ ਕਾਰਣ ਐਲਕੇਨਾਂ ਨੂੰ ਬਾਲਣ ਦੇ ਰਪ ਵਿਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ੋ ਐਲਕੇਨਾਂ ਦਾ ਘੱਟ ਹਵਾ ਜਾਂ ਡਾਈਆੱਕਸੀਜਨ ਦੁਆਰਾ ਅ-ਪੂਰਣ ਬਲਣ ਨਾਲ ਕਾਰਬਨ ਕੱਜਲ (Black) ਬਣਦਾ ਹੈ, ਜਿਸ ਦੀ ਵਰਤੋਂ ਸਿਆਹੀ, ਛਾਪਾਖਾਨਾ ਸਿਆਹੀ ਦੇ ਕਾਲੇ ਵਰਣ (Pigments) ਅਤੇ ਪੂਰਕ (filters) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

374

CH₄(g)+O₂(g)
$$\xrightarrow{w-y_{dee}}$$
C(s)+2H₂O(l)
(13.20)

3. ਨਿਯੰਤਰਿਤ ਆੱਕਸੀਕਰਣ

ਉੱਚੇ ਦਾਬ, ਡਾਈਆੱਕਸੀਜਨ ਜਾਂਹਵਾਂ ਦੇ ਲਗਾਤਾਰ ਪ੍ਰਵਾਹ ਦੇ ਨਾਲ ਸਹੀ ਉਤਪ੍ਰੇਰਕ ਦੀ ਹੋਂਦ ਵਿੱਚ ਐਲਕੇਨਾਂ ਨੂੰ ਗਰਮ ਕਰਨ ਤੇ ਕਈ ਪ੍ਰਕਾਰ ਦੀਆਂ ਆੱਕਸੀਕਰਣ ਉਪਜਾਂ ਬਣਦੀਆਂ ਹਨ।

(ii) CH₄ + O₂
$$\xrightarrow{MO_2O_3}$$
 HCHO + H₂O
 ਮੀਥੋਨਲ

(13.22)

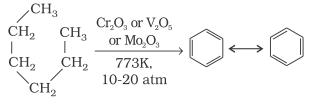
(iii)
$$2CH_3CH_3 + 3O_2 \xrightarrow{(CH_3COO)_2Mn} 2CH_3COOH$$

ਈਥੇਨੋਇਕਐਸਿਡ

 $+ 2H_2O$

(13.23)

(iv) ਆਮ ਕਰਕੇ ਐਲਕੇਨਾਂ ਦਾ ਆੱਕਸੀਕਰਣ ਨਹੀਂ ਹੁੰਦਾ, ਪਰੰਤੂ ਦਰਸ਼ਰੀ ਹਾਈਡ੍ਰੋਜਨ (H) ਪਰਮਾਣੂ ਵਾਲੇ ਐਲਕੇਨ ਪੋਟਾਸ਼ਿਅਮ ਪਰ ਮੈਂਗਨੇਟ ਨਾਲ ਆੱਕਸੀਕ੍ਰਿਤ ਹੋ ਕੇ ਸੰਗਤ ਐਲਕੋਹਲ ਦਿੰਦੇ ਹਨ।


 $(CH_3)_3CH \xrightarrow{KMnO_4} (CH_3)_3COH$ 2-ਮੀਥਾਈਲਪਰੋਪੇਨ 2-ਮੀਥਾਈਲਪਰੋਪੇਨ-2-ਓਲ (13.24)

4. ਸਮਅੰਗੀਕਰਣ

n-ਐਲਕੇਨ ਨੂੰ ਨਿਰਮਲ ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਗੈਸ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਗਰਮ ਕਰਨ ਤੇ ਉਹ ਸ਼ਾਖਿਤ ਚੇਨ ਵਾਲੇ ਐਲਕੇਨਾਂ ਵਿੱਚ ਸਮਅੰਗੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਮੁੱਖ ਉਪਜਾਂ ਹੇਠਾਂ ਦਿਤੀਆਂ ਗਈਆਂ ਹਨ ਅਤੇ ਹੋਰ ਅਲਪ ਉਪਜਾਂ ਦੇ ਬਣਨ ਦੀ ਸੰਭਾਵਨਾ ਵੀ ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ। ਅਲਪ ਉਪਜਾਂ ਦਾ ਵਰਣਨ ਆਮ ਕਰਕੇ ਪਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

5. ਐਰੋਮੈਟੀਕਰਣ

ਛੇ ਜਾਂ ਛੇ ਤੋਂ ਵੱਧ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਾਲੇ *n-*ਐਲਕੇਨ ਐਲੁਮੀਨਾਂ ਅਧਾਰਿਤ ਵੈਜੇਡੀਅਮ, ਮਾੱਲੀਬੜੀਨਮ ਅਤੇ ਕਰੋਮੀਅਮ ਦੇ ਆੱਕਸਾਈਡ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ 773K ਅਤੇ 10 ਤੋਂ 20 ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਗਰਮ ਕਰਨ ਉੱਤੇ ਡੀ–ਹਾਈਡ੍ਰੋਜਨੀਕ੍ਰਿਤ ਹੋ ਕੇ ਬੈੱਨਜ਼ੀਨ ਜਾਂ ਉਸ ਦੇ ਸਮਜਾਤ ਰੂਪ ਵਿੱਚ ਚਕੱਰੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਐਰੋਮੈਟੀਕਰਣ (Aromatization) ਜਾਂ ਰੀਫਾਰਮਿੰਗ (*Reforming*) ਕਹਿੰਦੇ ਹਨ।

(13.26)

ਟਾੱਲੂਈਨ, ਬੈਨਜੀਨ ਦਾ ਮੀਥਾਈਲ ਵਿਉਤਪੰਨ ਹੈ।ਟਾੱਲੂਈਨ ਦੇ ਬਣਨ ਦੇ ਲਈ ਤੁਸੀਂ ਕਿਹੜੀ ਐਲਕੇਨ ਦਾ ਸੁਝਾਅ ਦਿਓਗੇ ?

6. ਭਾਫ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ

ਮੀਥੇਨ ਭਾਫ਼ ਦੇ ਨਾਲ ਮਿਲਕੇ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ1273 K ਉੱਤੇ ਗਰਮ ਕਰਨ ਤੇ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਅਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਿੰਦੀ ਹੈ। ਇਹ ਵਿਧੀ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਉਦਯੋਗਕ ਉਤਪਾਦਨ ਵਿੱਚ ਅਪਨਾਈ ਜਾਂਦੀ ਹੈ।

$$CH_4 + H_2O \xrightarrow{Ni} CO + 3H_2$$
 (13.27)

7. ਤਾਪ ਅਪਘਟਨ

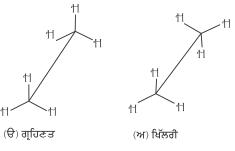
ਉੱਚੀਆਂ ਅਲਕੇਨਾਂ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਗਰਮ ਕਰਨ ਤੇ ਨੀਵੀਆਂ ਐਲਕੇਨਾਂ ਜਾਂ ਐਲਕੀਨਾਂ ਵਿੱਚ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਤਾਪ ਦੇ ਨਾਲ ਛੋਟੇ ਖੰਡ ਬਣਨਦੀ ਅਜਿਹੀ ਅਪਘਟਨੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਤਾਪ-ਅਪਘਟਨ (pyrolysis) ਜਾਂ ਭੰਜਨ (cracking) ਕਹਿੰਦੇ ਹਨ।

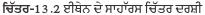
$$\begin{array}{cccc} C_6H_{14} & & & & \\ \hline & & & \\ C_6H_{14} & & & \\ & &$$

(13.28)

ਐਲਕੇਨਾਂ ਦਾ ਭੰਜਨ ਵਿੱਚ ਮੁਕਤ ਮੂਲਕ ਪ੍ਰਤੀਕਿਰਿਆ ਮੰਨੀ ਜਾਂਦੀ ਹੈ। ਕੈਰੋਸੀਨ ਤੇਲ ਜਾਂ ਪੈਟ੍ਰੋਲ ਤੋਂ ਪ੍ਰਾਪਤ ਤੇਲ ਗੈਸ ਜਾਂ ਪੈਟ੍ਰੋਲ ਗੈਸ ਬਨਾਉਣ ਵਿੱਚ ਭੰਜਨ ਦੇ ਸਿਧਾਂਤ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਡੋਡੇਕੇਨ (ਜੋ ਕੈਰੇਸੀਨ ਤੇਲ ਦਾ ਘਟਕ ਹੈ) ਨੂੰ 973 K ਉੱਤੇ ਪਲੈਟੀਨਮ, ਪਲੇਡੀਅਮ ਜਾਂ ਨਿੱਕਲ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਕਰਨ ਤੇ ਹੈਪਟੇਨ ਅਤੇ ਪੈਲਟੀਨ ਦਾ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

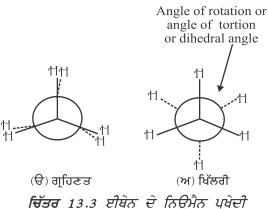
$$C_{12}H_{26} \xrightarrow{Pt/Pd/Ni}{973K} C_{7}H_{16} + C_{5}H_{10} + ਹੋਰਡੋਡੇਕੇਨ ਹੈਪਟੇਨ ਪੈਨਟੀਨ ਉਪਜਾਂ$$


(13.29)


13.2.4 ਸੰਪੂਰਣ

ਐਲਕੇਨਾਂ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਸਿਗਮਾ (σ) ਬੰਧਨ ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨ–ਕਾਰਬਨ C–C ਬੰਧਨ ਦੇ ਅੰਤਰਨਿਊਕਲੀ ਅਕਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਸਿਗਮਾਂ ਅਣਵੀ ਆੱਰਬਿਟਲ ਦੇ ਇਲੈਕਟ਼ਾੱਨ ਵਿਤਰਣ ਸਮਮਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਕਾਰਣ C– C ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਮਕਤ ਘੰਮਣ ਹੰਦਾ ਹੈ। ਇਸ ਘੁੰਮਣ ਦੇ ਕਾਰਣ ਤ੍ਰੈਵਿਮ ਵਿੱਚ ਅਣੁਆਂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਤ੍ਰੈ ਵਿਮੀ ਵਿਵਸਥਾ ਹੁੰਦੀ ਹੈ। ਫਲਸਰੂਪ ਭਿੰਨ-ਭਿੰਨ ਸਮਅੰਗਕ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦੇ ਹਨ। ਅਜਿਹੇ ਪਰਮਾਣੂ ਦੀਆਂ ਭ੍ਰੈ-ਵਿਮੀ ਵਿਵਸਥਾਵਾਂ (ਜੋ C-C ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਘੁੰਮਣ ਦੇ ਕਾਰਣ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ) ਸੰਰੁਪਣ, ਸੰਰੁਪਣੀ ਸਮਅੰਗਕ ਜਾਂ ਘੁੰਮਣੀ (Rotamers) ਅਖਵਾਉਂਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ C-C ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਘੰਮਣ ਦੇ ਕਾਰਣ ਐਲਕੇਨ ਵਿੱਚ ਅਸੰਖਾਂ ਸੰਰਪਣ ਸੰਭਵ ਹਨ। ਪਰ ਧਿਆਨ ਰੱਖੋ ਕਿ C-C ਇਕਹਿਰੇ ਬੰਧਨ ਦਾ ਘੁੰਮਣ ਪੁਰਣ ਰੂਪ ਵਿੱਚ ਮੁਕਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਹ ਪ੍ਰਤੀ ਕਰਸ਼ਣ ਅੰਤਰਕਿਰਿਆ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਇਹ 1 ਤੋਂ 20 $\mathrm{kJ} \mathrm{~mol}^{-1}$ ਤੱਕ ਉਰਜਾ ਦੁਆਰਾ ਬੰਧਿਤ ਹੈ। ਨੇੜਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਸ ਖੀਣ ਬਲ ਨੂੰ ਮਰੋੜੀ ਵਿਕਾਰ (Torsional Strain) ਕਹਿੰਦੇ ਹਨ।

ਈਥੇਨ ਦੇ ਸੰਰੁਪਣ : ਈਥੇਨ ਅਣ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਇਕਹਿਰਾ ਬੰਧਨ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਤਿੰਨ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਈਥੇਨ ਦੇ ਬਾੱਲ ਅਤੇ ਸਟਿੱਕ ਮਾੱਡਲ ਨੂੰ ਲੈ ਕੇ ਜੇ ਅਸੀਂ ਇੱਕ ਕਾਰਬਨ ਨੂੰ ਸਥਿਰ ਰੱਖ ਕੇ ਦੂਜੇ ਕਾਰਬਨ ਪਰ ਮਾਣੂ ਨੂੰ C-C ਅਕਸ ਦੁਆਲੇ ਘੁਮਾਈਏ, ਤਾਂ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਹਾਈਡੋ਼ਜਨ ਦੂਜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਹਾਈਡੋ਼ਜਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਅਸੰਖ ਤ੍ਰੈਇਮੀ ਵਿਵਸਥਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਸੰਰੂਪਣੀ ਸਮਅੰਗਕ (ਸੰਰੂਪਣ) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਈਥੇਨ ਦੇ ਅਸੰਖਾਂ ਸੰਰੁਪਣ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਦੋ ਸੰਰੁਪਣ ਮੁੱਖ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਰੂਪ ਵਿੱਚ ਦੋਵਾਂ ਕਾਰਬਨਾਂ ਦੇ ਹਾਈਡ੍ਰੋਕਨ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਦੇ ਬਹੁਤ ਨੇੜੇ ਹੁੰਦੇ ਹਨ। ਉਸ ਨੂੰ ਗ੍ਰਹਿਣਤ (Eclipsed) ਰੂਪ ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੂਜੇ ਕਾਰਬਨ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਤੋਂ ਅਧਿਕਤਮ ਦੂਰੀ ਤੇ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੂੰ ਖਿਲੱਰਿਆ (Staggered) ਰੂਪ ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਇਲਾਵਾ ਵੀ ਮੱਧਵਰਤੀ ਸੰਰੁਪਣ ਬਿਖਮ ਤਲੀ (Skew) ਸੰਰਪਣ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਯਾਦ ਰੱਖੋ ਕਿ ਸਾਰੇ ਸੰਰੁਪਣਾਂ ਵਿੱਚ ਬੰਧਨ ਕੋਣ ਅਤੇ ਬੰਧਨ ਲੰਬਾਈ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ, ਗ੍ਰਹਿਣ ਅਤੇ ਖਿੱਲਰੇ ਸੰਰੂਪਣਾ ਨੂੰ ਸਾਹਾਰਸ (Saw horse) ਅਤੇ ਨਿਊਮੈਨ ਚਿੱਤਰ ਦਰਸ਼ੀ (Newman Projection) ਦੁਆਰਾ ਪ੍ਰਦਰਿਸ਼ਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

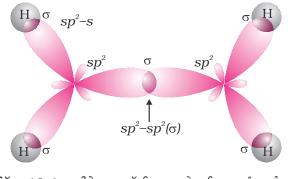

ਇਸ ਚਿੱਤਰ ਦਰਸ਼ੀ ਵਿੱਚ ਅਣੂ ਨੂੰ ਅਣਵੀਂ ਅਕਸ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵੇਖਿਆ ਜਾਂਦਾ ਹੈ। ਕਾਗਜ਼ ਉੱਤੇ ਕੇਂਦਰੀ C–C ਬੰਧਨ ਨੂੰ ਵਿਖਾਉਣ ਦੇ ਲਈ ਸੱਜੇ ਪਾਸੇ ਜਾਂ ਖੱਬੇ ਪਾਸੇ ਝੁਕੀ ਹੋਈ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਖਿੱਚੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਰੇਖਾ ਨੂੰ ਕੁਝ ਲੰਬਾ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਅੱਗੇ ਵਾਲੇ ਕਾਰਬਨ ਨੂੰ ਹੇਠਾਂ ਖੱਬੇ ਪਾਸੇ ਅਤੇ ਪਿੱਛੇ ਵਾਲੇ ਕਾਰਬਨ ਨੂੰ ਉੱਪਰ ਸੱਜੇ ਪਾਸੇ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਨਾਲ ਜੁੜੇ ਤਿੰਨ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਤਿੰਨ ਰੇਖਾਵਾਂ ਖਿੱਚ ਕੇ ਵਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਰੇਖਾਵਾਂ ਇੱਕ ਦੂਜੇ ਨਾਲ120° ਦੇ ਕੋਣ ਤੇ ਝਕੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਈਥੇਨ ਦੇ ਗ੍ਰਹਿਣਤ ਤੇ ਖਿੱਲਰੇ ਸਾਹਾਰਸ ਚਿੱਤਰ ਦਰਸ਼ੀ ਚਿੱਤਰ 13.2 ਵਿਚ ਵਿਖਾਏ ਗਏ ਹਨ।

2. ਨਿਉਮੈਨ ਚਿੱਤਰ ਦਰਸ਼ੀ

ਇਸ ਪ੍ਰਖੇਪਣ ਵਿੱਚ ਅਣੂ ਨੂੰ ਸਾਹਮਣੇ ਵੱਲੋਂ ਵੇਖਿਆ ਜਾਂਦਾ ਹੈ। ਅੱਖ ਦੇ ਨੇੜਲੇ ਕਾਰਬਨ ਨੂੰ ਇੱਕ ਬਿੰਦੂ ਦੁਆਰਾ ਵਿਖਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸ ਨਾਲ ਜੁੜੀਆਂ ਤਿੰਨ ਹਾਈਡ੍ਰੋਜਨਾਂ ਨੂੰ 120° ਕੌਣ ਤੇ ਖਿੱਚੀਆਂ ਤਿੰਨ ਰੇਖਾਵਾਂ ਦੇ ਕਿਰਿਆਂ ਤੇ ਲਿਖ ਕੇ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪਿੱਛੇ (ਅੱਖ ਤੋਂ ਦੂਰ) ਵਾਲੇ ਕਾਰਬਨ ਨੂੰ ਇੱਕ ਚੱਕਰ ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ ਅਤੇ ਇਸ ਨਾਲ ਬੰਧਿਤ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਚੱਕਰ ਦੇ ਘੇਰੇ ਨਾਲ ਆਪਸ ਵਿੱਚ120° ਦੇ ਕੋਣ ਉੱਤੇ ਸਥਿਰ ਤਿੰਨ ਛੋਟੀਆਂ ਰੇਖਾਵਾਂ ਨਾਲ ਜੁੜੇ ਹੋਏ ਵਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਈਥੇਨ ਦੇ ਨਿਊਮੈਨ ਪ੍ਰਖੇਪਣ ਚਿੱਤਰ ਰਹਿਤ ਵਿੱਚ ਵਿਖਾਈ ਗਏ ਹਨ।

376

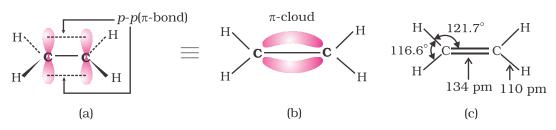
1. ਸਾਹਾੱਰਸ ਚਿੱਤਰ ਦਰਸ਼ੀ


ਸੰਪੂਰਣਾ ਦਾ ਸਾਪੇਖੀ ਸਥਾਈਪਨ : ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆਂ ਗਿਆ ਹੈ, ਈਥੇਨ ਦੇ ਖਿੱਲਰੇ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਊਡ ਇੱਕ ਦੂਜੇ ਤੋਂ ਅਧਿਕਤਮ ਦੂਰੀ ਉੱਤੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲ, ਨਿਊਨਤਮ ਉਰਜਾ ਅਤੇ ਇਸ ਦਾ ਅਧਿਕਤਮ ਸਥਾਈ ਪਨ ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਖਿਲੱਰੇ ਰੂਪ ਨੂੰ ਗ੍ਰਹਿਣਤ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਕਾਰਬਨ-ਹਾਈਡੋਜਨ ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਉਡ ਇੱਕ ਦੂਜੇ ਦੇ ਐਨੇ ਨੇੜੇ ਹੁੰਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਉਡਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਵਧ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਧੇ ਹੋਏ ਪ੍ਰਤੀਕਰਸ਼ੀ ਬਲ ਨੂੰ ਦੂਰ ਕਰਨ ਦੇ ਲਈ ਅਣੂ ਵਿੱਚ ਕੁਝ ਵਧੇਰੇ ਉਰਜਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਦਾ ਸਥਾਈਪਨ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚਕਿਆ ਹੈ, ਇਲੈਕਟਾੱਨ ਕਲਾੳਡਾਂ ਵਿੱਚ ਪਤੀ ਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆ ਜੋ ਸੰਰੁਪਣ ਦੇ ਸਥਾਈਪਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ ਨੂੰ ਮਰੋੜੀ ਵਿਕਾਰ ਕਹਿੰਦੇ ਹਨ। ਮਰੋੜੀ ਵਿਕਾਰ ਦਾ ਪਰਿਣਾਮ C–C ਇਕਹਿਰੇ ਬੰਧਨ ਦੇ ਘੁੰਮਣ ਕੋਣ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇੱਕ ਕੋਣ ਨੂੰ ਦੋ ਤਲ ਕੋਣ ਜਾਂ ਮਰੋੜੀ ਕੋਣ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਈਥੇਨ ਦੇ ਸਾਰੇ ਸੰਰੁਪਣਾ ਵਿੱਚ ਮਰੋੜੀ ਕੋਣ ਖਿੱਲਰੇ ਰੂਪ ਵਿੱਚ ਨਿਊਨਤਮ ਅਤੇ ਗ੍ਰਹਿਣਤ ਰੂਪ ਵਿੱਚ ਅਧਿਕਤਮ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਈਥੇਨ ਵਿੱਚ C-C (ਬੰਧਨ) ਦਾ ਘੁੰਮਣ ਪੁਰਣ ਰੂਪ ਵਿੱਚ ਮੁਕਤ ਨਹੀਂ ਹੈ। ਦੋ ਅੰਤਿਮ ਰੁਪਾਂ ਦੇ ਵਿੱਚ ਉਰਜਾ ਦਾ ਅੰਤਰ 12.5 kJ mol⁻¹ਹੈ ਜੋ ਬਹੁਤ ਥੋੜਾ ਹੈ। ਆਮ ਤਾਪਮਾਨ ਉੱਤੇ ਅੰਤਰ ਅਣਵੀਂ ਟੱਕਰਾਂ (collisions) ਦੇ ਦੁਆਰਾ ਈਥੇਨ ਅਮੁ ਵਿੱਚ ਤਾਪ ਅਤੇ ਗਤਿਜ ਉਰਜਾ ਹੁੰਦੀ ਹੈ, ਜੋ 12.5 kJ mol^{-1} ਦੇ ਉਰਜਾ ਰੋਕ ਨੂੰ ਪਾਰ ਕਰਨ ਦੇ ਸਮਰੱਥ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਈਥੇਨ ਵਿੱਚ ਕਾਰਬਨ-ਕਾਰਬਨ ਇਕਹਿਰੇ ਬੰਧਨ ਦਾ ਘੁੰਮਣ ਸਾਰੇ ਪ੍ਰਯੋਗਿਕ ਕਾਰਜਾਂ ਦੇ ਲਈ ਲਗਪਗ ਮੁਕਤ ਹੈ। ਈਥੇਨ ਦੇ ਸੰਰੁਪਣਾਂ ਨੂੰ ਵੱਖ ਕਰਨਾ ਅਤੇ ਵਿਯੋਜਿਤ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ।

13.3 ਐਲਕੀਨ

ਐਲਕੀਨਾਂ ਦੂਹਰੇ ਬੰਧਨ ਯੁਕਤ ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਐਲਕੀਨਾਂ ਦਾ ਆਮ ਸੂਤਰ ਕੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ? ਜੇ ਐਲਕੀਨ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਦੂਹਰਾ ਬੰਧਨ ਹੈ, ਤਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਐਲਕੇਨ ਨਾਲੋਂ ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਘੱਟ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਐਲਕੀਨਾਂ ਦਾ ਆਮ ਸੂਤਰ C_nH_{2n} ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਐਲਕੀਨਾਂ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਐਥਲੀਨ ਜਾਂ ਈਥੀਨ (C_2H_4) ਦੀ ਪ੍ਤੀ ਕਿਰਿਆ ਕਲੋਰੀਨ ਨਾਲ ਕਰਾਉਣ ਤੇ ਤੇਲ ਵਰਗਾ ਦ੍ਵ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਐਲਕੀਨਾਂ ਨੂੰ ਓਲੀਫਿਨ (ਤੇਲ ਵਰਗੇ ਯੋਗਿਕ ਬਨਾਉਣ ਵਾਲੇ) ਵੀ ਕਹਿੰਦੇ ਹਨ।

13.3.1 ਦੂਹਰੇ ਬੰਧਨ ਦੀ ਰਚਨਾ


ਐਲਕੀਨਾਂ ਵਿੱਚ C = C ਦੁਹਰਾ ਬੰਧਨ ਹੈ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਪ੍ਰਬਲ ਸਿਗਮਾ (σ) ਬੰਧਨ (ਬੰਧਨ ਐਨਥੈਲਪੀ 397 kJ mol⁻¹) ਹੁੰਦਾ ਹੈ, ਜੋ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ $\left| sp^2
ight|$ ਸੈਕਰਿਤ ਐਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ ਓਵਰ ਲੈਪਿੰਗ ਨਾਲ ਬਣਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ 2p ਅਸੰਕਰਿਤ ਐਰਬਿਟਲਾਂ ਦੇ ਪਾਸੇ ਪਰਨੇ ਓਵਰਲੈਪਿੰਗ ਕਰਨ ਨਾਲ ਇੱਕ ਦਰਬਲ ਪਾਣੀ (π) ਬੰਧਨ (ਬੰਧਨ, ਐਨਥੈਲਪੀ 284 kJmol⁻¹) ਬਣਦਾ ਹੈ। C-C ਇਕਹਿਰੇ ਬੰਧਨ ਦੀ ਲੰਬਾਈ (1.54pm) ਦੀ ਤੁਲਨਾ ਵਿੱਚ C = C ਦੁਹਰੇ ਬੰਧਨ ਦੀ ਲੰਬਾਈ (1.34pm) ਛੋਟੀ ਹੈ। ਤਸੀਂ ਪਹਿਲਾਂ ਅਧਿਐਨ ਕੀਤਾ ਹੈ ਕਿ ਪਾਈ (π) ਬੰਧਨ ਦੋ ਐਰਬਿਟਨਾਂ ਦੇ ਦੁਰਬਲ ਓਵਰਲੈਪਿੰਗ ਦੇ ਕਾਰਣ ਦੁਰਬਲ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਪਾਈ (π) ਬੰਧਨ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਦੂਰਬਲ ਬੰਧਿਤ ਗਤੀਸ਼ੀਲ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਸਰੋਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਐਲਕੀਨਾਂ ਉੱਤੇ ਉਨ੍ਹਾਂ ਅਭਿਕਰਮਕਾਂ ਜਾਂ ਯੋਗਿਕਾਂ, ਜੋ ਇਲੈਕਟ਼ਾੱਨ ਦੀ ਖੋਜ ਵਿੱਚ ਹੋਣ, ਦਾ ਹਮਲਾ ਅਸਾਨੀ ਨਾਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੀ ਅਭਿਕਰਮਕਾਂ ਨੂੰ ਇਲੈਕਟਾਨ ਸਨੇਹੀ ਅਭਿਕਰਮਕ ਕਹਿੰਦੇ ਹਨ।ਦਰਬਲ ਪਾਈਬੰਧਨ ਦੀ ਮੌਜੁਦਗੀ ਐਲਕੀਨ ਅਣੁਆਂ ਨੂੰ ਐਲਕੇਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਅਸਥਾਈ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਐਲਕੀਨਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀਆਂ ਅਭਿਕਰਮਕਾਂ ਦੇ ਨਾਲ ਜੁੜ ਕੇ ਇਕਹਿਰੇ ਬੰਧਨ ਯੁਕਤ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। C-C ਦੁਹਰੇ ਬੰਧਨ ਦੀ ਸਮਰਥਾ (ਬੰਧਨ ਐਨਥੈਲਪੀ 681 kJ mol⁻¹) ਈਥੇਨ ਦੇ ਕਾਰਬਨਕਾਰਬਨ ਇਕਹਿਰੇ ਬੰਧਨ (ਬੰਧਨ ਐਨਥੈਲਪੀ) 348 kJ mol⁻¹). ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵੱਧ ਹੁੰਦੀ ਹੈ। ਈਥੇਨ ਦੇ ਅਣੂ ਦਾ ਐਰਬਿਟਲ ਆਰੇਖ ਚਿੱਤਰ ਸੰਖਿਆ 13.4 ਅਤੇ 13.5 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਚਿੱਤਰ 13.4 ਈਥੀਨ ਦਾ ਆੱਰਬਿਟਲ ਆਰੇਖ, ਸਿਰਫ σ ਬੰਧਨ ਨੂੰ ਚਿੱਤਰਿਤ ਕਰਦੇ ਹੋਏ।

ਚਿੱਤਰ 13.4 ਈਥੇਨ ਦਾ ਆੱਰਬਿਟਲ ਆਰੇਖ, ਸਿਰਫ o ਬੰਧਨ ਨੂੰ ਚਿੱਤਰਿਤ ਕਰਦੇ ਹੋਏ।

13.3.2 ਨਾਮਕਰਣ

ਐਲਕੀਨਾਂ ਦੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਨਾਮਕਰਣ ਦੇ ਲਈ ਦੋਬੰਧਨ ਯੁਕਤ ਸਭ ਤੋਂ ਲੰਬੀ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਚੇਨ ਵਿੱਚ ਪਛੇਤਰ 'ਏਨ' ਦੇ ਸਥਾਨ ਤੇ ਪਛੇਤਰ 'ਈਨ' (ene) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਯਾਦ ਰਖੋ ਕਿ ਐਲਲੀਨ ਸ਼੍ਰੇਣੀ ਦਾ

ਚਿੱਤਰ 13.5 ਈਥੇਨ ਦਾ ਐਰਬਿਟਲ ਆਰੇਖ (ੳ) (π)-ਬੰਧਨ ਬਣਨਾ (ਅ) (π)-ਕਲਾਉਡ ਦਾ ਬਣਨਾ (ੲ) ਬੰਧਨ ਕੋਣ ਅਤੇ ਬੰਧਨ ਲੰਬਾਈ

ਪਹਿਲਾ ਮੈਂਬਰ ਹੈ: CH₂ (C_nH_{2n} ਵਿੱਚ n ਨੂੰ 1 ਦੁਆਰਾ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਕਰਨ ਤੇ), ਜਿਸ ਨੂੰ ਮੀਥੀਨ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਉਮਰ ਅਲਪ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਪਹਿਲਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਐਲਕੀਨ ਪਰਿਵਾਰ ਦੇ ਪਹਿਲੇ ਸਥਾਈ ਮੈਂਬਰ C₂H₄ ਨੂੰ ਏਥੇਲੀਨ (ਆਮ ਨਾਮ) ਜਾਂ ਈਥੀਨ (ਆਈ ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ) ਕਹਿੰਦੇ ਹਨ। ਕੁਝ ਐਲਕੀਨ ਮੈਂਬਰਾਂ ਦੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ-

ਰਚਨਾ	IUPAC ਨਾਂ
$CH_3 - CH = CH_2$	ਪਰੋਪੀਨ
$CH_3 - CH_2 - CH = CH_2$	ਬਿਊਟ – 1 - ਈਨ
$CH_3 - CH = CH - CH_3$	ਬਿਊਟ-2- ਈਨ
$CH_2 = CH - CH = CH_2$	ਬਿਊਟ– 1,3 - ਡਾਈਈਨ ਪਰੋਪ
$CH_2 = C - CH_3$	2-ਮੀਥਾਈਲ ਪਰੋਪ-1- ਈਨ
CH_3	
$CH_2 = CH - CH - CH_3$	3-ਮੀਥਾਈਲ ਬਿਊਟ-1-ਈਨ
I	
CH_3	

 ਉਦਾਹਰਣ 13.7

 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਨਾਂ

 ਲਿਖੋ

 (i) $(CH_3)_2CH - CH = CH - CH_2 - CH$
 $CH_3 - CH - CH$
 C_2H_5

 (ii) $CH_2 = C (CH_2CH_2CH_3)_2$

 (iii) $CH_2 = C (CH_2CH_2CH_3)_2$

 I

 I

 $CH_3 - CHCH = C - CH_2 - CHCH_3$

 I

 I

 $CH_3 - CHCH = C - CH_2 - CHCH_3$

 I

 I

 $CH_3 - CHCH = C - CH_2 - CHCH_3$

 I

 $CH_3 - CHCH = C - CH_2 - CHCH_3$

ਹਲ

- (i) 2,8-ਡਾਈਮੀਥਾਈਲ ਡੇਕਾ-3, 6-ਡਾਈਈਨ;
- (ii) 1,3,5,7 ਐਕਟਾਟੈਟਰਾਈਨ;
- (iii) 2-n-ਪਰੋਪਾਈਲ ਪੈਂਟ-1-ਈਨ;
- (iv) 4-ਈਥਾਈਲ-2,6-ਡਾਈਮੀਥਾਈਲ-ਡੈਕ-4-ਈਨ;

ਉਦਾਹਰਣ 13.8

ਉੱਪਰ ਦਿੱਤੀਆਂ ਰਚਨਾਵਾਂ (i-iv) ਵਿੱਚ (σ) ਅਤੇ (π) ਬੰਧਨਾ ਦੀ ਸੰਖਿਆ ਦਾ ਪਰਿਕਲਨ ਕਰੋ।

ਹਲ

(i) σ ਬੰਧਨ : 33, π ਬੰਧਨ : 2
(ii) σ ਬੰਧਨ : 17, π ਬੰਧਨ : 4
(iii) σ ਬੰਧਨ : 23, π ਬੰਧਨ : 1
(iv) σ ਬੰਧਨ : 41, π ਬੰਧਨ : 1

13.3.3 ਸਮਅੰਗਤਾ

ਐਲਕੀਨਾਂ ਦੁਆਰਾ ਬਣਤਰੀ ਅਤੇ ਜੋਮੈਟਰੀਕਲ ਸਮਅੰਗਤਾ ਪ੍ਰਦਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਬਣਤਰੀ ਸਮਅੰਗਤਾ- ਐਲਕੇਨਾਂ ਵਾਂਗ ਈਥੀਨ (C₂H₄) ਅਤੇ ਪਰੋਪੀਲ (C₃H₈) ਵਿੱਚ ਸਿਰਫ ਇੱਕ ਹੀ ਬਣਤਰ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਪਰੋਪੀਨ ਤੋਂ ਉੱਚੀਆਂ ਐਲਕੀਨਾਂ ਵਿੱਚ ਭਿੰਨ ਬਣਤਰਾਂ ਹੁੰਦੀਆਂ ਹਨ।C₄H₈ ਅਣਵੀਂ ਸੂਤਰ ਵਾਲੀ ਐਲਕੀਨ ਨੂੰ ਤਿੰਨ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ।

I. 1 2 3 4

$$CH_2 = CH - CH_2 - CH_3$$

ਬਿਊਟ-1-ਈਨ
(C₄H₈)

II. 1 2 3 4 CH₃ – CH = CH – CH₃ ਬਿਊਟ-2-ਈਨ (C₄H₈)

Downloaded from https:// www.studiestoday.com

377

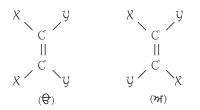
378

```
III. 1 2 3

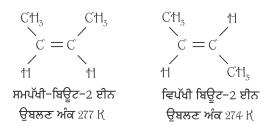
CH_2 = C - CH_3

I

CH_3

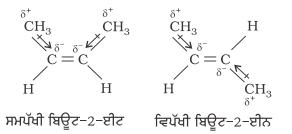

2-भीषाप्टील-1-प्टीਨ

(C_4H_8)
```


ਰਚਨਾ I ਅਤੇ III ਅਤੇ II ਅਤੇ III ਚੇਨ ਸਮਅੰਗਤਾ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ, ਜਦ ਕਿ I ਅਤੇ II ਸਥਿਤੀ ਸਮਅੰਗਕ ਹਨ।

ੳਦਾਹਰਣ 13.9 $\mathrm{C}_{5}\mathrm{H}_{10}$ ਦੇ ਸੰਗਤ ਐਲਕੀਨਾਂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਬਣਤਰੀ ਸਮਅੰਗਕਾਂ ਦੇ ਰਚਨਾ ਸੁਤਰ ਅਤੇ (IUPAC) ਨਾਂ ਲਿਖੋ। ਹੱਲ $(\Theta) \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$ ਪੈਂਟ-1-ਈਨ (ਅ) $CH_3 - CH = CH - CH_2 - CH_3$ ਪੈਂਟ-2-ਈਨ $(\epsilon) CH_3 - C = CH - CH_3$ CH_3 2-ਮੀਥਾਈਲ ਬਿਊਟ-2-ਈਨ (π) CH₃ – CH – CH = CH₂ CH_3 3-ਮੀਥਾਈਲ ਬਿਊਟ-1-ਈਨ $\begin{array}{c} (\overline{\upsilon}) \quad CH_2 = C - CH_2 - CH_3 \\ I \end{array}$ CH_3 2-ਮੀਥਾਈਲਬਿਊਟ-1-ਈਨ

ਜੁਮੈਟਰੱਈ ਸਮਅੰਗਤਾ- ਦੂਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ–ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਬਚੀਆਂ ਹੋਈਆਂ ਦੇ ਸੰਯੋਜਕਤਾਵਾਂ ਨੂੰ ਦੋ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਜੋੜ ਕੇ ਸੰਤੁਸ਼ਟ ਕਰਦੇ ਹਨ। ਅਗਰ ਹਰ ਇਕ ਕਾਰਬਨ ਨਾਲ ਜੁੜੇ ਦੋ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਭਿੰਨ ਭਿੰਨ ਹਨ ਤਾਂ ਇਸਨੂੰ YX C = C XY ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਅਜਿਹੇ ਰਚਨਾਵਾਂ ਨੂੰ ਸਪੇਸ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।



ਰਚਨਾ (ੳ) ਵਿੱਚ ਇਕੋ ਜਿਹੇ ਦੋ ਪਰਮਾਣੂਆਂ (ਦੋਵੇਂ X ਜਾਂ ਦੋਵੇਂ Y) ਦੂਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕੋ ਪਾਸੇ ਤੇ ਸਥਿਤ ਹੁੰਦੇ ਹਨ। ਰਚਨਾ (ਅ) ਵਿੱਚ ਦੋਵੇਂ X ਜਾਂ ਦੋਵੇਂ Y ਦੁਹਰੇ ਬੰਧਨ ਕਾਰਬਨ ਦੇ ਦੂਜੇ ਪਾਸੇ ਜਾਂ ਦੁਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੁਆਂ ਦੇ ਉਲਟ ਸਥਿਤ ਹੁੰਦੇ ਹਨ।ਜੋ ਭਿੰਨ-ਭਿੰਨ ਜੁਮੈਟਰੱਈ ਸਮਅੰਗਤਾ ਦਰਸਾਉਂਦੇ ਹਨ ਜਿਸ ਦਾ ਸਪੇਸ ਵਿੱਚ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪਾਂ ਦੀਆਂ ਭਿੰਨ ਸਥਿਤੀਆਂ ਦੇ ਕਾਰਣ ਵਿਵਸਥਾ ਭਿੰਨ ਹੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਹ ਤਿੰਨ ਵਿਮਾਈ ਸਮ ਅੰਗਕ (Stereoisomers) ਹਨ। ਇਨਾਂ ਦੀ ਸਮਾਨ ਜੁਮੈਟਰੀ ਉਦੋਂ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਦੂਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਜਾਂ ਗਰੁੱਪਾਂ ਦਾ ਘੁੰਮਣ ਹੋ ਸਕਦਾ ਹੈ, ਪਰੰਤੁ C=C ਦੁਹਰੇ ਬੰਧਨ ਵਿੱਚ ਮੁਕਤ ਘੁੰਮਣ ਨਹੀਂ ਹੁੰਦਾ। ਇਹ ਪ੍ਰਤੀ ਬੰਧਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਤੱਥ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਸਖਤ ਕਾਰਡ ਬੋਰਡ ਦੇ ਟੁਕੜੇ ਲਓ ਅਤੇ ਦੋ ਕਿੱਲਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਉਨ੍ਹਾਂ ਨੂੰ ਜੋੜ ਦਿਓ। ਇੱਕ ਕਾਰਡ ਬੋਰਡ ਨੂੰ ਹੱਥ ਨਾਲ ਫੜ ਕੇ ਦੂਜੇ ਕਾਰਡਬੋਰਡ ਨੂੰ ਘੁੰਮਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਕੀ ਅਸਲ ਵਿੱਚ ਤੁਸੀਂ ਦੂਜੇ ਕਾਰਡ ਬੋਰਡ ਨੂੰ ਘੁਮਾ ਸਕਦੇ ਹੋ ? ਨਹੀਂ; ਕਿਉਂਕਿ ਘੁੰਮਣ ਪ੍ਰਤੀਬੰਧਿਤ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੁਆਂ ਜਾਂ ਗਰੁੱਪਾਂ ਦੇ ਦੂਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੁਆਂ ਦੇ ਵਿਚ ਪ੍ਰਤੀਬੰਧਿਤ ਘੁੰਮਣ ਦੇ ਕਾਰਣ ਯੋਗਿਕਾਂ ਦੁਆਰਾ ਭਿੰਨ-ਭਿੰਨ ਜੋਮੈਟਰੀਆਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਤ੍ਰੈਵਿਮੀ ਸਮਅੰਗਕ, ਜਿਸ ਵਿੱਚ ਦੋ ਸਮਾਨ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਇੱਕ ਹੀ ਪਾਸੇ ਸਥਿਤ ਹੋਣ, ਉਨ੍ਹਾਂ ਨੂੰ ਸਮਪੱਖੀ (Cis) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਦ ਕਿ ਦੂਜੇ ਸਮਅੰਗਕ, ਜਿਸ ਵਿੱਚ ਦੋ ਸਮਾਨ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਉਲਟ ਪਾਸੇ ਸਥਿਤ ਹੋਣ ਵਿਪੱਖੀ (trans) ਸਮਅੰਗਕ ਅਖਵਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਸਪੇਸ ਵਿੱਚ ਸਮ ਪੱਖੀ ਅਤੇ ਵਿਪੱਖੀ ਸਮਅੰਗਕਾਂ ਦੀ ਰਚਨਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਵਿਵਸਥਾ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਸਪੇਸ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਜਾਂ ਗਰੁੱਪਾਂ ਦੀਆਂ ਭਿੰਨ ਵਿਵਸਥਾਵਾਂ ਦੇ ਕਾਰਣ ਇਹ ਸਮਅੰਗਕ ਉਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ (ਜਿਵੇਂ ਪਿਘਲਣ ਅੰਕ, ਉਬਲਣ ਅੰਕ, ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ, ਘੁਲਣਸ਼ੀਲਤਾ ਆਦਿ) ਵਿੱਚ ਭਿੰਨਤਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਬਿਊਟ-2-ਈਨ ਦੀ ਜੁਮੈਟਰੱਈ ਸਮਅੰਗਤਾ ਜਾਂ ਸਮਪੱਖੀ-ਵਿਪੱਖੀ ਸਮਅੰਗਤਾ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਰਚਨਾਵਾਂ ਦੁਆਰਾ ਪਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ-

ਐਲਕੀਨ ਦਾ ਸਮਪੱਖੀ ਰੂਪ ਵਿਪੱਖੀ ਰੂਪ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਧਰੁਵੀ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ-ਲਈ ਸਮਪਖੀ ਬਿਊਟ-2 ਈਨ ਦੀ ਦੋ ਧਰੁਵ ਸੋਮੈਂਟ 0.350 ਡੀਬਾਈ ਹੈ, ਜਦ ਕਿ ਵਿਪੱਖੀ ਬਿਊਟ-2-ਈਨ ਦੀ ਲਗਭਗ ਸਿਫਰ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਵਿਪੱਖੀ

ਬਿਊਟਨ-2-ਈਨ ਅਧਰੁਵੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਰੂਪਾਂ ਦੀਆਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਜੋਮੈਟਰੀਆਂ ਨੂੰ ਬਨਾਉਣ ਤੇ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਵਿਪੱਖੀ ਬਿਊਟ-2-ਈਨ ਦੇ ਦੋਵੇਂ ਮੀਥਾਈਲ ਗਰੁੱਪ, ਜੋ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਹਰ ਇੱਕ C-CH3 ਬੰਧਨ ਦੇ ਕਾਰਣ ਧਰੁਵਤਾ ਨੂੰ ਖਤਮ ਕਰ ਕੇ ਵਿਪੱਖੀ ਰੂਪ ਨੂੰ ਇਸ ਤਰਵਾਂ ਧਰੁਵੀ ਬਣਾਉਂਦੇ ਹਨ-

 $(\mu = 0.33D)$ $(\mu = 0)$ ਠੋਸਾਂ ਵਿੱਚ ਵਿੱਪਖੀ ਸਮ ਅੰਗਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਸਮਪੱਖੀ ਸਮਅੰਗਕਾਂ ਦੀ ਤਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੰਦੇ ਹਨ।

ਜੋਮੈਟਰੱਈ ਜਾਂ ਸਮਪੱਖੀ (Cis) ਵਿਪੱਖੀ (Trans) ਸਮਅੰਗਤਾ XYC = CXZ ਅਤੇ XYC = CZW ਕਿਸਮ ਦੀਆਂ ਐਲਕੀਨਾਂ ਦੁਆਰਾ ਵੀ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਉਦਾਹਰਣ 13.10 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਸਮਪੱਖੀ (Cis) ਅਤੇ ਵਿਪੱਖੀ (Trans) ਸਮਅੰਗਕ ਬਣਾਓ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਨਾਂ ਲਿਖੋ। (i) CHCl = CHCl(ii) $C_2H_5CCH_3 = CCH_3C_2H_5$ ਸਮਪੱਖੀ-1,2-ਡਾਈਕਲੋਰੋਈਥੀਨ ਵਿਪੱਖੀ-1,2-ਡਾਈਕਲੋਰੋਈਥੀਨ $\begin{array}{c} H_{3} \\ C = C \end{array} \begin{array}{c} C H_{3} \\ C = C \end{array} \begin{array}{c} C H_{3} \\ C = C \end{array} \begin{array}{c} C \\ C \\ C \end{array}$ $C_{2}H_{5}$ C.H. CH-ਸਮਪੱਖੀ-1,2-ਡਾਈ ਮੀਥਾਈਲ ਵਿਪੱਖੀ-3,4-ਡਾਈ ਮੀਥਾਈਲ ਹੈਕਸ-3-ਈਨ ਹੈਕਸ-3-ਈਨ ੳਦਾਹਰਣ 13.11 ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜੇ ਯੋਗਿਕ ਸਮਪੱਖੀ-ਵਿਪੱਖੀ ਸਮਅੰਗਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ ?

(i) $(CH_3)_2C = CH - C_2H_5$

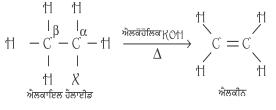
(ii) $CH_2 = CBr_2$ (iii) $C_6H_5CH = CH - CH_3$ (iv) $CH_3CH = CCl CH_3$ ਹੱਲ ਯੋਗਿਕ (iii) ਅਤੇ (iv)

13.3.4 ਤਿਆਰੀ

1. ਐਲਕਾਈਨਾਂ ਤੋਂ: ਐਲਕਾਈਨਾਂ ਦੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪਹਿਕਲਿਤ ਮਾਤਰਾ ਦੇ ਨਾਲ ਪੈਲੋਡੀਕ੍ਰਿਤ ਚਾਰਕੋਲ ਦੀ ਮੌਜੁਦਗੀ ਵਿੱਚ ਜਿਸ ਨੂੰ ਸਲਫਰ ਵਰਗੇ ਯੋਗਿਕਾਂ ਦੁਆਰਾ ਅੰਸ਼ਿਕ ਅਕਿਰਿਆਸ਼ੀਲ ਕੀਤਾ ਗਿਆ ਹੋਵੇ ਤਾਂ ਇਸ ਦੇ ਅੰਸ਼ਿਕ ਲਘੁਕਰਣ ਤੋਂ ਐਲਕੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਅੰਸ਼ਿਕ ਰੁਪ ਵਿੱਚ ਪੈਲੇਡੀਕ੍ਰਿਤ ਚਾਰਕੋਲ ਨੂੰ ਲਿੰਡਲਾਰ ਉਤਪ੍ਰੇਰਕ (Lindlar's catalyst) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਐਲਕੀਨਾਂ ਦੀ ਸਮੱਗਰੀ ਜੋਮੈਟਰੀ ਹੁੰਦੀ ਹੈ। ਐਲਕਾਈਨਾਂ ਦੇ ਸੋਡੀਅਮ ਅਤੇ ਦ੍ਰਵ ਅਮੋਨੀਅਮ ਦੇ ਨਾਲ ਲਘੁਕਰਣ ਤੇ ਵੀ ਵਿਪੱਖੀ ਸਮਅੰਗਕ ਵਾਲੀਆਂ ਐਲਕੀਨਾਂ ਬਣਦੀਆਂ

i
$$RC \equiv CR^{i}H_{2}$$
 $\xrightarrow{pd C}$ R^{i}
 $R = C^{i}H_{2}$ H^{i} H^{i} H^{i} H^{i}
 $R = C^{i}H_{2}$ H^{i} H^{i} H^{i} H^{i}
 $R = C^{i}H_{2}$ H^{i} H^{i} H^{i}
 $R = C^{i}H_{2}$ H^{i} H^{i}

ਪ੍ਰਦਰਸ਼ਿਤ ਕਰੇਗੀ ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਪੁਸ਼ਟੀ ਦੇ ਲਈ ਕਾਰਣ ਲੱਭੋ।


2. ਐਲਕਾਈਲ ਹੇਲਾਈਡਾਂ ਤੋਂ : ਐਲਕਾਈਲ ਹੇਲਾਈਡ (R-X) ਨੂੰ ਐਲਕੋਹਲੀ ਪੋਟਾਸ਼ (ਜਿਵੇਂ-ਈਥੇਨੋਲ ਵਿੱਚ ਘੁਲਿਆ

Downloaded from https:// www.studiestoday.com

379

380

ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦੀ ਮੌਜ਼ੂਦਗੀ ਵਿੱਚ ਗਰਮ ਕਰਨ ਤੇ ਹੈਲੋਜਨ ਐਸਿਡ ਦੇ ਅਣੂ ਦੇ ਉਤਰਣ ਤੇ ਐਲਕੀਨਾਂ ਬਣਦੀਆਂ ਹਨ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਡੀ ਹੈਲੋਜੀਨੀਕਰਣ ਕਹਿੰਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਹੈਲੋਜਨ ਐਸਿਡ ਦਾ ਵਿਲੋਪਨ ਹੁੰਦਾ ਹੈ। ਇਹ ਇੱਕ β-ਵਿਲੋਪਨੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਕਿਉਂਕਿ β-ਕਾਰਬਨ ਪਰਮਾਣੂ (ਜਿਸ ਕਾਰਬਨ ਨਾਲ ਹੈਲੋਜਨ ਜੁੜਿਆ ਹੋਵੇ, ਉਸਦੇ ਅਗਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂ) ਤੋਂ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਵਿਲੋਪਨ ਹੁੰਦਾ ਹੈ।

(13.34)

ਹੈਲੋਜਨ ਪਰਮਾਣੂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਐਲਕਾਈਲ ਗਰੁੱਪ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਦਰ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ।ਅਜਿਹਾ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਹੈਲੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਦਰ ਇਸ ਪ੍ਰਕਾਰ ਹਨ–ਆਇਓਡੀਨ > ਬ੍ਰੋਮੀਨ > ਕਲੋਰੀਨ; ਜਦਕਿ ਐਲਕਾਈਲ ਗਰੁੱਪਾਂ ਦੇ ਲਈ ਇਹ ਹੈ–3° > 2° > 1°

3. ਵਿੱਸੀਨਲ ਡਾਈ ਹੇਲਾਈਡਾਂ ਤੋਂ : ਡਾਈ ਹੈਲਾਈਡ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਦੋ ਨੇੜਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਦੋ ਹੈਲੋਜਨ ਪਰਮਾਣੂ ਮੌਜੂਦ ਹੋਣ ਵਿੱਸੀ ਨਾਲ ਡਾਈ ਹੇਲਾਈਡ ਅਖਵਾਉਂਦੇ ਹਨ। ਵਿੱਸੀਨਲ ਡਾਈਹੇਲਾਈਡ ਨੂੰ ਜਿੰਕ ਧਾਤ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ ZnX₂ ਅਣੂ ਦਾ ਵਿਲੋਪਨ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਐਲਕੀਨ ਉਪਜਦੀ ਹੈ। ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਨੂੰ ਡੀਹੈਲੋਜੀਨੀ ਕਰਣ (Dehologenation) ਕਹਿੰਦੇ ਹਨ।

 $CH_2Br-CH_2Br+Zn\longrightarrow CH_2=CH_2+ZnBr_2$ ਇਥਲੀਨ ਡਾਈਬ੍ਰੋਮਾਈਡ ਈਥਲੀਨ

(13.35)

$$CH_3CHBr-CH_2Br+Zn \longrightarrow CH_3CH=CH_2$$

+ $ZnBr_2$
(13.36)

4. ਐਲਕੋਹਲਾਂ ਤੇ ਤੇਜਾਬੀ ਨਿਰਜਲਨ ਤੋਂ : ਤੁਸੀਂ ਯੁਨਿਟ 12 ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਸਮਜਾਤੀ ਲੜੀਆਂ ਦੇ ਨਾਮਕਰਣ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਐਲਕੋਹਲ, ਐਲਕੇਨ ਦੇ ਹਾਈਡ੍ਰੋਕਸੀ ਵਿਉਤਪੰਨ (derivatives) ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ R-OH ਨਾਲ ਪ੍ਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ, ਜਿੱਥੇ R = C_nH_{2n+1}. ਹੈ। ਐਲਕੋਹਲਾਂ ਨੂੰ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਨਾਲ ਗਰਮ ਕਰਕੇ ਪਾਣੀ ਦੇ ਇੱਕ ਅਣੂ ਦਾ ਵਿਲੋਪਨ ਹੁੰਦਾ ਹੈ। ਫਲਸਰੂਪ ਐਲਕੀਨ ਬਣਦਾ ਹੈ। ਕਿਉਂਕਿ ਤੇਜਾਬ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਐਲਕੋਹਲ ਅਣੂ ਵਿੱਚੋਂ ਪਾਣੀ ਦਾ ਇੱਕ ਅਣੂ ਵਿਲੋਪਿਤ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਨੂੰ ਐਲਕੋਹਲਾਂ ਦਾ ਤੇਜਾਬੀ ਨਿਰਜਲੀ ਕਰਣ ਕਹਿੰਦੇ ਹਨ। ਇਹ β-ਵਿਲੋਪਨ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ –OH ਗਰੁੱਪ β-ਕਾਰਬਨ ਪਰਮਾਣੂ ਤੋਂ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਹਟਾਉਂਦਾ ਹੈ।

13.3.5 ਗੁਣ

ਭੌਤਿਕ ਗੁਣ

ਧਰੁਵੀ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਅੰਤਰ ਦੇ ਇਲਾਵਾ ਐਲਕੀਨ ਭੌਤਿਕ ਗੁਣਾਂ ਵਿੱਚ ਐਲਕੇਨਾਂ ਨਾਲ ਸਮਾਨਤਾ ਦਰਸਾਉਂਦੀ ਹੈ। ਪਹਿਲੇ ਤਿੰਨ ਮੈਂਬਰ ਗੈਸ ਅਗਲੇ ਚੋਦਾਂ ਮੈਂਬਰ ਦ੍ਵ ਅਤੇ ਉਸ ਨਾਲੋਂ ਵੱਧ ਕਾਰਬਨ ਸੰਖਿਆ ਵਾਲੇ ਠੋਸ ਹੁੰਦੇ ਹਨ। ਈਥੀਨ ਰੰਗਹੀਣ ਅਤੇ ਹਲਕੀ ਮਿੱਠੀ ਗੰਧ ਵਾਲੀ ਗੈਸ। ਬਾਕੀ ਸਾਰੀਆਂ ਐਲਕੀਨਾਂ ਰੰਗਹੀਣ ਅਤੇ ਗੰਧ ਵਾਲੀਆਂ, ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ, ਪਰੰਤੂ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਜਿਵੇਂ-ਬੈਨਜ਼ੀਨ, ਪੈਟ੍ਰੋਲੀਅਮ ਈਥਰ ਵਿੱਚ ਘੁਲਦੀਆਂ ਹਨ। ਅਕਾਰ ਵਿੱਚ ਵਾਧਾ ਹੋਣ ਦੇ ਨਾਲ ਨਾਲ ਇਨ੍ਹਾਂ ਦੇ ਉਬਲਣ ਅੰਕ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰ ਇੱਕ CH₂ ਗਰੁੱਪ ਵਧਣ ਤੇ ਉਬਲਣ ਅੰਕ ਵਿੱਚ 20 ਤੋਂ 30 K. ਤੱਕ ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਐਲਕੇਨਾਂ ਦੇ ਵਾਂਗ ਸਿੱਧੀ ਚੇਨ ਵਾਲੀਆਂ ਐਲਕੀਨਾਂ ਦਾ ਉਬਲਣ ਅੰਕ ਸਮਅੰਗਕ ਸ਼ਾਖਿਤ ਚੇਨ ਵਾਲੇ ਐਲਕੀਨਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉੱਚਾ ਹੁੰਦਾ ਹੈ।

ਰਸਾਇਣਿਕ ਗੁਣ

ਐਲਕੀਨਾਂ ਖੀਣ ਬੰਧਿਤ (π) ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਸਰੋਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਰਸਾਉਂਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ C = C ਦੂਹਰੇ ਬੰਧਨ ਉੱਤੇ ਜੁੜ ਕੇ ਜੋੜ ਉਪਜ ਬਣਾਉਂਦੇ ਹਨ। ਕੁਝ ਅਭਿਕਰਮਕਾਂ ਦੇ ਨਾਲ ਕਿਰਿਆ ਮੁਕਤ-ਮੂਲਕ ਕਿਰਿਆ ਵਿਧੀ ਦੁਆਰਾ ਵੀ ਹੁੰਦੀ ਹੈ। ਐਲਕੀਨ ਕੁਝ ਵਿਸ਼ੇਸ਼ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਮੁਕਤ-ਮੂਲਕ ਪ੍ਰਤੀ ਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ ਐਲਕੀਨ ਵਿੱਚ ਆਕਸੀਕਰਣ ਅਤੇ ਓਜ਼ੋਨੀ ਅਪਘਟਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਮੁੱਖ ਹਨ। ਐਲਕੀਨਾਂ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਾ ਸੰਖੇਪ ਵਰਣਨ ਇਸ ਤਰ੍ਹਾਂ ਹੈ-

- ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਸੰਯੋਜਨ—ਐਲਕੀਨ ਸੂਖਮ ਪੀਸੇ ਹੋਏ ਨਿਕੱਲ, ਪੈਲੇਡੀਅਮ ਜਾਂ ਪਲੈਟੀਨਮ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਇੱਕ ਅਣੂ ਦੇ ਜੋੜ ਨਾਲ ਐਲਕੇਨ ਬਣਾਉਂਦੀ ਹਨ। (Section 13.2.2)
- 2. ਹੈਲੋਜਨ ਦਾ ਸੰਯੋਜਨ : ਐਲਕੀਨ ਨਾਲ ਜੁੜਕੇ ਹੈਲੋਜਨ ਜਿਵੇਂ ਬ੍ਰੋਮੀਨ ਜਾਂ ਕਲੋਗੀਨ ਵਿੱਧੀ ਨਾਲ ਡਾਈ ਹੇਲਾਈਡ ਦਿੰਦੀਆਂ ਹਨ, ਹਾਂਲਾਂਕਿ ਆਇਓਡੀਨ ਆਮ ਹਾਲਤਾਂ

ਵਿੱਚ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀ। ਬ੍ਰੋਮੀਨ ਦ੍ਰਵ ਦਾ ਨਾਲ ਔਰੇਂਜ ਰੰਗ ਅ-ਸੰਤ੍ਰਿਪਤ ਸਥਾਨ ਉੱਤੇ ਬ੍ਰੇਮੀਨ ਦੇ ਜੁੜਨ ਦੇ ਬਾਅਦ ਲੁਪਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਅਸੰਤ੍ਰਿਪਤਾ ਦੀ ਪਰਖ ਦੇ ਲਈ ਹੁੰਦਾ ਹੈ। ਐਲਕੀਨ ਉੱਤੇ ਹੈਲੋਜਨ ਦਾ ਜੋੜ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਜੋੜਾ ਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਹੈ, ਜਿਸ ਵਿੱਚ ਚਕੱਰੀ ਹੈਲੋਨਿਅਮ ਆਇਤਨ ਦਾ ਨਿਰਮਾਣ ਸ਼ਾਮਿਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਅਧਿਐਨ ਤੁਸੀਂ ਉੱਚੀ ਜਮਾਤ ਵਿੱਚ ਕਰੋਗੇ।

(i)
$$CH_2 = CH_2 + Br - Br$$
 $\xrightarrow{CCl_4}$ $CH_2 - CH_2$
| | |
ਬਰੋਮੀਨ Br Br
1,2 ਡਾਈਬਰੋਮੀਥੇਨ (13.38)

(ii) CH₃−CH=CH₂+Cl−Cl−→CH₃−CH−CH₂ | | Cl Cl ਪਰੋਪੀਨ 1,2-ਡਾਈਕਲੋਰੋਪਰੋਪੀਨ

(13.39)

3. ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡਾਂ ਦਾ ਸੰਯੋਜਕ— ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ, HI > HBr > HCl ਐਲਕੀਨਾਂ ਨਾਲ ਜੁੜ ਕੇ ਐਲਕਾਈਲ ਹੇਲਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡਾਂ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ : HI > HBr > HCl ਐਲਕੀਨਾਂ ਵਿੱਚ ਹੈਲੋਜਨਾਂ ਦੇ ਜੋੜ ਦੇ ਸਮਾਨ ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ ਦਾ ਜੋੜਵੀ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਇਸ ਨੂੰ ਅਸੀਂ ਸਮਮ੍ਰਿਤ ਅਤੇ ਅ–ਸਮਮਿਤ ਐਲਕੀਨਾਂ ਵਿੱਚ HBr ਦੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨਾਲ ਸਪਸ਼ਟ ਕਰਾਂਗੇ। ਸਮਮਿਤ ਐਲਕੀਨਾਂ ਵਿੱਚ HBr ਦੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨਾਲ ਸਪਸ਼ਟ ਕਰਾਂਗੇ। ਸਮਮਿਤ ਐਲਕੀਨਾਂ ਵਿੱਚ HBr ਦੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆ–ਸਮਮਿਤ ਐਲਕੀਨਾਂ ਵਿੱਚ (ਜਦੋਂ ਦੂਹਰੇ ਬੰਧਨ ਉੱਤੇ ਸਮਾਨ ਗਰੁੱਪ ਜੁੜੇ ਹੋਣ) HBr ਦੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਜੋੜਾ ਕਿਰਿਆਵਾਂ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਜੋੜਾ ਕੀ ਹੁੰਦੀ ਹੈ।

$$CH_2 = CH_2 + H - Br \longrightarrow CH_3 - CH_2 - Br$$
 (13.40)
ਈਥੇਨ

$$CH_3 - CH = CH - CH_3 + HBr \rightarrow CH_3 - CH_2 - CHCH_3$$

ष्टीषेठ

(13.41)

ਅ-ਸਮਮਿਤ ਐਲਕੀਨਾਂ ਉੱਤੇ *HBr* ਦਾ ਜੋੜ (ਮਾਰੱਕਨੀਕਾੱਫ ਨਿਯਮ)

ਪਰੋਪੀਨ ਉੱਤੇ HBr ਦਾ ਜੋੜ ਕਿਵੇਂ ਹੋਵੇਗਾ ? ਇਸ ਵਿੱਚ ਦੋ

ਸੰਭਾਵਿਤ ਉਪਜਾਂ I ਅਤੇ II ਹੋ ਸਕਦੀਆਂ ਹਨ।

$$\begin{array}{c} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}-\mathrm{Br} \longrightarrow \\ & \tilde{\mathrm{U}}^{1} \mathrm{L}^{-\mathrm{CH}_{3}}-\mathrm{CH}-\mathrm{CH}_{3} \\ & \mathrm{Br} \\ & 2-\tilde{\mathrm{t}}\tilde{\mathrm{J}}\tilde{\mathrm{J}}\mathrm{U}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\\ & 2-\tilde{\mathrm{t}}\tilde{\mathrm{J}}\tilde{\mathrm{J}}\mathrm{U}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\\ & \mathrm{II} \end{array} \xrightarrow{} \begin{array}{c} \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3} \\ & -\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}\\ & 1-\tilde{\mathrm{t}}\tilde{\mathrm{J}}\tilde{\mathrm{J}}\mathrm{U}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\tilde{\mathrm{U}}\\ \end{array}$$

(13.42)

ਰੂਸੀ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਮਾਰਕੋਨੀਕਾੱਫ ਨੇ ਸੰਨ 1869 ਵਿੱਚ ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦਾ ਡੂੰਘਾ ਅਅਿਧਐਨ ਕਰਨ ਦੇ ਬਾਅਦ ਇੱਕ ਨਿਯਮ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ, ਜਿਸ ਨੂੰ ਮਾਰਕੋਨੀ ਕਾੱਫ ਦਾ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ, ਜੁੜਨਸ਼ੀਲ ਉਹ ਅਭਿਕਰਮਕ ਜਿਸ ਦਾ ਜੋੜ ਹੋ ਰਿਹਾ ਹੈ। ਦਾ ਵਧੇਰੇ ਰਿਣਾਮਕ ਭਾਗ ਉਸ ਕਾਰਬਨ ਨਾਲ ਜੁੜੇਗਾ, ਜਿਸ ਉੱਤੇ ਹਾਈਡੋ੍ਰਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਉਪਜ (1) 2-ਬ੍ਰੋਮੋਪੋਰਪੇਨ ਬਣਗੀ। ਅਸਲ ਵਿੱਚ ਇਹ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਮੁੱਖ ਉਪਜ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮਾਰਕੋਨੀਕਾੱਫ ਨਿਯਮ ਦੇ ਵਿਆਪਕੀਕਰਣ ਨੂੰ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਮੁੱਖ ਉਪਜ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮਾਰਕੋਨੀਕਾਫ ਨਿਯਮ ਦੇ ਵਿਆਪਕੀ ਕਰਣ ਨੂੰ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਰਿਆ ਵਿਧੀ

ਹਾਈਡ੍ਰੋਜਨ ਬ੍ਰੋਮਾਈਡ ਇਲੈਕਟ੍ਰਾੱਨ ਸੇਨਹੀਂ H ਦਿੰਦਾ ਹੈ, ਜੋ ਦੂਹਰੇ ਬੰਧਨ ਉੱਤੇ ਹਮਲਾਕਰ ਕੇ ਹੇਠਾਂ ਦਿੱਤੇ ਕਾਰਬਨ ਧਨਆਇਨ (carbocation) ਬਣਾਉਂਦਾ ਹੈ।

$$H_{3}C - CH = CH_{2} + H - Br$$

$$\downarrow H^{+}$$

$$\downarrow H^{+}$$

H₃C—CH₂—CH₂ + Br H₃C—CH−CH₃ + Br (ੳ) ਘੱਟ ਸਥਾਈ (ਅ) ਵੱਧ ਸਥਾਈ

ਪ੍ਰਾਈਮਰੀ ਕਾਰਬਧਨਆਇਨ ਸੈਕੰਡਰੀ ਕਾਰਬਧਨਆਇਨ

- (i) ਇੱਥੇ (ੳ) ਘੱਟ ਸਥਾਈ ਪ੍ਰਾਈਮਰੀ ਕਾਰਬਧਨਆਇਨ ਹੈ, ਜਦ ਕਿ 'm' ਵਧੇਰੇ ਸਥਾਈ ਸੈਕੰਡਰੀ ਕਾਰਬਧਨਆਇਨ ਹੈ। ਇਸ ਲਈ ਸੈਕੰਡਰੀ ਕਾਰਬਧਨ ਆਇਨ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਬਣੇਗਾ, ਕਿਉਂਕਿ ਇਹ ਜਲਦੀ ਬਣਦਾ ਹੈ।
- (ii) ਕਾਰਬਧਨਆਇਨ (ਅ) ਵਿੱਚ Br⁻ ਦੇ ਹਮਲੇ ਤੋਂ ਉਪਜ ਇਸ ਤਰ੍ਹਾਂ ਬਣਦੀ ਹੈ–

$$\overrightarrow{Br}$$
 $\overrightarrow{\Psi}$
 $H_{3}C-CH-CH_{3} \longrightarrow H_{3}C-CH-CH_{3}$
 $|$
 Br $_{2-\overline{q}\overline{H}u\overline{d}\overline{u}\overline{d}}$

(भुंध ਉਪਜ)

382

ਪ੍ਰਤੀ ਮਾਰਕੋਨੀਕਾੱਫ ਜੋੜ ਜਾਂ ਪਰਆੱਕਸਾਈਡ ਪ੍ਰਭਾਵ ਜਾਂ ਖਰਾਸ਼ ਪ੍ਰਭਾਵ

ਪਰ ਐਕਸਾਈਡ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਅ-ਸਮਮਿਤ ਐਲਕੀਨਾਂ (ਜਿਵੇਂ ਪਰੋਪੀਨ) ਨਾਲ HBr ਦਾ ਜੋੜ ਪ੍ਰਤੀ ਮਾਰਕੋਨੀਕਾੱਫ ਨਿਯਮ ਨਾਲ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਸਿਰਫ HBr ਦੇ ਨਾਲ ਹੁੰਦਾ ਹੈ, HCl ਅਤੇ Hl ਦੇ ਨਾਲ ਨਹੀਂ। ਇਸ ਜੋੜ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਅਧਿਐਨ ਐਮ. ਐਸ. ਖਰਾਸ਼ ਅਤੇ ਐਫ. ਆਰ ਮੇਯੋ ਦੁਆਰਾ ਸੰਨ 1933 ਵਿੱਚ ਸ਼ੀਕਾਗੋ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਕੀਤਾ ਗਿਆ। ਇਸ ਲਈ ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਪਰਾਆੱਕਸਾਈਡ ਜਾਂ ਖਰਾਸ਼ ਪ੍ਰਭਾਵ (Kharasch Effect) ਜਾਂ ਜੋੜ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਪ੍ਰਤੀ ਮਾਰਕੋਨੀਕਾੱਫ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ।

$$CH_3 - CH = CH_2 + HBr \xrightarrow{(C_6H_5CO)_2O_2}$$

$$CH_{2}^{3}-CH_{2}^{2}-CH_{2}^{1}-Br$$

(13.43)

ਪਰਆਕਸਾਈ ਪ੍ਰਭਾਵ ਮੁਕਤ- ਮੂਲਕ ਚੇਨ ਕਿਰਿਆ ਅਵਿਧੀ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ-

$$O$$
 O
 \parallel \parallel \parallel \parallel
 $C_{6}H_{5} - C - O - O - C - C_{6}H_{5} \xrightarrow{H_{1} \overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{D}\overrightarrow{H}\overrightarrow{P}}$
 $\overset{a}{}$ $\overrightarrow{A}\overrightarrow{H}$ $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} $\overrightarrow{D}\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$
 \overrightarrow{D} \overrightarrow{D} $\overrightarrow{H}\overrightarrow{B}\overrightarrow{H}\overrightarrow{H}$

ਮੁੱਖ ਉਪਜ

ਉਪੋਰਕਤ ਕਿਰਿਆ (iii) ਵਿੱਤ ਪ੍ਰਾਪਤ ਸੈਕੰਡਰੀ ਮੁਕਤਮੂਲਕ ਪ੍ਰਾਈਮਰੀ ਮੁਕਤ ਮੂਲਕ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੇ ਕਾਰਣ 1-ਬਰੋਮੋਪਰੋਪੇਨ ਮੁੱਖ ਉਪਜ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਧਿਆਨ ਦੇਣ ਵਾਲੀ ਗੱਲ ਹੈ ਕਿ ਪਰਆੱਕਸਾਈਡ ਪ੍ਰਭਾਵ HCl ਅਤੇ HI ਦੇ ਜੋੜ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਤੱਥ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ H – Cl ਦਾ ਬੰਧਨ (430.5 kJ mol⁻¹) H – Br ਬੰਧਨ (363.7 kJ mol⁻¹) ਕੀ ਤੁਲਨਾ ਵਿੱਚ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ ਜੋ C_6H_5 ਮੁਕਤ ਮੂਲਕ ਦੁਆਰਾ ਵਿਘਟਿਤ ਨਹੀਂ ਹੋ ਪਾਉਂਦਾ। ਭਾਵੇਂ H – I (296.8 kJ mol⁻¹) ਦਾ ਬੰਧਨ ਉੱਤੇ ਜੁੜਨ ਦੀ ਬਜਾਏ ਆਪਸ ਵਿੱਚ ਜੁੜਕੇ ਆਇਓਡੀਨ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ।

ਉਦਾਹਰਣ 13.12

ਹੈਕਸ−1 ਈਨ ਦੀ HBr ਦੇ ਨਾਲ ਜੋੜਕ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਪ੍ਰਾਪਤ ਉਪਜਾਂ ਦੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ ਦਿਓ।

- (i) ਪਰਆਕਸਾਈਡ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਵਿੱਚ
- (ii) ਪਰਆੱਕਸਾਈਡ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ

ਹੱਲ

4. ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦਾ ਸੰਯੋਜਨ : ਐਲਕੀਨਾਂ ਦੀ ਠੰਡੇ ਗਾੜ੍ਹੇ ਸੰਲਫਿਊਰਿਕਐਸਿਡ ਨਾਲ ਕਿਰਿਆ ਮਾਰਕੋਨੀਕਾੱਫ ਨਿਯਮ ਦੇ ਮੁਤਾਬਿਕ ਹੁੰਦੀ ਹੈ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਹੀ ਜੋੜ ਪ੍ਤੀਕਿਰਿਆ ਦੁਆਰਾ ਐਲਕਾਈਲ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫੇਟ ਬਣਾਉਂਦੇ ਹਨ।

383

$$CH_2 = CH_2 + H - O - S - O - H$$

 $CH_3 - CH_2 - OSO_2 - OH \text{ or } C_2H_5HSO_4$ ਈਥਾਈਲ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫੇਟ

(13.44)

$$CH_{3}-CH = CH_{2} + HOSO_{2}OH$$

$$\downarrow$$

$$CH_{3}-CH-CH_{3}$$

$$I$$

$$OSO_{2}OH$$

ਪਰੋਪਾਈਲ ਹਾਈਡੋਜਨ ਸਲਫੇਟ

(13.45)

5. ਪਾਣੀ ਦਾ ਸੰਯੋਜਨ—ਐਲਕੀਨ, ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੀਆਂ ਕੁਝ ਬੂੰਦਾਂ ਦੀ ਹੋਂਦ ਵਿੱਚ ਪਾਣੀ ਦੇ ਨਾਲ ਅਰਕੋਨੀਕਾੱਫ ਨਿਯਮ ਮੁਤਾਬਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਐਲਕੋਹਲ ਬਣਾਉਂਦੇ ਹਨ।

$$\begin{array}{ccc} \operatorname{CH}_{3}-\operatorname{C}=\operatorname{CH}_{2}+\operatorname{H}_{2}\operatorname{O} & \xrightarrow{\operatorname{H}^{+}} & \operatorname{C}-\operatorname{CH}_{3} \\ \operatorname{CH}_{3} & \operatorname{CH}_{3} & \operatorname{CH}_{3} \\ & & \operatorname{CH}_{3} & \operatorname{OH} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$$

6. ਆੱਕਸੀਕਰਣ – ਐਲਕੀਨ ਠੰਡੇ, ਹਲਕੇ, ਜਲੀ ਪੌਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਘੋਲ(ਬੇਯਰ ਅਭਿਕਰਮਕ) ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਵਿਸੱਨਿਲ ਗਲਾਈ ਕੋਲ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਪੌਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ ਰੰਗਹੀਣ ਹੋਣਾ ਅਸੰਤ੍ਰਿਪਤਾ ਦਾ ਟੈਸਟ ਹੈ।

$$CH_2 = CH_2 + H_2O + O \xrightarrow{dil. KMnO_4} CH_2 - CH_2$$

 $I I OH OH$
ਈਥੇਨ-1, 2-ਆਈਡਲ

$$CH_{3}-CH=CH_{2}+H_{2}O+O \xrightarrow{\text{dil. KMnO}_{4}} CH_{3}-CH=CH_{2}+H_{2}O+O \xrightarrow{\text{dil. KMnO}_{4}} CH_{3}CH(OH)CH_{3}OH$$

(13.48)

b) ਤੇਜਾਬੀ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਜਾਂ ਤੇਜਾਬੀ ਪੋਟਾਸ਼ਿਅਮ ਡਾਈਕ੍ਰੋਮੇਟ ਐਲਕੀਨ ਨੂੰ ਕੀਏਨ ਅਤੇ ਤੇਜਾਬ ਵਿੱਚ ਆਕਸੀਕ੍ਰਿਤ ਕਰਦੇ ਹਨ। ਉਪਜ ਦੀ ਪ੍ਰਕਿਰਤੀ ਐਲਕੀਨ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਪ੍ਰਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

$$(CH_3)_2C = CH_2 \xrightarrow{KMnO_4/H^+} (CH_3)_2C = O + CO_2 + H_2O$$

2-ਮੀਥਾਈਲਪਰੋਪੈਨ ਪਰੋਪੈਨ-2-ਓਨ

(13.49)

7. ਓਜ਼ੋਨੀ ਅਪਘਟਨ – ਓਜ਼ੋਨੀ ਅਪਘਟਨ ਵਿੱਚ ਐਲਕੀਨ O₃ ਨਾਲ ਜੁੜਕੇ ਓਜ਼ੋਨਾਈਡ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ Zn-H₂O ਦੇ ਦੁਆਰਾ ਓਜ਼ੋਨਾਈਡ ਦਾ ਵਿਘਟਨ ਛੋਟੇ ਅਣੂਆਂ ਵਿੱਚ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਪ੍ਤੀਕਿਰਿਆ ਐਲਕੀਨ ਅਤੇ ਹੋਰ ਅਸੰਤ੍ਰਿਪਤ ਯੋਗਿਕਾਂ ਵਿੱਚ ਦੂਹਰੇ ਬੰਧਨ ਦੀ ਸਥਿਤੀ ਨਿਸ਼ਚਿਤ ਕਰਨ ਦੇ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{O}_{3}\longrightarrow\mathrm{CH}_{3}-\mathrm{CH} & \mathrm{CH}_{2} \\ & \underline{\nu} \overline{\sigma} \overline{\nu} \overline{n} \\ & \underline{\nu} \overline{\sigma} \overline{\nu} \\ & \underline{\nu} \\ & \underline$$

8. ਬਹੁਲੀਕਰਣ – ਤੁਸੀਂ ਪੋਲੀਥੀਨ ਦੀਆਂ ਥੈਲੀਆਂ ਅਤੇ ਪੋਲੀਥੀਨ ਸ਼ੀਟ ਤੋਂ ਜਾਣੂ ਹੋਵੋਗੇ। ਵਧੇਰੇ ਸੰਖਿਆ ਵਿੱਚ ਈਥੀਨ ਅਣੂਆਂ ਦਾ ਉੱਚ ਤਾਪਮਾਨ ਉੱਚ ਦਾਬ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਦੀ ਹੋਂਦ ਵਿੱਚ ਜੋੜ ਕਰਨ ਨਾਲ ਪੋਲੀਥੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਵੱਡੇ ਅਣੂ ਬਹੁਲਕ (Polymer) ਅਖਵਾਉਂਦੇ ਹਨ। ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਨੂੰ ਬਹੁਲਕੀਕਰਣ (Polgmerisation) ਕਹਿੰਦੇ ਹਨ। ਸਰਲ ਯੋਗਿਕ, ਜਿਨ੍ਹਾਂ ਭੋਂ ਬਹੁਲਕ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਇਕਲਕ (Momomer) ਅਖਵਾਉਂਦੇ ਹਨ।

384

$$n(CH_{2}=CH_{2}) \xrightarrow{\mathbb{Q} \oplus \mathbb{Q} \to \mathbb{Q} \times \mathbb{$$

n(CH₃ – CH=CH₂)<u>ਚੁਚਾਤਾਪ੍ਰਸਾਨ/ਦਾਖ</u>→ -(-CH–CH₂ -)_π ਉਤਪ੍ਰੇਰਕ | CH₃ ਪੋਲੀਪਰੋਪੀਨ (13.54)

ਬਹੁਲਕਾਂ ਦੀ ਵਰਤੋਂ ਪਲਾਸਟਿਕ ਦੇ ਥੈਲੇ, ਨਪੀੜਤ ਬੋਤਲ, ਰੈਫਰੀਜਰੇਦਰ ਡਿਸ਼, ਖਿਡੌਣੇ, ਪਾਈਪ ਰੇਡੀਓ ਅਤੇ ਟੀ.ਵੀ.ਕੈਬਨਟ ਕੈਬਨੇਟ ਆਦਿ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪੋਲੀਪਰੋਪੀਨ ਦੀ ਵਰਤੋਂ ਦੁੱਧ ਦੇ ਕਰੇਟ, ਪਲਾਸਟਿਕ ਦੀਆਂ ਬਾਲਟੀਆਂ ਅਤੇ ਹੋਰ ਮੋਲਡਿਡ (Moulded) ਵਸਤਾਂ ਬਨਾਉਣਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਹਾਂਲਾਂਕਿ ਹੁਣ ਪੋਲੀਥੀਨ ਅਤੇ ਪੋਲੀਪਰੋਪੀਨ ਦੀ ਵਧੇਰੇ ਵਰਤੋਂ ਸਾਡੇ ਲਈ ਇੱਕ ਚਿੰਤਾ ਦਾ ਵਿਸ਼ਾ ਬਣ ਗਿਆ ਹੈ।

13.4 ਐਲਕਾਈਨ

ਐਲਕੀਨ ਦੀ ਤਰ੍ਹਾਂ ਐਲਕਾਈਨ ਦੀ ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਤੀਹਰਾ ਬੰਧਨ ਹੁੰਦਾ ਹੈ। ਐਲਕੇਨ ਅਤੇ ਐਲਕੀਨ ਦੀ ਤੁਲਨਾ ਵਿੱਤ, ਐਲਕਾਈਨ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦਾ ਆਮ ਸੂਤਰ C_nH_{2n-2} ਹੈ। ਐਲਕਾਈਨ ਪਰਿਵਾਰ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਈਥਾਈਨ ਹੈ, ਜੋ ਐਸੀਟਾਈਲੀਨ ਦੇ ਨਾਂ ਨਾਲ ਪ੍ਰਚਲਿਤ ਹੈ। ਐਸੀਟਾਈਲੀਨ ਦੀ ਵਰਤੋਂ ਆਰਕ ਵੈਲਡਿੰਗ ਦੇ ਲਈ ਆੱਕਸੀ ਐਸੀਟਾਈਲੀਨ ਲਾਟ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ ਆਕਸੀਜਨ ਗੈਸ ਅਤੇ ਐਸੀਟਾਈਲੀਨ ਨੂੰ ਮਿਸ਼ਰਤ ਕਰਨ ਨਾਲ ਬਣਦੀ ਹੈ। ਐਲਕਾਈਨ ਲਈ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਲਈ ਸ਼ੁਰੂ ਦਾ ਪਦਾਰਥ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਪਰਿਵਾਰ ਦੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਅਧਿਐਨ ਦਿਲਚਸਪ ਹੈ।

13.4.1 ਨਾਮਕਰਣ ਅਤੇ ਸਮਅੰਗਤਾ

ਆਮ ਪੱਧਤੀ ਵਿੱਚ ਐਲਕਾਈਨ ਐਸੀਟਾਈਲੀਨ ਦੇ ਵਿਉਤਪੰਨ ਦੇ ਨਾਂ ਤੋਂ ਜਾਣੇ ਜਾਂਦੇ ਹਨ। ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਪਧੱਤੀ ਵਿੱਚ ਸੰਗਤ ਔਲਕੇਨ ਵਿੱਚ ਪਛੇਤਰ ਏਨ ਦਾ ਆਈਨ ਦੁਆਰਾ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਕੇ ਐਲਕਾਈਨ ਨੂੰ ਸੰਗਤ ਐਲਕੇਨ ਦੇ ਵਿਉਤਪੰਨ ਨਾਲ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਤੀਹਰੇ ਬੰਧਨ ਦੀ ਸਥਿਤੀ ਪਹਿਲੇ ਤ੍ਰੈ ਬੰਧਿਤ ਕਾਰਬਨ ਨਾਲ ਲਾਈ ਜਾਂਦੀ ਹੈ। ਐਲਕਾਈਨ ਪਰਿਵਾਰ ਦੇ ਕੁਝ ਮੈਂਬਰਾਂ ਦੇ ਸਧਾਰਣ ਨਾਂ ਅਤੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ ਨਾਂ ਸਾਰਣੀ 13.2 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਜਿਵੇਂ ਤੁਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹਿਆ ਹੈ, ਈਥਾਈਨ ਅਤੇ ਪਰੋਪਾਈਨ ਅਣੂਆਂ ਦੀ ਸਿਰਫ ਇਕ ਹੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਬਿਊਟਾਈਨ ਵਿੱਚ ਦੋ ਰਚਨਾਵਾਂ ਸੰਭਵ ਹਨ-(1) ਬਿਊਟ-1-ਆਈਨ ਇਹ ਬਿਊਟ-2-ਆਈਨ। ਕਿਉਂਕਿ ਦੋਵੇਂ ਯੋਗਿਕ ਤੀਹਰੇ ਬੰਧਨ ਦੀ ਸਥਿਤੀ ਦੇ ਕਾਰਣ ਰਚਨਾ ਵਿੱਚ ਭਿੰਨ ਹਨ। ਇਸ ਲਈ ਇਹ ਸਮ ਅੰਗਕ ਸਥਿਤੀ ਸਮਅੰਗਕ ਅਖਵਾਉਂਦੇ ਹਨ। ਤੁਸੀਂ ਕਿੰਨੀ ਕਿਸਮ ਦੇ ਅਗਲੇ ਸਮਜਾਤ ਦੀ ਰਚਨਾ ਬਣਾ ਸਕਦੇ ਹੋ ? ਅਰਥਾਤ ਅਗਲਾ ਐਲਕਾਈਨ (ਜਿਸ ਦਾ ਅਣਵੀਂ ਸੂਤਰ C₅H₈ ਹੈ) ਦੇ ਪੰਜ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਸਿੱਧੀ ਚੇਨ ਅਤੇ ਸ਼ਾਖਿਤ ਚੇਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰਨ ਤੇ ਹੇਠ ਲਿਖੀਆਂ ਰਚਨਾਵਾਂ ਸੰਭਵ ਹਨ

ਰਚਨਾ	IUPAC ਨਾਮ
I. $HC \equiv C - CH_2 - CH_2 - CH_3 - CH_3$	ਪੈਂਟ–1-ਆਈਨ
II. $H_3 \overset{1}{C} - \overset{2}{C} = \overset{3}{C} - \overset{4}{C} H_2 - \overset{5}{C} H_3$	ਪੈਂਟ–2-ਆਈਨ
III. H ₃ ⁴ C-CH-C≡CH 3-ਮੀ	ਥਾਈਲ ਬਿਊਟ–1-ਅ

III. H₃C−CH−C≡CH 3-ਮੀਥਾਈਲ ਬਿਊਟ−1-ਆਈਨ | CH₃

ਕਰਨਾ ਸੂਤਰ I ਅਤੇ II ਸਥਿਤੀਸਮਅੰਗਕ ਅਤੇ ਰਚਨਾ ਸੂਤਰ I ਅਤੇ III ਅਤੇ II ਅਤੇ III ਚੇਨ ਸਮਅੰਗਕ ਦੀਆਂ ਉਦਾਹਰਣਾ ਹਨ।

ਉਦਾਹਰਣ 13.13

ਐਲਕਾਈਨ ਪਰਿਵਾਰ ਦੇ ਪੰਜਵੇਂ ਮੈਂਬਰ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਸਮਅੰਗਕਾਂ ਦੀਆਂ ਰਚਨਾਵਾਂ ਅਤੇ ਆਈ. ਯੂ. ਪੀ. ਏ. ਸੀ. ਨਾਂ ਲਿਖੋ। ਭਿੰਨ-ਭਿੰਨ ਸਮਅੰਗਕ ਯੁਗਮ ਕਿਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮਅੰਗਤਾ ਦਰਸਾਉਂਦੇ ਹਨ।

ਹਲ

ਐਲਕਾਈਨ ਪਰਿਵਾਰ ਦੇ ਪੰਜਵੇਂ ਮੈਂਬਰ ਅਣਵੀਂ ਸੂਤਰ C_6H_{10} ਹੈ, ਇਸ ਦੇ ਸੰਭਾਵਿਤ ਸਮਅੰਗਕ ਇਸ ਪ੍ਰਕਾਰ

n ਦਾ ਮਾਨ	ਸੂਤਰ	ਰਚਨਾਸੂਤਰ	ਸਧਾਰਣ ਨਾਂ	IUPAC ਨਾਂ
2	C_2H_2	H-C≡CH	ਐਸੀਟਾਈਲੀਨ	ਈਥਾਈਨ
3	$C_{3}H_{4}$	CH ₃ -C≡CH	ਮੀਥਾਈਲ ਐਸੀਟਾਈਲੀਨ	ਪਰੋਪਾਈਨ
4	$C_4 H_6$	CH ₃ CH ₂ -C≡CH	ਈਥਾਈਲ ਐਸੀਟਾਈ ਲੀਨ	ਬਿਊਟ-1-ਆਈਨ
4	$C_4 H_6$	$CH_3^-C \equiv C - CH_3$	ਡਾਈਮੀਥਾਈ ਐਸੀਟਾਈਲੀਨ	ਬਿਊਂਟ-2-ਆਈਨ

ਸਾਰਣੀ 13.2 ਐਲਕਾਈਨ (C H_{2n-2}) ਪਰਿਵਾਰ ਦੇ ਸਧਾਰਣ ਅਤੇ IUPAC ਨਾਂ

ਹਨ—

(f

- (a) $HC \equiv C CH_2 CH_2 CH_2 CH_3$ ਹੈਕਸ-1-ਆਈਨ
- (b) CH₃ C ≡ C CH₂ CH₂ CH₃ ਹੈਕਸ-2-ਆਈਨ
- (c) $CH_3 CH_2 C \equiv C CH_2 CH_3$ ਹੈਕਸ-3-ਆਈਨ
- (d) $HC \equiv C CH CH_2 CH_3$ | CH_3

3-ਮੀਥਾਈਲਪੈਂਟ-1-ਆਈਨ

(e)
$$HC \equiv C - CH_2 - CH - CH_3$$

4-ਮੀਥਾਈਲਪੈਂਟ-1-ਆਈਨ

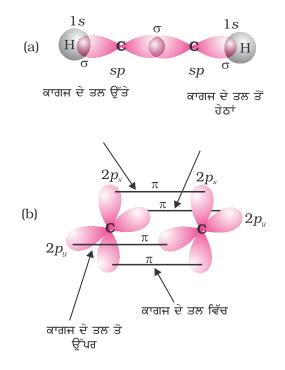
)
$$CH_3 - C \equiv C - CH - CH_3$$

$$CH_3$$

4-ਮੀਥਾਈਲਪੈਂਟ-2-ਆਈਨ

(g)
$$HC \equiv C - C - CH_3$$

 \downarrow
 CH_3
 CH_3


3,3-ਡਾਈਮੀਥਾਈਲ ਬਿਊਟ-1-ਆਈਨ

ਉੱਪਰ ਦਿੱਤੇ ਸਮਅੰਗਕ ਚੇਨ ਸਮਅੰਗਕਤਾ ਅਤੇ ਸਥਿਤੀ ਸਮਅੰਗਕਤਾ ਦੀਆਂ ਉਦਾਹਰਣਾ ਹਨ।

13.4.2 ਤੀਹਰੇ ਬੰਧਨ ਦੀ ਰਚਨਾ

ਈਥਾਈਨ ਐਲਕਾਈਨ ਪਰਿਵਾਰ ਦਾ ਸਭ ਤੋਂ ਸਰਲ ਮੈਂਬਰ ਹੈ। ਈਥਾਈਨ ਦੀ ਰਚਨਾ ਚਿੱਤਰ 13.6 ਵਿੱਚ ਦਰਸਾਈ ਗਈ ਹੈ।

ਈਥਾਈਨ ਦੇ ਹਰ ਇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਨਾਲ ਦੋ *sp* ਸੰਕਰਿਤ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸਮ ਅਕਸੀ ਉਵਰਲੈਪਿੰਗ ਨਾਲ ਕਾਰਬਨ-ਕਾਰਬਨ ਸਿਗਮਾ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦਾ ਬਾਕੀ sp ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਸ ਦੇ ਸਾਪੇਖ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ 15 ਆੱਰਬਿਟਲ ਦੇ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ ਦੋ C-1+ ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ।H-C-C ਬੰਧਨ ਕੋ 180° ਦਾ ਹੁੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਕੋਲ C-C ਬੰਧਨ ਅਤੇ ਤਲ ਦੇ ਲੰਬਾਤਮਕ m-ਸੰਕਰਿਤ p-ਅਰਬਿਟਲ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਕਾਰਬਨ ਦਾ 2*p* ਆੱਰਬਿਟਲ ਦੂਜੇ ਦੇ ਸਮਾਨਅੰਤਰ ਹੁੰਦਾ ਹੈ, ਜੋ ਪਾਸੇ ਪਰਨੇ ਓਵਰ ਲੈਪਿੰਗ ਕਰਕੇ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਦੋ ਪਾਈ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਈਥਾਈਨਅਣੂ ਵਿੱਚ ਇੱਕ C-C ਸਿਗਮਾ ਬੰਧਨ, ਦੋ C-H ਸਿਗਮ ਬੰਧਨ ਅਤੇ ਦੋ

ਚਿੱਤਰ 13.6 ਬੰਧਨ ਕੋਣ ਅਤੇ ਬੰਧਨ ਲੰਬਾਈ ਦਰਸਾਉਂਦਾ ਈਥਾਈਨ ਦਾ ਆੱਰਬਿਟਲ ਆਰੇਖ

C-C ਪਾਈ ਬੰਧਨ ਹੁੰਦੇ ਹਨ। C≡C ਦੀ ਬੰਧਨ ਮਜਬੂਤੀ ਬੰਧਨ ਐਨਥੈਲਪੀ 823 kJ mol⁻¹) ਜੋ C=C ਦੂਹਰੇ ਬੰਧਨ ਬੰਧਨ ਐਨਥੈਲਪੀ 681 kJ mol⁻¹) ਅਤੇ C–C ਇਕਹਰੇ ਬੰਧਨ ਬੰਧਨ ਐਨਥੈਲਪੀ 348 kJ mol⁻¹) ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ। C≡C ਦੀ ਤੀਹਰੇ ਬੰਧਨ ਲੰਬਾਈ (120 pm) C=C ਦੂਹਰੇ ਬੰਧਨ (134 pm) ਅਤੇ C–C ਇਕਹਿਰੇ ਬੰਧਨ (154 pm) ਤੁਲਨਾ ਵਿੱਚ ਛੋਟੀ ਹੈ। ਅਕਸਾਂ ਉੱਤੇ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ ਅੰਤਰ ਨਿਊਕਲੀ ਸਮਾਮਿਤ ਸਿਲੰਡਰੀਕਲ ਸਥਿਤੀ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਈਥਾਈਨ ਇੱਕ ਰੇਖੀ ਅਣੂ ਹੈ।

13.4.3 ਤਿਆਰੀ

1. ਕੈਲਸ਼ਿਅਮ ਕਾਰਬਾਈਡ ਤੋਂ

ਪਾਣੀ ਦੇ ਨਾਲ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬਾਈਡ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨਾਲ ਓਦਯੋਗਿਕ ਰੂਪ ਵਿੱਚ ਈਥਾਈਨ ਬਣਾਈ ਦੀ ਜਾਂਦੀ ਹੈ। ਕੋਕ ਅਤੇ ਅਣ ਬੁਝੇ ਚੂਨੇ ਨੂੰ ਗਰਮ ਕਰਕੇ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬਾਈਡ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਚੂਨਾ ਪੱਥਰ ਤੋਂ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਅਣਬੁਝਿਆ ਚੁਨਾ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ-

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
 (13.55)

$$CaO + 3C \longrightarrow CaC_2 + CO$$
 (13.56)
ਕੈਲਸ਼ਿਅਮ
ਕਾਰਬਾਈਡ

$$CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$$
 (13.57)

Downloaded from https:// www.studiestoday.com

385

386

2. ਵਿੱਸੀਨਲ ਡਾਈਹੇਲਾਈਡਾਂ ਤੋਂ—ਵਿਸੀਨਲ ਡਾਈਹੇਲਾਈਡਾਂ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਐਲਕੋਹਲੀ ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਨਾਲ ਕਰਾਉਣ ਤੇ ਇਨ੍ਹਾਂ ਦਾ ਡੀਹਾਈ ਡ੍ਰੋਹੈਲੋਜੀਨੀਕਰਣ (Dehydrohalogenation) ਹੁੰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ ਦੇ ਇੱਕ ਅਣੂ ਵਿਲੁਪਤ ਕਰਨ ਨਾਲ ਐਲਕੀਨਾਈਲ ਹੇਲਾਈਡ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਜੋ ਸੋਡਾਆਈਡ ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਨ ਤੇ ਐਲਕਾਈਨ ਦਿੰਦੇ ਹਨ।

$$\begin{array}{c} H \\ H_{2}C - C - H + KOH & \xrightarrow{\mathsf{WB}\overline{\mathsf{U}}\overline{\mathsf{K}}\mathfrak{A}} & \overset{H}{C} = C \\ H & Br & -H_{2}O & H & Br \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$$

13.4.4 ਗੁਣ

ਭੌਤਿਕ ਗੁਣ

ਐਲਕਾਈਨਾਂ ਦੇ ਭੌਤਿਕ ਗੁਣ, ਐਲਕੀਨਾਂ ਅਤੇ ਐਲਕੇਨਾਂ ਵਰਗੇ ਹੁੰਦੇ ਹਨ। ਪਹਿਲੇ ਤਿੰਨ ਮੈਂਬਰ ਗੈਸ, ਅਗਲੇ ਅੱਠ ਮੈਂਬਰ ਦ੍ਰਵ ਅਤੇ ਬਾਕੀ ਉੱਚੇ ਮੈਂਬਰ ਠੋਸ ਹੁੰਦੇ ਹਨ। ਸਾਰੀਆਂ ਐਲਕਾਈਨਾਂ ਰੰਗਹੀਣ ਹੁੰਦੀਆਂ ਹਨ। ਈਥਾਈਨ ਦੀ ਲੱਛਣਿਕ ਗੰਧ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਬਾਕੀ ਮੈਂਬਰ ਗੰਧ ਹੀਣ ਹੁੰਦੇ ਹਨ। ਐਲਕਾਈਨ ਦੁਰਬਲ ਧਰੁਵੀ, ਪਾਣੀ ਤੋਂ ਹੋਲੇ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਜਿਵੇਂ-ਈਥਰ, ਕਾਰਬਨਟੈਟ੍ਰਾ ਕਲੋਰਾਈਡ ਅਤੇ ਬੈਨਜ਼ੀਨ ਵਿੱਚ ਘੁਲਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ, ਉਬਲਣ ਅੰਕ ਅਤੇ ਘਣਤਾ ਅਣਵੀਂ ਭਾਰ ਦੇ ਨਾਲ ਵਧਦੇ ਹਨ।

ਰਸਾਇਣਿਕ ਗੁਣ

ਐਲਕਾਈਨਾਂ ਆਮ ਤੌਰ ਤੇ ਤੇਜਾਬੀ ਪ੍ਰਕਿਰਤੀ, ਜੋੜਾਤਮਕ ਅਤੇ ਬਹੁਲੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ, ਉਹ ਇਸ ਪ੍ਰਕਾਰ ਹਨ-

(ੳ) ਐਲਕਾਈਨ ਦਾ ਤੇਜਾਬੀ ਗੁਣ—ਸੋਡੀਅਮ ਧਾਤ ਜਾਂ ਸੋਡਾਆਈਡ (NaNH₂) ਪ੍ਰਬਲਖਾਰ ਹੁੰਦੇ ਹਨ। ਇਹ ਈਥਾਈਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਮੁਕਤ ਕਰਕੇ ਸੋਡੀਅਮ ਐਸੀਟਾਈਲਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਈਥੀਨ ਅਤੇ ਈਥੇਨ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰਦੇ। ਇਹ ਟੈਸਟ ਈਥੀਨ ਅਤੇ ਈਥੇਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਈਥਾਈਨ ਦੀ ਤੇਜਾਬੀ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਅਜਿਹਾ ਕਿਉਂ ਹੈ ? ਤੁਸੀਂ ਇਹ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੋ ਕਿ ਈਥਾਈਨ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ sp ਸੰਕਰਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ, ਈਥੀਨ ਵਿੱਚ sp² ਸੰਕਰਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਅਤੇ ਈਥੇਨ ਵਿੱਚ sp³ ਸੰਕਰਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਅਧਿਕਤਮ 5 ਗੁਣ (50%) ਦੇ ਕਾਰਣ ਉਸ ਵਿੱਚ ਉੱਚ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਈਥਾਈ ਵਿੱਚ C-H ਬੰਧਨ ਦੇ ਸਾਂਝੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ, ਈਥੀਨ ਵਿੱਚ ਕਾਰਬਨ ਦੇ sp^2 ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਅਤੇ ਈਥੇਨ ਵਿੱਚ ਕਾਰਬਨ ਦੇ sp^3 ਸੰਕਰਿਤ ਆੱਰਬਿਟਲਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਆਪਣੇ ਵਾਲੇ ਵਧੇਰੇ ਆਕਰਿਸ਼ਨ ਕਰਣਗੇ, ਜਿਸ ਨਾਲ ਈਥੇਨ ਅਤੇ ਈਥੀਨ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਈਥਾਈਨ ਵਿੱਚ ਪਰਮਾਣੂ ਪ੍ਰੋਟਾੱਨ ਦੇ ਰੂਪ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਪ੍ਰਾਪਤ ਹੋ ਜਾਣਗੇ। ਇਸ ਲਈ ਤੀਹਰੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨਾਲ ਜੁੜੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਤੇਜਾਬੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ।

(13.59)

HC ≡ C⁻Na⁺ + Na → Na⁺C⁻ ≡ C⁻Na⁺ +
$$\frac{1}{2}$$
H₂
ਡਾਈਸੋਡੀਅਮ ਈਥੇਨਾਈਡ

$$CH_3 - C \equiv C - H + Na^+NH_2^-$$

↓
 $CH_3 - C \equiv C^-Na^+ + NH_3$ (13.61)
ਸੋਡੀਅਮ ਪਰੋਪੇਨਾਈਡ

ਇਹ ਧਿਆਨ ਰੱਖਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਤੀਹਰੇ ਬੰਧਨ ਨਾਲ ਜੁੜੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਤੇਜਾਬੀ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਐਲਕਾਈਨ ਦੇ ਸਾਰੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਤੇਜਾਬੀ ਨਹੀਂ ਹੁੰਦੇ। ਉਪੱਰ ਦਿੱਤੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਐਲਕੀਨ ਅਤੇ ਐਲਕੇਨ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰਦੀਆਂ। ਇਹ ਟੈਸਟ ਐਲਕਾਈਨ ਐਲਕੀਨ ਅਤੇ ਐਲਕੇਨ ਵਿੱਚ ਅੰਤਰ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਬਿਊਟ-1-ਆਈਨ ਅਤੇ ਬਿਊਟ-2- ਆਈਨ ਦੀ ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਾਉਣ ਨਾਲ ਕੀ ਹੋਵੇਗਾ ? ਐਲਕੇਨ, ਐਲਕੀਨ ਅਤੇ ਐਲਕਾਈਨ ਹੇਠ ਲਿਖੇ ਕ੍ਰਮ ਵਿੱਚ ਤੇਜਾਬੀ ਪ੍ਰਕਿਰਤੀ ਦਰਸਾਉਂਦੇ ਹਨ-

- i) $HC \equiv CH > H_2C = CH_2 > CH_3 CH_3$
- ii) $HC \equiv CH > CH_3 C \equiv CH >> CH_3 C \equiv C CH_3$

(ਅ)ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ—ਐਲਕਾਈਨਾਂ ਵਿੱਚ ਤੀਹਰਾਬੰਧਨ ਹੁੰਦਾ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਡਾਈਹਾਈਡ੍ਰੋਜਨ, ਹੈਲੋਜਨ, ਹੈਲੋਜ ਹੇਲਾਈਡ ਆਦਿ ਦੇ ਦੋ ਅਣੂਆਂ ਨਾਲ ਜੋੜ ਕਰਦੇ ਹਨ। ਜੋੜ ਉਪਜ ਹੇਠ ਲਿਖੇ ਸਟੈਂਪਾਂ ਵਿੱਚ ਬਣਦੇ ਹਨ-

Vinylic cation

ਬਣੀ ਹੋਈ ਜੋੜ ਉਪਜ ਵੀਨਾਈਲਿਕ ਧਨ ਆਇਨ ਦੀ ਸਥਿਰਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਅਸਮਮਿਤ ਐਲਕਾਈਨਾਂ ਵਿੱਚ ਜੋੜ ਅਰਕੋਨੀ ਕੋਫ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ। ਐਲਕਾਈਨਾਂ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਹਨ। ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਦਿੱਤੀਆਂ ਜਾ ਰਹੀਆਂ ਹਨ—

$$HC \equiv CH + H_2 \xrightarrow{Pt/Pd/Ni} [H_2C = CH_2] \xrightarrow{H_2} CH_3 - CH_3$$
(13.62)

 $CH_3 - C \equiv CH + H_2 \xrightarrow{Pt/Pd/Ni} [CH_3 - CH = CH_2]$ ਪਰੋਪਾਈਨ ਪਰੋਪੀਨ $\downarrow H_2$ $CH_3 - CH_2 - CH_3$ ਪਰੋਪੇਨ

(13.63)

(ii) ਹੈਲੋਜਨਾਂ ਦਾ ਸੰਯੋਜਨ

$$CH_3-C=CH+Br-Br \longrightarrow [CH_3CBr = CHBr]$$

 $1,2- ਡਾਈਬ੍ਰੋਮੋਪ੍ਰੋਪੈਨ /
 $\downarrow Br_2$
 $Br Br$
 $I I$
 CH_3-C-CH
 $I I$
 $Br Br$
 $1.1.2.2- ਟੈਟਾ ਬਰੋਮੋਪੇਪੇਨ$$

(13.64)

ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਬ੍ਰੋਮੀਨਦਾ ਲਾਲ-ਔਰੇਂਜ ਰੰਗ ਖਤਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਅਸੰਤ੍ਰਿਪਤਾ ਦੇ ਟੈਸਟ ਵਜੋਂ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

(iii) ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ ਦਾ ਸੰਯੋਜਨ—ਐਲਕਾਈਨਾਂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਹੇਲਾਈਡ (HCl, HBr, HI) ਦੇ ਦੋ ਅਣੂਆਂ ਦੇ ਜੋੜ ਨਾਲ ਜੈਮਡਾਈ ਹੇਲਾਈਡ (ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਹੀ ਕਾਰਬਨ ਪਰਮਾਣੁ ਉੱਤੇ ਦੋ ਹੈਲੋਜਨ ਜੁੜੇ ਹੋਣ) ਬਣਦੇ ਹਨ।

H-C≡C-H+H-Br→[CH₂=CH-Br]→CHBr₂ ਬ੍ਰੋਮੋਈਥੇਨ | CH₃ 1,1-ਡਾਈਬ੍ਰੋਮੋਈਥੇਨ (13.65)

$$CH_3 - C \equiv CH + H - Br \longrightarrow [CH_3 - C = CH_2]$$

Br
2- ਬਰੋਮੋਪ੍ਰੇਪੇਨ

 U
Br
 $CH_3 - C - CH_3$
Br
2,2- ਡੀਬਰੋਮੋਪ੍ਰੇਪੇਨ

(13.66)

(iv) ਪਾਣੀ ਦਾ ਸੰਯੋਜਨ—ਐਲਕੇਨ ਅਤੇ ਐਲਕੀਨ ਵਾਂਗ ਪਾਣੀ ਦੀਆਂ-ਮਿਸ਼ਰਣੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਕਰਦੇ ਹਨ। ਐਲਕਾਈਨ 333 K ਉੱਤੇ ਮਰ ਕਿਊਰਿਕ ਸਲਫੇਟ ਅਤੇ ਹਲਕੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਪਾਣੀ ਦੇ ਇੱਕ ਅਣੂ ਦੇ ਨਾਲ ਜੁੜ ਕੇ ਕਾਰਬੋਨਾਈਲ ਯੋਗਿਕ ਦਿੰਦੇ ਹਨ।

$$HC = CH + H - OH \xrightarrow{Hg^{2*}/H^{*}} CH_{2} = C - H$$

$$OH$$

$$\downarrow Isomerisation$$

$$CH_{3} - C - H$$

$$\parallel$$

$$O$$

$$\ell I = 0$$

$$CH_{3} - C - H$$

$$\parallel$$

$$O$$

$$\ell I = 0$$

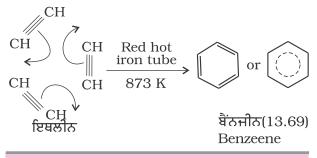
$$\ell I = 0$$

$$CH_3 - C \equiv CH + H - OH \xrightarrow{Hg^{a*}/H^*} CH_3 - C = CH_2$$

ਪ੍ਰੋਪਾਈਨ $I = O - H$

(v) ਬਹੁਲਕੀਕਰਣ

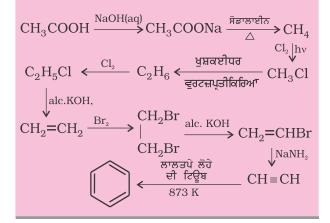
(ੳ) ਰੇਖੀ ਬਹੁਲਕੀਕਰਣ—ਢੁਕਵੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਈਥਾਈ ਦਾ ਰੇਖੀ ਬਹੁਲਕੀਕਰਣ ਹੋਣ ਤੇ ਪੋਲੀ ਐਸੀਟਾਈਲੀਨਜਾਂ ਪੋਲੀ ਈਥਾਈਨ ਬਣਦਾ ਹੈ। ਜੋ ਉੱਚੇ ਅਣਵੀਂ ਭਾਰ ਵਾਲੇ ਪੋਲੀ ਈਥਾਈਨ ਇਕਾਈਆਂ (CH = CH – CH = CH) ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ (CH = CH – CH = CH)_n ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਿਸ਼ਿਟ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਇਹ ਬਹੁਲਕ ਬਿਜਲੀ ਦੇ ਸੁਚਾਲਕ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ


Downloaded from https:// www.studiestoday.com

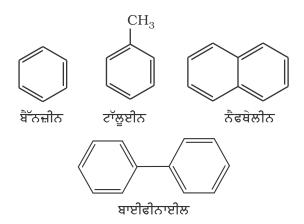
387

388

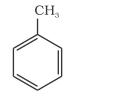
ਪੋਲੀਆਂ ਸੀਟਾਈਲੀਨ ਇਹ ਫਿਲਮ ਦੀ ਵਰਤੋਂ ਬੈਟਰੀਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਡ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਧਾਤ ਚਾਲਕਾਂ ਨਾਲੋਂ ਇਹ ਫਿਲਮ ਹੋਲੀ, ਸਸਤੀ ਅਤੇ ਸੁਚਾਲਕ ਹੁੰਦੀ ਹੈ।

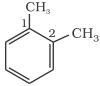

(ਅ) ਚੱਕਰੀ ਬਹੁਲਕੀਕਰਣ—ਈਥਾਈਨ ਨੂੰ ਲਾਲ ਤਪੇ ਲੋਹੇ ਦੀ ਟਿਊਬ ਵਿੱਚ 873K ਉੱਤੇ ਲੰਘਾਉਣ ਤੇ ਉਸਦਾ ਚੱਕਰੀ ਬਹੁਲੀਕਰਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਈਥਾਈਨ ਦੇ ਤਿੰਨ ਅਣੂ ਬਹੁਲਕੀਕ੍ਰਿਤ ਹੋ ਕੇ ਬੈੱਨਜ਼ੀਨ ਬਣਾਉਂਦੇ ਹਨ, ਜੋ ਬੈਨੱਜ਼ੀਨ ਵਿਉਤਪੰਨ, ਰੰਜਕ, ਦਵਾਈਆਂ ਅਤੇ ਅਨੇਕ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਸ਼ੁਰੂਆਤੀ ਅਣੂ ਹੈ। ਇਹ ਐਲੀਫੈਟਿਕ ਯੋਗਿਕਾਂ ਨੂੰ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨ ਦੇ ਲਈ ਸਰਬ ਉੱਤਮ ਰਚਨਾ ਹੈ।

ਉਦਾਹਰਣ 13.14


ਤੁਸੀਂ ਈਥੇਨੋਇਕ ਐਸਿਡ ਨੂੰ ਬੈੱਨਜ਼ੀਨ ਵਿੱਚ ਕਿਵੇਂ ਪਰਿਵਰਤਿ ਕਰੋਗੇ ?

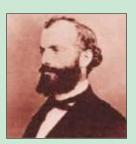
ਹੱ ਲ


13.5 ਐਰੋਮੈਟਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ

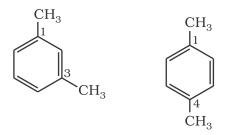

ਐਰੋਮੈਟਿਕ ਹਾਈਡੋ੍ਕਾਰਬਨ ਨੂੰ ਏਰੀਨ ਵੀ ਕਹਿੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦੇ ਵਧੇਰੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਗੰਧ (ਗ੍ਰੀਕ ਸ਼ਬਦ ਐਰੋਮਾ (Aroma) ਜਿਸ ਦਾ ਅਰਥ ਸੁਗੰਧ ਹੁੰਦਾ ਹੈ) ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਨੂੰ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ ਨਾਂ ਦਿਤਾ ਗਿਆ ਹੈ। ਵਧੇਰੇ ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਹੁੰਦੀ ਹੈ। ਭਾਵੇਂ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਅਤਿ ਅਸੰਤ੍ਰਿਪਤ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਵਧੇਰੇ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਅਤਿ ਅਸੰਤ੍ਰਿਪਤ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕਈ ਉਦਾਹਰਣਾਂ ਅਜਿਹੀਆਂ ਵੀ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਨਹੀਂ ਹੁੰਦੀ ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਹੋਰ ਅਤਿਅਨ ਸੰਤ੍ਰਿਪਤ ਰਿੰਗ ਹੁੰਦੀ ਹੈ। ਜਿਹੜੇ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਹੁੰਦੀ ਹੈ, ਉਨ੍ਹਾਂ ਨੂੰ ਬੈਨਜੇਨੋਇਡ (Benzenoid) ਅਤੇ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਨਹੀਂ ਹੁੰਦੀ, ਉਨ੍ਹਾਂ ਨੂੰ ਅਬੈਨਜੇਨੋਇਡ (nonbenze noid) ਕਹਿੰਦੇ ਹਨ। ਏਰੀਨਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ—

13.5.1 ਨਾਮਕਰਣ ਅਤੇ ਸਮਅੰਗਤਾ

ਅਸੀਂ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਦਾ ਨਾਮਕਰਣ ਅਤੇ ਸਮਅੰਗਤਾ ਦਾ ਵਰਣਨ ਯੁਨਿਟ-12 ਵਿੱਚ ਕਰ ਚੁਕੇ ਹਾਂ। ਬੈੱਨਜ਼ੀਨ ਦੇ ਸਾਰੇ ਛੇ ਹਾਈਡੋ੍ਜਨ ਪਰਮਾਣੂ ਤੁਲ ਅੰਕੀ ਹਨ। ਇਸ ਲਈ ਇਹ ਇਕ ਕਿਸਮ ਦੀ ਇੱਕ ਹੀ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਉਪਜ ਬਣਾਉਂਦੀ ਹੈ। ਜੇ ਬੈਨਜ਼ੀਨਦੇ ਦੋ ਹਾਈਡੋ੍ਜਨ ਪਰਮਾਣੂ ਦੋ ਸਮਾਨ ਜਾਂ ਭਿੰਨ ਇੱਕ ਸੰਜੋਗੀ ਪਰਮਾਣੂ ਜਾਂ ਗਰੁੱਪ ਦੁਆਰਾ ਪ੍ਰਤੀਸਥਾਪਿਤ ਹੋਵੇ, ਤਾਂ ਤਿੰਨ ਭਿੰਨ-ਭਿੰਨ ਸਥਿਤੀ ਸਮਅੰਗਕ ਸੰਭਵ ਹਨ। ਇਹ 1, 2 ਜਾਂ 1,6 ਆਰਥੋ (o-), 1, 3 ਜਾਂ 1, 5 ਮੈਟਾ (m-) ਅਤੇ 1, 4 ਪੈਰਾ (p-) ਹਨ। ਦੂਹਰੇ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਬੈਨਜ਼ੀਨ ਵਿਓਤਪੰਨ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਇੱਥੇ ਦਿੱਤੀਆਂ ਜਾ ਰਹੀਆਂ ਹਨ।

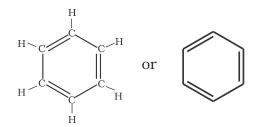


1,2-ਡਾਈਮੀਥਾਈਲਬੈੱਨਜ਼ੀਨ (o-ਜ਼ਾਈਲੀਨ)


ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨ ਫਰੈਡਰਿਕ ਆਗੁਸਟ ਕੇਕੂਲੇ ਦਾ ਜਨਮ ਸੰਨ 1829 ਵਿੱਚ ਜਰਮਨੀ ਦੇ ਡਾਰਮਸਡਟ ਨਾਂ ਦੇ ਸ਼ਹਿਰ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਉਹ ਸੰਨ 1856 ਵਿੱਚ ਪ੍ਰੋਫੈਸਰ ਅਤੇ ਸੰਨ 1875 ਵਿੱਚ ਰਾੱਇਲ ਸੋਸਾਇਟੀ ਦੇ ਫੈਲੋ ਬਣੇ। ਬਣਤਰੀ ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਦੇ ਖੇਤਰ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਦੋ ਮਹੱਤਵ ਪੂਰਣ ਯੋਗਦਾਨ ਦਿੱਤੇ। ਪਹਿਲਾਂ ਸੰਨ 1958 ਵਿੱਚ ਜਦੋਂ ਉਨ੍ਹਾਂ ਨੇ ਇਹ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਅਨੇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਬੰਧਨ ਬਣਾ ਕੇ ਚੇਨ ਦਾ ਨਿਰਮਾਣ ਕਰ ਸਕਦੇ ਹਨ। ਦੂਜਾ ਉਨ੍ਹਾਂ ਨੇ ਸੰਨ 1875 ਵਿੱਚ ਬੈਨਜ਼ੀਨ ਦੀ ਰਚਨਾ ਨੂੰ ਸਪਸ਼ਟ ਕਰਨ ਵਿੱਚ ਯੋਗਦਾਨ ਦਿੱਤਾ, ਜਦੋਂ ਉਨ੍ਹਾਂ ਨੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਚੇਨਾਂ ਦੇ ਸਿਰੇ ਜੁੜ ਕੇ ਰਿੰਗ ਦਾ ਨਿਰਮਾਣ ਕਰ ਸਕਦੇ ਹਨ। ਉਸ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਨੇ ਬੈੱਨਜ਼ੀਨ ਦੀ ਗਤਿਕ ਰਚਨਾ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੀ, ਜਿਸ ਉੱਤੇ ਬੈਨਜ਼ੀਨ ਦੀ ਅਧੁਨਿਕ ਇਲੈਕਟ੍ਰਾੱਨੀ ਰਚਨਾ ਅਧਾਰਿਤ ਹੈ। ਬਾਅਦ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਬੈੱਨਜ਼ੀਨ ਰਚਨਾ ਦੀ ਖੋਜ ਨੂੰ ਇੱਕ ਦਿਲਚਸਪ ਘਟਨਾ ਦੁਆਰਾ ਸਮਝਾਇਆ। "ਮੈਂ ਪਾਠਪੁਸਤਕ ਲਿਖ ਰਿਹਾ ਸੀ, ਪਰੰਤੂ ਕਾਰਜ ਅੱਗੇ ਵਧ ਨਹੀਂ ਸੀ ਰਿਹਾ, ਕਿਉਂਕਿ ਮੇਰੇ ਵਿਚਾਰ ਕਿਤੇ ਹੋਰ ਸਨ। ਮੈਂ ਆਪਣੀ ਕੁਰਸੀ ਨੂੰ ਅੱਗ ਵੱਲ ਕੀਤਾ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਮੇਰੀ ਅੱਖ ਲੱਗ ਗਈ। ਸੁਪਨੇ ਵਿੱਚ ਮੇਰੀ ਅੱਖਾਂ ਦੇ ਸਾਹਮਣੇ ਪਰਮਾਣੂ ਨੱਚ ਰਹੇ ਸਨ। ਅਨੇਕ ਪ੍ਰਕਾਰ ਦੇ ਸਿਸਟਮਾਂ ਦੀਆਂ

FRIEDRICH AUGUST KEKULÉ (7th September 1829–13th July 1896)

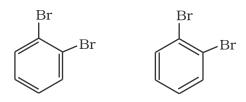
ਰਚਨਾਵਾਂ ਮੇਰੀ ਦਿਮਾਗੀ ਅੱਖ ਦੇ ਸਾਹਮਣੇ ਘੁੰਮ ਰਹੀਆਂ ਸਨ। ਮੈਂ ਸਪਸ਼ਟ ਰੂਪ ਵਿੱਚ ਲੰਬੀਆਂ ਲੰਬੀਆਂ ਲਾਈਨਾਂ ਵੇਖ ਰਿਹਾ ਸੀ, ਜੋ ਕਦੇ ਕਦੇ ਨੇੜੇ ਆ ਰਹੀਆਂ ਸਨ। ਉਹ ਸੱਪ ਵਾਂਗ ਘੁੰਮ ਰਹੀਆਂ ਸਨ, ਰਿੰਗ ਬਣਾ ਰਹੀਆਂ ਸਨ। ਉਸੇ ਵੇਲੇ ਮੈਂ ਵੇਖਿਆ ਇੱਕ ਸੱਪ ਨੇ ਆਪਣੀ ਹੀ ਪੂਛਲ ਨੂੰ ਮੂੰਹ ਵਿੱਚ ਪਾਲਿਆ। ਇਸ ਪ੍ਰਕਾਰ ਬਣੀ ਰਚਨਾ ਨੂੰ ਮੈਂ ਸਪਸ਼ਟ ਵੇਖ ਰਿਹਾ ਸੀ। ਉਸੇ ਸਮੇਂ ਮੇਰੀ ਅਚਾਨਕ ਅੱਖ ਖੁੱਲ ਗਈ ਅਤੇ ਰਾਤ ਦਾ ਬਾਕੀ ਪਹਿਰ ਮੈਂ ਆਪਣੇ ਸੁਪਨੇ ਨੂੰ ਸਮਝ ਕੇ ਉਸ ਤੋਂ ਨਿਸ਼ਕਰਸ਼ ਕੱਢਣ ਵਿੱਚ ਬਤੀਤ ਕੀਤਾ।


ਉਹ ਅੱਗੇ ਕਹਿੰਦੇ ਹਨ ਕਿ-ਸਜੋਨੋ! ਸਾਨੂੰ ਸੁਪਨੇ ਵੇਖਣ ਦੀ ਆਦਤ ਪਾਉਣੀ ਚਾਹੀਦੀ ਹੈ, ਤਾਂ ਹੀ ਅਸੀਂ ਸੱਭ ਨੂੰ ਸਮਝ ਸਕਦੇ ਹਾਂ। ਪਰੰਤੂ ਸਾਨੂੰ ਆਪਣੇ ਸੁਪਨਿਆਂ ਨੂੰ ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਅਸੀਂ ਭੁੱਲ ਜਾਈਏ, ਦੂਜਿਆਂ ਨੂੰ ਦੱਸ ਦੇਣੇ ਚਾਹੀਦੇ ਹਨ (ਸੰਨ 1890)। ਸੌ ਸਾਲ ਬਾਅਦ, ਕੇਕੂਲੇ ਦੇ ਜਨਮ ਸਮਾਰੋਹ ਦੇ ਅਵਸਰ ਤੇ ਪੋਲੀਬੈਨਜੋਨੇਇਡ ਰਚਨਾ ਯੁਗਮ ਯੋਗਿਕਾਂ ਦੇ ਇੱਕ ਵਰਗ ਨੂੰ "ਕੈਨੁਲੀਨ" ਨਾਂ ਦਿੱਤਾ ਗਿਆ।

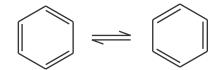
1,3 ਡਾਈਮੀਥਾਈਲਬੈੱਨਜ਼ੀਨ 1,4-ਡਾਈਮੀਥਾਈਲਬੈੱਨਜ਼ੀਨ (*m*-ਜ਼ਾਈਲੀਨ) (*p*-ਜ਼ਾਈਲੀਨ)

13.5.2. ਬੈਂਨਜ਼ੀਨ ਦੀ ਰਚਨਾ

ਬੈਨੱਜ਼ੀਨ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮਾਈਕਲ ਫੈਰਾਡੇ ਨੇ ਸੰਨ 1825 ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤਾ। ਬੈੱਨਜ਼ੀਨ ਦਾ ਅਣਵੀਂ ਸੂਤਰ C₆H₆ ਹੈ, ਜੋ ਉੱਚ ਅਸੰਤ੍ਰਿਪਤਤਾ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਅਣਵੀਂ ਸੂਤਰ ਸੰਗਤ ਐਲਕੇਨ, ਐਲਕੀਨ ਅਤੇ ਐਲਕਾਈਨ ਨਾਲ ਕੋਈ ਸਬੰਧ ਨਹੀਂ ਦੱਸਦਾ ਹੈ। ਤੁਸੀਂ ਇਸ ਦੀ ਸੰਭਾਵਿਤ ਰਚਨਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਸੋਚਦੇ ਹੋ ? ਇਸ ਦੇ ਵਿਸ਼ਿਸ਼ਟ ਗੁਣ ਅਤੇ ਅ-ਸਧਾਰਣ ਸਥਿਰਤਾ ਦੇ ਕਾਰਣ ਇਸ ਦੀ ਰਚਨਾ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਿੱਚ ਕਈ ਸਾਲ ਲੱਗ ਗਏ। ਬੈੱਨਜ਼ੀਨ ਇਕ ਸਥਾਈ ਅਣੂ ਹੈ ਜੋ ਟ੍ਰਾਈ ਓਜ਼ੋਨਾਈਡ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ ਬੈਨਜ਼ੀਨ ਦੇ ਛੇ ਕਾਰਬਨ ਅਤੇ ਛੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਸਮਾਨਤਾ ਦੱਸਦੀ ਹੈ। ਬੈਨੱਜ਼ੀਨ ਸਿਰਫ ਇੱਕ ਕਿਸਮ ਦਾ ਇੱਕ ਪ੍ਰਤੀਸਥਾਪਿਤ ਵਿਉਤਪੰਨ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ ਬੈਨਜ਼ੀਨ ਦੇ ਛੇ ਕਾਰਬਨ ਅਤੇ ਛੇ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਸਮਾਨਤਾ ਦਸੱਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਪ੍ਰੇਕਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਆੱਗੁਸਟ ਕੇਕੂਲੇ (August Kekule) ਨੇ ਸੰਨ 1865 ਵਿੱਚ ਬੈਨਜੀਨ ਦੀ ਇੱਕ ਰਚਨਾ ਦਿੱਤੀ, ਜਿਸ ਵਿੱਚ ਛੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਚੱਕਰੀ ਵਿਵਸਥਾ ਹੈ। ਉਸ ਵਿੱਚ ਏਕਾਂਤਰ ਕ੍ਰਮ ਵਿੱਚ ਦੂਹਰੇ ਬੰਧਨ ਹਨ ਅਤੇ ਹਰ ਇੱਕ ਕਾਰਬਨ ਨਾਲ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਜੁੜਿਆ ਹੈ।

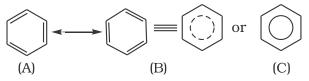


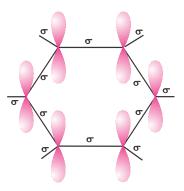
ਕੇਕੂਲੇ ਰਚਨਾ 1-2-ਡਾਈਬ੍ਰੋਮਬੈਨਜੀਨ ਦੇ ਦੋ ਸਮਅੰਗਕਾਂ ਦੀ ਸੰਭਾਵਨਾ ਵਿਅਕਤ ਕਰਦੀ ਹੈ। ਇੱਕ ਸਮਅੰਗਕ ਵਿੱਚ ਦੋਵੇਂ ਬ੍ਰੋਮੀਨ ਪਰਮਾਣੂ ਦੂਹਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ ਦੂਜੇ ਸਮਅੰਗਕ ਵਿੱਚ ਇਕ ਇਕਹਿਰੇ ਬੰਧਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨਾਲ।


Downloaded from https:// www.studiestoday.com

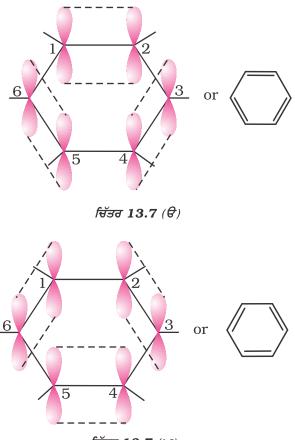
389

390

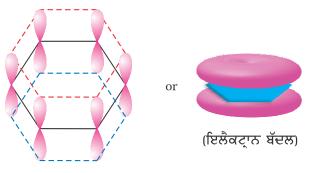

ਪਰੰਤੂ ਬੈੱਨਜ਼ੀਨ ਸਿਰਫ ਇੱਕ ਹੀ ਆੱਰਥੋ ਦੋ-ਪ੍ਰਤੀਸਥਾਪਿਤ ਉਪਜ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਕੈਕੂਲ ਨੇ ਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਦੂਹਰੇ ਬੰਧਨ ਦੇ ਡੋਲਨ (Oscillating) ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰਕੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ।


ਇਹ ਸੁਧਾਰ ਵੀ ਬੈਨੱਜ਼ੀਨ ਦੀ ਰਚਨਾ ਦੇ ਅਸਧਾਰਣ ਸਥਾਈਪਨ ਅਤੇ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਪਹਿਲਤਾ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਫੇਲ੍ਹ ਹੋਇਆ, ਜਿਸਨੂੰ ਬਾਅਦ ਵਿੱਚ ਅਨੁਵਾਦ (Resonance) ਦੁਆਰਾ ਸਮਝਾਇਆ ਗਿਆ।

ਅਨੁਨਾਦ ਅਤੇ ਬੈੱਨਜੀਨ ਦਾ ਸਥਾਈਪਨ


'ਸੰਯੋਜਕਤ ਬੰਧਨ ਸਿਧਾਂਤ' ਦੇ ਅਨੁਸਾਰ ਦੂਹਰੇ ਬੰਧਨ ਦੇ ਡੋਲਨ ਨੂੰ ਅਨੁਨਾਦ ਦੇ ਦੁਆਰਾ ਸਮਝਾਇਆ ਗਿਆ ਹੈ। ਬੈਨੱਜ਼ੀਨ ਭਿੰਨ-ਭਿੰਨ ਅਨੁਨਾਦੀ ਰਚਨਾਵਾਂ ਦਾ ਸੰਕਰ ਹੈ। ਕੈਕੂਲੇ ਦੁਆਰਾ ਦੋ ਮੁੱਖ ਰਚਨਾਵਾਂ (ੳ) ਅਤੇ (ਅ) ਦਿੱਤੀਆਂ ਗਈਆਂ, ਅਨੁਨਾਦ ਸੰਕਰ ਨੂੰ ਛੇਭੁਜੀ ਰਚਨਾ ਵਿੱਚ ਚਕੱਰ ਜਾਂ ਬਿੰਦੂ ਚਕੱਰ ਦੁਆਰਾ (ੲ) ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਰਿੰਗ, ਜਾਂ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਦੇ ਛੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਵਿਸਥਾਨੀਕ੍ਰਿਤ (Delocalized) ਛੇ ਇਲੈਕਟ੍ਾਨਿਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ।

ਆੱਰਬਿਟਲ ਓਵਰਲੈਪਿੰਗ ਸਾਨੂੰ ਬੈਨੋਜੀਨ ਦੀ ਰਚਨਾ ਦੇ ਬਾਰੇ ਸਹੀ ਚਿੱਤਰ ਦਿੰਦਾ ਹੈ। ਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਸਾਰੇ ਕਾਰਬਨ ਪਰਮਾਣੂ sp^2 ਸੰਕਰਿਤ ਹਨ। ਹਰ ਇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਦੋ sp^2 ਆੱਰਬਿਟਲ ਨੇੜਲੇ ਪਰਮਾਣੂਆਂ ਦੇ sp^2 ਆੱਰਬਿਟਲਾਂ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ ਤੇ C—C ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਸਮਤਲੀ ਛੇਭੁਜੀ ਹੁੰਦੇ ਹਨ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਦੇ ਬੱਚੇ ਹੋਏ sp^2 ਆੱਰਬਿਟਲ ਹਰ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ s ਆੱਰਬਿਟਲ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਕਰਕੇ ਛੇ C—H ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਹੁਣ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਇੱਕ ਅ-ਸੰਕਰਿਤ 2p ਆੱਰਬਿਟਲ ਰਹਿ ਜਾਂਦਾ ਹੈ ਜੋ ਰਿੰਗਦੇ ਤਲ ਦੇ ਲੰਬਾਤਮਕ ਹੁੰਦਾ ਹੈ ਜਿਵੇਂ ਹੇਠਾਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।


ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਮੌਜੂਦ ਅਸੰਕਰਿਤ *p*-ਆੱਰਬਿਟਲ ਐਨੇ ਨੇੜੇ ਹੁੰਦੇ ਹਨ ਕਿ ਉਹ ਪਾਸੇ ਪਰਨੇ ਓਵਰ ਲੈਪਿੰਗ ਕਰਕੇ ਬੰਧਨ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ।*p*-ਆਰ ਬਿਟਲਾਂ ਦੇ ਓਵਰਲੈਪਿੰਗ ਨਾਲ ਤਿੰਨ ਬੰਧਨ ਬਣਨਦੀਆਂ ਕ੍ਰਮਵਾਰ ਦੋ ਸੰਭਾਵਨਾਵਾਂ ਹਨ C₁-C₂, C₃ - C₄, C₅ - C₆ ਜਾਂ C₂ -C₃, C₄ - C₅, C₆ - C₁ ਹਨ।ਜਿਵੇਂ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਰਚਨਾ 13.6 (ੳ) ਅਤੇ (ਅ)

ਕੈਕੂਲੇ ਦੀ ਵਿਸਥਾਨੀ ਕ੍ਰਿਤ ਬੰਧਨ ਯੁੱਕਤ ਰਚਨਾ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।

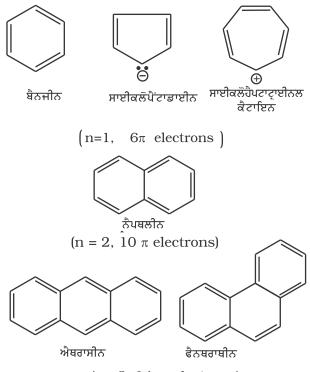
ਚਿੱਤਰ 13.7 (ੳ) ਅਤੇ (ਅ) ਕੈਕੂਲੇ ਦੀਆਂ ਦੋਵਾਂ ਰਚਨਾਵਾਂ ਦੇ ਸੰਗਤ ਹਨ ਜਿਸ ਵਿੱਚ ਸਥਾਨੀਕ੍ਰਿਤ (localized) π – ਬੰਧਨ ਹੁੰਦੇ ਹਨ। X-ਕਿਰਣ ਵਿਵਰਤਨ ਤੋਂ ਗਿਆਤ ਕੀਤੀ ਗਈ ਰਿੰਗ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਅੰਤਰ– ਨਿਊਕਲੀਦੂਰੀ ਸਮਾਨ ਪ੍ਰਾਪਤ ਹੋਈ। ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ *p*–ਆਰਬਿਟਲ ਦੀ ਦੋਵਾਂ ਪਾਸੇ ਨਾਲ ਵਾਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ *p*–ਆਰਬਿਟਲ ਦੀ ਦੋਵਾਂ ਪਾਸੇ ਨਾਲ ਵਾਲੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਹੈ। (ਚਿੱਤਰ 13.7 ੲ) ਇਸ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਊਡ ਨੂੰ ਚਿੱਤਰ 13.7 (ਸ) ਦੇ ਅਨੁਸਾਰ ਛੇ ਭੁਜੀ ਰਿੰਗ ਦੇ ਇੱਕ ਉੱਪਰ ਅਤੇ ਇੱਕ ਰੇਠਾਂ ਸਾਥਿਤ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ।


```
Fig. 13.7 (c)
```

```
Fig. 13.7 (d)
```

ਇਸ ਤਰ੍ਹਾਂ ਕਾਰਬਨ ਦੇ ਛੇ π ਇਲੈਕਟ੍ਰਾਨ ਵਿਵਥਾਨੀਕ੍ਰਿਤ ਹੋ ਕੇ ਛੇ ਕਾਰਬਨ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਦੁਆਲੇ ਇਕੱਠੇ ਘੁੰਮ ਸਕਣਗੇ, ਨਾ ਕਿ ਉਹ ਸਿਰਫ ਦੋ-ਕਾਰਬਨ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਜਿਵੇਂ ਚਿੱਤਰ 13.7 (ੳ) ਅਤੇ (ਅ) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਵਿਸਥਾਨੀਕ੍ਰਿਤ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ ਦੀ ਬਜਾਏ ਰਿੰਗ ਦੇ ਸਾਰੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਨਿਊਕਲਸਾਂ ਦੁਆਰਾ ਵਧੇਰੇ ਆਕਰਸ਼ਿਤ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਵਿਸਥਾਨੀ ਕ੍ਰਿਤ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਪਰਿਕਲਪਿਤ ਸਾਈਕਲੋਹੈਕਸਾਟ੍ਰਾਈਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਸਥਾਈ ਹੈ।

X-ਕਿਰਣ ਵਿਵਰਤਨ ਅੰਕੜੇ ਬੈਨਜ਼ੀਨ ਦੇ ਸਮਤਲੀ ਅਣੂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਬੈਨਜ਼ੀਨ ਦੀ ਉਪਰੋਕਤ ਰਚਨਾ (ੳ) ਅਤੇ (ਅ) ਸਹੀ ਹੁੰਦੀ ਤਾਂ ਦੋਵਾਂ ਕਿਸਮਾਂ ਦੇ C—C ਬੰਧਨ ਲੰਬਾਈ ਦੀ ਆਸ ਕੀਤੀ ਜਾਂਦੀ, ਕਿ X-ਕਿਰਣ ਅੰਕੜਿਆਂ ਦੇ ਅਧਿਐਨ ਦੇ ਅਧਾਰ ਤੇ ਛੇ ਸਮਾਨ, C—C ਬੰਧਨ ਲੰਬਾਈ (139 pm) ਵੇਖੀ ਗਈ ਹੈ, ਜੋ C— C ਇਕਹਿਰੇ ਬੰਧਨ (154 pm) ਅਤੇ C—C ਬੰਧਨ(134 pm) ਦੇ ਵਿੱਚ ਹੈ। ਇਸ ਲਈ ਸਧਾਰਣ ਹਾਲਤਾਂ ਵਿੱਚ ਬੈਨਜ਼ੀਨ ਵਿੱਚ ਸ਼ੁਧ ਦੂਹਰੇ ਬੰਧਨ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਬੈੱਨਜ਼ੀਨ ਦੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਹੋਣ ਤੋਂ ਰੋਕਦੀ ਹੈ। ਇਹ ਬੈਨਜ਼ੀਨ ਦੇ ਅ-ਸਧਾਰਣ ਵਿਹਾਰ ਨੂੰ ਸਪਸ਼ਟ ਕਰਦੀ ਹੈ।

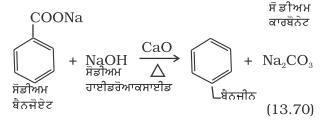

13.5.3 ਐਰੋਮੈਟਿਕਤਾ

ਬੈਨੱਜ਼ੀਨ ਨੂੰ ਜਨਮਕ ਐਰੋਮੈਟਿਕ ਯੋਗਿਕ ਮੰਨਦੇ ਹਨ। ਹੁਣ 'ਐਰੋਮੈਟਿਕ' ਨਾਂ ਸਾਰੇ ਰਿੰਗ ਸਿਸਟਮਾਂ, ਭਾਵੇਂ ਉਸ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਹੋਵੇ ਜਾਂ ਨਾ, ਵਿੱਚ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਇਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਹੇਠ ਲਿਖੇ ਗੁਣ ਦਰਸਾਉਂਦੇ ਹਨ-

- (i) ਸਮਤਲੀਤਾ
- (ii) ਰਿੰਗ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਸੰਪੂਰਣ ਵਿਸਥਾਨੀ ਕਰਣ
- (iii) ਰਿੰਗ ਵਿੱਚ (4*n* + 2) π ਇਲੈਕਟ੍ਰਾੱਨ, ਜਿੱਥੇ *n* ਇੱਕ ਪੂਰਣ ਅੰਕ ਹੈ(*n* = 0, 1, 2, 3, . . .)

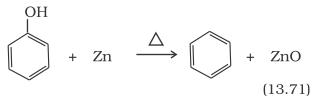
ਇਸ ਨੂੰ ਹੱਕਲ ਨਿਯਮ (Hückel Rule) ਦੁਆਰਾ ਵੀ ਵਰਣਨ ਕਰਦੇ ਹਨ।

ਐਰੋਮੈਟਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਇਸ ਪ੍ਰਕਾਰ ਹਨ—



(n =3, 14 π electrons)

13.5.4 ਬੈਨੱਜ਼ੀਨ ਦੀ ਤਿਆਰੀ


ਬੈੱਨਜ਼ੀਨ ਨੂੰ ਵਪਾਰਕ ਰੂਪ ਵਿੱਚ ਕੋਲਤਾਰ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਫਿਰ ਵੀ ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿਧੀਆ ਦੁਆਰਾ ਬਣਾ ਸਕਦੇ ਹਾਂ–

- (i) ਈਥਾਈਨ ਦੇ ਚੱਕਰੀ ਬਹੁਲਕੀਕਰਣ ਨਾਲ (ਵੇਖੋ ਅਨੁਭਾਗ 13.4.4)
- (ii) ਐਰੋਮੈਟਿਕ ਤੇਜਾਬਾਂ ਦੇ ਡੀਕਾਰਬੋਕਸੀਲੇਸ਼ਣ ਤੋਂ—ਬੈਨੱਜੋਇਕ ਐਸਿਡ ਦੇ ਸੋਡੀਅਮ ਲੂਣ ਨੂੰ ਸੋਡਾਲਾਈਮ ਦੇ ਨਾਲ ਗਰਮ ਕਰਨ ਤੇ ਬੈਨਜ਼ੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

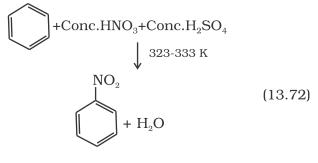
392

(iii) ਫੀਨੋਲ ਦੇ ਲਘੂਕਰਣ ਤੋਂ—ਫੀਨੋਲ ਦੇ ਵਾਸ਼ਪ ਨੂੰ ਜਿੰਕ ਪਾਊਡਰ ਉੱਤੋਂ ਲੰਘਾਉਣ ਤੇ ਇਹ ਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਲਘੂਕ੍ਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।

13.5.5 ਗੁਣ

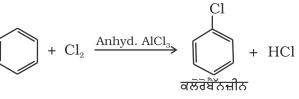
ਭੌਤਿਕ ਗੁਣ

ਐਰੋਮੈਟਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਅਧਰੁਵੀ ਅਣੂ ਹਨ। ਇਹ ਆਮ ਤੌਰ ਤੇ ਵਿਸ਼ਿਸ਼ਟ ਗੰਧ ਯੁਕਤ, ਰੰਗ ਹੀਨ ਦ੍ਵ ਜਾਂ ਠੋਸ ਹੁੰਦੇ ਹਨ। ਤੁਸੀਂ ਨੈਫਥੇਲੀਨ ਦੀਆਂ ਗੋਲੀਆਂ ਤੋਂ ਜਾਣੂ ਹੋ। ਇਸ ਦੀ ਵਿਸ਼ਿਸ਼ਟ ਗੰਧ ਅਤੇ ਮੋਥ (Moth) ਪ੍ਤੀਕਰਸ਼ੀ ਗੁਣਾਂ ਦੇ ਕਾਰਣ ਇਸ ਨੂੰ ਸ਼ੌਚਾਲਯਾ ਵਿੱਚ ਅਤੇ ਕੱਪੜਿਆਂ ਨੂੰ ਸੁਰਖਿੱਅਤ ਰੱਖਣ ਦੇ ਲਈ ਵਰਤਦੇ ਹਨ। ਐਰੋਮੈਟਿਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਪਾਣੀ ਵਿੱਚ ਅ-ਮਿਸ਼ਰਣੀ ਹਨ ਅਤੇ ਕਾਰਬਨਿਕ ਘੋਲਕਾਂ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੈ। ਇਹ ਕੱਜਲੀ (Sody) ਲਾਟ ਨਾਲ ਜਲਦੇ ਹਨ।

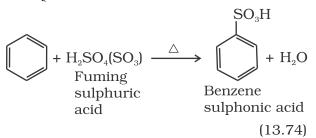

ਰਸਾਇਣਿਕ ਗੁਣ

ਏਗੰਨਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਦੁਆਰਾ ਲੱਛਣਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਹਾਲਾਂਕਿ ਵਿਸ਼ੇਸ਼ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਇਹ ਜੋੜ ਅਤੇ ਐਕਸੀਕਰਣ ਕਿਰਿਆ ਦਰਸਾਉਂਦੇ ਹਨ।

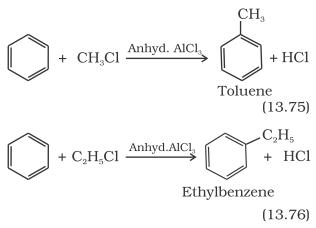
ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ


ਸਧਾਰਣ ਤੌਰ ਤੇ ਏਰੀਨ, ਨਾਈਟ੍ਰੀਕਰਣ, ਹੈਲੋਜਨੀਕਰਣ, ਸਲਫੋਨੇਸ਼ਨ,ਫਰਿਡਲਕਰਾਫਟ ਐਲਕੀਨੀਕਰਣ,ਐਸੀਟਾਈਲੇਸ਼ਣ ਆਦਿ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦਰਸਾਉਂਦੇ ਹਨ,ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਇੱਕ ਹਮਲਾਕਾਰੀ ਅਭਿਕਰਮਕ (E⁺)ਣ ਹੈ।

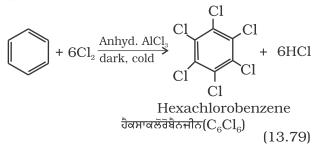
(i) ਨਾਈਟ੍ਰੀਕਰਣ—ਜੇ ਬੈੱਨਜ਼ੀਨ ਘੋਲ ਨੂੰ ਗਾੜ੍ਹੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਅਤੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ (ਨਾਈਟ੍ਰੀਕਰਣ ਮਿਸ਼ਰਣ) ਦੇ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਬੈਨੋਜ਼ੀਨ ਘੋਲ ਵਿੱਚ ਨਾਈਟ੍ਰੋ ਗਰੁੱਪ ਰਿੰਗ ਨਾਲ ਲੱਗ ਜਾਂਦਾ ਹੈ।



ਨਾਈਟ੍ਰੋਬੈਨੱਜ਼ੀਨ


(ii) **ਹੈਲੋਜਨੀਕਰਣ—**ਲੁਈਸ ਤੇਜਾਬ (ਜਿਵੇਂ FeCl₃, FeBr₃ ਅਤੇ AlCl₃) ਦੀ ਹੋਂਦ ਵਿੱਚ ਏਰੀਨ ਹੈਲੋਜਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਹੈਲੋਏਰੀਨ ਦਿੰਦੇ ਹਨ।

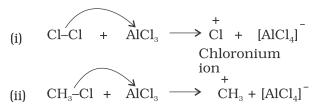
(iii) **ਸਲਫੋਨੀਕਰਣ**—ਸਲਫੋਨਿਕ ਐਸਿਡ ਗਰੁੱਪ ਦੁਆਰਾ ਰਿੰਗ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਪ੍ਰਤੀਸਥਾਪਨ ਸਲੋਨੀਕਰਣ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਨਾਲ ਗਰਮ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।


(iv) **ਫਰਿਡਲ ਕਰਾਫਟ ਐਲਕੀਨੀਕਰਣ**—ਨਿਰਜਲ AlCl₃ ਦੀ ਹੋਂਦ ਵਿੱਚ ਬੈੱਨਜ਼ੀਨ ਦੀ ਐਲਕਾਈਲ ਹੇਲਾਈਡ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਾਉਣ ਤੇ ਐਲਕਾਈਲ ਬੈਨਜ਼ੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

1-ਕਲੋਰੋਪਰੋਪੇਨ ਦੀ ਬੈਨਜ਼ੀਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨ ਤੇ ਮ−ਪਰੋਪਾਈਲ ਬੈਨੱਜ਼ੀਨ ਦੀ ਬਜਾਏ ਆਈਸਪਰੋਪਾਈਲ ਬੈੱਨਜ਼ੀਨ ਕਿਉਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ?

(v) ਫਰਿਡਲ ਕਰਾਫਟ ਐਸੀਲੀਕਰਣ—ਲੁਈਸ ਤੇਜਾਬ (AlCl₃) ਦੀ ਹੋਂਦ ਵਿੱਚ ਬੈਨੱਜ਼ਨਿ ਦੀ ਐਸਾਈਲ ਹੇਲਾਈਡ ਜਾਂ ਐਸਿਡ ਐਨਹਾਈਡਾਈਟ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨ ਨਾਲ ਐਸਾਈਲ ਬੈੱਨਜ਼ੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਅਭਿਕਰਮਕ ਨੂੰ ਬਹੁਤ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਲਿਆ ਜਾਵੇ ਤਾਂ ਮੁੜ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਵੇਗੀ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਦੁਆਰਾ ਬੈੱਨਜ਼ੀਨਦੇ ਦੂਜੇ ਹਾਈਡ੍ਰੋਜਨ ਸਿਲਸਿਲੇਵਾਰ ਪ੍ਰਤੀਸਥਾਪਿਤ ਹੋਣਗੇ। ਉਦਾਹਰਣ ਵਜੋਂ ਬੈਨਜੀਨ ਦੀ ਕਲੋਰੀਨ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਦੇ ਨਾਲ ਅਤੇ ਨਿਰਜਲ AICl₃ ਦੀ ਹੋਂਦ ਵਿੱਚ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਾਉਣ ਤੇ ਹੈਕਸਾਕਲੋਰੋ ਬੈਨਜ਼ੀਨ (C₆Cl₆) ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।



ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਦੀ ਕਿਰਿਆ ਵਿਧੀ—

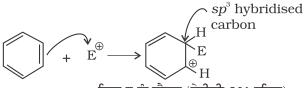
ਪ੍ਰਯੋਗਿਕ ਤੱਥਾਂ ਦੇ ਅਧਾਰ ਤੇ S_E (S = ਪ੍ਰਤੀਸਥਾਪਨ, E = ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ) ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਹੇਠ ਲਿਖੇ ਸਟੈੱਪਾਂ ਦੁਆਰਾ ਪੁਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

- (ੳ) ਇਲੈਕਟ੍ਰਾਨ ਸਨੇਹੀ ਦੀ ਉਤਪਤੀ
- (ਅ) ਕਾਰਬਧਨਾਇਨ ਦਾ ਬਣਨਾ
- (ੲ) ਮੱਧਵਰਤੀ ਕਾਰਬਧਨਾਇ ਵਿੱਚੋਂ ਪ੍ਰੋਟਾੱਨ ਦਾ ਹਟਾਉਣਾ

(ੳ) ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ E[®] ਦੀ ਉਤਪਤੀ—ਬੈਨਜ਼ੀਨ ਦੇ ਕਲੋਰੀਨੇਸ਼ਨ, ਐਲਕੀਲੇਸ਼ਨ ਅਤੇ ਐਸੀਟਾਈਲੇਸ਼ਨ ਵਿੱਚ ਨਿਰਜਲ AlCl₃ ਜੋ ਲੁਈਸ ਤੇਜਾਬ ਹੈ, ਹਮਲਾਵਰ ਅਭਿਕਰਮਕ ਨਾਲ ਜੁੜ ਕੇ ਕ੍ਰਮਵਾਰ Cl[®] ਅਤੇ R[®], RC[®]O (ਐਸੀਲਿਅਮ ਆਇਨ) ਦਿੰਦਾ ਹੈ।

(iii)
$$CH_3-C-Cl + AlCl_3 \longrightarrow CH_3-Cl_4 + [AlCl_4]^-$$

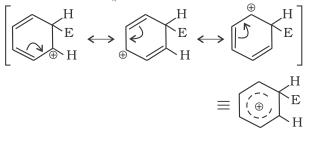
ਨਾਈਟ੍ਰੋਕਰਣ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਸਲਫਿਉਰਿਕ ਐਸਿਡ ਨਾਲ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਨੂੰ ਪ੍ਰੋਟਾੱਨ ਦੇ ਸਥਾਨ ਅੰਤਰਣ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਨਾਈਟ੍ਰੋਨਿਅਮ ਆਇਨ (NO₂) ਇਸ ਤਰ੍ਹਾਂ ਬਣਦਾ ਹੈ–


ਸਟੈਪ I

$$\begin{array}{c} H \\ H \\ H \\ O_{3} \\ S \\ O \\ -H \\ +H \\ - \\ O \\ -N \\ O_{2} \\ H \\ - \\ O_{2} \\ H \\ - \\ O_{2} \\ -N \\ O_{2} \\ +H \\ S \\ O_{4} \\ H \\ S \\ O_{4}$$

$$H \to H$$

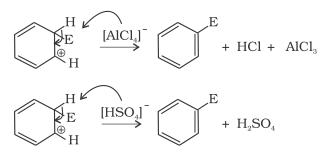
 $H \to O_2 \longrightarrow H_2O + NO_2$
ਪ੍ਰੇਟੀਨੀਕ੍ਰਿਤ ਨਾਈਟ੍ਰੋਨਿਯਮ
ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਆਇਨ


ਇਹ ਦਿਲਚਸਪ ਤੱਥ ਹੈ ਕਿ ਨਾਈਟ੍ਰੋਨੀਅਮ ਆਇਨ ਦੀ ਉਤਪਤੀ ਕੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਤੇਜਾਬ ਦੇ ਵਾਂਗ ਅਤੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਖਾਰ ਦੇ ਵਾਂਗ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਤੇਜਾਬਖਾਰ ਸੰਤੁਲਨ ਹੈ।

(b) ਕਾਰਬਧਨ ਆਇਨ (ਏਰੀਨੀਅਮ ਆਇਨ ਦਾ ਬਣਨਾ)— ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਦੇ ਹਮਲੇ ਨਾਲ σ-ਕੰਪਲੈਕਸਜਾਂ ਏਰੀਨੀਅਮ ਰਸਾਇਣ ਬਣਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਕਾਰਬਨ sp³ ਸੰਕਰਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

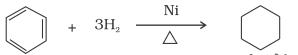
ਸਿਗਮਾ ਕੰਪਲੈਕਸ (ਏਰੀਨੀਅਮ ਆਇਨ)

ਏਰੀਨਿਅਮ ਆਇਨ ਹੇਠ ਲਿਖੇ ਤਰੀਕੇ ਨਾਲ ਅਨੁਨਾਦ ਦੁਆਰਾ ਸਥਾਈਪਨ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ—


Downloaded from https:// www.studiestoday.com

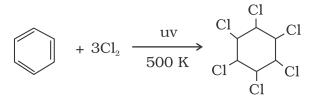
393

394


ਸਿਗਮਾ ਕੰਪਨੈਕਸ ਜਾਂ ਏਰੀਨੀਅਮ ਆਇਨ ਦੇ sp^3 ਸੰਕਰਿਤ ਕਾਰਬਨ ਪਰਮਾਣੂ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਵਿਸਥਾਨੀ ਕਰਣ ਰੁਕ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦੇ ਕਾਰਣ ਇਹ ਐਰੋਮੈਟਿਕ ਗੁਣ ਗੁਆ ਦਿੰਦਾ ਹੈ।

(ੲ) ਪ੍ਰੋਟਾਨ ਦਾ ਵਿਲੋਪਨ—ਐਰੋਮੈਟਿਕ ਗੁਣ ਨੂੰ ਮੁੜ ਸਥਾਪਿਤ ਕਰਨ ਦੇ ਲਈ ਨ ਕੰਪਲੈਕਸ sp³ ਸੰਕਰਿਤ ਕਾਰਬਨ ਉੱਤੇ [AlCl₄]⁻ (ਹੈਲੋਜੀਨੇਸ਼ਨ, ਐਲਕਾਈਲੇਸ਼ਨ ਅਤੇ ਐਸੀਟਾਈਲੇਸ਼ਨ ਦੇ ਸੰਦਰ ਵਿੱਚ) ਜਾਂ [HSO₄]⁻ (ਨਾਈਟ੍ਰੇਸ਼ਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ) ਦੇ ਹਮਲੇ ਦੁਆਰਾ ਪ੍ਰੋਟਾਨ ਦਾ ਵਿਲੋਪਨ ਹੁੰਦਾ ਹੈ।

ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ


ਪ੍ਰਬਲ ਪਰਿਸਥਿਤੀਆਂ ਜਿਵੇਂ-ਉੱਚਾ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਅਤੇ ਨਿੱਕਲ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਬੈਨੱਜ਼ੀਨ ਹਾਈਡ੍ਰੋਜਨੀਕਰਣ ਦੁਆਰਾ ਸਾਈਕਲੋ ਹੈਕਸੇਨ ਬਣਾਉਂਦੀ ਹੈ।

ਸਾਈਕਲੋਹੈਕੇਨ

(13.80)

ਪਰਾਬੈਂਗਣੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਤਿੰਨ ਕਲੋਰੀਨ ਅਣੂ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਨਾਲ ਜੁੜ ਕੇ ਬੈਨੱਜ਼ੀਨ ਹੈਕਸਕਲੋਰਾਈਡ C₆H₆Cl₆ ਬਣਾਉਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਗੈਮੈਕਸੇਨ ਵੀ ਕਹਿੰਦੇ ਹਨ।

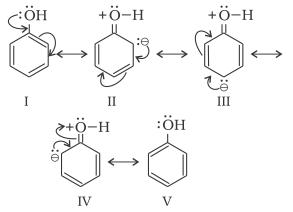
ਬੈਨਜ਼ੀਨ ਹੈਕਸਾਕਲੋਰਾਈਡ (BHC)

(13.81)

ਜਲਨਾ—ਬੈਨੱਜ਼ੀਨ ਨੂੰ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕਰਨ ਤੇ ਕੱਜਲੀਲਾਟ ਦੇ ਨਾਲ CO₂ ਅਤੇ H₂O ਬਣਦੇ ਹਨ।

$$C_6H_6 + \frac{15}{2}O_2 \to 6CO_2 + 3H_2O$$
 (13.82)

ਕਿਸੇ ਹਾਈਡ੍ਰੋਜਕਾਰਬਨ ਦੀਆਂ ਜਲਨ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਹੇਠ ਲਿਖੀ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ–

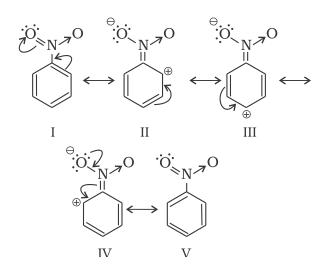

$$C_xH_y + (x + \frac{y}{4}) O_2 \rightarrow x CO_2 + H_2O$$

(13.83)

13.5.6 ਇਕਹਿਰੇ ਪ੍ਰਤੀਸਥਾਪਿਤ ਬੈਨਜ਼ੀਨ ਵਿੱਚ ਕਿਰਿਆਤਮਕ ਗਰੁੱਪ ਦਾ ਨਿਰਦੇਸ਼ਤਮਕ ਪ੍ਰਭਾਵ

ਜੇ ਇਕਹਿਰੇ ਪ੍ਰਤੀਸਥਾਪਿਤ ਬੈਨਜ਼ੀਨ ਦਾ ਮੁੜ ਪ੍ਰਤੀਸਥਾਪਨ ਕਰਵਾਇਆ ਜਾਏ ਤਾਂ ਤਿੰਨੇ ਸੰਭਾਵਿਤ ਦੂਹਰੇ ਪ੍ਰਤੀਸਥਾਪਿਤ ਉਪਜਾਂ ਸਮਾਨ ਮਾਤਰ ਵਿੱਚ ਨਹੀਂ ਬਣਦੇ। ਇਥੇ ਦੋ ਕਿਸਮ ਦੇ ਵਿਹਾਰ ਵੇਖੇ ਗਏ ਹਨ—(i) ਔਰਥੋ ਅਤੇ ਪੈਰਾ ਉਪਜ ਜਾਂ (ii) ਮੈਟਾ ਉਪਜੀ ਇਹ ਵੀ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਇਹ ਵਿਹਾਰ ਪਹਿਲਾਂ ਤੋਂ ਮੌਜੂਦ ਪ੍ਰਤੀਸਥਾਪੀ ਦੀ ਪ੍ਕਿਰਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਨਾ ਕਿ ਆਉਣ ਵਾਲੇ ਗਰੁੱਪ ਦੀ ਪ੍ਕਿਰਤੀ ਉੱਤੇ। ਇਸ ਨੂੰ ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦਾ ਨਿਰਦੇਸ਼ਾਤਮਕ ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ।ਗਰੁੱਪਾਂ ਦੀ ਭਿੰਨ–ਭਿੰਨ ਪ੍ਕਿਰਤੀ ਦਾ ਕਾਰਣ ਹੇਠ ਵਰਣਿਤ ਕੀਤਾ ਗਿਆ ਹੈ—

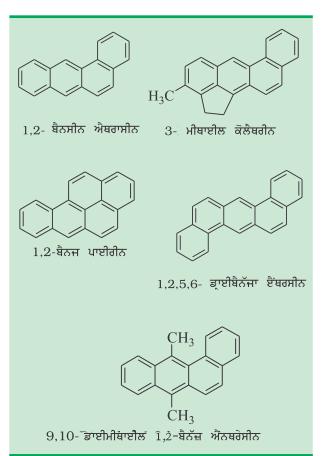
ਔਰਥੋ ਅਤੇ ਪੈਰਨਿਰਦੇਸ਼ੀ ਗਰੁੱਪ—ਉਹ ਗਰੁੱਪ ਜੋ ਆਉਣ ਵਾਲੇ ਗਰੁੱਪ ਨੂੰ ਔਰਥੋ ਅਤੇ ਪੈਰਾ ਸਥਿਤੀ ਉਨ ਨਿਦ੍ਸ਼ਿਟ ਕਰਦੇ ਹਨ, ਪ੍ਰਉਨ੍ਹਾਂ ਨੂੰ ਔਰਥੋੱਤੇ ਪੈਰਾਨਿਰਦੇਸ਼ੀ ਗਰੁੱਪ ਆਖਿਆ ਜਾਂਦਾ ਹੈ। 2ਉਦਾਹਰਣ ਲਈ-ਅਸੀਂ ਫੀਨੋਲਿਕ ਗਰੁੱਪ ਦੇ ਨਿਰਦੇਸ਼ਤਮਕ ਪ੍ਰਭਾਵ ਵੀ ਵਿਆਖਿਆ ਕਰਦੇ ਹਾਂ। ਫੀਨੋਲ ਹੇਠ ਲਿਖੀਆਂ ਰਚਨਾਵਾਂ ਦਾ ਅਨੁਨਾਦ ਸੰਕਰ ਹੈ—


ਅਨੁਨਾਦੀ ਰਚਨਾਵਾਂ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ *o* –ਅਤੇ *p* – ਸਥਿਤੀ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਵਧੇਰੇ ਹੈ।ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਉੱਤੇ ਪ੍ਰਤੀਸਥਾਪਨ ਹੋਵੇਗਾ। ਫਿਰ ਵੀ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ -OH ਗਰੁੱਪ ਦਾ –I ਪ੍ਰਭਾਵ ਵੀ ਕਾਰਜ ਕਰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਬੈੱਨਜ਼ੀਨ ਰਿੰਗ ਦੀ o- ਅਤੇ p ਸਥਿਤ ਉੱਤੇ ਕੁਝ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਘਟੇਗੀ, ਪਰ ਅਨੁਨਾਦ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਉੱਤੇ ਵਿਆਪਕ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਬਹੁਤ ਘੱਟ

ਘਟੇਗੀ। ਇਸ ਲਈ -OH ਗਰੁੱਪ ਬੈਨਜ਼ੀਨ ਰਿੰਗ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨਸਨੇਹੀ ਦੇ ਹਮਲੇ ਦੇ ਲਈ ਸਕਿਰਿਆ ਕਰ ਦਿੰਦੇ ਹਨ। ਕੁਝ ਹੋਰ ਸਕਿਰਿਆਕਾਰੀ ਗਰੁੱਪਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ- $-NH_2$, -NHR, $-NHCOCH_3$, $-OCH_3$, $-CH_3$, $-C_2H_5$, etc.

ਏਰਾਈਲ ਹੇਲਾਈਡ ਵਿੱਚ ਹੈਲੋਜਨ ਭਾਵੇ ਵਿਸਕਿਰਿਆਕਾਰੀ (deactivating) ਹੈ, ਪਰੰਤੂ ਪ੍ਰਭਲ– I ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਣ ਇਹ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਉਤੇ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਘੱਟ ਕਰ ਦਿੰਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਮੁੜ ਪ੍ਰਤੀਸਥਾਪਨ ਮੁਸ਼ਕਿਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਹਾਲਾਂਕਿ ਅਨੁਨਾਦ ਦੇ ਕਾਰਣ *o*– ਅਤੇ *p*– ਸਥਿਤੀ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਅ–ਸਥਿਤੀ ਨਾਲੋਂ ਵੱਧ ਹੈ। ਇਸ ਲਈ ਇਹ ਵੀ *o*– ਅਤੇ *p*– ਨਿਰਦੇਸ਼ੀ ਗਰੁਪ ਹੈ।

ਮੈਟਾਨਿਰਦੇਸ਼ੀ ਗਰੁੱਪ—ਉਹ ਗਰੁੱਪ ਜੋ ਆਉਣ ਵਾਲੇ ਗਰੁੱਪ ਨੂੰ ਮੈਟਾ ਸਥਿਤੀ ਉੱਤੇ ਨਿਦਰਸ਼ਿਟ ਕਰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਮੈਟਾ ਨਿਰਦੇਸ਼ੀ ਗਰੁੱਪ ਕਹਿੰਦੇ ਹਨ। ਕੁਝ ਮੈਟਾ ਨਿਰਦੇਸ਼ੀ ਗਰੁੱਪਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ—–NO₂, –CN, –CHO, –COR, – COOH, –COOR, –SO₃H, ਆਦਿ।


ਆਓ ਨਾਈਟ੍ਰੋ ਗਰੁੱਪ ਦੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ। ਨਾਈਟ੍ਰੋ ਗਰੁੱਪ ਪ੍ਰਬਲ–I ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਣ ਬੈਨਜ਼ੀਨ ਰਿੰਗ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਂਨ ਘਣਤਾ ਘੱਟ ਕਰ ਦਿੰਦਾ ਹੈ। ਨਾਈਟ੍ਰੋਬੋਨਜੀਨ ਹੇਠ ਲਿਖੀਆਂ ਰਚਨਾਵਾਂ ਦਾ ਅਨੁਨਾਦ ਸੰਕਰ ਹੈ–

ਨਾਈਟ੍ਰੋਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਬੈਨੱਜ਼ੀਨ ਰਿੰਗ ਉੱਤੇ ਵਿਆਪਕ ਇਲੈਕਟ੍ਰਾਨਘਣਤਾ ਘਟ ਜਾਂਦੀ ਹੈ, ਜੋ ਮੁੜ ਪ੍ਤੀ ਸਥਾਪਨ ਨੂੰ ਮੁਸ਼ਕਿਲ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਨੂੰ *m*- ਸਕਿਰਿਆਕਾਰੀ ਗਰੁੱਪ ਕਹਿੰਦੇ ਹਨ। ਮੈਟਾ ਸਥਿਤੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ o- ਅਤੇ p- ਸਥਿਤੀ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ ਇਲੈਕਟ੍ਰਾਂਨ ਸਨੇਹੀ ਤੁਲਨਾ ਤਮਕ ਰੂਪ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਂਨ ਧਨੀ ਸਥਿਤੀ (ਮੈਟਾ) ਉੱਤੇ ਹਮਲਾ ਕਰਦਾ ਹੈ ਅਤੇ ਪ੍ਰਤੀਸਥਾਪਤ ਮੈਟਾ ਸਥਿਤ ਉੱਤੇ ਹੁੰਦਾ ਹੈ।

13.6 ਕੈਂਸਰਜਨਕ ਗੁਣ ਅਤੇ ਜਹਿਰੀਲਪਨ

ਬੈਨੱਜ਼ੀਨ ਅਤੇ ਬਹੁਕੇਂਦਰੀ ਹਾਈਡ੍ਰੋਕਾਰਬਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਦੋ ਜਾਂ ਵੱਧ ਜੁੜੀਆਂ ਹੋਈਆਂ ਰਿੰਗਸ ਹੋਣ, ਕੈਂਸਰ ਜਨਕ ਅਤੇ ਜਹਿਰੀਲ ਗੁਣ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਬਹੁਕੇਂਦਰੀ ਹਾਈਡ੍ਰੋਕਾਰਬਨ, ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਜਿਵੇਂ-ਤੰਬਾਕੂ, ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਦੇ ਅਪੂਰਣ ਜਲਨ ਨਾਲ ਬਣਦੇ ਹਨ, ਜੋ ਮਨੁੱਖੀ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੋ ਕੇ ਭਿੰਨ ਜੈਵ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੁਆਰਾ DNA ਨੂੰ ਅੰਤ ਵਿੱਚ ਕਸ਼ਟ ਕਰਕੇ ਕੈਂਸਰ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਕੁਝ ਕੈਂਸਰ ਜਨਕ ਹਾਈਡ੍ਰੋਜਕਾਰਬਨਾਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ—

ਸਾਰਾਂਸ਼

ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਸਿਰਫ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਯੋਗਿਕ ਹੁੰਦੇ ਹਨ। ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਕੋਲੇ ਅਤੇ ਪ੍ਰੈਟ੍ਰੋਲੀਅਮ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ, ਜੋ ਊਰਜਾ ਦੇ ਮੁੱਖਸਰੋਤ ਹਨ। ਪੈਟ੍ਰੋਕੈਮੀਕਲਜ (Petrochemicals) ਅਨੇਕਾਂ ਮਹੱਤਵਪੂਰਣ ਵਪਾਰਕ ਉਪਜਾਂ ਦੇ ਲਈ ਮੁੱਖ ਸ਼ੁਰੂਆਤੀ ਪਦਾਰਥ ਹਨ। ਘਰੇਲੂ ਬਾਲਣ ਅਤੇ ਮਾੱਟੋ ਮੋਬਾਈਲ ਵਾਹਨਾਂ ਦੇ ਪ੍ਰਮੁੱਖ ਊਰਜਾ ਸਰੋਤ ਦ੍ਵਿਤ ਪੈਟ੍ਰੋਲੀਅਮ ਗੈਸ, ਐਲ. ਪੀ. ਜੀ. (liquefied petroleum gas) ਅਤੇ ਨਪੀੜਤ ਪ੍ਰਕਿਰਤਕ ਗੈਸ ਸੀ. ਐਨ. ਜੀ. (compressed natural gas) ਹਨ, ਜੋ ਪੈਟ੍ਰੋਲੀਅਮ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਬਣਤਰ ਦੇ ਅਧਾਰ ਤੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਨੂੰ ਖੁਲ੍ਹੀ ਚੇਨ ਸੰਤ੍ਰਿਪਤ (ਐਲਕੇਨ), ਅਸੰਤ੍ਰਿਪਤ (ਐਲਕੀਨ ਅਤੇ ਐਲਕਾਈਨ), ਚੱਕਰ (ਐਲੀਸਾਈਕਲਿਕ) ਅਤੇ ਐਰੋਮੈਟਿਕ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਐਲਕੇਨਾਂ ਦੀਆਂ ਮੁੱਖ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਮੁਕਤ-ਮੂਲਕ ਪ੍ਤੀਸਥਾਪਨ, ਜਲਨ ਆੱਕਸੀਕਰਣ ਅਤੇ ਐਰੋਮੈਟੀਕਰਣ ਹਨ। ਐਲਕੀਨ ਅਤੇ ਐਲਕਾਈਨ ਜੋੜਾਤਮਕ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ, ਜੋ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਇੈਕਟ੍ਰਾੱਨਸਨੇਹੀ ਜੋੜਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਹ ਯੋਗ ਵਿਸ਼ੇਸ਼ ਹਾਲਤਾਂ ਵਿੱਚ ਜੋੜਾਤਮਕ-ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਐਲਕੇਨ C–C (ਸਿਗਮ) ਬੰਧਨ ਦੇ ਮੁਕਤ ਘੁੰਮਣ ਦੇ ਕਾਰਣ ਸੰਰੂਪਣੀ ਸਮਅੰਗਤਾ (Conformational Isomerism) ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।ਈਥੇਨ ਦੇ ਖਿੱਲਰੇ (staggard) ਅਤੇ ਗ੍ਰਹਿਣੀ (Eclipsed) ਵਿੱਚੋ ਖਿੱਲਰੀ ਸੰਰੂਪਣ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਵੱਧ ਦੂਰੀ ਦੇ ਕਾਰਣ ਵਧੇਰੇ ਸਥਾਈ ਹੈ।ਕਾਰਬਨ-ਕਾਰਬਨ ਦੂਹਰੇ ਬੰਧਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵੱਲ ਪ੍ਰਤੀਬੰਧਿਤ ਘੁੰਮਣ ਦੇ ਕਾਰਣ ਐਲਕੀਨ ਜੋਮਿਤਈ (ਸਿੱਸ-ਟਰਾਂਸ) ਸਮਅੰਗਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।

ਬੈਂਨਜ਼ੀਨ ਅਤੇ ਬੈਂਨਜ਼ੋਨੋਇਡ ਯੋਗਕ ਐਰੋਮੈਟਿਕਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਯੋਗਿਕਾਂ ਦਾ ਐਰੋਮੈਟਿਕ ਹੋਣ ਦਾ ਗੁਣ, ਹੱਕਲ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਗਿਆ ਜੋ (4n+2)π ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਯਮ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਬੈਂਨਜ਼ੀਨ ਰਿੰਗ ਨਾਲ ਜੁੜੇ ਗਰੁੱਪਾਂ ਜਾਂ ਪ੍ਰਤੀਸਥਾਪੀਆਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਮੁੜ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀ ਸਥਾਪਨ ਦੇ ਲਈ ਸਕਿਰਿਆਤਾ ਅਤੇ ਅਸਕਿਰਿਅਤਾ ਨੂੰ ਅਤੇ ਦਾਖਲ ਹੋਣ ਵਾਲੇ ਗਰੁੱਪ ਦੀ ਸਥਿਤੀ (orientation) ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਕਈ ਬਹੁਕੇਂਦਰੀ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ (polynuclear hydrocarbons) ਵਿੱਚ ਬੈਨਜ਼ੀਨ ਰਿੰਗ ਆਪਸ ਵਿੱਚ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਕੈਂਸਰ ਜਨਕ ਪ੍ਰਕਿਰਤੀ ਦਰਸਾਉਂਦੇ ਹਨ।

ਅਭਿਆਸ

13.1 ਮੀਥੇਨ ਦੇ ਕਲੋਰੀਨੀਕਰਣ ਦੇ ਦੌਰਾਨ ਈਥੇਨ ਕਿਵੇਂ ਬਣਦੀ ਹੈ। ਤੁਸੀਂ ਇਸਨੂੰ ਕਿਵੇਂ ਸਮਝਾਓਗੇ ?

13.2 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ IUPAC ਨਾਂ ਲਿਖੋ-

 $(\Theta) CH_3 CH = C(CH_3)_2$ (**भ**) CH₂=CH-C≡C-CH₃ (**ए**) (**H**) CH₂-CH₂-CH=CH₂ CH_3 CH₃(CH₂)₄ CH(CH₂)₃CH₃ (**a**) (ਹ) OH $CH_2 - CH(CH_3)_2$ $(\texttt{\texttt{H}}) \ \mathrm{CH}_{3} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH}_{2} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH}_{2} - \mathrm{CH} = \mathrm{CH}_{2}$ Т C_2H_5 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਦੁਹਰੇ ਬੰਧਨਾਂ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਈ ਗਈ ਹੈ, ਦੇ ਸਾਰੇ ਸੰਭਾਵਿਤ ਸਥਿਤੀ 13.3 ਸਮਅੰਗਕਾਂ ਦੇ ਰਚਨਾ-ਸੁਤਰ ਅਤੇ IUPAC ਨਾਮ ਦਿਓ— (ੳ) C₄H_o (ਇੱਕ ਦੁਹਰਾ ਬੰਧਨ) (ਅ) C₅H₈ (ਇੱਕ ਤੀਹਰਾ ਬੰਧਨ) ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੇ ਓਜ਼ੋਨੀ ਅਪਘਟਨ ਦੇ ਬਾਅਦ ਬਣਨ ਵਾਲੀਆਂ ਉਪਜਾਂ ਦੇ ਨਾਂ ਲਿਖੋ— 13.4

(ੳ) ਪੈਂਟ-2-ਈਨ (ਅ) 3,4-ਡਾਈਮੀਥਾਈਲ–ਹੈਪਟ-3-ਈਨ (ੲ) 2-ਈਥਾਈਲ ਬਿਊਟ-1-ਈਨ (ਸ) 1-ਫੀਲਾਈਲ ਬਿਊਟ-1-ਈਨ

- 13.5 ਇੱਕ ਐਲਕੀਨ 'A' ਦੇ ਓਜੋਨੀ ਅਪਘਟਨ ਨਾਲ ਪੈਂਟ-3- ਓਨ ਅਤੇ ਈਥੇਨਲ ਦਾ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।'A' ਦਾ IUPAC ਨਾ ਅਤੇ ਰਚਨਾ ਦਿਓ।
- 13.6 ਇੱਕ ਐਲਕੀਨ ਵਿੱਚ ਤਿੰਨ C C, ਅੱਠ C H σ ਸਿਗਮਾ ਬੰਧਨ ਅਤੇ ਇੱਕ C C ਪਾਈ ਬੰਧਨ ਹੈ। 'A' ਓਜ਼ੋਨੀ ਅਪਘਟਨ ਨਾਲ ਦੋ ਅਣੂ ਐਲਡੀਹਾਈਡ ਜਿਨ੍ਹਾਂ ਦਾ ਮੋਲਰ ਪੂੰਜ 44 ਹੈ, ਦਿੰਦੀ ਹੈ।'A' ਦਾ ਆਈ.ਯੂ. ਪੀ.ਏ.ਸੀ.ਨਾਂ ਲਿਖੋ।
- 13.7 ਇੱਕ ਐਲਕੀਨ, ਜਿਸ ਦੇ ਓਜੋਨੀ ਅਪਘਟਨ ਤੋਂ ਪੋਰਪੇਨਲ ਅਤੇ ਪੈਂਟੇਨ-3-ਓਨ ਬਣਦੇ ਹਨ, ਦਾ ਰਚਨਾ-ਸੂਤਰ ਲਿਖੋ।
- 13.8 ਹੇਠ ਲਿਖੀਆਂ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ ਜਲਨ ਦੀਆਂ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਲਿਖੋ-

(i)	ਬਿਊਟੇਨ	(ii)	ਪੈਨਟੀਨ
(iii)	ਹੈਕਸਾਈਨ	(iv)	ਟਾੱਲੂਈਨ

- 13.9 ਹੈਕਸ-2-ਈਨ ਦੀ ਸਮਪੱਖੀ ਅਤੇ ਵਿਪੱਖੀ (ਟ੍ਰਾਂਸ) ਰਚਨਾਵਾਂ ਬਣਾਓ। ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਕਿਹੜੇ ਸਮਅੰਗਕ ਦਾ ਉਬਲਣ ਅੰਕ ਉੱਚਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਿਉਂ ?
- 13.10 ਬੈਨਜ਼ੀਨ ਵਿੱਚ ਤਿੰਨ ਦੁਹਰੇ ਬੰਧਨ ਹੁੰਦੇ ਹਨ, ਫਿਰ ਵੀ ਇਹ ਬੜੀ ਸਥਾਈ ਹੈ, ਕਿਉਂ ?
- 13.11 ਕਿਸੇ ਸਿਸਟਮ ਦੁਆਰਾ ਐਰੋਮੈਟਿਕਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਦੇ ਲਈ ਜ਼ਰੂਰੀ ਸ਼ਰਤਾਂ ਕੀ ਹਨ ?
- 13.12 ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਸਿਸਟਮ ਐਰੋਮੈਟਿਕ ਨਹੀਂ ਹੈ ? ਕਾਰਣ ਸਪਸ਼ਟ ਕਰੋ-

- 13.13 ਬੈਨੱਜ਼ੀਨ ਨੂੰ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿਵੇਂ ਬਦਲੋਗੇ-
 - (i) *p*-ਨਾਈਟ੍ਰੋਬ੍ਰੋਮੋਬੈੱਨਜ਼ੀਨ (ii) *m* ਨਾਈਟ੍ਰੋਕਲੋਰੋਬੈਨਜ਼ੀਨ
 - (iii) $\,p$ ਨਾਈਟ੍ਰੋਟੋਲੂਈਨ

(iv) ਐਸੀਟੋਫੀਨੌਨ

- 13.14 ਐਲਕੇਨ H₃C–CH₂–C(CH₃)₂–CH₂–CH(CH₃)₂, ਵਿੱਚ 1°, 2° ਅਤੇ 3° ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਪਛਾਣ ਕਰੋ ਅਤੇ ਹਰ ਇੱਕ ਕਾਰਬਨ ਨਾਲ ਬੰਧਿਤ ਕੁੱਲ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਵੀ ਦੱਸੋ।
- 13.15 ਉਬਲਣ ਅੰਕ ਉੱਤੇ ਐਲਕੇਨ ਦੀ ਚੰਨ ਦੇ ਸ਼ਾਖਨਦਾ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ?
- 13.16 ਪਰੋਪੀਨ ਉੱਤੇ HBr ਦੇ ਜੋੜ ਨਾਲ-2 ਬ੍ਰੋਮੋਪਰੋਪੇਨ ਬਣਦਾ ਹੈ, ਜਦ ਕਿ ਬੈਨਜ਼ਾਇਲ ਪਰਅੱਕਸਾਈਡ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਹ ਪ੍ਤੀਕਿਰਿਆ।ਬ੍ਰੋਮੋਪਰੋਪੇਨ ਦਿੰਦੀ ਹੈ।ਕਿਰਿਆ-ਵਿਧੀ ਦੀ ਸਹਾਇਤਾ ਦੇ ਨਾਲ ਇਸ ਦਾ ਕਾਰਣ ਸਪਸ਼ਟ ਕਰੋ।
- 13.17 1,2-ਡਾਈਮੀਥਾਈਲ ਬੈੱਨਜ਼ੀਨ (o-xylene) ਦੇ ਓਜ਼ੋਨੀ ਅਪਘਟਨ ਦੇ ਫਲਸਰੂਪ ਨਿਰਮਿਤ ਉਪਜਾਂ ਲਿਖੋ। ਇਹ ਪਰਿਣਾਮ ਬੈੱਨਜ਼ੀਨ ਕੈਕੂਲੇ ਰਚਨਾ ਦੀ ਪੁਸ਼ਟੀ ਕਿਵੇਂ ਕਰਦਾ ਹੈ ?
- 13.18 ਬੈਨਜ਼ੀਨ, *n*-ਹੈਕਸੇਨ ਅਤੇ ਈਥਾਈਨ ਨੂੰ ਘਟਦੇ ਹੋਈ ਤੇਜਾਬੀ ਵਿਹਾਰ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ ਅਤੇ ਇਸ ਵਿਹਾਰ ਦਾ ਕਾਰਣ ਦੱਸੋ।
- 13.19 ਬੈਨੱਜ਼ੀਨ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਸਫਲਤਾ ਪੂਰਵਕ ਕਿਉਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜਦ ਕਿ ਉਸ ਵਿੱਚ ਨਿਊਕਲੀਸ ਸਨੇਹੀ ਪ੍ਰਤੀਸਥਾਪਨ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ ?
- 13.20 ਤੁਸੀਂ ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਨੂੰ ਬੈਨੱਜ਼ੀਨ ਵਿੱਚ ਕਿਵੇਂ ਬਦਲੋਗੇ ? (i) ਈਥਾਈਨ (ii) ਈਥੀਨ (iii) ਹੈਕਸੇਨ
- 13.21 ਉਨ੍ਹਾਂ ਸਾਰੀਆਂ ਐਲਕੀਨਾਵੀਆਂ ਰਚਨਾਵਾਂ ਲਿਖੋ, ਜੋ ਹਾਈਡ੍ਰੋਜਨੀਕਰਣ ਕਰਨ ਤੇ 2-ਮੀਥਾਈਲ ਬਿਊਟੇਨ ਦਿੰਦੀਆਂ ਹਨ।
- 13.22 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਸਨੇਹੀ E⁺ ਦੇ ਪ੍ਰਤੀ ਘਟਦੀ ਕਿਰਿਆ ਸ਼ੀਲਤਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ—

(ੳ) ਕਲੋਰੋਬੈਨਜ਼ੀਨ, 2, 4-ਡਾਈਨਾਈਟ੍ਰੋ ਕਲੋਰੋਬੈਨਜ਼ੀਨ, *p*-ਨਾਈਟ੍ਰੋਕਲੋਰੋਬੈਨਜ਼ੀਨ

(ਅ)ਟਾੱਲੂਈਨ $p-H_{3}C-C_{6}H_{4}-NO_{2}, p-O_{2}N-C_{6}H_{4}-NO_{2}.$

- 13.23 ਬੈਨੱਜ਼ੀਨ, ਅ−ਡਾਈਨਾਈਟ੍ਰੋਬੈਨੱਜ਼ੀਨ ਅਤੇ ਟਾਲੂਈਨ ਵਿਚੋਂ ਕਿਸ ਦਾ ਨਾਈਟ੍ਰੋਕਰਣ ਅਸਾਨੀ ਨਾਲ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਿਉਂ ?
- 13.24 ਬੈਨੱਜ਼ੀਨ ਦੀ ਈਥਾਈ ਲੀਕਰਣ ਵਿੱਚ ਨਿਰਜਲ ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ ਦੀ ਥਾਂ ਤੇ ਕੋਈ ਦੂਜਾ ਲੁਈਸ ਤੇਜਾਬ ਸੁਝਾਓ।
- 13.25 ਕੀ ਕਾਰਣ ਹੈ ਕਿ ਵੁਰਟਜ ਪ੍ਰਤੀ ਕਿਰਿਆ ਤੋਂ ਬਿਖਮ ਸੰਖਿਆ ਕਾਰਬਨ ਪਰਮਾਣੂ ਵਾਲੇ ਐਲਥੇਨ ਬਨਾਉਣ ਦੇ ਲਈ ਵਰਤੋਂ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ।ਇੱਕ ਉਦਾਹਰਣ ਦੇ ਕੇ ਸਪਸ਼ਟ ਕਰੋ।

ਯੁਨਿਟ 14

ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ (ENVIRONMENTAL CHEMISTRY)

ਉਦੇਸ਼

ਇਸ ਯੁਨਿਟ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ-

- ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਦਾ ਅਰਥ ਸਮਝ ਸਕੋਗੇ;
- ਵਾਯੂਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ ਅਤੇ ਭੂਮੰਡਲੀ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧੇ, ਹਰਾ ਘਰ ਪ੍ਰਭਾਵ ਅਤੇ ਤੇਜਾਬੀ ਵਰਖਾ ਦੇ ਕਾਰਣਾਂ ਦੀ ਸੂਚੀਬਣਾ ਸਕੋਗੇ;
- ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ ਛੇਕ (depletion) ਦੇ ਕਾਰਣਾਂ ਅਤੇ ਇਸਦੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਜਾਣ ਸਕੋਗੇ;
- ਪਾਣੀ-ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣ ਦੱਸ ਸਕੋਗੇ, ਅਤੇ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦੇ ਅੰਤਰ ਰਾਸ਼ਟਰੀ ਸਟੈਂਡਰਡ ਦੇ ਬਾਰੇ ਜਾਣ ਸਕੋਗੇ;
- ਮਿੱਟੀ-ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਵਾਤਾਵਰਣੀ ਪ੍ਰਦੂਸ਼ਣ ਦੀ ਰੋਕਥਾਮ ਦੀ ਯੋਜਨਾ ਬਣਾ ਅਤੇ ਅਪਨਾ ਸਕੋਗੇ;
- ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਹਰੀ ਰਸਾਇਣ ਦੇ ਮਹੱਤਵ ਨੂੰ ਸਮਝ ਸਕੋਗੇ।

ਿ ਵਿਸ਼ਵ ਨੇ ਗਿਆਨ ਰਹਿਤ ਚਮਕ ਅਤੇ ਬਿਬੇਕਹੀਣ ਸ਼ਕਤੀ ਪ੍ਰਾਪਤ ਕਰ ਲਈ ਹੈ। ਸਾਡਾ ਵਿਸ਼ਵ ਨਿਊਕਲੀ ਰੂਪ ਵਿੱਚ ਦਾਨਵ ਅਤੇ ਨੈਤਿਕ ਰੂਪ ਵਿੱਚ ਬੱਚਾ ਹੈ।

ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਤੁਸੀਂ ਵਾਤਾਵਰਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁਕੇ ਹੋ। ਵਾਤਾਵਰਣੀ ਅਧਿਐਨ ਆਲੇ ਦੁਆਲੇ ਨਾਲ ਸਾਡੇ ਸਮਾਜਿਕ, ਜੈਵਿਕ, ਆਰਥਕ, ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਅੰਤਰ ਸੰਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਉੱਤੇ ਧਿਆਨ ਕੇਂਦਰਤਿ ਕਰਾਂਗੇ। ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਪਰਿਵਹਨ, ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ, ਪ੍ਰਭਾਵਾਂ, ਤਥਾਂ ਵਾਤਾਵਰਣੀ ਰਸਾਇਣਿਕ ਸਪੀਸ਼ੀਜ਼ ਨਾਲ ਸੰਬੰਧਿਤ ਹਨ। ਆਓ, ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਦੇ ਕੁਝ ਮਹੱਤਵਪੁਰਣ ਪਹਿਲੂਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ।

14.1 ਵਾਤਾਵਰਣੀ ਪ੍ਰਦੂਸ਼ਣ

ਵਾਤਾਵਰਣ-ਪ੍ਰਦੂਸ਼ਣ ਸਾਡੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਅਣਇਛੱਤ ਪਰਿਵਰਤਨ (ਜੋ ਪੌਦਿਆਂ, ਜੰਤੂਆਂ ਅਤੇ ਮਨੁੱਖਾਂ ਉੱਤੇ ਹਾਨੀਕਾਰਕ ਪਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ਦਾ ਪਰਿਣਾਮ ਹੈ। ਉਹ ਪਦਾਰਥ ਜੋ ਪ੍ਰਦੂਸ਼ਣ ਪੈਦਾ ਕਰਦਾ ਹੈ, 'ਪ੍ਰਦੂਸ਼ਕ' ਅਖਵਾਉਂਦਾ ਹੈ। ਪ੍ਰਦੂਸ਼ਕ ਠੋਸ, ਦ੍ਵ ਜਾਂ ਗੈਸੀ ਪਦਾਰਥ ਹੋ ਸਕਦਾ ਹੈ, ਜੋ ਪ੍ਰਾਕਿਰਤਕ ਘਟਨਾਵਾਂ ਦੇ ਕਾਰਣ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਇੱਕ ਔਸਤ ਮਨੁੱਖ ਨੂੰ ਭੋਜਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਲਗਪਗ 12-15 ਗੁਣਾਂ ਵੱਧ ਹਵਾ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਭੋਜਨ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਕ ਦੀ ਅਤਿਅਲਪ ਮਾਤਰਾ ਹਵਾ ਵਿੱਚ ਮੌਜੁਦ ਸਮਾਨ ਮਾਤਰਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਪ੍ਰਦੂਸ਼ਕ ਨੂੰ ਨਿਮਨੀਕ੍ਰਿੱਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ–ਸਬਜੀਆਂ ਦੇ ਬੇਕਾਰ ਸੁੱਟੇ ਭਾਗ, ਪਾਕਿਰਤਕ ਵਿਧੀਆਂ ਦੁਆਰਾ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਦੇ ਉਲਟ ਕੁਝ ਪ੍ਰਦੂਸ਼ਕ ਜੋ ਹੌਲੀ-ਹੌਲੀ ਅਪਘਟਿਤ ਹੁੰਦੇ ਹਨ, ਕਈ ਦਹਾਕਿਆਂ ਤੱਕ ਵਾਤਾਵਰਣ ਵਿੱਚ ਅਪਰਵਰਤਿਤ ਰੂਪ ਵਿੱਚ ਪਏ ਰਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਡਾਈਕਲੋਰੋ ਡਾਈ-ਫੀਨਾਈਲ ਟ੍ਰਾਈ ਕਲੋਰੋ ਈਥੇਨ (ਡੀ.ਡੀ.ਟੀ.) ਪਲਾਸਟਿਕ ਨਿਰਮਿਤ ਅਨੇਕਾਂ ਪਦਾਰਥ, ਭਾਰੀ ਧਾਤਾਂ, ਅਨੇਕਾਂ ਰਸਾਇਣਾਂ ਅਤੇ ਨਿਊਕਲੀ ਵੇਸਟ ਆਦਿ ਜੇ ਇਕ ਵਾਰ ਵਾਤਾਵਰਣ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਇਨ੍ਹਾਂ ਨੂੰ ਵੱਖ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਪ੍ਰਦੂਸ਼ਕ ਪ੍ਰਾਕਿਰਤਕ ਵਿਧੀਆ ਦੁਆਰਾ ਅਪਘਟਿਤ ਨਹੀਂ ਹੁੰਦੇ ਅਤੇ ਜੀਵਤ ਪ੍ਰਾਣੀਆਂ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੁੰਦੇ ਹਨ। ਵਾਤਾਵਰਣੀ ਪ੍ਰਦੂਸ਼ਣ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਕ ਭਿੰਨ ਭਿੰਨ ਸਰੋਤਾਂ ਤੋਂ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਅਤੇ ਹਵਾ ਜਾਂ ਪਾਣੀ ਪਰਿਵਹਿਤ ਹੁੰਦੇ ਹਨ ਜਾਂ ਮਨੁੱਖ ਦੁਆਰਾ ਮਿੱਟੀ ਵਿੱਚ ਦੱਬੇ ਜਾਂਦੇ ਹਨ।

399

14.2 ਵਾਯੁਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ

ਵਾਯੂਮੰਡਲ, ਜੋ ਧਰਤੀ ਨੂੰ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ਘੇਰਿਆ ਹੋਇਆ ਹੈ, ਦੀ ਮੋਟਾਈ ਹਰ ਉਚਾਈ ਉੱਤੇ ਸਮਾਨ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਵਿੱਚ ਹਵਾ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਸੰਕੇਂਦਰੀ ਪਰਤ ਜਾਂ ਖੇਤਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਹਰ ਇੱਕ ਪਰਤ ਦੀ ਘਣਤਾ ਭਿੰਨ-ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਵਾਯੂਮੰਡਲ ਦਾ ਸਭ ਤੋਂ ਹੇਠਲਾ ਖੇਤਰ, ਜਿਸ ਵਿੱਚ ਮਨੁੱਖ ਅਤੇ ਹੋਰ ਪ੍ਰਾਣੀ ਰਹਿੰਦੇ ਹਨ। ਪਰਿਵਰਤੀ ਮੰਡਲ (Troposphere) ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਸਮੁੰਦਰ ਤਲ ਤੋਂ 10 ਕਿ.ਮੀ. ਦੀ ਉਚਾਈ ਤੱਕ ਹੁੰਦਾ ਹੈ। ਉਸਦੇ ਉੱਪਰ (ਸਮੁੰਦਰ ਤਲ ਤੋਂ 10 ਤੋਂ 50 ਕਿ.ਮੀ. ਦੇ ਵਿੱਚ) ਸਮਤਾਪ ਮੰਡਲ (Stratosphere) ਹੁੰਦਾ ਹੈ। ਪਰਿਵਰਤੀ ਮੰਡਲ ਧੂੜਕਣਾਂ ਨਾਲ ਯੁਕਤ ਖੇਤਰ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਵਾ, ਕਾਫੀ ਜਲਵਾਸ਼ਪ ਅਤੇ ਬੱਦਲ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਖੇਤਰ ਵਿੱਚ ਹਵਾ ਦੇ ਤੇਜ ਪ੍ਰਵਾਹ ਅਤੇ ਬੱਦਲਾਂ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਡਾਈਨਾਈਟ੍ਰੋਜਨ, ਡਾਈਆੱਕਸੀਜਨ, ਓਜ਼ੋਨ ਅਤੇ ਸੂਖਮ ਮਾਤਰਾ ਵਿੱਚ ਜਲਵਾਸ਼ਪ ਹੁੰਦੇ ਹਨ।

ਵਾਯੂਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਵਿੱਚ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤੀ ਮੰਡਲ ਅਤੇ ਸਮਤਾਪ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣਦਾ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸੂਰਜ ਦੀਆਂ ਹਾਨੀਕਾਰਕ ਪਰਾਬੈਂਗਣੀ ਕਿਰਣਾਂ ਦੇ ਲਗਪਗ 99.5% ਭਾਗ ਨੂੰ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਓਜ਼ੋਨ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾਂ ਉੱਤੇ ਪਹੁੰਚਣ ਤੋਂ ਰੋਕਦੀ ਹੈ। ਅਤੇ ਇਸ ਦੇ ਪ੍ਰਭਾਵ ਤੋਂ ਮਨੁੱਖ ਹੋਰ ਜੀਵਾਂ ਦੀ ਰੱਖਿਆ ਕਰਦੀ ਹੈ।

14.2.1 ਪਰਿਵਰਤੀ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ

ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਅਣਇੱਛਤ ਠੋਸ ਜਾਂ ਗੈਸ ਕਣਾਂ ਦੇ ਕਾਰਣ ਪਰਿਵਰਤੀ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਹੁੰਦਾ ਹੈ। ਪਰਿਵਰਤੀ ਮੰਡਲ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਮੁੱਖ ਗੈਸੀ ਅਤੇ ਕਣਕੀ ਪ੍ਰਦੂਸ਼ਕ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ—

- (ੳ) ਗੈਸੀ ਹਵਾ ਪ੍ਰਦੂਸ਼ਕ—ਇਹ ਸਲਫਰ, ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਕਾਰਬਨ ਦੇ ਆੱਕਸਾਈਡ, ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਡ, ਹਾਈਡ੍ਰੋਕਾਰਬਨ, ਓਜ਼ੋਨ ਅਤੇ ਹੋਰ ਆੱਕਸੀਕਾਰਕ ਹਨ।
- (ਅ) ਕਣਕੀ ਪ੍ਦੂਸ਼ਕ—ਇਹ ਧੂੜ, ਕੋਹਰਾ, ਸਪਰੇਅ, ਧੂੰ ਆਦਿ ਹਨ।

1. ਗੈਸੀ ਹਵਾ ਪ੍ਰਦੂਸ਼ਕ

(ੳ) ਸਲਫਰ ਦੇ ਆੱਕਸਾਈਡ : ਫਾੱਸਿਲ ਬਾੱਲਣ ਦੇ ਜਲਨ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ ਸਲਫਰ ਦੇ ਆੱਕਸਾਈਡ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਰਮੁਖ ਸ਼ਪੀਸ਼ੀਜ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਹੈ। ਇਹ ਇੱਕ ਗੈਸ ਹੈ ਅਤੇ ਮਨੁੱਖਾਂ ਅਤੇ ਜੰਤੂਆਂ ਦੇ ਲਈ ਜਹਿਰੀਲੀ ਹੈ। ਅਜਿਹਾ ਲੱਗਦਾ ਹੈ ਕਿ ਸਲਫਰ ਡਾਇਆੱਕਸਾਈਡ ਦੀ ਸੂਖਮ ਸੰਘਣਤਾ ਮਨੁੱਖ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਸਾਹ-ਰੋਗਾਂ (ਜਿਵੇਂ ਅਸਥਮਾ, ਬਰੋਂਕਾਈਟੀਸ (Bronchitis), ਏਮਫਾਈਸੀਮਾ ਆਦਿ ਦਾ ਕਾਰਣ ਹੁੰਦੀ ਹੈ। ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਕਾਰਣ ਅੱਖਾਂ ਵਿੱਚ ਜਲਨ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਅੱਖਾਂ ਲਾਲ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਅੱਥਰੁ ਆਉਣ ਲੱਗਦੇ ਹਨ। SO₂ ਦੀ ਉੱਚੀ ਮਾਤਰਾ ਭੁੱਲਾਂ ਦੀਆਂ ਕਲੀਆਂ ਨੂੰ ਸਖ਼ਤ ਕਰ ਦਿੰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਇਹ ਪੌਦੇ ਤੋਂ ਜਲਦੀ ਡਿੱਗ ਜਾਂਦੀਆਂ ਹਨ। ਸਲਫਰ ਡਾਈ– ਆੱਕਸਾਈਡ ਅਨ–ਉਤਪ੍ਰੇਕ (Uncatalysis) ਇੱਕ ਹੌਲੀ (slow) ਪ੍ਕਿਰਿਆ ਹੈ, ਪਰੰਤੂ ਪ੍ਰਦੂਸ਼ਿਤ ਹਵਾ, ਜਿਸ ਵਿੱਚ ਕਣਕੀ (particulate) ਦ੍ਵ ਹੁੰਦੇ ਹਨ, ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਦੀ ਆੱਕਸੀਕਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਉਤਪ੍ਰੇਤ ਕਰਦੇ ਹਨ।

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਦਰ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਓਜ਼ੋਨ(O₃) ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੁਆਰਾ ਵਧ ਜਾਂਦੀ ਹੈ।

$$SO_2(g) + O_3(g) \rightarrow SO_3(g) + O_2(g)$$

$$SO_2(g) + H_2O_2(l) \rightarrow H_2SO_4(l)$$

(ਅ) ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਆੱਕਸਾਈਡ : ਹਵਾ ਦੇ ਮੁੱਖ ਭਾਗ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਡਾਈਆਈਸੀਜਨ ਹਨ। ਸਧਾਰਣ ਤਾਪਮਾਨ ਉੱਤੇ ਇਹ ਗੈਸਾਂ ਆਪਸ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਉੱਤੇ ਉਚਾਣ (altitudes) ਉੱਤੇ ਜਦੋਂ ਬਿਜਲੀ ਚਮਕਦੀ ਹੈ, ਤਾਂ ਇਹ ਆਪਸ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ। NO₂ ਆੱਕਸੀਕਰਣ ਨਾਲ NO₃ ਆਇਨ ਬਣਾਉਂਦੀ ਹੈ, ਜੋ ਮਿੱਟੀ ਵਿੱਚ ਘੁਲਕੇ ਖਾਦ ਦਾ ਕਾਰਜ ਕਰਦੀ ਹੈ। ਕਿਸੇ ਆੱਟੋਮੋਬਾਈਲ ਇੰਜਨ ਵਿੱਚ (ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ) ਜਦੋਂ ਫਾੱਸਿਲ ਬਾਲਣ ਬਲਦਾ ਹੈ, ਤਾਂ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਡਾਈਆੱਕਸਾੀਜਨ ਮਿਲਕੇ ਨਾਈਟ੍ਰਿਕ ਆਕਸਾਈਡ (NO) ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ (NO₂) ਦੀ ਕਾਫ਼ੀ ਮਾਤਰਾ ਬਣਦੀ ਹੈ।

$$N_2(g) + O_2(g) \xrightarrow{1483K} 2NO(g)$$

NO ਆੱਕਸੀਜਨ ਨਾਲ ਤੁਰੰਤ ਕਿਰਿਆ ਕਰਕੇ NO_2 ਬਣਾ ਦਿੰਦੀ ਹੈ।

2NO (g) + O_2 (g) $\rightarrow 2NO_2$ (g)

ਜਦੋਂ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ NO ਓਜੋਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀ ਹੈ, ਤਾਂ ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ, NO₂ ਦੇ ਨਿਰਮਾਣ ਦੀ ਦਰ ਵਧ ਜਾਂਦੀ ਹੈ। NO (g) + O₃ (g) \rightarrow NO₂ (g) + O₂ (g)

ਟ੍ਰੈਫਿਕ ਅਤੇ ਭੀੜ ਵਾਲੀਆਂ ਥਾਵਾਂ ਉੱਤੇ ਪੈਦਾ ਲਾਲ ਧੁੰਦ (Red haze) ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਅੱਕਸਾਈਡ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। NO₂ ਦੀ ਵਧੇਰੇ ਸੰਘਣਤਾ ਹੋਣ ਤੇ ਪੌਦਿਆਂ ਦੇ ਪੱਤੇ ਡਿੱਗ ਜਾਂਦੇ ਹਨ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੀ ਦਰ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ ਫੇਫੜਿਆਂ ਵਿੱਚ ਜਲਣ ਪੈਦਾ ਕਰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਬੱਚਿਆਂ ਵਿੱਚ ਭਾਰੀ ਸਾਹ-ਰੋਗ ਪੈਦਾ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਹ ਜੀਵ ਟਿਸ਼ੂਆਂ ਦੇ ਲਈ ਵੀ ਜਹਿਰੀਲੀ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ ਭਿੰਨ-ਭਿੰਨ ਕੱਪੜਿਆਂ-ਧਾਗਿਆਂ ਅਤੇ ਧਾਤਾਂ ਦੇ ਲਈ ਵੀ ਹਾਨੀਕਾਰਕ ਹੈ।

400

(ੲ) ਹਾਈਡ੍ਰੋਕਾਰਬਨ : ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਸਿਰਫ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਆੱਟੋਮੋਬਾਈਲ ਵਾਹਨਾ ਵਿੱਚ ਬਾਲਣ ਦੇ ਅਧੂਰੇ ਜਲਨ ਦੇ ਕਾਰਣ ਇਹ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਵਧੇਰੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਕੈਂਸਰ ਜਨਕ ਹੁੰਦੀਆਂ ਹਨ, ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਦੇ ਕਾਰਣ ਕੈਂਸਰ ਰੋਗ ਹੁੰਦਾ ਹੈ। ਇਹ ਪੌਦਿਆਂ ਵਿੱਚ ਕਾਲ–ਪ੍ਭਾਵ (ageing) ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਵਿਘਟਨ ਅਤੇ ਪੱਤਿਆਂ, ਫੁੱਲਾਂ ਅਤੇ ਟਾਹਣੀਆਂ ਵਿੱਚ ਹਾਨੀ ਪਹੁੰਚਾਉਂਦੇ ਹਨ।

(ਸ) ਕਾਰਬਨ ਦੇ ਆੱਕਸਾਈਡ

(i) ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ : ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਗੰਭੀਰ ਹਵਾ-ਪ੍ਰਦੂਸ਼ਕਾਂ ਵਿਚੋਂ ਇੱਕ ਹੈ। ਇਹ ਰੰਗਹੀਣ ਅਤੇ ਗੰਧਹੀਣ ਹੈ। ਇਹ ਪਾਣੀਆਂ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੈ। ਇਸ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਅੰਗਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਦੇ ਲਈ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਆੱਕਸੀਜਨ ਦੇ ਲੰਘਣ ਨੂੰ ਰੋਕਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਕਾਰਬਨ ਦੇ ਅ-ਪੂਰਣ ਜਲਨ ਦੇ ਫਲਸਰੂਪ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੀ ਸਭ ਤੋਂ ਵੱਧ ਮਾਤਰਾ ਮੋਟਰਵਾਹਨਾਂ ਤੋਂ ਨਿਕਲਣ ਵਾਲੇ ਧੁੰ ਤੋਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸਦੇ ਹੋਰ ਸਰੋਤ, ਕੋਲਾ, ਬਾਲਣ-ਲੱਕੜ ਪੈਟੋਲ ਦਾ ਅ-ਪੂਰਣ ਜਲਨਾ ਹੈ। ਵਿਸ਼ਵ ਵਿੱਚ ਪਿਛਲੇ ਕਝ ਸਾਲਾਂ ਵਿੱਚ ਟ੍ਰੈਫਿਕ (ਆਉਣ ਜਾਣ) ਦੇ ਸਾਧਨਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਤੇਜ਼ੀ ਨਾਲ ਵਾਧਾ ਹੋਇਆ ਹੈ। ਵਧੇਰੇ ਵਾਹਨਾਂ ਦੀ ਸਹੀ ਦੇਖ-ਰੇਖ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਜਾਂ ਪ੍ਰਦੂਸ਼ਕ ਨਿਯੰਤਰਕ ਯੰਤਰ ਕਾਫੀ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਪਰਿਣਾਮ ਸਰੂਪ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਅਤੇ ਹੋਰ ਪ੍ਰਦੂਸ਼ਕ ਗੈਸਾਂ ਨਿਕਲਦੀਆਂ ਹਨ। ਕੀ ਤੁਸੀ ਜਾਣਦੇ ਹੋ ਕਿ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਜਹਿਰੀਲੀ ਕਿਉਂ ਹੈ ? ਇਹ ਹੀਮੋਗਲੋਬਿਨ ਦੇ ਨਾਲ ਆੱਕਸੀਜਨ ਨਾਲੋਂ ਵਧੇਰੇ ਪ੍ਰਬਲਤਾ ਨਾਲ ਜੁੜ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਕਾਰਬੌਕਸੀ ਹੀਮੋਗਲੋਬਿਨ ਬਣਾਉਂਦੀ ਹੈ, ਜੋ ਆੱਕਸੀ-ਹੀਮੋਗਲੋਬਿਨ ਨਾਲੋਂ 300 ਗੁਣਾਂ ਵੱਧ ਸਥਾਈ ਕੰਪਲੈਕਸ ਹੈ। ਜਦੋ ਖੁਨ ਵਿੱਚ ਕਾਰਬੌਕਸੀ ਹੀਮੋਗਲੋਬਿਨ ਹੀ ਮਾਤਰਾ 3–4 ਪ੍ਰਤੀਸ਼ਤ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਖੁਨ ਵਿੱਚ ਆੱਕਸੀਜਨ ਲੈ ਜਾਣ ਦੀ ਸਮਰੱਥਾ ਕਾਫੀ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਆੱਕਸੀਜਨ ਦੀ ਇਸ ਕਮੀ ਕਾਰਣ ਸਿਰਦਰਦ, ਅੱਖਾਂ ਦੀ ਦਿਸਟੀ ਵਿੱਚ ਕਮੀਂ, ਘਬਰਾਹਟ, ਦਿਲ ਵਿੱਚ ਖੁਣ ਵਹਿਣ ਵਿੱਚ ਕਮੀਂ ਆਦਿ ਦੇ ਰੋਗ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਰੋਗੀ ਨੂੰ ਸਿਗਰੇਟ ਨਾਂ ਪੀਣ ਦੀ ਸਲਾਹ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਗਰਭਵਤੀ ਔਰਤਾਂ ਦੇ ਖੁਨ ਵਿੱਚ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ (CO) ਦੀ ਵਧੀ ਮਾਤਰਾ ਸਮੇਂ ਤੋਂ ਪਹਿਲਾ ਜਨਮ, ਸਵੈਗਰਭਪਾਤ ਅਤੇ ਬੱਚਿਆਂ ਵਿੱਚ ਵਿਰੁਪਤਾ ਦਾ ਕਾਰਣ ਹੈ। ਇਹ ਐਨੀਂ ਜਹਿਗੇਲੀ ਹੈ ਕਿ 1300 ppm ਦੀ ਸੰਘਣਤਾ ਅੱਧੇ ਘੰਟੇ ਵਿੱਚ ਪਰਾਣਘਾਤਕ ਹੋ ਜਾਂਦੀ ਹੈ।

(ii) ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ : ਸਾਹਕਿਰਿਆ, ਫਾੱਸਿਲ ਬਾਲਣ ਦਾ ਜਲਨਾ, ਸੀਮੈਂਟ ਨਿਰਮਾਣ ਵਿੱਚ ਕੰਮ ਆਉਣ ਵਾਲੇ ਚੂਨਾ ਪੱਥਰ ਆਦਿ ਤੋਂ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ (CO₂) ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਸਿਰਫ ਪਰਿਵਰਤੀ ਮੰਡਲ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਸਧਾਰਣ ਤੌਰ ਤੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਇਸ ਦੀ ਮਾਤਰਾ ਆਇਤਨ ਦੇ ਅਨੁਸਾਰ 0.03% ਹੁੰਦੀ ਹੈ। ਫਾੱਸਿਲ ਬਾਲਣ ਦੀ ਵਧੇਰੇ ਵਰਤੋਂ ਨਾਲ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਂਕਸਾਈਡ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਕਾਰਬਨ ਡਾਈਆਂਕਸਾਈਡ ਦੀ ਵਾਧੂ ਮਾਤਰਾ ਹਰੇ ਪੌਦਿਆਂ ਦੁਆਰਾ ਘੱਟ ਕਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਵਾਯੂਮੰਡਲ ਵਿੱਚ CO₂ ਦੀ ਸਹੀ ਮਾਤਰਾ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਵਾਤਾਵਰਣ ਵਿੱਚ CO₂ ਦੀ ਸਾਤਰਾ ਬਣਾਏ ਰੱਖਣਾ ਬਹੁਤ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਹਰੇ ਪੌਦਿਆਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੇ ਲਈ CO₂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਫਲਸਰੂਪ ਆੱਕਸੀਜਨ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਸੰਤੁਲਿਤ ਚੱਕਰ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ। ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ, ਜੰਗਲਾਂ ਦੇ ਕੱਟਣ ਅਤੇ ਫਾੱਸਿਲ ਬਾਲਣ ਦੇ ਵਧੇਰੇ ਜਲਾਉਣ ਨਾਲ ਵਾਯੂਮੰਡਲ ਵਿੱਚ CO₂ ਦੀ ਮਾਤਰਾ ਵਧ ਗਈ ਹੈ ਅਤੇ ਵਾਤਾਵਰਣ-ਸੰਤੁਲਨ ਵਿਗੜ ਗਿਆ ਹੈ। ਕਾਰਬਨ ਡਾਈ-ਆੱਕਸਾਈਡ ਦੀ ਇਹ ਹੀ ਵਧੀ ਮਾਤਰਾ ਗਲੋਬਲ ਤਾਪਮਾਨ ਵਾਧੇ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹੈ।

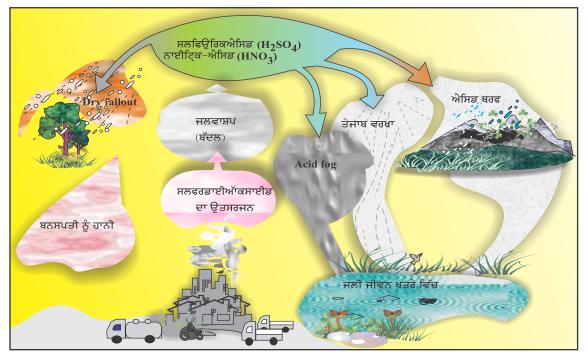
ਗਲੋਬਲ ਤਾਪਮਾਨ ਵਾਧਾ ਅਤੇ ਹਰਾ ਘਰ ਪ੍ਰਭਾਵ (Global Warming and Greenhouse Effect)

ਸੂਰਜੀ ਊਰਜਾ ਦਾ 75% ਭਾਗ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਦੁਆਰਾ ਸੋਖਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਇਸਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਬਾਕੀ ਤਾਪ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੁੜ ਵਿਕਿਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਤਾਪ ਦਾ ਕੁਝ ਭਾਗ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਗੈਸਾਂ (ਜਿਵੇਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ, ਉਜ਼ੋਨ, ਕਲੋਰੋ– ਫਲੋਰੋਕਾਰਬਨ ਯੌਗਿਕਾਂ ਅਤੇ ਜਲਵਾਸ਼ਪ) ਦੁਆਰਾ ਕਾਬੂ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਹੀ ਗਲੋਬਲ ਤਾਪਮਾਨ ਵਾਧੇ ਦਾ ਕਾਰਣ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਠੰਡੇ ਥਾਵਾਂ ਉੱਤੇ ਫੱਲ, ਸਬਜੀਆਂ, ਫਲ ਆਦਿ ਕੱਚ ਨਾਲ ਢੱਕੇ ਖੇਤਰ (ਜਿਸ ਨੂੰ ਹਰਾ ਘਰ ਕਹਿੰਦੇ ਹਨ), ਵਿਚ ਵਿਕਸਿਤ ਹੰਦੇ ਹਨ। ਕੀ ਤਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਅਸੀਂ ਮਨੁੱਖ ਵੀ ਹਰੇ ਘਰ ਵਿੱਚ ਰਹਿੰਦੇ ਹਾਂ ? ਭਾਵੇਂ ਅਸੀਂ ਕੱਚ ਦੁਆਰਾ ਘਿਰੇ ਨਹੀਂ ਰਹਿੰਦੇ, ਪਰੰਤੂ ਹਵਾ ਦਾ ਇੱਕ ਗਿਲਾਫ, ਜਿਸ ਨੂੰ ਵਾਯੂਮੰਡਲ ਕਹਿੰਦੇ ਹਨ, ਸਦੀਆਂ ਤੋਂ ਧਰਤੀ ਦਾ ਤਾਪਮਾਨ ਸਥਿਰ ਰੱਖਿਆ ਹੋਇਆ ਹੈ, ਪਰੰਤ ਅੱਜ ਕਲ ਇਸ ਵਿੱਚ ਹੌਲੀ-ਹੌਲੀ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਹਰੇ ਘਰ ਵਿੱਚ ਕੱਚ ਸੁਰਜ ਦੀ ਗਰਮੀ ਨੂੰ ਅੰਦਰ ਸਾਂਭੇ ਰੱਖਦਾ ਹੈ, ਉਸੇ ਤਰ੍ਹਾਂ ਵਾਯੁਮੰਡਲ ਸੁਰਜ ਦੀ ਗਰਮੀ ਨੂੰ ਧਰਤੀ ਦੇ ਨੇੜੇ ਸੋਖ ਲੈਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਗਰਮ ਰੱਖਦਾ ਹੈ। ਇਸ ਨੂੰ ਪਰਕਿਰਤਕ ਹਰਾ ਘਰ ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਧਰਤੀ ਦੇ ਤਾਪਮਾਨ ਦੀ ਰੱਖਿਆ ਕਰਕੇ ਜੀਵਨ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ। ਦਿਸ਼ ਪਕਾਸ਼ ਹਰੇ ਘਰ ਵਿੱਚ ਪਾਰਦਰਸ਼ੀ ਕੱਚ ਵਿਚੋਂ ਲੰਘ ਕੇ ਮਿੱਟੀ ਅਤੇ ਪੌਦਿਆਂ ਨੂੰ ਗਰਮ ਰੱਖਦਾ ਹੈ। ਗਰਮ ਮਿੱਟੀ ਅਤੇ ਪੌਦੇ ਇਨਫ਼ਾ ਰੈਡ (Infra Red) ਵਿਕਿਰਣਾਂ ਦਾ ਉਤਸਰਜਨ ਕਰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਨਫਾਰੈਡ ਵਿਕਿਰਣਾਂ ਲਈ ਕੱਚ ਅਪਾਰਦਰਸ਼ਕ ਹੰਦਾ ਹੈ, ਇਸ ਲਈ ਇਹ ਇਨ੍ਹਾਂ ਵਿਕਿਰਣਾਂ ਨੂੰ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਸੋਖਿਤ ਅਤੇ ਬਾਕੀ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਕਿਰਿਆ ਵਿਧੀ ਸੁਰਜੀ ਉਰਜਾ ਨੂੰ ਹਰੇ ਘਰ ਵਿੱਚ ਇਕੱਠਾ ਰਖਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਅਣੂ ਤਾਪ ਨੂੰ ਇਕੱਠਾ ਕਰ ਲੈਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਸੁਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਲਈ ਪਾਰਦਰਸ਼ਕ ਹੁੰਦੇ ਹਨ। ਤਾਪ ਵਿਕਿਰਣਾਂ ਦੇ ਲਈ ਨਹੀਂ। ਜੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ

401

ਦੀ ਮਾਤਰਾ 0.03% ਤੋਂ ਵੱਧ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਪ੍ਰਕ੍ਰਿਤਕ ਹਰੇ ਘਰ ਦਾ ਸੰਤੁਲਨ ਵਿਗੜ ਜਾਂਦਾ ਹੈ।ਗਲੋਬਲ ਵਾਰਮਿੰਗ ਵਿੱਚ ਕਾਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦਾ ਵਿਸ਼ਿਸ਼ਟ ਯੋਗਦਾਨ ਹੈ।


ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਹਰਾ ਘਰ ਗੈਸਾਂ, ਮੀਥੇਨ (CH₄) ਜਲਵਾਸ਼ਪ, ਨਾਈਟ੍ਰਸ ਆੱਕਸਾਈਡ (N₂O) ਕਲੋਰੋਫਲੋਰੋਕਾਰਬਨ ਅਤੇ ਓਜ਼ੋਨ ਹੈ। ਆੱਕਸੀਜਨ ਦੀ ਗੈਰ ਮੌਜੁਦਗੀ ਵਿੱਚ ਜਦੋਂ ਬਨਸਪਤੀ ਨੂੰ ਜਲਾਇਆ, ਪਚਾਇਆ ਜਾਂ ਸਾੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਮੀਥੇਨ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਝੋਨੇ ਦੇ ਖੇਤਰਾਂ, ਕੋਲੇ ਦੀਆਂ ਖਾਨਾਂ, ਦਲਦਲੀ ਖੇਤਰਾਂ ਅਤੇ ਫਾੱਸਿਲ ਬਾਲਨਾਂ ਦੁਆਰਾ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਮੀਥੇਨ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਕਲੋਰੋਫਲੋਰੋ ਕਾਰਬਨ (CFC) ਮਨੁੱਖ ਦੁਆਰਾ ਨਿਰਮਿਤ ਰਸਾਇਣ ਹੈ ਜੋ ਏਅਰ ਕੰਡੀਸ਼ਨਿੰਗ ਆਦਿ ਵਿੱਚ ਕੰਮ ਆਉਂਦਾ ਹੈ। ਕਲੋਰੋਫਲੋਰੋ ਕਾਰਬਨ ਦੀ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾ ਰਹੇ ਹਨ (ਭਾਗ 14.2.2)। ਨਾਈਟ੍ਰਸ ਆੱਕਸਾਈਡ ($N_{p}O$) ਵਾਤਾਵਰਣ ਵਿੱਚ ਕੁਦਰਤੀ ਰੂਪ ਵਿੱਚ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਪਿਛਲੇ ਕੁਝ ਸਾਲਾਂ ਵਿੱਚ ਫਾੱਸਿਲ ਬਾਲਣ ਅਤੇ ਖਾਦਾਂ ਦੀ ਜਿਆਦਾ ਵਰਤੋਂ ਨਾਲ ਇਸ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਬੜਾ ਵਾਧਾ ਹੋਇਆ ਹੈ। ਜੇ ਇਸੇ ਤਰ੍ਹਾਂ ਤਾਪਮਾਨ ਵਾਧੇ ਦਾ ਸਿਲਸਿਲਾ ਬਣਿਆ ਰਿਹਾ, ਤਾਂ ਧਰੁਵਾਂ ਉੱਤੇ ਸਥਿਤ ਗਲੇਸੀਅਰਾਂ ਦੇ ਪਿਘਲਣ ਦੀ ਦਰ ਵਧ ਜਾਵੇਗੀ, ਜਿਸ ਨਾਲ ਸਮੁੰਦਰ ਦੇ ਜਲ-ਸਤਰ ਵਿੱਚ ਵਾਧੇ ਦੇ ਫਲਸਰੂਪ ਧਰਤੀ ਦੇ ਨੀਵੇਂ ਥਾਵਾਂ ਤੇ ਪਾਣੀ ਭਰ ਜਾਵੇਗਾ। ਗਲੋਬਲ ਵਾਰਮਿੰਗ ਦੇ ਕਾਰਣ ਬਹੁਤ ਸਾਰੇ ਸੰਕਰਾਮਕ ਰੋਗਾਂ ਜਿਵੇਂ-ਡੇਂਗੁ, ਮਲੇਰਿਆ, ਬੁਖਾਰ, ਨੀਂਦ ਦੇ ਰੋਗ ਆਦਿ ਵਿੱਚ ਵਾਧਾ ਹੰਦਾ ਹੈ।

ਮੁੜ ਵਿਚਾਰ ਕਰੋ

ਗਲੋਬਲ ਵਾਰਮਿੰਗ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਅਸੀਂ ਕੀ ਕਰ ਸਕਦੇ ਹਾਂ ? ਕਿਉਂਕਿ ਫਾੱਸਿਲ ਬਾਲਨ ਜੋ ਜਲਾਉਣ ਅਤੇ ਜੰਗਲਾਂ ਨੂੰ ਕੱਟਣ ਨਾਲ ਵਾਯਮੰਡਲ ਵਿੱਚ ਹਰਾ-ਘਰ-ਗੈਸਾਂ ਵਿੱਚ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ, ਇਸ ਲਈ ਇਸਦੇ ਢੁਕਵੇਂ, ਬੁੱਧੀਮਤਾ ਅਤੇ ਨਿਆਂਪੁਰਣ ਵਰਤੋਂ ਦੇ ਉਪਾਅ ਸਾਨੂੰ ਲੱਭਣੇ ਪੈਣਗੇ, ਜੋ ਗਲੋਬਲ ਵਾਰਮਿੰਗ ਨੂੰ ਘੱਟ ਕਰਨ ਵਿੱਚ ਸਹਾਈ ਹੋਣ। ਇਸ ਦਾ ਇੱਕ ਸੌਖਾ ਉਪਾਅ ਪਰਿਸਥਿਤੀਆਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਆਉਣ-ਜਾਣ ਦੇ ਵਿਅਕਤੀਗਤ ਸਾਧਨਾਂ ਦੀ ਘੱਟ ਵਰਤੋਂ, ਸਾਈਕਲ ਦੀ ਵਰਤੋਂ ਜਿਆਦਾ ਕਰਨਾ ਅਤੇ ਪਬਲਿਕ ਦੇ ਅਵਾਜਾਈ ਦੇ ਸਾਧਨਾਂ ਨੂੰ ਵਰਤਨਾਂ ਅਤੇ ਕਾਰਪੁਲ ਦੀ ਵਰਤੋਂ ਆਦਿ ਹੈ। ਵਧੇਰੇ ਪੌਦੇ ਲਾ ਕੇ ਹਰੀ ਪਰਤ ਨੂੰ ਵਧਾਉ[ੱ]ਣ ਦੀ ਕੋਸ਼ਿਸ ਸਾਨੂੰ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ।ਸੁੱਕੇ ਪੱਤਿਆ, ਲੱਕੜਾ ਆਦਿ ਨੂੰ ਨਹੀਂ ਜਲਾਉਣਾ ਚਾਹੀਦਾ। ਪਬਲਿਕ ਸਥਾਨਾਂ ਤੇ ਸਿਗਰੇਟ ਪੀਣਾ ਗੈਰ ਕਾਨੂੰਨੀ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਸਿਰਫ ਸਿਗਰੇਟ ਪੀਣ ਵਾਲੇ ਵਿਅਕਤੀ ਦੇ ਲਈ ਹੀ ਨਹੀਂ, ਬਲਕਿ ਆਸਪਾਸ ਖਲੋਤੇ ਹੋਰ ਵਿਅਕਤੀਆਂ ਦੇ ਲਈ ਵੀ ਨਕਸਾਨਦਾਇਕ ਹੁੰਦਾ ਹੈ।ਇਸ ਲਈ ਸਾਨੂੰ ਇਸ ਨੂੰ ਤਿਆਗਨਾਂ ਚਾਹੀਦਾ ਹੈ।ਅਨੇਕਾਂ ਵਿਅਕਤੀ ਹਰੇ ਘਰ ਪ੍ਰਭਾਵ ਅਤੇ ਗਲੋਬਲ ਵਾਰਮਿੰਗ ਦੇ ਬਾਰੇ ਨਹੀਂ ਜਾਣਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਇਸ ਤੱਥ ਤੋਂ ਜਾਣ ਕਰਵਾਉਣ ਚਾਹੀਦਾ ਹੈ।

ਤੇਜਾਬ ਵਰਖਾ (Acid rain)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੁਆਰਾ ਪਾਣੀ ਨਾਲ ਕੀਤੀ ਪ੍ਰਤੀਕਿਰਿਆ

ਚਿੱਤਰ 14.1 ਤੇਜ਼ਾਬ ਜਮਾਅ

ਦੇ ਫਲਸਰੂਪ ਪੈਦਾ H⁺ ਦੇ ਕਾਰਣ ਵਰਖਾ ਜਲਦੀ pH ਆਮ ਤੌਰ ਤੇ 5.6 ਹੁੰਦੀ ਹੈ—

 $H_2O(l) + CO_2(g) \rightleftharpoons H_2CO_3(aq)$ $H_2O(ar) \rightarrow H^+(ar) + HOO^-(ar)$

 $H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

ਜਦ ਵਰਖਾ ਦੇ ਪਾਣੀ ਦੀ pH 5.6 ਤੋਂ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਸ ਨੂੰ 'ਤੇਜਾਬ ਵਰਖਾ ਕਹਿੰਦੇ ਹਨ। ਤੇਜਾਬ ਵਰਖਾ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਤੋਂ ਧਰਤੀ-ਸਤ੍ਹਾ ਉੱਤੇ ਤੇਜਾਬ ਜੰਮ ਜਾਂਦਾ ਹੈ। ਤੇਜਾਬੀ ਸੁਭਾਅ ਦੇ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਆੱਕਸਾਈਡ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਠੋਸ ਕਣਾਂ ਦੇ ਨਾਲ ਹਵਾ ਵਿੱਚਵਹਿ ਕੇ ਜਾਂ ਤਾਂ ਠੋਸ ਰੂਪ ਵਿੱਚ ਜਾਂ ਪਾਣੀਵਿੱਚ ਦ੍ਵ ਰੂਪ ਵਿੱਚ ਧੁੰਦ ਨਾਲ ਜਾਂ ਬਰਫ ਦੇ ਵਾਂਗ ਜੰਮ ਜਾਂਦੇ ਹਨ (ਚਿੱਤਰ 14.1)।

ਅਮਲ-ਵਰਖਾ ਮਨੁੱਖੀ ਕਿਰਿਆਵਾਂ ਦੀ ਉਪਜ ਹੁੰਦੀ ਹੈ, ਜੋ ਵਾਤਾਵਰਣ ਵਿੱਚ ਨਾਈਟ੍ਰੇਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਆੱਕਸਾਈਡ ਛੱਡਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚੁਕਿਆ ਹੈ। ਫਾੱਸਿਲ ਬਾਲਣ (ਜਿਵੇਂ-ਕੋਲਾ, ਥਰਮਲ ਪਾੱਵਰ ਪਲਾਂਟ, ਭੱਠੀਆਂ ਅਤੇ ਮੋਟਰ ਇੰਜਨਾਂ ਵਿੱਚ ਡੀਜ਼ਲ ਅਤੇ ਪੈਟ੍ਰੋਲ (ਜਿਸ ਵਿੱਚ ਸਲਫਰ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ) ਦੇ ਜਲਨ ਨਾਲ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਆੱਕਸਾਈਡ ਬਣਦੇ ਹਨ। SO₂ ਅਤੇ NO₂ ਆੱਕਸੀਕਰਣ ਤੋਂ ਬਾਅਦ ਪਾਣੀ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਤੇਜਾਬ ਵਰਖਾ ਵਿੱਚ ਪ੍ਰਮੁੱਖ ਯੋਗਦਾਨ ਦਿੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਪ੍ਰਦੂਸ਼ਿਤ ਹਵਾ ਵਿੱਚ ਆਮ ਤੌਰ ਤੇ ਕਣਕੀ ਦ੍ਵ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਜੋ ਆੱਕਸੀਕਰਣ ਨੂੰ ਉਤਪ੍ਰੇਰਿਤ ਕਰਦੇ ਹਨ।

 $2SO_{2} (g) + O_{2} (g) + 2H_{2}O (l) \rightarrow 2H_{2}SO_{4} (aq)$ $4NO_{2} (g) + O_{2} (g) + 2H_{2}O (l) \rightarrow 4HNO_{3} (aq)$

ਇਸ ਵਿੱਚ ਔਮੋਨੀਅਮ ਲੂਣਾਂ ਦਾ ਵੀ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ, ਜੋ ਵਾਯੂ ਮੰਡਲੀ ਧੁੰਧ (ਏਰੋਸੋਲ ਦੇ ਸੂਖਮਕਣ) ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਦੇ ਹਨ। ਵਰਖਾ ਦੀਆਂ ਬੂੰਦਾਂ ਵਿੱਚ ਆੱਕਸਾਈਡ ਅਤੇ ਅਮੋਨੀਅਮ ਲੂਣਾਂ ਦੇ ਏਰੋਸੋਲ ਕਣ ਦੇ ਫਲਸਰੂਪ ਸਿਲ੍ਹਾ ਜਮਾਅ (wet-deposition) ਹੁੰਦਾ ਹੈ। ਠੋਸ ਅਤੇ ਦ੍ਵ ਭੂਮੀ-ਸਤ੍ਹਾ ਦੁਆਰਾ SO₂ ਸਿੱਧੇ ਸੋਖੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਖੁਸ਼ਕ ਜਮਾਅ ਹੁੰਦਾ ਹੈ।

ਤੇਜਾਬ-ਵਰਖਾ, ਖੇਤੀ ਬਾੜੀ, ਪੋਦਿਆਂ, ਰੁੱਖਾਂ ਆਦਿ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੁੰਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਇਨ੍ਹਾਂ ਦੇ ਵਾਧੇ ਦੇ ਲਈ ਲੋੜੀਂਦੇ ਪੋਸ਼ਕ ਤੱਤਾਂ ਨੂੰ ਘੋਲ ਕੇ ਵੱਖ ਕਰ ਦਿੰਦੀ ਹੈ। ਇਹ ਮਨੁੱਖਾਂ ਅਤੇ ਜਾਨਵਰਾਂ ਵਿੱਚ ਸਾਹ ਦੇ ਰੋਗ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਜਦੋਂ ਇਹ ਸਤ੍ਹਾ ਦੇ ਪਾਣੀ ਦੇ ਨਾਲ ਵਹਿ ਕੇ ਨਦੀ ਅਤੇ ਝੀਲਾਂ ਤੱਕ ਪਹੁੰਚਦੀ ਹੈ, ਤਾਂ ਜਲੀ ਪਰਿਸਥਿਤੀਆਂ ਦੇ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦੇ ਜੀਵਨ ਨੂੰ ਪ੍ਰਬਾਵਿਤ ਕਰਦੀ ਹੈ। ਤੇਜਾਬੀ ਵਰਖਾ ਦੇ ਕਾਰਣ ਪਾਣੀ ਦੇ ਪਾਈਪਾਂ ਨੂੰ ਖੋਰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਆਇਰਨ, ਲੈੱਡ, ਕਾੱਪਰ ਆਦਿ ਧਾਤਾਂ ਘੁਲ ਕੇ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦੀਆਂ ਹਨ। ਤੇਜਾਬੀ ਵਰਖਾ ਪੱਥਰ ਅਤੇ ਧਾਤਾਂ ਤੋਂ

ਸਕਿਰਿਅਤਾ - 1

ਤੁਸੀਂ ਆਪਣੇ ਨੇੜੇਲੇ ਖੇਤਰਾਂ ਦੇ ਪਾਣੀ ਦੇ ਭਿੰਨ ਨਮੂੰਨੇ ਇੱਕਠੇ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦੀ pH ਗਿਆਤ ਕਰੋ।ਪਰਿਣਾਮਾਂ ਦੀ ਚਰਚਾ ਆਪਣੀ ਜਮਾਤ ਵਿੱਚ ਕਰੋ।ਆਓ ਇਸ ਗੱਲ ਤੇ ਚਰਚਾ ਕਰੀਏ ਕਿ ਤੇਜਾਬ ਵਰਖਾ ਨੂੰ ਘੱਟ ਕਿਵੇਂ ਕੀਤਾ ਜਾਏ

ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ SO, ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ NO₂ ਦੇ ਬਣਨ ਨੂੰ ਘੱਟ ਕਰਕੇ ਤੇਜਾਬ ਵਰਖਾ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਸਾਨੂੰ ਆਉਣ ਜਾਣ ਦੇ ਵਿਅਕਤੀਗਤ ਸਾਧਨਾਂ ਦੀ ਘੱਟ ਵਰਤੋਂ ਕਰਨੀ ਚੀਹੀਦੀ ਹੈ ਅਤੇ ਸ਼ਕਤੀ-ਯੰਤਰਾਂ ਅਤੇ ਓਦਯੋਗਾਂ ਵਿੱਚ ਘੱਟ ਸਲਫਰ ਮਾਤਰਾ ਵਾਲਾ ਫਾਸਿਲ ਬਾਲਣ ਕੰਮ ਵਿੱਚ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ।ਸਾਨੂੰ ਕੋਲੇ ਦੀ ਤਾਂ ਪਕਿਰਤਕ ਗੈਸ ਦੀ ਵਰਤੋਂ ਜਾਂ ਘੱਟ ਸਲਫਰ ਵਾਲਾ ਕੋਲਾ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿਾੱਚ ਕੰਮ ਵਿੱਚ ਲਿਆਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਕਾਰ ਵਿੱਚ ਉਤਪ੍ਰੇਰਕੀ ਪਰਿਵਰਤਕ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਉਣੇ ਚਾਹੀਦੇ ਹਨ, ਤਾਂ ਕਿ ਉਹ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਜਾਂਦੇ ਧੂੰ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘੱਟ ਕਰ ਸਕਣ।ਉਤਪ੍ਰੇਰਕੀ ਪਰਿਵਰਤਕ ਦਾ ਮੁੱਖ ਭਾਵ ਸਿਰੇਮਿਕ ਯੁਕਤ ਮਧੁਕੋਸ਼ (Honeycomb) ਹੁੰਦਾ ਹੈ, ਜਿਸ ਉੱਤੇ ਦੁਰਲਭ ਧਾਤਾਂ (ਜਿਵੇਂ—Pd, Pt ਅਤੇ Rh) ਦੀ ਪਰਤ ਚੜ੍ਹੀ ਹੁੰਦੀ ਹੈ। ਉਤਸਰਜਿਤ ਗੈਸ, ਜਿਸ ਵਿੱਚ ਅਣਜਲਿਆ ਬਾਲਣ CO ਅਤੇ NO ਹੁੰਦੇ ਹਨ, ਨੂੰ ਜਦੋਂ 573 K ਉੱਤੇ ਉਤਪ੍ਰੇਰਕੀ ਪਰਿਵਰਤਕ ਵਿੱਚੋਂ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਇਨ੍ਹਾਂ ਨੂੰ CO, ਅਤੇ N, ਵਿੱਚ ਬਦਲ ਦਿੰਦਾ ਹੈ। ਅਸੀਂ ਮਿੱਟੀ ਵਿੱਚ ਪਾਉਡਰ ਕੀਤਾ ਚੁਨਾ ਪੱਥਰ ਮਿਲਾ ਕੇ ਮਿੱਟੀ ਤੇ ਤੇਜਾਬੀ ਪਨ ਨੂੰ ਘੱਟ ਕਰ ਸਕਦੇ ਹਾਂ। ਵਧੇਰੇ ਵਿਅਕਤੀ ਤੇਜਾਬ ਵਰਖਾ ਅਤੇ ਇਸਦੇ ਹਾਨੀਕਾਰਕ ਪ੍ਰਭਾਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਨਹੀਂ ਜਾਣਦੇ ਹਨ। ਅਸੀਂ ਉਨ੍ਹਾਂ ਨੂੰ ਸੁਚਨਾਵਾਂ ਦੇ ਕੇ ਜਾਗਰੁਕ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਪਰਕਿਰਤੀ ਨੂੰ ਬਚਾ ਸਕਦੇ ਹਾਂ।

ਤਾਜਮਹਿਲ ਅਤੇ ਤੇਜਾਬ ਵਰਖਾ

ਆਗਰਾ ਸ਼ਹਿਰ ਵਿੱਚ ਸਥਿਤ ਤਾਜਮਹਿਲ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਦੀ ਹਵਾ ਵਿੱਚ ਸਲਫਰ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਆੱਕਸਾਈਡ ਦੀ ਉੱਚੀ ਸੰਘਣਤਾ ਮੌਜੂਦ ਹੈ। ਇਹ ਇਸ ਖੇਤਰ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਥਰਮਲ ਪਾੱਵਰ ਪਲਾਂਟ ਅਤੇ ਉਦਯੋਗਾਂ ਦੇ ਕਾਰਣ ਹੈ। ਘਰੇਲੂ ਕਾਰਜਾਂ ਵਿੱਚ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਮਾੜੀ ਗੁਣਵੱਤਾ। ਵਾਲਾ ਕੋਲਾ, ਕੈਰੋਸੀਨ ਅਤੇ ਲਕੜੀ ਦੀ ਵਰਤੋਂ ਕਰਨ ਤੇ ਇਹ ਸੱਮਸਿਆ ਵਧਦੀ ਹੈ, ਜਿਸਦੇ ਫਲਸਰੁਪ ਤੇਜਾਬ ਵਰਖਾ ਤਾਜਮਹਿਲ ਦੇ ਸੰਗਮਰਮਰ CaCO₃ ਨਾਲ ਕਿਰਿਆ ਕਰਦੀ ਹੈ $(CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O)$ ਅਤੇ ਸੰਪੂਰਣ ਵਿਸ਼ਵ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਨ ਵਾਲਾ ਅਚਰਜ ਸਮਾਰਕ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾਉਂਦੀ ਹੈ। ਤੇਜਾਬ ਵਰਖਾ ਦੇ ਕਾਰਣ ਇਹ ਸਮਾਰਕ ਹੌਲੀ-ਹੌਲੀ ਖਰਾਬ ਹੋ ਰਹੀ ਹੈ ਅਤੇ ਆਪਣੇ ਕੁਦਰਤੀ ਰੰਗ ਅਤੇ ਚਮਕ ਗੁਆਈ ਜਾ ਰਹੀ ਹੈ। ਇਸ ਸਮਾਰਕ ਨੂੰ ਨਸ਼ਟ ਹੋਣ ਤੋਂ ਬਚਾਉਣ ਦੇ ਲਈ ਭਾਰਤ ਸਰਕਾਰ ਨੇ ਸੰਨ 1995 ਵਿੱਚ ਇੱਕ ਕਾਰਜ ਯੋਜਨਾ ਸ਼ੁਰੂ ਕਰਨ ਦੀ ਘੋਸ਼ਣਾ ਕੀਤੀ।ਮਥੁਰਾ ਤੇਲ ਸੋਧਣ ਸੰਯੰਤਰ (Refinery) ਨੇ ਜਹਿਰੀਲੀ ਗੈਸਾਂ ਦੇ ਉਤਸਰਜਨ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਹੀ ਢੁਕਵੇਂ ਸਟੈੱਪ ਚੁੱਕ ਲਏ ਹਨ।

ਇਸ ਯੋਜਨਾ ਦੇ ਅਧੀਨ 'ਤਾਜ ਟ੍ਰੈਪੀਜਿਅਮ' ਦੀ ਹਵਾ ਨੂੰ ਸੱਵਛ ਕਰਨਾ ਹੈ।ਇਸ ਖੇਤਰ ਵਿੱਚ ਆਗਰਾ, ਫੀਰੋਜ਼ਾਬਾਦ, ਮਥੁਰਾ ਅਤੇ ਭਰਤਪੁਰ ਨਗਰ ਸ਼ਾਮਲ ਹਨ।ਇਸਦੇ ਅਨੁਸਾਰ ਟ੍ਰੈਪੀਜੀਅਮ ਸਥਿਤ 2000 ਤੋਂ ਵੀ ਵੱਧ ਉਦਯੋਗ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੋਲੇ ਅਤੇ ਤੇਲ ਦੀ ਥਾਂ ਤੇ ਕੁਦਰਤੀ ਗੈਸ ਜਾਂ ਐਲ.ਪੀ.ਜੀ. ਦੀ ਵਰਤੋਂ ਕਰਨਗੇ।ਇਸਦੇ ਲਈ ਇੱਕ ਨਵੀਂ ਪ੍ਰਕਿਰਤਕ ਗੈਸ ਪਾਈਪਲਾਈਨ ਵਿਛਾਈ ਜਾ ਰਹੀ ਹੈ, ਜਿਸਦੀ ਸਹਾਇਤਾ ਦੇ ਨਾਲ ਇਸ ਖੇਤਰ ਵਿੱਚ ਹਰ ਰੋਜ਼ 5 ਲੱਖ ਘਣ ਮੀਟਰ ਪ੍ਰਾਕਿਰਤਕ ਗੈਸ ਲਿਆਂਦੀ ਜਾਵੇਗੀ।ਸ਼ਹਿਰਾਂ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਇਸ ਗੱਲ ਦੇ ਲਈ ਹੌਂਸਲਾ ਵਧਾਇਆ ਜਾਵੇਗਾ ਕਿ ਉਹ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਕੋਲੇ, ਕੈਰੋਸੀਨ ਅਤੇ ਲੱਕੜ ਦੀ ਥਾਂ ਤੇ ਐਲ.ਪੀ.ਜੀ. ਦੀ ਹੀ ਵਰਤੋਂ ਕਰਨ। ਇਸ ਦੇ ਇਲਾਵਾ ਤਾਜ ਦੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਰਾਸ਼ਟਰੀ ਰਾਜਮਾਰਗਾਂ ਉੱਤੇ ਚੱਲਣ ਵਾਲੇ ਆਉਣ ਜਾਣ ਦੇ ਸਾਧਨਾਂ ਵਿੱਚ ਘੱਟ ਸਲਫਰ ਡੀਜ਼ਲ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰੇਰਿਆ ਜਾਵੇਗਾ।

ਬਣੀਆਂ ਵਸਤਾਂ, ਇਮਾਰਤਾਂ ਆਦਿ ਨੂੰ ਨਸ਼ਟ ਕਰਦੀ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਤਾਜਮਹਲ ਵਰਗੀਆਂ ਇਤਿਹਾਸਕ ਇਮਾਰਤਾਂ ਤੇਜਾਬ ਵਰਖਾ ਦੇ ਪ੍ਰਭਾਵ ਕਾਰਣ ਖਰਾਬ ਹੋ ਰਹੀਆਂ ਹਨ।

2. ਕਣਕੀ ਪ੍ਰਦੂਸ਼ਕ

ਕਣਕੀ ਪਦਾਰਥ ਹਵਾ ਵਿੱਚ ਲਟਕੇ ਸੂਖਮ ਠੋਸ ਕਣ ਜਾਂ ਦ੍ਵੀ ਬੂੰਦਾਂ ਹੁੰਦੇ ਹਨ। ਇਹ ਮੋਟਰ ਵਾਹਨਾਂ ਦੇ ਉਤਸਰਜਨ, ਅੱਗ ਦੇ ਧੂੰ, ਧੂੜਕਣ ਅਤੇ ਉਦਯੋਗਾਂ ਦੀ ਸੁਆਹ ਹੁੰਦੇ ਹਨ। ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਣਕਾਂਵਾਂ ਜੀਵਿਤ ਅਤੇ ਅਜੀਵਿਤ-ਦੋਵਾਂ ਕਿਸਮਾਂ ਦੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਜੀਵਿਤ ਕਣਕਾਵਾਂ ਵਿੱਚ ਜੀਵਾਣੂ, ਉੱਲੀ, ਐਲਗੀ ਆਦਿ ਸ਼ਾਮਲ ਹਨ। ਹਵਾ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਕੁਝ ਸੂਖਮ ਜੀਵ ਐਲਰਜੀ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਹ ਪੌਦਿਆਂ ਦੇ ਰੋਗ ਵੀ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਨ।

ਕਣਕਾਵਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਪਰਿਕਰਤੀ ਅਤੇ ਅਕਾਰ ਦੇ ਅਧਾਰ ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ–

- (ੳ) ਧੂੰ ਕਣਕਾਵਾਂ ਵਿੱਚ ਠੋਸ ਅਤੇ ਠੋਸ ਦ੍ਵ ਕਣਾਂ ਦੇ ਮਿਸ਼ਰਣ ਹੁੰਦੇ ਹਨ, ਜੋ ਕਾਰਬਨਿਕ ਦ੍ਵ ਦੇ ਜਲਣ ਦੇ ਦੌਰਾਨ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ—ਸਿਗਰੇਟ ਦਾ ਧੂੰ, ਫਾੱਸਿਲ ਬਾਲਣ ਦੇ ਜਲਣ ਨਾਲ ਪ੍ਰਾਪਤ ਧੂੰ, ਗੰਦਗੀ ਦਾ ਢੇਰ, ਸ਼ੁੱਕੇ ਪੱਤੇ, ਤੇਲ-ਧੂੰ ਆਦਿ।
- (ਅ) ਧੂੜ ਦੇ ਬਰੀਕ ਛੋਟੇ ਕਣ (ਵਿਆਸ 1µm ਤੋਂ ਉੱਪਰ) ਹੁੰਦੇ ਹਨ। ਜੋ ਠੋਸ ਪਦਾਰਥਾਂ ਦੇ ਪੀਸਣ, ਰਗੜਨ ਆਦਿ ਨਾਲ ਬਣਦੇ ਹਨ। ਬਲਾਸਟ ਤੋਂ ਪ੍ਰਾਪਤ ਰੇਤ, ਲੱਕੜੀ ਦੇ ਕਾਰਜ ਤੋਂ ਪ੍ਰਾਪਤ ਲੱਕੜ ਦਾ ਬੂਰਾ, ਕੋਲੇ ਦਾ ਚੂਰਾ, ਕਾਰਖਾਨਿਆਂ ਤੋਂ ਉੱਡਣ ਵਾਲੀ ਸੁਆਹ ਅਤੇ ਸੀਮੈਂਟ, ਧੂੰ ਦੇ ਗੁਬਾਰ ਆਦਿ ਇਸ ਕਿਸਮ ਦੇ ਉਤਸਰਜਨ ਦੀਆ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ।
- (ੲ) ਖਿੱਲਰੇ ਹੋਏ ਦ੍ਵ-ਕਣਾਂ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਹਵਾ ਵਿੱਚ ਸੰਘਣੇ ਹੋਣ ਨਾਲ ਕੋਹਰਾ (Mist) ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ—ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦਾ ਕੋਹਰਾ ਅਤੇ ਨਦੀਨ

ਨਾਸ਼ਕ ਅਤੇ ਕੀਟਨਾਸ਼ਕ, ਜੋ ਆਪਣੇ ਨਿਸ਼ਾਨੇ ਤੋਂ ਭਟਕ ਕੇ ਹਵਾ ਵਿੱਚ ਲਟਕੇ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਕੋਹਰਾ ਬਣਾਉਂਦੇ ਹਨ।

(ਸ) ਧੂੰ ਆਮਤੌਰ ਤੇ ਵਾਸ਼ਪਾਂ ਦੇ ਜੌਹਰ ਉੱਡਣ, ਕਸ਼ੀਦਣ, ਉਬਲਣ ਅਤੇ ਹੋਰ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਦੌਰਾਨ ਸੰਘਨਨ ਦੇ ਕਾਰਣ ਬਣਦੇ ਹਨ। ਅਕਸਰ ਕਾਰਬਨਿਕ ਘੋਲਕ ਧਾਤਾਂ ਅਤੇ ਧਾਤਵੀ ਆੱਕਸਾਈਡ ਧੂੰ ਦੇ ਕਣਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ।

ਕਣਕ ਪ੍ਰਦੂਸ਼ਕਾਂ ਦਾ ਪ੍ਰਭਾਵ ਮੁੱਖ ਤੌਰ ਤੇ ਉਨ੍ਹਾਂ ਦੇ ਕਣਾਂ ਦੇ ਅਕਾਰ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਹਵਾ ਵਿਚਲੇ ਕਣ ਜਿਵੇਂ—ਧੂੜ, ਧੂੰ, ਧੁੰਦ ਆਦਿ ਮਨੁੱਖੀ ਸਿਹਤ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹਨ। 5 ਮਾਈਕ੍ਰੋਨ ਤੋਂ ਵੱਡੇ ਕਣਕ ਪ੍ਰਦੂਸ਼ਕ ਨਾਸਿਕਾ ਵਿੱਚ ਜਮਾਂ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਦ ਕਿ ਲਗਪਗ 1.0 ਮਾਈਕ੍ਰੋਨ ਦੇ ਕਣ ਫੇਫੜਿਆਂ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਦਾਖਲ ਹੋ ਜਾਂਦੇ ਹਨ।

ਵਾਹਨਾਂ ਦੁਆਰਾ ਉਤਸਰਜਿਤ ਲੈੱਡ ਇੱਕ ਮੁੱਖ ਹਵਾ-ਪ੍ਰਦੂਸ਼ਕ ਹੈ। ਲੈੱਡ ਯੁਕਤ ਪੈਟ੍ਰੋਲ ਭਾਰਤੀ ਸ਼ਹਿਰਾਂ ਵਿੱਚ ਹਵਾ ਵਿਚਲੇ ਲੈੱਡ ਉਤਸਰਜਨ ਦਾ ਮੁੱਖ ਸਰੋਤ ਹੈ। ਵਧੇਰੇ ਸ਼ਹਿਰਾਂ ਵਿੱਚ ਬਿਨਾਂ ਲੈੱਡ (ਸੀਮਾ ਰਹਿਤ) ਪੈਟ੍ਰੋਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਸੱਮਸਿਆ ਉੱਤੇ ਕਾਬੂ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਲਾਲ ਖੂਨ ਸੈੱਲਾਂ ਦੇ ਵਿਕਸਿਤ ਅਤੇ ਪਕਿਆਈ ਹੋਣ ਵਿੱਚ ਲੈੱਡ ਰੁਕਾਵਟ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਧੁਆਂਖੀ ਧੁੰਦ (Smog)

'ਧੁਆਂਖੀ ਧੁੰਦ' ਸ਼ਬਦ ਧੂੰ ਅਤੇ ਧੁੰਦ ਤੋਂ ਮਿਲਕੇ ਬਣਿਆ ਹੈ। ਵਿਸ਼ਵ ਦੇ ਅਨੇਕਾਂ ਸ਼ਹਿਰਾਂ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਣ ਇਸ ਦੀ ਆਮ ਉਦਾਹਰਣ ਹੈ। ਧੁਆਂਖੀ ਧੁੰਦ ਦੋ ਕਿਸਮ ਦੀ ਹੁੰਦੀ ਹੈ–

- (ੳ)ਸਧਾਰਣ ਧੁਆਂਖੀ ਧੁੰਦ (ਜੋ ਠੰਡੀ ਨਮੀਂ ਵਾਲੇ ਜਲਵਾਯੂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ) ਧੂੰ, ਧੁੰਦ ਅਤੇ ਸਲਫਰ ਡਾਈਆੱਕਸਾਈਡ ਦਾ ਮਿਸ਼ਰਣ ਹੈ। ਰਸਾਇਣਿਕ ਰੂਪ ਵਿੱਚ ਇਹ ਇਕ ਲਘੂਕਾਰਕ ਮਿਸ਼ਰਣ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ 'ਲਘੂਕਾਰਕ ਧੁਆਂਖੀ ਧੁੰਦ' ਵੀ ਕਹਿੰਦੇ ਹਨ।
- (ਅ) ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ (Photochemical smog) ਜੋ ਤਾਪ, ਖੁਸ਼ਕ ਅਤੇ ਧੁੱਪ ਵਾਲੇ ਜਲਵਾਯੂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਆੱਟੋਮੋਬਾਈਲ ਵਾਹਨਾਂ ਅਤੇ ਕਾਰਖਾਨਿਆਂ ਵਿੱਚੋਂ ਨਿਕਲਣ ਵਾਲੇ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਉੱਤੇ ਸੂਰਜ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਿਆ ਦੇ ਕਾਰਣ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੀ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਤੀ ਆੱਕਸੀਕਾਰਕ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਆੱਕਸੀਕਾਰਕ ਅਭਿਕਰਮਕਾਂ ਦੀ ਸੰਘਣਤਾ ਉੱਚੀ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਇਸ ਨੂੰ 'ਆੱਕਸੀਕਾਰਕ ਧੁਆਂਖੀ ਧੁੰਦ' ਕਹਿੰਦੇ ਹਨ।

ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦਾ ਨਿਰਮਾਣ (Formation of photochemical smog)

ਜਦੋਂ ਫਾੱਸਿਲ ਬਾਲਣ ਜਲਦਾ ਹੈ, ਤਾਂ ਧਰਤੀ ਦੇ ਵਾਤਾਵਰਣ ਵਿੱਚ ਕਈ ਪ੍ਰਦੂਸ਼ਕ ਉਤਸਰਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਦੋ ਪ੍ਰਦੂਸ਼ਕ ਹਾਈਡ੍ਰੋਕਾਰਬਨ (ਅਣਜਲੇ ਬਾਲਣ) ਅਤੇ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ (NO) ਹਨ। ਜਦੋਂ ਇਨ੍ਹਾਂ ਪ੍ਰਦੁਸ਼ਕਾਂ ਦਾ ਸਤਰ ਕਾਫੀ

Downloaded from https:// www.studiestoday.com

403

404

ਉੱਚਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਸੂਰਜ ਪ੍ਰਕਾਸ਼ ਨਾਲ ਇਨ੍ਹਾਂ ਦੀ ਅੰਤਰ ਕਿਰਿਆ ਦੇ ਕਾਰਣ ਚੇਨ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ NO ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ (NO₂) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ NO₂ ਸੂਰਜ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਦੇ ਮੁੜ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ ਅਤੇ ਮੁਕਤ ਆੱਕਸੀਜਨ ਵਿੱਚ ਵਿਘਟਿਤ ਹੋ ਜਾਂਦੀ ਹੈ (ਚਿੱਤਰ 14.2)।

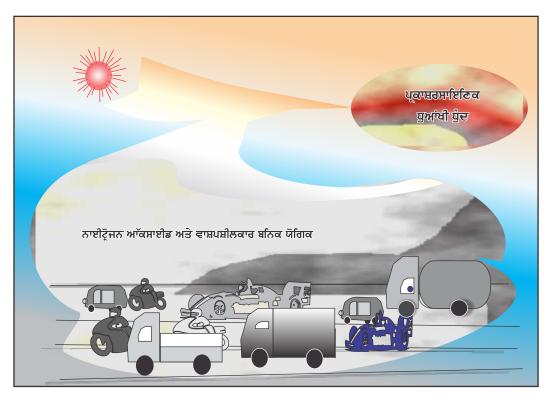
$$NO_2(g) \xrightarrow{hv} NO(g) + O(g)$$
 (i)

ਆੱਕਸੀਜਨ ਪ੍ਰਮਾਣੂ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੋਣ ਦੇ ਕਾਰਣ O₂ ਦੇ ਨਾਲ ਜੁੜ ਕੇ ਓਜ਼ੋਨ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦਾ ਹੈ–

$$O(g) + O_2(g) \rightleftharpoons O_3(g)$$
(ii)

ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਨਿਰਮਿਤ O₃ ਜਲਦੀ ਹੀ ਪ੍ਰਤੀਕਿਰਿਆ (i) ਵਿੱਚ ਬਣੇ NO(g) ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਮੁੜ NO₂(g) ਬਣਾਉਂਦੀ ਹੈ। NO₂ ਇੱਕ ਭੂਰੀ ਗੈਸ ਹੈ, ਜਿਸ ਦਾ ਉੱਚਾ ਲੈਵਲ ਧੁੰਦ ਦਾ ਕਾਰਣ ਹੋ ਸਕਦਾ ਹੈ।

NO (g) +
$$O_3$$
 (g) $\rightarrow NO_2$ (g) + O_2 (g) (iii)


ਓਜ਼ੋਨ ਇੱਕ ਜਹਿਰੀਲੀ ਗੈਸ ਹੈ। NO₂ ਅਤੇ O₃ ਦੋਵੇਂ ਹੀ ਪ੍ਰਬਲ ਆੱਕਸੀਕਾਰਕ ਹਨ। ਇਸ ਕਾਰਣ ਪ੍ਰਦੂਸ਼ਿਤ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਅਣਜਲੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਕਈ ਰਸਾਇਣਾਂ, ਜਿਵੇਂ—ਫਾਰਮਲਡੀਹਾਈਡ, ਐਕਰੋਲੀਨ ਅਤੇ ਪਰਆੱਕਸੀ ਐਸੀਟਾਈਲ ਨਾਈਟ੍ਰੇਟ (PAN) ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ।

 $3CH_4 + 2O_3 \rightarrow 3CH_2 = O + 3H_2O$ ਫਾਰੱਮਲਡੀਹਾਈਡ $CH_2 = CHCH = O CH_3COONO_2$ ਐਕਰੋਲੀਨ ||O

ਪਰਆੱਕਸੀ ਐਸੀਟਾਈਲ ਨਾਈਟ੍ਰੇਟ (PAN)

ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੇ ਪ੍ਰਭਾਵ

ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੇ ਆਮ ਘਟਕ ਓਜ਼ੋਨ, ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ, ਐਕਰੋਲੀਨ, ਫਾੱਰਮਲਡੀਹਾਈਡ ਅਤੇ ਪਰਆੱਕਸੀ ਐਸੀਟਾਈਲ ਨਾਈਟ੍ਰੋਟ (PAN) ਹਨ। ਪ੍ਰਕਾਸ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੇ ਕਾਰਣ ਵੀ ਗੰਭੀਰ ਸੱਮਸਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਓਜ਼ੋਨ ਅਤੇ ਨਾਈਟ੍ਰਿਕ ਆੱਕਸਾਈਡ ਨੱਕ ਅਤੇ ਗਲੇ ਵਿੱਚ ਜਲਣ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਉੱਚੀ ਸੰਘਣਤਾ ਨਾਲ ਸਿਰਦਰਦ, ਛਾਤੀ ਵਿੱਚ ਦਰਦ, ਗਲੇ ਦਾ ਖੁਸ਼ਕ ਹੋਣਾ, ਖੰਘ ਅਤੇ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਿਲ ਹੋ ਸਕਦੀ ਹੈ। ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਰਬੜ ਵਿੱਚ ਦਰਾੜ ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਪੌਦਿਆਂ ਉਤੇ ਹਾਨੀਕਾਰਕ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ। ਇਹ ਧਾਤਾਂ, ਪਥੱਰਾਂ ਇਮਾਰਤ ਉਸਾਰੀ ਦੇ ਪਦਾਰਥਾਂ ਅਤੇ ਰੰਗੀਆਂ

ਚਿੱਤਰ 14.2 ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਉੱਥੇ ਬਣਦੀ ਹੈ, ਜਿੱਥੇ ਟ੍ਰੈਫਿਕ ਪ੍ਰਦੁਸ਼ਕਾਂ ਉੱਤੇ ਸੁਰਜ ਦਾ ਪ੍ਰਕਾਸ਼ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।

405

ਹੋਈਆਂ ਸਤ੍ਹਾਂ (Painted surfaces) ਦਾ ਨੁਕਸਾਨ ਵੀ ਕਰਦਾ ਹੈ।

ਪਕਾਸ਼ ਰਸਾਇਣਿਕ ਧਆਂਖੀ ਧੰਦ ਦਾ ਨਿਯੰਤਰਣ ਕਿਵੇਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ?

ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਨੂੰ ਨਿਯੰਤਰਿਤ ਜਾਂ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਕਈ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਜੇ ਅਸੀਂ ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੂਆਂਖੀ ਧੁੰਦ ਪ੍ਰਾਈਮਰੀ ਪੂਰਵਗਾਮੀ, ਜਿਵੇਂ— NO2 ਅਤੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰ ਲਈਏ ਤਾਂ ਸੈਕੰਡਰੀ ਪੁਰਵਗਾਮੀ ਜਿਵੇਂ—ਓਜ਼ੋਨ ਅਤੇ PAN ਅਤੇ ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਆਪਣੇ ਆਪ ਘੱਟ ਹੋ ਜਾਵੇਗੀ। ਅਕਸਰ ਆੱਟੋਮੋਬਾਈਲ ਵਾਹਨਾਂ ਵਿੱਚ ਉਤਪ੍ਰੇਰਕ ਪਰਿਵਰਤਕ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਆੱਕਸਾਈਡ ਅਤੇ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਦੇ ਉਤਸਰਜਨ ਨੂੰ ਰੋਕਦੇ ਹਨ। ਕੁਝ ਪੌਦਿਆਂ (ਜਿਵੇਂ—ਪਾਈਨਸ, ਜੁਨੀਪੈਰਸ, ਕਵੇਰਕਸ, ਪਾਇਰਸ ਅਤੇ ਵਿਟਿਸ) ਜੋ ਨਾਈਟ੍ਰੋਜਨ ਆੱਕਸਾਈਡ ਦਾ ਲਘੁਕਰਣ ਕਰ ਸਕਦੇ ਹਨ, ਦਾ ਲਗਾਉਣਾ ਇਸ ਸੰਦਰਭ ਵਿੱਚ ਸਹਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।

14.2.2 ਸਮਤਾਪ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ

ਓਜ਼ੋਨ ਦਾ ਨਿਰਮਾਣ ਅਤੇ ਵਿਘਟਨ

ਉਪਰਲੇ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਓਜ਼ੋਨ (O₃) ਦੀ ਕਾਫੀ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਸੁਰਜ ਆਉਣ ਵਾਲੀਆਂ ਹਾਨੀਕਾਰਕ ਪਰਾਬੈਂਗਣੀ (UV) ਵਿਕਿਰਣਾਂ (λ 255 nm) ਤੋਂ ਸਾਨੂੰ ਬਚਾਉਂਦੀ ਹੈ। ਇਹ ਵਿਕਿਰਣਾਂ ਚਮੜੀ-ਕੈਂਸਰ (ਮੈਲੋਨੋਮਾ) ਦੇ ਕਾਰਣ ਬਣਦੇ ਹਨ। ਇਸ ਲਈ ਓਜ਼ੋਨ-ਕਵਚ ਨੂੰ ਬਚਾ ਕੇ ਰਖਣਾ ਮਹੱਤਵਪੂਰਣ ਹੈ।

ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਣਾਂ ਦੀ ਡਾਈਆੱਕਸੀਜਨ ਅਣੂ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਪਜ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਓਜ਼ੋਨ ਹੈ। ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਣ ਅਣਵੀਂ ਆੱਕਸੀਜਨ ਨੂੰ ਮੁਕਤ ਆੱਕਸੀਜਨ (O) ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਵਿਖੰਡਿਤ ਕਰ ਦਿੰਦੇ ਹਨ। ਅਣਵੀਂ ਆੱਕਸੀਜਨ ਨਾਲ ਜੁੜ ਕੇ ਇਹ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਓਜ਼ੋਨ ਬਣਾਉਂਦੇ ਹਨ।

 $O_2(g) \xrightarrow{UV} O(g) + O(g)$

 $O(g) + O_2(g) \stackrel{UV}{=} O_3(g)$

ਓਜ਼ੋਨ ਤਾਪ ਗਤਿਕੀ ਰੂਪ ਵਿੱਚ ਅਸਥਾਈ ਹੁੰਦੀ ਹੈ ਅਤੇ ਅਣਵੀਂ ਆੱਕਸੀਜਨ ਵਿੱਚ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਓਜ਼ੋਨ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਵਿਘਟਨ ਵਿੱਚ ਇੱਕ ਗਤਿਕੀ ਸੰਤਲਨ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਥੋੜ੍ਹੇ ਸਾਲ ਪਹਿਲਾਂ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਕੁਝ ਰਸਾਇਣਾਂ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਓਜ਼ੋਨ ਦੀ ਇਸ ਸੁਰਖਿਆ ਪਰਤ ਵਿੱਚ ਛੇਕ ਦੀਆਂ ਸੁਚਨਾਵਾਂ ਹਨ। ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ ਛੇਕ (depletion) ਦਾ ਮੁੱਖ ਕਾਰਣ ਕਲੋਰੋਫਲੋਰੋਕਾਰਬਨ ਯੋਗਿਕਾਂ (CFCs) ਦਾ ਉਤਸਰਜਨ ਹੈ। ਜਿਨ੍ਹਾਂ ਨੂੰ ਫਰੀਓਨ (Freons) ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਇਹ ਯੋਗਿਕ ਅ-ਕਿਰਿਆ, ਅ-ਜਲਨਸ਼ੀਲ, ਅ-ਜਹਿਰੀਲੇ ਕਾਰਬਨਿਕ ਅਣੂ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਰੈਫਰੀਜਰੇਟਰ, ਏਅਰ ਕੰਡੀਸ਼ਨਰ ਆਦਿ ਵਿੱਚ ਅਤੇ ਪਲਾਸਟਿਕ ਫੋਮ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਕੰਪਿਉਟਰ ਉਦਯੋਗ ਵਿੱਚ ਕੰਪਿਊਟਰ ਦੇ ਪੁਰਜਿਆਂ ਦੀ ਸਫਾਈ ਕਰਨ ਵਿੱਚ ਹੰਦਾ ਹੈ।

CFC's ਇੱਕ ਵਾਰ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਉਤਸਰਜਿਨ ਹੋਣ ਨਾਲ ਵਾਯੁਮੰਡਲ ਦੀਆਂ ਹੋਰ ਗੈਸਾਂ ਨਾਲ ਮਿਸ਼ਰਿਤ ਹੋ ਕੇ ਸਿੱਧੀਆਂ ਸੰਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦੀਆਂ ਹਨ। ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਇਹ ਸ਼ਕਤੀਸ਼ਾਲੀ ਵਿਕਿਰਣਾਂ ਦਆਰਾ ਵਿਘਟਿਤ ਹੋ ਕੇ ਕਲੋਰੀਨ ਮੁਕਤ ਮੁਲਕ ਉਤਸਰਜਿਤ ਕਰਦੇ ਹਨ।

$$CF_2Cl_2(g) \xrightarrow{UV} Cl(g) + CF_2Cl(g)$$
 (i)

ਕਲੋਗੀਨ ਮੁਕਤ ਮੁਲਕ (Free Radicals) ਫਿਰ ਸਮਤਾਪਮੰਡਲੀ ਓਜ਼ੋਨ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਕਲੋਰੀਨ ਮੋਨੋਆੱਕਸਾਈਡ ਮੁਲਕ ਅਤੇ ਅਣਵੀਂ ਆੱਕਸੀਜਨ ਬਣਾਉਂਦੇ ਹਨ।

$$\overset{\bullet}{\mathrm{Cl}}(\mathrm{g}) + \mathrm{O}_{3}(\mathrm{g}) \to \mathrm{Cl}\overset{\bullet}{\mathrm{O}}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g})$$
(ii)

ਕਲੋਰੀਨ ਮੋਨੋਆੱਕਸਾਈਡ ਮੁਲਕ ਪਰਮਾਣਵੀਂ ਆੱਕਸੀਜਨ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ ਹੋਰ ਜਿਆਦਾ ਕਲੋਰੀਨ ਮੁਲਕ ਪੈਦਾ ਕਰਦਾ ਹੈ।

$$\operatorname{Cl}{\mathbf{O}}(g) + \operatorname{O}(g) \to \operatorname{Cl}(g) + \operatorname{O}_{2}(g)$$
 (iii)

ਕਲੋਰੀਨ ਮੁਲਕ ਲਗਾਤਾਰ ਬਣਦੇ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਓਜ਼ੋਨ ਨੂੰ ਵਿਖੰਡਿਤ ਕਰਦੇ ਰਹਿੰਦੇ ਹਨ। ਇਸ ਤਰਵਾਂ ਇਹ (CFCs) ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਕਲੋਰੀਨ ਮੁਲਕਾਂ ਨੂੰ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਅਤੇ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾਉਣ ਵਾਲੇ ਵਾਹਕ ਹਨ |

ਓਜ਼ੋਨ ਛੇਕ

ਸੰਨ 1980 ਵਿੱਚ ਵਾਯੂਮੰਡਲੀ ਵਿਗਿਆਨਕਾਂ ਨੇ ਐਂਟਾਰਟਿਕਾ ਉੱਤੇ ਕਾਰਜ ਕਰਦੇ ਹੋਏ ਦੱਖਣੀ ਧਰੁਵ ਉੱਤੇ ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ ਵਿਰਲ, ਜਿਸ ਨੂੰ ਆਮਤੌਰ ਤੇ ਓਜ਼ੋਨ ਛੇਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਦੇ ਬਾਰੇ ਵਿੱਚ ਦੱਸਿਆ।

ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਓਜ਼ੋਨ ਛੇਕ ਦੇ ਲਈ ਪਰਿਸਥਿਤੀਆਂ ਦਾ ਇਕ ਵਿਸ਼ੇਸ਼ ਸਮੂਹ ਜਿੰਮੇਂਵਾਰ ਸੀ। ਗਰਮੀ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ ਪਰਮਾਣੂਆਂ (ਪ੍ਰਤੀਕਿਰਿਆ iv) ਅਤੇ ਕਲੋਰੀਨ ਪਰਮਾਣੂਆਂ (ਪ੍ਰਤੀਕਿਰਿਆ v) ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਕਲੋਰੀਨ ਸਿੰਕ ਬਣਾਉਂਦੇ ਹਨ, ਜੋ ਓਜ਼ੋਨ ਵਿਰਲ ਨੂੰ ਕਾਫ਼ੀ ਹੱਦ ਤੱਕ ਰੋਕਦਾ ਹੈ।

ਜਦਕਿ ਸਰਦੀ ਦੇ ਮੌਸਮ ਵਿੱਚ ਖਾਸ ਕਿਸਮ ਦੇ ਬੱਦਲ, ਜਿਨ੍ਹਾਂ ਨੂੰ 'ਧਰੁਵੀ ਸਮਤਾਪਮੰਡਲੀ ਬੱਦਲ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅੰਟਾਰਟਿਕਾ ਦੇ ਉੱਤੇ ਬਣਦੇ ਹਨ। ਇਹ ਬੱਦਲ ਇੱਕ ਕਿਸਮ ਦੀ ਸਤ੍ਹਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਜਿਸ ਉੱਤੇ ਬਣਿਆ ਹੋਇਆ ਕਲੋਗੀਨ ਨਾਈਟ੍ਰੇਟ (ਪ੍ਤੀਕਿਰਿਆ v) ਜਲਯੋਜਿਤ ਹੋ ਕੇ ਹਾਈਪੋਕਲੋਰਸ ਐਸਿਡ ਬਣਾਉਂਦਾ ਹੈ। (ਪ੍ਤਿਕਿਰਿਆ vi) ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਹਾਈਡੋ਼ਜਨ ਕਲੋਰਾਈਡ ਨਾਲ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਇਹ ਅਣਵੀਂ ਕਲੋਰੀਨ ਦਿੰਦਾ ਹੈ। I=l (g) + NO₂ (g) \rightarrow ClONO₂(g)

(iv)

406

$$I = I (g) + CH_4 (g) \rightarrow CH_3(g) + HCI(g)$$
(v)

$$I = I NO_2(g) + H_2O (g) \rightarrow HOI = I (g) + HNO_3 (g)$$
(vi)

 ${\rm I}$ =l ${\rm NO}_2({\rm g})$ + HCl (g) \rightarrow I =l (g) + HNO_3 (g) CI (vii)

ਬਸੰਤ ਵਿੱਚ ਜਦੋਂ ਆਂਟਰਟਿਕਾ ਉੱਤੇ ਸੂਰਜ ਦਾ ਪ੍ਰਕਾਸ਼ ਮੁੜ ਆਉਂਦਾ ਹੈ, ਤਾਂ ਸੂਰਜ ਦੀ ਗਰਮੀ ਬੱਦਲਾਂ ਨੂੰ ਵਿਖੰਡਿਤ ਕਰ ਦਿੰਦੀ ਹੈ ਅਤੇ HOCl ਅਤੇ Cl₂ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ (ਪ੍ਰਤੀਕਿਰਿਆ (viii) ਅਤੇ (ix).

HOI=1
$$\xrightarrow{hv}$$
 OH + CI = 1 (viii)

$$CI=l_2 \xrightarrow{hv} 2CI=1$$
 (ix)

ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਪੈਦਾ ਕਲੋਰੀਨ ਮੂਲਕ ਓਜ਼ੋਨ ਵਿਰਲ (depletion) ਦੇ ਲਈ ਚੇਨ ਪ੍ਰਤੀਕਿਰਿਆ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੇ ਹਨ।

ਓਜ਼ੋਨ ਪਰਤ ਦੀ ਵਿਰਲ ਦੇ ਪ੍ਰਭਾਵ

ਓਜ਼ੋਨ ਪਰਤ ਦੀ ਵਿਰਲ ਨਾਲ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਣਾਂ ਪਰਿਵਰਤੀ ਮੰਡਲ (Troposphere) ਵਿੱਚ ਆ ਜਾਂਦੀਆਂ ਹਨ। ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਣਾਂ ਨਾਲ ਚਮੜੀ ਦਾ ਕਾਲ-ਪ੍ਰਭਾਵ (ageing), ਮੋਤੀਆ ਬਿੰਦ, ਸੱਨਬਰਨ, ਚਮੜੀ-ਕੈਂਸਰ ਕਈ ਪੌਦਿਆਂ ਦੀ ਮੌਤ ਮੱਛੀਆਂ ਵਿੱਚ ਪੈਦਾ ਕਰਨ ਦੀ ਸ਼ਕਤੀ ਵਿੱਚ ਕਮੀਂ ਆਦਿ ਹੁੰਦੇ ਹਨ। ਇਹ ਵੀ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਪੌਦਿਆਂ ਦੇ ਪ੍ਰੋਟੀਨ ਪਰਾਬੈਂਗਨੀ ਵਿਕਿਰਣਾਂ ਤੋਂ ਅਸਾਨੀ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਸੈੱਲਾਂ ਦਾ ਹਾਨੀਕਾਰਕ ਉਤਪਰਿਵਰਤਨ (Mutation) ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਪੱਤਿਆਂ ਦੇ ਸਟੋਮੈਟਾ (Stomata) ਵਿੱਚੋਂ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪੀਕਰਣ ਵੀ ਵੱਧ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਮਿੱਟੀ ਦੀ ਨਮੀਂ ਵੀ ਘਟ ਜਾਂਦੀ ਹੈ। ਵਧੇ ਹੋਏ ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਣ ਰੰਗਾਂ ਅਤੇ ਰੇਸ਼ਿਆਂ ਨੂੰ ਵੀ ਹਾਣੀ ਪਹੁੰਚਾਉਂਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਰੰਗ ਜਲਦੀ ਉੱਡ ਜਾਂਦੇ ਹਨ।

14.3 ਪਾਣੀ ਪ੍ਰਦੂਸ਼ਣ

ਜੀਵਨ ਦੇ ਲਈ ਪਾਣੀ ਜਰੂਰੀ ਹੈ। ਅਸੀਂ ਪਾਣੀ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਸਾਰਣੀ 14.1 ਵਿੱਚ ਪਾਣੀ ਦੇ ਮੱਖ ਪਦ ਸ਼ੁੱਧ ਮੰਨਦੇ ਹਾਂ, ਪਰੰਤੂ ਸਾਨੂੰ ਪਾਣੀ ਦੀ ਗੁਣਵੱਤਾ (quality) ਸੁਨਿਸ਼ਚਿਤ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। ਪਾਣੀ ਦਾ ਪ੍ਰਦੂਸ਼ਣ ਮਨੁੱਖੀ ਸਕਿਰਿਅਤਾਵਾਂ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਕਰਮਾ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਪ੍ਰਦੂਸ਼ਕ ਸਤ੍ਹਾ ਜਾਂ ਭੂਮੀ-ਪਾਣੀ ਤੱਕ ਆਉਂਦਾ ਹੈ। ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਗਿਆਤ ਸਰੋਤਾਂ ਜਾਂ ਸਥਾਨਾਂ ਨੂੰ 'ਬਿੰਦੂ ਸਰੋਤ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਨਗਰਪਾਲਿਕਾ ਪਾਇਪ ਜਾਂ ਉਦਯੋਗਿਕ ਡਿਸਚਾਰਜ ਪਾਈਪ, ਜਿੱਥੋ ਪ੍ਰਦੂਸ਼ਕ ਪਾਣੀ ਦੇ ਸਰੋਤ ਵਿੱਚ ਪ੍ਵੇਸ਼ ਕਰਦੇ ਹਨ। ਪ੍ਰਦੂਸ਼ਨ ਦੇ ਅਬਿੰਦੂ ਸਰੋਤ ਉਹ ਹਨ, ਜਿੱਥੇ ਪ੍ਰਦੂਸ਼ਣ ਦਾ ਸਰੋਤ ਅਸਾਨੀ ਨਾਲ ਪਛਾਣਿਆ ਨਾ ਜਾ ਸਕੇ। ਉਦਾਹਰਣ ਵਜੋਂ-ਖੇਤੀ-ਵੇਸਟ (ਖੇਤਾਂ, ਜਾਨਵਰਾਂ ਅਤੇ ਖੇਤੀ-ਜਮੀਨ ਤੋਂ) ਤੇਜਾਬ ਵਰਖਾ (Acid rain) ਤੀਬਰ ਪਾਣੀ ਦੀ ਨਿਕਾਸੀ (ਗਿਲੀਆਂ, ਬਾਗਾਂ, ਲਾੱਨ) ਆਦਿ।

14.3.1 ਪਾਣੀ-ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣ

(i) ਰੋਗਜਨਕ : ਸਭ ਤੋਂ ਜਿਆਦਾ ਖਤਰਨਾਕ ਪਾਣੀ ਪ੍ਰਦੂਸ਼ਕ ਰੋਗਾਂ ਦੇ ਕਾਰਕਾਂ ਨੂੰ 'ਰੋਗਜਨਕ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਰੋਗਜਨਕਾਂ ਵਿੱਚ ਜੀਵਾਣੂ ਅਤੇ ਹੋਰ ਜੀਵ ਹਨ ਜੋ ਘਰੇਲੂ ਸੀਵੇਜ ਅਤੇ ਪਸ਼ੂ ਮਲ ਮੂਤਰ ਦੁਆਰਾ ਪਾਣੀ ਵਿੱਚ ਦਾਖਲ ਹੁੰਦੇ ਹਨ। ਮਨੁਖੀ ਮਲ ਵਿੱਚ ਐਸ਼ਰਿਕਿਆ, ਕੋਲੀ, ਸਟ੍ਰੈਪਟੋਕੋਕਸ ਫੇਕੇਲਿਸ ਆਦਿ ਜੀਵਾਣੂ ਹੁੰਦੇ ਹਨ, ਜੋ ਗੈਸਟ੍ਰੋਇਨਟੈਸਟਾਈਨਲ ਰੋਗਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦੇ ਹਨ।

(ii) ਕਾਰਬਨਿਕ ਵੇਸਟ : ਹੋਰ ਮੁੱਖ ਪਾਣੀ-ਪ੍ਰਦੂਸ਼ਕ ਕਾਰਬਨਿਕ ਪਦਾਰਥ (ਜਿਵੇਂ—ਪੱਤੇ, ਘਾਹ, ਕੂੜਾ ਕਰਕਟ ਆਦਿ) ਹਨ। ਉਹ ਪਾਣੀ ਨੂੰ ਪ੍ਰਦੂਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ ਪੌਦਿਆ ਦਾ ਵਧੇਰੇ ਵਾਧਾ ਵੀ ਪਾਣੀ ਪ੍ਰਦੂਸ਼ਣ ਦਾ ਇੱਕ ਕਾਰਣ ਹੈ।

ਬੈਕਟੀਗੇਆ ਦੀ ਬਹੁਤ ਸੰਖਿਆ ਪਾਣੀ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦਾ ਅਪਘਟਨ ਕਰਦੀ ਹੈ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਘੁਲੀ ਆੱਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਪਾਣੀ ਘੋਲ ਵਿੱਚ ਘੁਲੀ ਆਕਸੀਜਨ ਦੀ ਸੰਘਣਤਾ 10 ppm ਤੱਕ ਹੋ ਸਕਦੀ ਹੈ, ਜਦਕਿ ਹਵਾ ਵਿੱਚ ਇਹ ਲਗਪਗ 200,000 ppm ਹੇ।ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਪਾਣੀ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਦੇ ਅਪਘਟਿਤ ਹੋਣ ਦੀ ਥੋੜ ਜਿਹੀ ਮਾਤਰਾ ਵੀ ਇਸ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੀ

1				\sim	_		
UIAAT 1/1	ाटन) एक	ਰ ਹਮ	ו בעק אב		ਸਤਤ	ਸਰਸਾਏ ਗਏ ਹਨ	
TUCI 14.1		гелч		00 C	JUS		
				- 0			

ਪ੍ਰਦੂਸ਼ਕ	ਸਰੋਤ
ਸੂਖਮ ਜੀਵ	ਘਰੇਲੂ ਸੀਵੇਜ
ਕਾਰਬਨਿਕ ਕੂੜਾ–ਕੱਟਾ	ਘਰੇਲੂ ਸੀਵਜੇ, ਪਸ਼ੂ ਵੇਸਟ, ਸੜੇ ਹੋਏ ਮਰੇ ਹੋਏ ਪਸ਼ੂ ਅਤੇ ਪੌਦੇ, ਭੋਜਨ ਪਰੋਸੈਸਿੰਗ, ਕਾਰਖਾਨਿਆਂ
	ਤੋਂ ਵਿਸਰਜਨ
ਪੌਦਿਆਂ ਦੇ ਨਿਊਟਰੀਸ਼ਨਜ	ਰਸਾਇਣਿਕ ਖਾਦਾਂ
ਜਹਿਰੀਲੀਆਂ ਭਾਰੀ ਧਾਤਾਂ	ਓਦਯੋਗ ਅਤੇ ਰਸਾਇਣ ਕਾਰਖਾਨੇ
ਤਲਛਟ	ਖੇਤੀ ਅਤੇ ਵਿੱਪਟੀ ਖਨਨ ਦੇ ਕਾਰਣ ਭੂਮੀ ਦਾ ਖੁਰਣਾਂ
ਕੀਟਨਾਸ਼ਕ	ਕੀਟਾਂ, ਵੀਡ, ਫੰਗੱਸ ਨੂੰ ਨਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਵਰਤੇ ਰਸਾਇਣ
ਰੇਡੀਓ ਐਕਟਿਵ ਪਦਾਰਥ	ਯੂਰੇਨਿਅਮਯੁਕਤ ਖਣਿਜਾਂ ਦਾ ਖਨਨ
ਤਾਪ	ਉਦਯੋਗਕ ਕਾਰਖਾਨਿਆਂ ਦੁਆਰਾ ਠੰਡੇ ਪਾਣੀ ਦੀ ਵਰਤੋਂ

ਕਮੀ ਕਰ ਸਕਦੀ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਘੁਲੀ ਆੱਕਸੀਜਨ ਜਲੀ– ਜੀਵਨ ਦੇ ਲਈ ਬੜੀ ਮਹੱਤਵਪੂਣ ਹੈ। ਜੇ ਪਾਣੀ ਵਿੱਚ ਘੁੱਲੀ ਆੱਕਸੀਜਨ ਦੀ ਮਾਤਰਾ 6 ਪੀ.ਪੀ.ਐਮ. ਤੋਂ ਹੇਠਾਂ ਹੋ ਜਾਏ ਤਾਂ ਮੱਛੀਆਂ ਦਾ ਵਿਕਾਸ ਰੁਕ ਜਾਂਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਆੱਕਸੀਜਨ ਜਾਂ ਤਾਂ ਵਾਤਾਵਰਣ ਜਾਂ ਕਈ ਜਲੀ ਪੌਦਿਆਂ ਦੁਆਰਾ ਦਿਨ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਪ੍ਰਕਰਮ ਰਾਹੀਂ ਪਹੁੰਚਦੀ ਹੈ। ਰਾਤ ਵੇਲੇ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਰੁਕ ਜਾਂਦਾ ਹੈ, ਪਰੰਤੂ ਪੌਦੇ ਸਾਹ ਕਿਰਿਆ ਕਰਦੇ ਰਹਿੰਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਘੁਲੀ ਆੱਕਸੀਜਨ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਘੁਲੀ ਆੱਕਸੀਜਨ ਸੂਖਮ ਜੀਵਾਣੂਆਂ ਦੁਆਰਾ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਆੱਕਸੀਕਰਣ ਵਿੱਚ ਵੀ ਵਰਤੋਂ ਵਿੱਚ ਲਈ ਜਾਂਦੀ ਹੈ।

ਜੇ ਪਾਣੀ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਮਿਲਾਏ ਜਾਣ, ਤਾਂ ਉਪਲਬਧ ਸਾਰੀ ਆੱਕਸੀਜਨ ਵਰਤੀ ਜਾਏਗੀ। ਇਸ ਦਾ ਪਰਿਣਾਮ ਆੱਕਸੀਜਨ ਸਹਾਰੇ ਜਲੀਜੀਵਨ ਦੀ ਮੌਤ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅ–ਵਾਯੂ ਜੀਵਾਣੂ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਆੱਕਸੀਜਨ ਦੀ ਲੋੜ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਕਾਰਬਨਿਕ ਵੇਸਟ ਦਾ ਵਿਖੰਡਨ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਇਸ ਨਾਲ ਭੈੜੀ ਗੰਧ ਵਾਲੇ ਰਸਾਇਣ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਜੋ ਮਨੁੱਖੀ ਸਿਹਤ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹਨ। ਹਵਾ (ਆੱਕਸੀਜਨ ਦੀ ਜਰੂਰਤ ਵਾਲੇ) ਜੀਵਾਣੂ ਇਨ੍ਹਾਂ ਕਾਬਨਿਕ ਵੇਸਟਾਂ ਦਾ ਵਿਘਟਨ ਕਰਕੇ ਪਾਣੀ ਨੂੰ ਆੱਕਸੀਜਨ ਰਹਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।

ਇਸ ਲਈ ਪਾਣੀ ਦੇ ਇੱਕ ਨਮੂਨੇ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਨੂੰ ਵਿਖੰਡਿਤ ਕਰਨ ਦੇ ਲਈ ਜੀਵਾਣੂ ਦੁਆਰਾ ਲੋੜੀਂਦੀ ਆੱਕਸੀਜਨ ਨੂੰ "ਜੈਵ ਰਸਾਇਣਿਕ ਆੱਕਸੀਜਨ ਮੰਗ" (Biochemical Oxygen Demand, BOD) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਪਾਣੀ ਵਿੱਚ BOD ਦਾ ਮਾਨ 5 ਪੀ.ਪੀ.ਐਮ. ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ ਜਦਕਿ ਵਧੇਰੇ ਪ੍ਰਦੂਸ਼ਿਤ ਪਾਣੀ ਵਿੱਚ ਇਹ 17 ਪੀ.ਪੀ.ਐਮ ਜਾਂ ਇਸ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ। (iii) ਰਸਾਇਣਿਕ ਪ੍ਰਦੂਸ਼ਕ : ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਾਣੀ ਇੱਕ ਚੰਗਾ ਘੋਲਕ ਹੈ। ਇਸ ਵਿੱਚ ਘੁਲੇ ਅਕਾਰਬਨਿਕ ਰਸਾਇਣ, ਜਿਸ ਵਿੱਚ ਭਾਰੀਆਂ ਧਾਤਾਂ (ਜਿਵੇਂ-ਕੈਡਮੀਅਮ, ਮਰਕਰੀ, ਨਿੱਕਲ ਆਦਿ ਸ਼ਾਮਿਲ ਹਨ) ਮਹੱਤਵਪੂਰਣ ਪ੍ਰਦੂਸ਼ਕਾਂ ਵਿੱਚ ਆਉਂਦੇ ਹਨ। ਇਹ ਸਾਰੀਆਂ ਧਾਤਾਂ ਸਾਡੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹਨ, ਕਿਉਂਕਿ ਸਾਡਾ ਸਰੀਰ ਇਨ੍ਹਾਂ ਨੂੰ ਵਿਸਰਜਿਤ ਨਹੀਂ ਕਰ ਸਕਦਾ ਹੈ। ਸਮੇਂ ਨਾਲ ਇਨ੍ਹਾਂ ਦੀ ਮਾਤਰਾ ਸਹਿਣਯੋਗ ਸੀਮਾਂ ਤੋਂ ਉੱਪਰ ਚਲੀ ਜਾਂਦੀ ਹੈ। ਫਿਰ ਇਹ ਪ੍ਰਦੂਸ਼ਕ ਧਾਤਾਂ ਗੁਰਦੇ, ਕੇ ਦਰੀ ਨਰਵਸ ਪ੍ਣਾਲੀ, ਲੀਵਰ ਆਦਿ ਨੂੰ ਨੁਕਸਾਨ ਪਹੰਚਾਉਂਦੇ ਹਨ। ਖਦਾਨਾਂ ਦੇ ਸੀਵੇਜ ਤੋਂ ਪਾਪਤ ਤੇਜਾਬ (ਜਿਵੇਂ—ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਅਤੇ ਵੱਖ–ਵੱਖ ਸਰਤਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਲੁਣ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਠੰਡੇ ਮੌਸਮ ਵਿੱਚ ਬਰਫ਼ ਨੂੰ ਪਿਘਲਾਉਣ ਵਾਲੇ ਲੂਣ-ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ

ਸ਼ਾਮਲ ਹਨ) ਪਾਣੀ ਵਿੱਚ ਘੁਲੇ ਪ੍ਰਦੂਸ਼ਕ ਹਨ।

ਪਦਸ਼ਿਤ ਪਾਣੀ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਹੋਰ ਸਮੂਹ ਕਾਰਬਨਿਕ ਰਸਾਇਣਾਂ ਹਨ। ਪੈਟ੍ਰੋਲੀਅਮ ਉਪਜਾਂ (ਜਿਵੇਂ-ਸਮੁੰਦਰਾਂ ਵਿੱਚੇ ਵੱਡੇ ਤੇਲ-ਵਹਾਅ ਪਾਣੀ ਦੇ ਕਈ ਸਰੋਤਾਂ ਨੂੰ ਪ੍ਰਦੂਸ਼ਿਤ ਕਰਦੇ ਹਨ) ਦੂਜੇ ਗੰਭੀਰ ਪ੍ਰਭਾਵ ਵਾਲੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕ ਹਨ, ਜੋ ਸਪਰੇਅ ਦੁਆਰਾ ਵਹਿ ਕੇ ਧਰਤੀ ਦੇ ਹੇਠਾਂ ਆਉਂਦੇ ਹਨ। ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮ ਦੇ ਉਦਯੋਗਿਕ ਰਸਾਇਣ ਜਿਵੇਂ ਪੋਲੀਕਲੋਰੀ ਨੇਟਿਡ ਬਾਈਫੀਨਾਈਲ (PCB), ਜੋ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਡਿਟਰਜੈਂਟ ਅਤੇ ਖਾਦਾਂ ਵੀ ਪਾਣੀ ਪ੍ਰਦੂਸ਼ਕਾਂ ਦੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਸਾਮਲ ਹਨ। PCB ਕੈਂਸਰ ਜਨਕ ਹੈ।ਅੱਜਕਲ ਉਪਲਬਧ ਵਧੇਰੇ ਡਿਟਰਜੈਂਟ ਜੈਵ ਅਪਘਟਨੀ ਹਨ। ਫਿਰ ਵੀ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਹੋਰ ਸੱਮਸਿਆਵਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਅਪਘਟਿਤ ਕਰਨ ਵਾਲੇ ਜੀਵਾਣੂ ਇਨ੍ਹਾਂ ਡਿਟਰਜੈਂਟਾਂ ਤੋਂ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਕੇ ਤੇਜੀ ਨਾਲ ਵਧਦੇ ਹਨ। ਵਾਧੇ ਦੌਰਾਨ ਉਹ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਸਾਰੀ ਆੱਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਨ। ਆੱਕਸੀਜਨ ਦੀ ਕਮੀਂ ਦੇ ਕਾਰਣ ਜਲੀ-ਜੀਵਨ ਦੇ ਹੋਰ ਰੂਪ (ਜਿਵੇਂ ਮੱਛੀਆਂ ਅਤੇ ਪੌਦੇ) ਮਰ ਸਕਦੇ ਹਨ। ਖਾਦਾਂ ਵਿੱਚ ਫਾੱਸਫੇਟ ਜੜਨਸ਼ੀਲ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ ਫਾੱਸਫੇਟ ਦਾ ਵਾਧਾ ਐਲਗੀ ਦੇ ਵਾਧੇ ਵਿੱਚ ਸਹਿਯੋਗ ਕਰਦਾ ਹੈ। ਐਲਗੀ ਦੀ ਇਹ ਵਧੀ ਮਾਤਰਾ ਜਲੀ ਸਤ੍ਹਾ ਨੂੰ ਢੱਕ ਲੈਂਦੀ ਹੈ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਬਹੁਤ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸਦੇ ਫਲਸਰੂਪ ਹਵਾ ਰਹਿਤ ਪਰਿਸਥਿਤੀ ਪੈਦਾ ਹੋਣ ਨਾਲ ਪਾਣੀ ਦੁਰਗੰਧ ਮਾਰਨ ਲੱਗ ਪੈਂਦਾ ਹੈ ਜਿਸਦੇ ਕਾਰਣ ਜਲੀ ਜੰਤੂਆਂ ਦੀ ਮੌਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਪੁਸ਼ਪ ਭਰਮਾਰ ਪਾਣੀ ਹੋਰ ਜੀਵਾਂ ਦੇ ਵਾਧੇ ਨੂੰ ਰੋਕਦਾ ਹੈ। ਜਲ ਭੰਡਾਰਾਂ ਵਿੱਚ ਪੌਸ਼ਟਿਕ ਵਾਧੇ ਦੇ ਫਲਸਰੂਪ ਆੱਕਸੀਜਨ ਦੀ ਕਮੀਂ ਦੇ ਕਾਰਣ ਸੁਪੋਸ਼ਣ (ਯੂਟੋਫਿਕੇਸ਼ਨ) ਕਹਿੰਦੇ ਹਨ।

14.3.2 ਪਾਣੀ ਦੇ ਅੰਤਰ ਰਾਸ਼ਟਰੀ ਸਟੈਂਡਰਡ

ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦੇ ਅੰਤਰ ਰਾਸ਼ਟਰੀ ਸਟੈਂਡਰਡ, ਜਿਨ੍ਹਾਂ ਦਾ ਪਾਲਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ—

ਫਲੋਰਾਈਡ : ਫਲੋਰਾਈਡ ਆਇਨ ਸੰਘਣਤਾ ਦੇ ਲਈ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦਾ ਟੈਸਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਇਸਦੀ ਕਮੀਂ ਮਨੁੱਖ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੈ ਅਤੇ ਕਈ ਬਿਮਾਰੀਆਂ (ਜਿਵੇਂ—ਦੰਦਾਂ ਦੇ ਰੋਗ ਆਦਿ) ਦਾ ਕਾਰਣ ਬਣਦਾ ਹੈ। ਵਧੇਰੇ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਫਲੋਰਾਈਡ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਇਸਦੀ ਸੰਘਣਤਾ 1 ppm ਜਾਂ 1 mg dm⁻³ ਹੋ ਜਾਏ। ਫਲੋਰਾਈਡ ਆਇਨ ਦੰਦਾਂ ਦੇ ਅਨੈਮਲ ਸਤ੍ਹਾ ਵਿੱਚ ਹਾਈਡ਼ਾੱਕਸੀ ਐਪੀਟਾਈਟ [$3(Ca_3(PO_4)_2.Ca(OH)_2$] ਨੂੰ ਫਲੋਰੋਐਪੇਟਾਈਟ [$3(Ca_3(PO_4)_2.CaF_2$] ਵਿੱਚ ਪਰਿਵਰਤਿਕ ਕਰਕੇ ਸਖਤ ਕਰ ਦਿੰਦੇ ਹਨ, ਪਰ ਫਲੋਰਾਈਡ ਆਇਨਾਂ ਦੀ 2 ppm ਤੋਂ ਵੱਧ

408

ਮਾਤਰਾ ਦੰਦਾ ਉੱਤੇ ਭੂਰੇ ਜਮਾਅ (mottling) ਪੈਦਾ ਕਰਦੀ ਹੈ। ਨਾਲ ਹੀ ਫਲੋਰਾਈਡ ਦੀ ਜਿਆਦਾ ਮਾਤਰਾ (10 ppm ਤੋਂ ਵੱਧ) ਹੱਡੀਆਂ ਅਤੇ ਦੰਦਾ ਉੱਤੇ ਹਾਨੀਕਾਰਕ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ, ਜਿਵੇਂ ਰਾਜਸਥਾਨ ਦੇ ਕੁਝ ਭਾਗਾਂ ਵਿੱਚ ਵੇਖਿਆ ਗਿਆ ਹੈ।

ਲੈੱਡ : ਜਦੋਂ ਪਾਣੀ ਦੇ ਪਰਵਿਰਤਨ ਦੇ ਲਈ ਲੈੱਡ ਪਾਈਪਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਪਾਣੀ ਲੈੱਡ ਨਾਲ ਦੂਸ਼ਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਲੈੱਡ ਦੀ ਨਿਰਧਾਰਿਤ ਉੱਪਰੀਸੀਆਂ ਲਗਪਗ 50 ਪੀ.ਪੀ.ਬੀ ਹੈ। ਲੈੱਡ ਗੁਰਦੇ, ਲੀਵਰ ਅਤੇ ਪੁਨਰ-ਉਤਪਾਦਨ ਸਿਸਟਮ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾ ਸਕਦਾ ਹੈ।

ਸਲਫੇਟ : ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਸਲਫੇਟ ਵੱਧ ਤੋਂ ਵੱਧ 7500 ਪੀ.ਪੀ.ਐਮ ਜੁਲਾਬ (laxative) ਦਾ ਕਾਰਣ ਹੋ ਸਕਦਾ ਹੈ। ਸੰਤੁਲਿਤ ਲੈਵਲ ਤੇ ਸਲਫੇਟ ਨੁਕਸਾਨ ਰਹਿਤ ਹੁੰਦਾ ਹੈ।

ਨਾਈਟ੍ਰੇਟ : ਪੀਣ ਦੇ ਪਾਣੀ ਵਿੱਚ ਨਾੀਟ੍ਰੇਟ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੀਮਾ 50 ਪੀ.ਪੀ.ਐਮ. ਹੈ। ਉਸ ਵਿੱਚ ਨਾਈਟ੍ਰੇਟ ਜਿਆਦਾ ਹੋਣ ਨਾਲ ਮੈਖੋਮੋਗਲੋਬੀਕੇਮੀਆ (ਬਲੂ ਬੇਬੀ ਸਿੰਡਰੋਮ) ਰੋਗ ਹੋ ਸਕਦਾ ਹੈ।

ਹੋਰ ਧਾਤਾਂ : ਕੁਝ ਹੋਰ ਆਮ ਧਾਤਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਘਣਤਾ ਸਾਰਣੀ 14.2 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

ਸਾਰਣੀ 14.2 ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਨਿਰਧਾਰਤ ਆਮ ਧਾਤਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਘਣਤਾ

ਧਾਤ	ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਘਣਤਾ (ppm ਜਾਂ mg dm ⁻³)
Fe	0.2
Mn	0.05
Al	0.2
Cu	3.0
Zn	5.0
Cd	0.005

ਸਕਿਰਿਅਤਾ - 2

ਤੁਸੀਂ ਲੋਕਲ ਜਲ-ਸਰੋਤਾਂ ਦਾ ਦੌਰਾ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਨਦੀ, ਝੀਲ, ਤਲਾਅ ਆਦਿ ਦਾ ਪਾਣੀ ਅਪ੍ਰਦੂਸ਼ਿਤ/ ਅੰਸ਼ਿਕ ਪ੍ਰਦੂਸ਼ਿਤ/ਸਧਾਰਣ ਪ੍ਰਦੂਸ਼ਿਤ ਜਾਂ ਬੁਰੀ ਤਰ੍ਹਾਂ ਪ੍ਰਦੂਸ਼ਿਤ ਹੈ। ਪਾਣੀ ਨੂੰ ਵੇਖਕੇ ਜਾਂ ਉਸ ਦੀ pH ਪਰਖ ਕੇ ਇਸ ਨੂੰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਨੇੜਲੇ ਸ਼ਹਿਰੀ ਜਾਂ ਉਦਯੋਗਿਕ ਸਥਾਨ, ਜਿੱਥੋਂ ਪ੍ਰਦੂਸ਼ਣ ਪੈਦਾ ਹੁੰਦਾ ਹੈ, ਤੋਂ ਉਸ ਦੇ ਨਾਮ ਦਾ ਪ੍ਰਲੇਖ ਕਰੋ। ਇਸ ਦੀ ਸੂਚਨਾ ਸਰਕਾਰ ਦੁਆਰਾ ਪ੍ਰਦੂਸ਼ਣ ਮਾਪਨ ਦੇ ਲਈ ਬਣਾਏ ਪ੍ਰਦੂਸ਼ਣ ਨਿਯੰਤਰਣ ਬੋਰਡ ਦਫਤਰ ਨੂੰ ਦਿਓ ਅਤੇ ਉਚਿਤ ਕਾਰਵਾਈ ਨਿਸ਼ਚਿਤ ਕਰੋ। ਤੁਸੀਂ ਇਸ ਨੂੰ ਮੀਡੀਆ ਨੂੰ ਵੀ ਦੱਸ ਸਕਦੇ ਹੋ। ਨਦੀ, ਤਲਾਅ, ਨਾਲੇ, ਝੀਲ ਵਿੱਚ ਘਰੇਲੂ ਜਾਂ ਉਦਯੋਗਿਕ ਵੇਸਟ ਨੂੰ ਸਿੱਧਾ ਨਾ ਸੁੱਟੋ। ਬਗੀਚਿਆਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਖਾਦਾਂ ਦੀ ਥਾਂ ਤੇ ਕੰਪੋਸਟ ਦੀ ਵਰਤੋਂ ਕਰੋ। ਡੀ.ਡੀ.ਟੀ., ਮੈਲਾਥੀਓਨ ਆਦਿ ਕੀਟਨਾਸ਼ੀਆਂ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪਰਹੇਜ ਕਰੋ ਅਤੇ ਨਿੰਮ ਦੇ ਸੁੱਕੇ ਪੱਤਿਆਂ ਦੀ ਵਰਤੋਂ ਕੀਟਨਾਸ਼ੀ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰੋ। ਆਪਣੀ ਘਰੇਲੂ ਪਾਣੀ ਟੈਂਕੀ ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ (KMnO₄) ਦੇ ਕੁਝ ਕ੍ਰਿਸਟਲ ਜਾਂ ਬਲੀਚਿੰਗ ਪਾਉਡਰ ਦੀ ਥੋੜੀ ਮਾਤਰਾ ਪਾਓ।

14.4 ਮਿੱਟੀ ਪ੍ਰਦੂਸ਼ਣ

ਭਾਰਤ ਇੱਕ ਖੇਤੀ-ਅਧਾਰਿਤ ਅਰਥਵਿਵਸਥਾ ਵਾਲਾ ਦੇਸ਼ ਹੈ, ਜਿੱਥੇ ਖੇਤੀ, ਮੱਛੀ ਪਾਲਨ ਅਤੇ ਪਸੂ ਪਾਲਨ ਦੇ ਵਿਕਾਸ ਨੂੰ ਪਹਿਲ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਅਕਾਲ ਦੇ ਸਮੇਂ ਵਾਧੂ ਪੈਦਾਵਾਰ ਦਾ ਭੰਡਾਰਣ ਸਰਕਾਰੀ ਅਤੇ ਗੈਰ ਸਰਕਾਰੀ ਸੰਸਥਾਵਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਭੰਡਾਰਣ ਦੇ ਸਮੇਂ ਦੇ ਦੌਰਾਣ ਹੋਣ ਵਾਲੀ ਅਨਾਜ ਦੀ ਹਾਨੀ ਉੱਤੇ ਵਿਸੇਸ਼ ਧਿਆਨ ਦੇਣਾ ਅਤਿ ਜਰੂਰੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਕੀਟ, ਚੂਹੇ, ਨਦੀਨਾਂ ਅਤੇ ਫਸਲਾਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਦੇ ਦੁਆਰਾ ਫਸਲਾਂ ਅਤੇ ਅੰਨ ਪਦਾਰਥਾਂ ਨੂੰ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਨੂੰ ਵੇਖਿਆ ਹੈ ? ਇਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਕਿਵੇਂ ਬਚਾਅ ਸਕਦੇ ਹਾਂ ? ਫਸਲਾਂ ਦੇ ਬਚਾਅ ਦੇ ਲਈ ਵਰਤੋਂ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਕੁਝ ਕੀਟਨਾਸ਼ੀ ਅਤੇ ਨਦੀਨ ਨਾਸ਼ੀਆਂ ਤੋਂ ਤੁਸੀਂ ਜਾਣੂ ਹੋ। ਇਹ ਕੀਟਨਾਸ਼ਕ, ਨਦੀਨ ਨਾਸ਼ਕ ਮਿੱਟੀ ਦੇ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਸੋਚ ਸਮਝ ਕੇ ਵਰਤੋਂ ਜਰੂਰੀ ਹੈ।

14.4.1 ਕੀਟਨਾਸ਼ਕ

ਦੂਜੇ ਵਿਸ਼ਵ ਯੁੱਧ ਤੋਂ ਪਹਿਲਾਂ ਕੁਦਰਤੀ ਰੂਪ ਵਿੱਚ ਮਿਲਣ ਵਾਲੀਆਂ ਅਨੇਕਾਂ ਰਸਾਇਣਾਂ, ਜਿਵੇਂ ਨਿਕੋਟੀਨ (ਫਸਲ ਦੇ ਨਾਲ ਖੇਤ ਵਿੱਚ ਤੰਬਾਕੂ ਦੇ ਬੂਟੇ ਉਗਾਕੇ) ਦੀ ਵਰਤੋਂ ਅਨੇਕਾਂ ਫਸਲਾਂ ਦੇ ਲਈ ਕੀਟ-ਨਿਯੰਤਰਕ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਸੀ।

ਦੂਜੇ ਵਿਸ਼ਵਯੁੱਧ ਦੇ ਸਮੇਂ ਮਲੇਰੀਆ ਅਤੇ ਹੋਰ ਕੀਟ-ਜਨਿਤ ਰੋਗਾਂ ਦੇ ਨਿਯੰਤਰਣ ਦੇ ਲਈ ਡੀ.ਡੀ.ਟੀ ਬੜਾ ਲਾਭਦਾਇਕ ਯੋਗਿਕ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਇਸ ਲਈ ਯੁੱਧ ਦੇ ਬਾਅਦ ਡੀ.ਡੀ.ਟੀ. ਦੀ ਵਰਤੋਂ ਖੇਤੀ-ਬਾੜੀ ਵਿੱਚ ਕੀਟ, ਰੋਡੈਂਟ, ਨਦੀਨ ਅਤੇ ਫਸਲਾਂ ਦੇ ਅਨੇਕਾਂ ਰੋਗਾਂ ਦੇ ਨਿਯੰਤਰਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਣ ਲੱਗਾ। ਹਾਲਾਂਕਿ ਇਸ ਦੇ ਹਾਨੀਕਾਰਕ ਪ੍ਰਭਾਵਾਂ ਦੇ ਕਾਰਣ ਇਸਦੀ ਵਰਤੋਂ ਭਾਰਤ ਵਿੱਚ ਬੰਦ ਹੋ ਗਈ ਹੈ।

ਕੀਟਨਾਸ਼ਕ ਮੂਲ ਰੂਪ ਵਿੱਚ ਸੰਸਲੇਸ਼ਿਤ ਜਹਿਰੀਲੇ ਰਸਾਇਣ ਹਨ, ਜੋ ਵਾਤਾਵਰਣ ਹਾਨੀਕਾਰਕ ਵੀ ਹਨ।ਸਮਾਨ ਕੀਟਨਾਸ਼ਕਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਕੀਟਾਂ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕਾ ਦੇ ਪ੍ਰਤੀ ਪ੍ਤੀਰੋਧ

ਸਮਰਥਾ ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ, ਜੋ ਕੀਟਨਾਸ਼ਕ ਨੂੰ ਪ੍ਰਭਾਵਹੀਨ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਲਈ ਡੀ.ਡੀ.ਟੀ. ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਰੋਧਤਾ ਵਿੱਚ ਵਾਧਾ ਹੋਣ ਲੱਗਿਆ ਅਤੇ ਜੀਵ-ਜਹਿਰ (ਜਿਵੇਂ— ਐਲਡ੍ਰੀਨ ਅਤੇ ਡਾਈਐਲਡ੍ਰੀਨ) ਕੀਟਨਾਸ਼ਕ ਉਦਯੋਗ ਦੁਆਰਾ ਬਜਾਰ ਵਿੱਚ ਲਿਆਂਦੇ ਗਏ। ਵਧੇਰੇ ਕਾਰਬਨਿਕ ਜੀਵ-ਜਹਿਰ ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਅਤੇ ਨਾੱਨ ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਉੱਚੇ ਪ੍ਰਭਾਵ ਵਾਲੇ ਜੀਵ-ਜਹਿਰ ਭੋਜਨ ਚੇਨ ਦੁਆਰਾ ਨਿਮਨ ਪੋਸ਼ੀ ਤੋਂ ਉੱਚ ਪੋਸ਼ੀ ਲੈਵਲ ਤੱਕ ਸਥਾਨ ਅੰਤਰਿਤ ਹੁੰਦੇ ਹਨ (ਚਿੱਤਰ 14.3)। ਸਮੇਂ ਦੇ ਨਾਲ-ਨਾਲ ਉੱਚੇ ਪ੍ਰਾਣੀਆਂ ਵਿੱਚ ਜੀਵ-ਜਹਿਰਾਂ ਦੀ ਸੰਘਣਤਾ ਇਸ ਲੈਵਲ ਤੱਕ ਵਧ ਜਾਂਦੀ ਹੈ ਕਿ ਆਹਾਰ ਪਾਚਨ ਅਤੇ ਸਰੀਰ ਕਿਰਿਆ ਅਵਸਥਾ ਦਾ ਕਾਰਣ ਬਣ ਜਾਂਦੀ ਹੈ।

ਚਿੱਤਰ 14.3 ਹਰ ਇੱਕ ਪੋਸ਼ੀ ਸਤਰ ਤੇ ਪ੍ਰਦੂਸਕ ਦਸ ਗੁਣਾ ਸੰਘਣਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

ਉੱਚ ਸਥਿਰਤਾ ਵਾਲੇ ਕਲੋਰੀਨੀਕ੍ਰਿਤ ਕਾਰਬਨਿਕ ਜੀਵ-ਜਹਿਰ ਦੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਘੱਟ ਸਥਿਰ ਅਤੇ ਜਿਆਦਾ ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਉਪਜਾਂ, ਜਿਵੇਂ—ਆੱਰਗੈਨੋਫਾੱਸਫੇਟਸ ਅਤੇ ਕਾਰਬੋਮੇਟਸ ਨੂੰ ਬਜਾਰ ਵਿੱਚ ਲਿਆਂਦਾ ਗਿਆ ਹੈ, ਪਰੰਤੂ ਇਹ ਰਸਾਇਣਾਂ ਗੰਭੀਰ ਨਾੜੀ ਜੀਵ-ਜਹਿਰ ਹਨ। ਇਸ ਲਈ ਇਹ ਮਨੁੱਖ ਦੇ ਲਈ ਵਧੇਰੇ ਹਾਨੀਕਾਰਕ ਹੈ। ਪਰਿਣਾਮ ਸਵਰੂਪ ਅਜਿਹੀਆਂ ਘਟਨਾਵਾਂ ਦਰਜ ਹੋਈਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿਚ ਖੇਤਾਂ ਵਿੱਚ ਕੰਮ ਕਰਨ ਵਾਲੇ ਮਜਦੂਰਾਂ ਦੀ ਮੌਤ ਦਾ ਕਾਰਣ ਕੁਝ ਕੀਟਨਾਸ਼ਕ ਰਹੇ ਹਨ। ਕੀਟ ਵੀ ਇਨ੍ਹਾਂ ਕੀਟਨਾਸ਼ਕਾਂ ਦੇ ਪ੍ਰਤੀ ਪ੍ਰਤੀਰੋਧੀ ਹੋ ਚੁਕੇ ਹਨ। ਕੀਟ ਨਾਸ਼ਕਾ ਓਦਯੋਗ ਨਵੇਂ ਕੀਟਨਾਸ਼ਕਾਂ ਨੂੰ ਵਿਕਸਿਤ ਕਰਨ ਵਿੱਚ ਲਗਿਆ ਹੋਇਆ ਹੈ, ਪਰੰਤੂ ਸਾਨੂੰ ਸੋਚਨਾ ਪਵੇਗਾ ਕਿ ਕੀਟਾਂ ਨਾਲ ਨਿਬੜਨ ਦਾ ਕੀ ਇਹੀ ਇੱਕ ਸਾਧਨ ਰਹਿ ਗਿਆ ਹੈ।

ਇਨ੍ਹਾਂ ਦਿਨੀਂ ਕੀਟਨਾਸ਼ੀ ਉਦਯੋਗ ਨੇ ਆਪਣਾ ਧਿਆਨ ਨਦੀਨ ਨਾਸ਼ਕਾਂ (ਜਿਵੇਂ-ਸੋਡੀਅਮ ਕਲੋਰੇਟ (NaClO₂), ਸੋਡੀਅਮ ਅਰਸੀਨੇਟ (Na₃AsO₃) ਆਦਿ ਦੇ ਵੱਲ ਮੋੜਿਆ ਹੈ। ਪਿਛਲੀ ਸਦੀ ਦੇ ਅੱਧ ਤੋਂ ਪਹਿਲਾਂ ਯੰਤਰਿਕ ਤੋਂ ਰਸਾਇਣਿਕ ਨਦੀਨ ਕੰਟਰੋਲ ਦੇ ਵੱਲ ਕੀਤੇ ਗਏ ਵਿਸਥਾਪਨ ਦੇ ਕਾਰਣ ਉਦਯੋਗ ਨੂੰ ਵੱਡਾ ਆਰਥਕ ਬਜਾਰ ਉਪਲਬਧ ਹੋਇਆ ਹੈ, ਪਰੰਤੂ ਸਾਨੂੰ ਇਹ ਧਿਆਨ ਰਖਨਾਂ ਪਵੇਗਾ ਕਿ ਇਹ ਵਾਤਾਵਰਣ ਦੇ ਲਈ ਠੀਕ ਨਹੀਂ ਹੈ।

ਵਧੇਰੇ ਨਦੀਨ ਨਾਸ਼ਕ ਥਨਧਾਰੀਆਂ ਦੇ ਲਈ ਜਹਿਰੀਲੇ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਇਹ ਕਾਰਬਨ ਕਲੋਰਾਈਡ ਦੇ ਸਮਾਨ ਸਥਾਈ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਇਹ ਰਸਾਇਣ ਕੁਝ ਹੀ ਮਹੀਨਿਆਂ ਵਿੱਚ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਕਾਰਬ-ਕਲੋਰਾਈਡ ਦੇ ਵਾਂਗ ਇਹ ਵੀ ਪੋਸ਼ੀ ਸਤਰ ਉੱਤੇ ਸੰਘਣਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਮਨੁੱਖ ਵਿੱਚ ਜਮਾਂਦਰੂ ਕਮੀਆਂ ਦਾ ਕਾਰਣ ਕੁਝ ਨਦੀਨ ਨਾਸ਼ਕ ਹਨ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਮੱਕੀ ਦੇ ਖੇਤ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਨਦੀਨ ਨਾਸ਼ਕ ਦਾ ਛਿੜਕਾਅ ਕੀਤਾ ਹੋਵੇ, ਕੀਟਾਂ ਦੇ ਹਮਲੇ ਅਤੇ ਪੌਦਾ ਰੋਗਾਂ ਦੇ ਪ੍ਰਤੀ ਉਨ੍ਹਾਂ ਖੇਤਾਂ ਵਿੱਚ ਵਧੇਰੇ ਗ੍ਰਹਿਣ ਕਰਨ ਵਾਲੇ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿਚੋਂ ਨਦੀਨ ਹੱਥਾਂ ਨਾਲ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ।

ਕੀਟਨਾਸ਼ਕ ਅਤੇ ਨਦੀਨ ਨਾਸ਼ਕ ਵੱਡੇ ਰੂਪ ਵਿੱਚ ਫੈਲੇ ਰਸਾਇਣਿਕ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਛੋਟੇ ਜਿਹੇ ਹਿੱਸੇ ਨੂੰ ਪ੍ਰਗਟ ਕਰਦੇ ਹਨ। ਭਿੰਨ-ਭਿੰਨ ਵਸਤੂਆਂ ਦੇ ਉਤਪਾਦਨ ਦੇ ਉਦਯੋਗਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਕਰਮਾਂ ਵਿੱਚ ਲਗਾਤਾਰ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਅਨੇਕਾ ਯੋਗਿਕ ਅਖੀਰ ਵਿੱਚ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਮੁਕਤ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ।

14.5 ਉਦਯੋਗਿਕ ਵੇਸਟ

ਉਦਯੋਗਿਕ ਠੋਸ ਵੇਸਟ (Solid wastes) ਨੂੰ ਜੈਵ ਅਨਅਪਘਟਨੀ ਠੋਸਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤੀ ਜਾ ਸਕਦਾ ਹੈ। ਜੈਵ ਅਪਘਟਨੀ ਵਿਅਰਥ ਕਪੜੇ ਦੀਆਂ ਮਿੱਲਾਂ, ਭੋਜਨ-ਸੰਸਾਧਨ ਇਕਾਈਆਂ, ਕਾਗਜ਼ ਮਿੱਲਾ ਅਤੇ ਸੂਤ ਮਿੱਲਾ ਦੁਆਰਾ ਪੈਦਾ ਹੁੰਦੇ ਹਨ।

ਤਾਪ ਬਿਜਲੀ ਯੰਤਰ (Thermal power plant), ਜੋ ਉੱਡਣ ਸੁਆਹ (fly ash) ਪੈਦਾ ਕਰਦੇ ਹਨ ਅਤੇ ਲੋਹਾ ਅਤੇ ਸਟੀਲ ਪਲਾਂਟ, ਜੋ ਬਲਾਸਟ ਭੱਠੀ ਧਾਤ ਮੈਲ ਅਤੇ ਸਟੀਲ ਪਿਘਲਣ ਧਾਤ ਮੈਲ ਪੈਦਾ ਕਰਦੇ ਹਨ, ਦੇ ਦੁਆਰਾ ਨਾਨ-ਬਾਇਓ ਡੀਗਰੇਡੇਬਲ ਵੇਸਟ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਐਲੂਮੀਨਿਅਮ, ਜਿੰਕ ਅਤੇ ਕਾੱਪਰ ਦੇ ਉਤਪਾਦਨ ਜੋ ਚਿੱਕੜ ਅਤੇ ਪੂਛਲ (mud and tailings) ਪੈਦਾ ਕਰਦੇ ਹਨ। ਖਾਦ ਉਦਯੋਗ ਜਿਪਸਮ ਦਾ ਉਤਾਪਦਨ ਕਰਦੇ ਹਨ। ਧਾਤ, ਰਸਾਇਣ, ਦਵਾਈਆਂ, ਫਾਰਮੇਸੀ, ਰੰਗ, ਨਦੀਨ ਨਾਸ਼ਕ, ਰਬੜ ਆਦਿ ਨਾਲ ਸਬੰਧਤ ਉਦਯੋਗ ਜਲਨਸ਼ੀਲ, ਮਿਸ਼ਰਤ ਵਿਸਫੋਟਕ, ਜਾਂ ਉੱਚ ਕਿਰਿਆਸ਼ੀਲ ਪਦਾਰਥਾਂ ਦਾ ਉਤਪਾਦਨ ਕਰਦੇ ਹਨ।

ਜੇ ਬਾਇਓ ਨਾੱਨ-ਬਾਇਓਗਰੇਡੇਬਲ ਉਦਯੋਗਿਕ ਠੋਸ ਵੇਸਟ ਦਾ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਨਿਸਤਾਰਣ ਨਾਂ ਕੀਤਾ ਜਾਏ, ਤਾਂ ਵਾਤਾਵਰਣ ਦੇ ਲਈ ਵੱਡਾ ਖਤਰਾ ਹੋ ਸਕਦਾ ਹੈ। ਖੋਜ ਪਰਿਵਰਤਨਾ ਦੇ ਫਲਸਰੂਪ ਵੇਸਟ ਪਦਾਰਥਾਂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਲਾਭ ਖੋਜ ਲੈ ਗਏ ਹਨ। ਅੱਜਕਲ ਸਟੀਲ ਉਦਯੋਗ ਤੋਂ ਪੈਦਾ ਫਲਾਈ ਐਸ ਅਤੇ ਧਾਤ ਮੈਲ ਦੀ ਵਰਤੋਂ ਸੀਮੈਂਟ ਉਦਯੋਗ ਵਿੱਚ

ਹੋਣ ਲੱਗ ਪਿਆ ਹੈ। ਭਾਰੀ ਮਾਤਰਾ ਵਿੱਚ ਜਹਿਰੀਲੇ ਵੇਸਟ ਨੂੰ ਸਧਾਰਣ ਨਿਯੰਤਰਿਤ ਭਸਮੀਕਰਣ ਦੁਆਰਾ ਨਸ਼ਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਦਕਿ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਪੈਦਾ ਵੇਸਟ ਪਦਾਰਥਾ ਨੂੰ ਖੁਲ੍ਹੇ ਵਿੱਚ ਜਲਾ ਕੇ ਨਸ਼ਟ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਪਰੰਤੂ ਠੋਸ ਵੇਸ ਦਾ ਪ੍ਰਬੰਧਨ ਜੇ ਸਹੀ ਢੰਗ ਨਾਲ ਨਾ ਕੀਤਾ ਜਾਏ ਤਾਂ ਵੀ ਇਹ ਵਾਤਾਵਰਣ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

14.6 ਵਾਤਾਵਰਣ-ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਦੇ ਉਪਾਅ

ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ, ਪਾਣੀ ਪ੍ਰਦੂਸ਼ਣ, ਮਿੱਟੀ ਪ੍ਰਦੂਸ਼ਣ ਅਤੇ ਉਦਯੋਗਿਕ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਅਧਿਐਨ ਤੋਂ ਬਾਅਦ ਹੁਣ ਤੁਸੀਂ ਵਾਤਾਵਰਣ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਨਿਯੰਤਰਣ ਦੀ ਜਰੂਰਤ ਮਹਿਸੂਸ ਕਰਦੇ ਹੋਵੇਗੇ। ਤੁਸੀਂ ਆਪਣੇ ਨੇੜੇ ਦੇ ਵਾਤਾਵਰਣ ਨੂੰ ਕਿਵੇਂ ਬਚਾ ਸਕਦੇ ਹੋ ? ਤੁਸੀਂ ਆਪਣੇ ਆਂਢ-ਗੁਆਂਢ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਨਿਯੰਤਰਣ ਦੇ ਲਈ ਕੀ-ਕੀ ਸਟੈੱਪ ਚੁੱਕ ਸਕਦੇ ਹੋ ਜਾਂ ਕਿਰਿਆਵਾਂ ਕਰ ਸਕਦੇ ਹੋ, ਇਸ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ। ਇੱਥੇ ਕੂੜਾ-ਕਰਕਟ (waste) ਪ੍ਰਬੰਧਨ ਦੇ ਉਪਾਅ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਇੱਕ ਵਿਚਾਰ ਰੱਖਿਆ ਜਾ ਰਿਹਾ ਹੈ।

14.6.1. ਵੇਸਟ ਦਾ ਪ੍ਰਬੰਧਨ

ਠੋਸ ਵੇਸਟ ਸਿਰਫ ਉਹੀ ਨਹੀਂ ਜੋ ਤੁਸੀਂ ਆਪਣੇ ਕੂੜਾਦਾਨ ਵਿੱਚ ਵੇਖਦੇ ਹੋ। ਬੇਕਾਰ ਘਰੇਲੂ ਵਸਤਾਂ ਦੇ ਇਲਾਵਾ ਵੀ ਅਨੇਕ

ਕੀ ਤੁਸੀਂ ਵੇਸਟ ਦੇ ਮੁੜ ਚਕਰਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਜਾਣਦੇ ਹੋ

- ਪਲਾਸਟਿਕ ਵਿਅਰਥ ਤੋਂ ਪ੍ਰਾਪਤ ਬਾਲਣ ਦੀ ਉੱਚ ਔਕਟੇਨ ਦਰ ਹੁੰਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਲੈੱਡ ਨਹੀਂ ਹੁੰਦਾ ਅਤੇ ਇਸ ਨੂੰ ਹਰਾ ਬਾਲਣ (green fuel) ਕਹਿੰਦੇ ਹਨ।
- ਰਸਾਇਣ ਅਤੇ ਕਪੜਾ ਉਦਯੋਗ ਵਿੱਚ ਕੀਤੇ ਗਏ ਆਧੁਨਿਕ ਵਿਕਾਸ ਦੇ ਕਾਰਣ ਹੁਣ ਮੁੜ ਚਕਰਿਤ ਪਲਾਸਟਿਕ ਤੋਂ ਕੱਪੜੇ ਬਣਾਏ ਜਾਣਗੇ। ਇਹ ਜਲਦੀ ਹੀ ਵਿਸ਼ਵ ਦੇ ਕਪੜਾ ਬਜਾਰ ਵਿੱਚ ਉਪਲਬਧ ਹੋਣਗੇ।
- ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਸ਼ਹਿਰਾਂ ਅਤੇ ਕਸਬਿਆਂ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਭਾਰੀ ਕਟੌਤੀ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ।ਹਰ ਪਾਸੇ ਸੜਦੇ ਹੋਏ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਦੇ ਢੇਰ ਵੀ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ। ਇੱਕ ਚੰਗੀ ਖਬਰ ਇਹ ਹੈ ਕਿ ਅਸੀਂ ਦੋਵਾਂ ਸੱਸਿਆਵਾਂ ਤੋਂ ਇੱਕਠੇ ਛੁਟਾਕਾਰ ਪਾ ਸਕਦੇ ਹਾਂ। ਅੱਜਕਲ ਅਜਿਹੀ ਤਕਨੀਕ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਹੈ, ਜਿਸ ਵਿੱਚ ਕੂੜੇ ਕਰਕਟ ਤੋਂ ਬਿਜਲੀ ਦਾ ਉਤਪਾਦਨ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਪ੍ਯੋਗਿਕ ਯੰਤਰ ਲਾਇਆ ਗਿਆ ਹੈ, ਜਿਸ ਵਿੱਚ ਕੂੜਾ ਕਰਕਟ ਤੋਂ ਲੋਹਾ ਧਾਤ ਨੂੰ ਵੱਖ ਕਰਕੇ ਪਲਾਸਟਿਕ, ਕੱਚ, ਕਾਗਜ ਆਦਿ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਬੈਕਟੀਰੀਆ ਦੁਆਰਾ ਇਸਦਾ ਸੰਵਰਧਨ (culture) ਕਰਕੇ ਮੀਥੇਨ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਆਮਤੌਰ ਤੇ 'ਬਾਇਓਗੈਸ' ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਬਾਇਓਗੈਸ ਦੀ ਵਰਤੋਂ ਬਿਜਲੀ ਦੇ ਉਤਪਾਦਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਬਾਕੀ ਬਚਿਆ ਭਾਗ ਖਾਦ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਵਿਅਰਥ ਪਦਾਰਥ ਹਨ, ਜਿਵੇਂ-ਦਵਾਈਆਂ, ਖੇਤੀਬਾੜੀ, ਉਦਯੋਗਿਕ ਅਤੇ ਖਣਿਜ ਵੇਸਟ। ਵਾਤਾਵਰਣ ਦੇ ਅਧੋਗਤੀ ਦਾ ਇੱਕ ਮੁੱਖ ਕਾਰਣ ਵਿਅਰਥ ਪਦਾਰਥਾਂ (waste) ਦਾ ਕੁੱਚਜੇ ਢੰਗ ਨਾਲ ਕੀਤਾ ਗਿਆ ਨਿਸਤਾਰਣ ਹੈ। ਇਸ ਲਈ ਵੇਸਟ ਦਾ ਪ੍ਰਬੰਧਨ ਪਰਮ ਜਰੂਰੀ ਹੈ।

ਇੱਕਤਰੀਕਰਣ ਅਤੇ ਨਿਸਤਾਰਣ

ਘਰੇਲੂ ਵਿਅਰਥ ਨੂੰ ਛੋਟੇ ਢੋਲਾਂ ਵਿੱਚ ਇਕੱਤਰ ਕਰਦੇ ਹਨ, ਜਿਸਨੂੰ ਕਮਿਊਨਿਟੀ ਕੂੜਾ-ਢੋਲਾਂ ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਕਮਿਊਨਿਟੀ ਢੋਲਾਂ ਵਿੱਚੋਂ ਇਕੱਠਾ ਕਰਕੇ ਨਿਸਤਾਰਣ ਸਥਲ (dumping place) ਤੱਕ ਪਹੁੰਚਾਇਆ ਜਾਂਦਾ ਹੈ। ਨਿਸਤਾਰਣ-ਸਥਲ ਉੱਤੇ ਕੂੜੇ ਨੂੰ ਇਕੱਠਾ ਕਰਕੇ ਇਸ ਨੂੰ ਅੱਨ-ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਅਤੇ ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਵਿੱਚ ਛਾਂਟ ਕੇ ਵੱਖ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਜੈਵ ਨਾੱਨ ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਪਦਾਰਥਾਂ, ਜਿਵੇਂ-ਪਲਾਸਟਿਕ, ਕੱਚ, ਧਾਤ ਆਦਿ ਨੂੰ ਮੁੜ ਚਕ੍ਰਣ (Recycling) ਦੇ ਲਈ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਵੇਸਟ ਨੂੰ ਖੁਲ੍ਹੇ ਮੈਦਾਨਾਂ ਵਿੱਚ ਮਿੱਟੀ ਵਿੱਚ ਦੱਬ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਜੈਵ ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਵੇਸਟ ਖਾਦ (compost) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

ਜੇ ਵੇਸਟ ਨੂੰ ਕੂੜਾ-ਢੋਲਾਂ ਵਿੱਚ ਇਕੱਠਾ ਨਾ ਕਰੀਏ, ਤਾਂ ਉਹ ਨਾਲੀਆਂ ਵਿੱਚ ਚਲਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਿਚੋਂ ਕੁਝ ਪਸ਼ੂਆਂ ਦੁਆਰਾ ਖਾ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਜੈਵ ਨਾੱਨ-ਬਾਇਓਡੀਗਰੇਡੇਬਲ ਵੇਸਟ (ਜਿਵੇਂ—ਪਾੱਲੀਥੀਨ ਦੇ ਲਿਫਾਫੇ, ਧਾਤ ਦੀਆਂ ਪੱਤਰੀਆਂ ਆਦਿ) ਨਾਲੀਆਂ ਨੂੰ ਬੰਦ ਕਰ ਦਿੰਦੀਆਂ ਹਨ ਅਤੇ ਮੁਸ਼ਕਲਾਂ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ। ਪਾੱਲੀਥੀਨ ਦੇ ਲਿਫਾਫੇ ਜੇ ਪਸ਼ੂਆਂ ਦੁਆਰਾ ਨਿਗਲ ਲਏ ਜਾਣ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਮੌਤ ਦਾ ਕਾਰਣ ਵੀ ਬਣ ਸਕਦੇ ਹਨ।

ਇਸ ਲਈ ਸਧਾਰਣ ਵਿਹਾਰ ਵਿੱਚ ਸਾਰਾ ਘਰੇਲੂ ਵਿਅਰਥ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਇਕੱਠਾ ਕਰਕੇ ਇਸ ਦਾ ਨਿਸਤਾਰਣ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਘਟੀਆ ਪ੍ਬੰਧਨ ਨਾਲ ਸਿਹਤ ਸਬੰਧੀ ਅਨੇਕਾਂ ਸੱਮਸਿਆਵਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਸ ਨਾਲ ਭੂਮੀ ਦੇ ਪਾਣੀ ਦੇ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣ ਮਹਾਂਮਾਰੀਆਂ ਫੈਲਦੀਆਂ ਹਨ। ਇਹ ਖਾਸ ਕਰਕੇ ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੈ, ਜੋ ਇਸ ਕੂੜਾ ਕਰਕਟ ਦੇ ਸਿੱਧੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੇ ਹਨ, ਜਿਵੇਂ— ਪੁਰਾਣਾ ਸਮਾਨ ਅਤੇ ਕਬਾੜ ਇਕੱਠਾ ਕਰਨ ਵਾਲੇ ਅਤੇ ਉਹ ਕਰਮਚਾਰੀ, ਜੋ ਕੂੜੇ ਦੇ ਨਿਸਤਾਰ ਦੇ ਲਈ ਕੰਮ ਵਿੱਚ ਲੱਗੇ ਰਹਿੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਉਹ ਵਿਅਕਤੀ ਹਨ, ਜੋ ਕੂੜੇ ਨੂੰ ਦਸਤਾਨੇ ਜਾਂ ਜਲਰੋਧੀ ਜੁੱਤੀਆਂ ਨੂੰ ਪਹਿਣਨ ਤੋਂ ਬਿਨਾਂ ਸਪਰਸ਼ ਕਰਦੇ ਹਨ ਅਤੇ ਗੈਸ ਮਾਸਕ ਦੀ ਵੀ ਵਰਤੋਂ ਨਹੀਂ ਕਰਦੇ। ਤੁਸੀਂ ਉਨ੍ਹਾਂ ਦੇ ਲਈ ਕੀ ਕਰ ਸਕਦੇ ਹੋ?

14.7 ਹਰੀ ਰਸਾਇਣ (Green Chemistry)

ਇਹ ਜਾਣਿਆ ਤੱਥ ਹੈ ਕਿ ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ 20ਵੀਂ ਸਦੀ ਦੇ ਅੰਤ ਤੱਕ ਖਾਦਾਂ ਅਤੇ ਕੀਟਨਾਸ਼ਕਾਂ ਦੀ ਵਰਤੋਂ ਅਤੇ ਖੇਤੀ ਦੇ

ਉਨੱਤ ਤਰੀਕਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਚੰਗੀ ਕਿਸਮ ਦੇ ਬੀਜਾਂ, ਸਿਚਾਈ ਆਦਿ ਨਾਲ ਅਨਾਜ ਦੇ ਖੇਤਰ ਵਿੱਚ ਆਤਮਨਿਰਭਰਤਾ ਪ੍ਰਾਪਤ ਕਰ ਲਈ ਹੈ, ਪਰੰਤੂ ਮਿੱਟੀ ਦੇ ਵਧੇਰੇ ਸ਼ੋਸ਼ਣ ਅਤੇ ਖਾਦਾਂ ਅਤੇ ਕੀਟਨਾਸ਼ਕਾ ਦੀ ਅੰਧਾ ਧੁੰਧ ਵਰਤੋਂ ਕਰਕੇ ਮਿੱਟੀ, ਪਾਣੀ ਅਤੇ ਹਵਾ ਦੀ ਗੁਣਵੱਤਾ ਘਟੀ ਹੈ।

ਇਸ ਸੱਮਸਿਆ ਦਾ ਹੱਲ ਵਿਕਾਸ ਦੇ ਸ਼ੁਰੂ ਹੋ ਚੁਕੇ ਪ੍ਰਕਰਮ ਨੂੰ ਰੋਕਣਾ ਨਹੀਂ ਬਲਕਿ ਉਨ੍ਹਾਂ ਤਰੀਕਿਆਂ ਨੂੰ ਖੋਜਨਾ ਹੈ, ਜੋ ਵਾਤਾਵਰਣ ਨੂੰ ਵਿਗੜਨ ਤੋਂ ਰੋਕ ਸਕਣ। ਰਸਾਇਣ ਵਿਗਿਆਨ ਅਤੇ ਹੋਰ ਵਿਗਿਆਨਾਂ ਦੇ ਉਨ੍ਹਾਂ ਸਿਧਾਂਤਾ ਦਾ ਗਿਆਨ ਜਿਸ ਨਾਲ ਵਾਤਾਵਰਣ ਦੇ ਬੁਰੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕੇ, 'ਹਰੀ ਰਸਾਇਣ' ਅਖਵਾਉਂਦਾ ਹੈ। ਹਰੀ ਰਸਾਇਣ ਉਤਪਾਦਨ ਦਾ ਉਹ ਪੁਕਰਮ ਹੈ, ਜੋ ਵਾਤਾਵਰਣ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਪ੍ਰਦੂਸ਼ਣ ਜਾਂ ਖਰਾਬੀ ਕਰੇ। ਇੱਕ ਪ੍ਰਕਰਮ ਵਿੱਚ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਸਹਿ ਉਪਜਾਂ ਨੂੰ ਜੇ ਲਾਹੇਵੰਦ ਤਰੀਕੇ ਨਾਲ ਨਾ ਵਰਤਿਆ ਜਾਏ ਤਾਂ ਉਹ ਵਾਤਾਵਰਣ-ਪ੍ਰਦੂਸ਼ਣ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਪ੍ਰਕਰਮ ਨਾ ਸਿਰਫ ਵਾਤਾਵਰਣ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਹਾਨੀਕਾਰਕ ਹਨ, ਬਲਕਿ ਮਹਿੰਗੇ ਵੀ ਹਨ। ਅਜਿਹੇ ਪਦਾਰਥਾਂ ਦਾ ਬਣਨਾ ਅਤੇ ਵਿਸਰਜਨ ਦੋਵੇਂ ਹੀ ਵਿੱਤੀ ਰੂਪ ਵਿੱਚ ਖਰਾਬ ਹਨ। ਵਿਕਾਸ ਕਾਰਜਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਮੌਜੂਦਾ ਗਿਆਨ ਰਸਾਇਣਿਕ ਹਾਨੀ ਨੂੰ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਉਣਾ ਹੀ ਹਰੀ ਰਸਾਇਣ ਦਾ ਅਧਾਰ ਹੈ। ਕੀ ਤਸੀਂ ਹਰੀ ਰਸਾਇਣ ਦਾ ਵਿਚਾਰ

ਗ੍ਰਹਿਣ ਕੀਤਾ ਹੈ ? ਇਹ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਤਾ ਹੈ ਕਿ ਕਾਰਬਨਿਕ ਘੋਲਕ, ਜਿਵੇਂ—ਬੈੱਨਜੀਨ, ਟਾੱਲੂਈਨ, ਕਾਰਬਨ ਟੈਟ੍ਰਾਕਲੋਰਾਈਡ ਆਦਿ ਬੜੇ ਜਹਿਰੀਲੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਸਮੇਂ ਸੁਚੇਤ ਰਹਿਣਾਂ ਚਾਹੀਦਾ ਹੈ।

ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ, ਇੱਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸੀਮਾਂ, ਤਾਪਮਾਨ, ਦਾਬ, ਉਤਪ੍ਰੇਰਕ ਦੀ ਵਰਤੋਂ ਆਦਿ ਭੌਤਿਕ ਮਾਪਦੰਡ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਜੇ ਇੱਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪ੍ਰਤੀ ਕਾਰਕ ਇਕ ਵਾਤਾਵਰਣੀ ਦੋਸਤੀ ਮਾਧਿਅਮ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਦੋਸਤ ਉਪਜਾਂ ਵਿੱਚ ਬਦਲ ਜਾਏ, ਤਾਂ ਵਾਤਾਵਰਣ ਦਾ ਕੋਈ ਰਸਾਇਣਿਕ ਪ੍ਰਦੂਸ਼ਣ ਨਹੀਂ ਹੋਵੇਗਾ।

ਸੰਸਲੇਸ਼ਣ ਦੇ ਦੌਰਾਨ ਸ਼ੁਰੂਆਤੀ ਪਦਾਰਥ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ ਇਹ ਸਾਵਧਾਨੀ ਰੱਖਣੀ ਚਾਹੀਦੀ ਹੈ, ਤਾਂ ਕਿ ਜਦੋਂ ਉਹ ਅੰਤਿਮ ਉਪਜ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਵੇ, ਤਾਂ ਵੇਸਟ ਪੈਦਾ ਹੀ ਨਾ ਹੋਵੇ। ਇਹ ਸੰਸਲੇਸ਼ਣ ਦੇ ਦੌਰਾਨ ਸਹੀ ਪਰਿਸਥਿਤੀਆਂ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਕੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪਾਣੀ ਦਾ ਉੱਚਾ ਵਿਸ਼ਿਸ਼ਟ ਤਾਪ ਅਤੇ ਘੱਟ ਵਾਸ਼ਪਸ਼ੀਲਤਾ ਦੇ ਕਾਰਣ ਇਸ ਨੂੰ ਸੰਸਲਿਸ਼ਟ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਮਾਧਿਅਮ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਪਾਣੀ ਸਸਤਾ, ਨਾ-ਜਲਣਸ਼ੀਲ ਅਤੇ ਅ-ਕੈਂਸਰ ਜਨਕ ਪ੍ਰਭਾਵ ਵਾਲਾ ਮਾਧਿਅਮ ਹੈ।

ਹਰੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਨੋਬੇਲ ਪੁਰਸਕਾਰ

ਯੋਜ ਚਾਓਵਿਨ

ਰਾੱਬਰਟ ਐਚ ਗਰੁਬਸ

ਰਿਚੱਰਡਅਰ ਸ਼ਰੋਕ

ਯੋਜ ਚਾਓਵਿਨ ਇਨਸਟੀਚਿਊਟ ਫਰੈਂਕਸ, ਡੂ ਪੈਟ੍ਰੋਲੇ, ਰੂਈਨਲ – ਮੇਕਮੇਸਨ, ਫਰਾਂਸ, ਰਾਬਰਟ ਐਚ. ਗਰੁਬਸ, ਕੈਲੀਫੋਰਨੀਆ ਇਨਸਟੀਚਿਊਟ ਆੱਫ ਟੈਕਨੌਲੀਜੀ (ਕੈਲਟੇਕ), ਪਾਸਾਡੇਨਾ, ਸੀ.ਏ.ਯੂ.ਐਸ.ਏ ਤੇ ਰਿਚਰਡਅਰ ਸ਼ਰੋਕ ਮਾਸਾਚਿਯੂਏਟਸ ਇਨਸਟੀਚਿਊਟ ਆੱਫ ਟੈਕਨੌਲੌਜੀ (ਐਮ.ਆਈ.ਟੀ.) ਕੈਂਬਰਿਜ ਯੂ.ਐਸ.ਏ.ਨੇ ਨਵੇਂ ਰਸਾਇਣਾਂ ਦੇ ਨਿਰਮਾਣ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਾਨੀਕਾਰਕ ਵੇਸਟ ਘੱਟ ਹੁੰਦੇ ਹਨ, ਉਤੇ ਕਾਰਜ ਕਰਨ ਦੇ ਲਈ ਸੰਨ 2005 ਦਾ ਨੌਬੇਲ ਪੁਰਸਕਾਰ ਪ੍ਰਾਪਤ ਕੀਤਾ। ਤਿਨਾਂ ਨੇ ਕਾਰਬਨਿਕ ਸੰਸਲੇਸ਼ਣ ਦੀ ਸਥਾਨ ਅੰਤਰਣ (ਮੈਟਾਥੇਸਿਸ) ਵਿਧੀ ਦੇ ਲਈ ਪੁਰਸਕਾਰ ਪ੍ਰਾਪਤ ਕੀਤਾ। ਇਸ ਵਿੱਚ ਅਣੂ ਦੇ ਅੰਦਰ ਪਰਮਾਣੂ ਸਮੂਹ ਮੁੜ ਵਿਵਸਥਿਤ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਰਾੱਯਲ ਸਵੀਡਿਸ਼ ਅਕੈਡਮੀ ਨੇ ਇਸਦੀ ਤੁਲਨਾ ਅਜਿਹੇ ਨਾਚ ਨਾਲ ਕੀਤੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਜੋੜੇ ਆਪਣਾ ਜੋੜੀਦਾਰ ਬਦਲਦੇ ਹਨ। ਮੈਟਾਥੇਸਿਸ ਦੀ ਜਬਰ ਦਸਤ ਵਪਾਰਕ ਵਰਤੋਂ ਦਵਾਈਆਂ, ਜੈਵ ਤਕਨੀਕਾਂ ਅਤੇ ਭੋਜਨ ਪਦਾਰਥ ਉਦਯੋਗ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਵਾਤਾਵਰਣੀ ਦੋਸਤ ਪੋਲੀਮਰਾਂ ਦੇ ਕ੍ਰਾਂਤੀ ਕਾਰੀ ਵਿਕਾਸ ਵਿੱਚ ਵੀ ਹੁੰਦਾ ਹੈ।

ਇਹ ਹਰੀ ਰਸਾਇਣ ਇੱਕ ਵੱਡੇ ਕਦਮ ਦੀ ਪ੍ਰਤੀਨਿਧਤਾ ਹੈ। ਸਹੀ ਉਤਪਾਦਨ ਦੁਆਰਾ ਹਾਨੀਕਾਰਕ ਵੇਸਟ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਮੈਟਾਥੇਸਿਸ ਇਸ ਗੱਲ ਦੀ ਉਦਾਹਰਣ ਹੈ ਕਿ ਮੂਲ ਵਿਗਿਆਨ ਦੀ ਵਰਤੋਂ ਮਨੁੱਖ, ਸਮਾਜ ਅਤੇ ਵਾਤਾਵਰਣ ਦੇ ਲਾਭ ਦੇ ਲਈ ਕਿਵੇਂ ਵਰਤਿਆ ਗਿਆ ਹੈ।

14.7.2 ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਹਰੀ ਰਸਾਇਣ

(i) ਕੱਪੜਿਆਂ ਦੀ ਡਾਈ ਕਲੀਨਿੰਗ

ਟੈਟ੍ਰਾ ਕਲੋਰੀਈਥਨ (Cl₂C=CCl₂) ਦੀ ਵਰਤੋਂ ਸ਼ੁਰੂ ਵਿੱਚ ਡ੍ਰਾਈਕਲੀਨਿੰਗ ਦੇ ਲਈ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਸੀ। ਇਹ ਯੋਗਿਕ ਧਰਤੀ ਦੇ ਪਾਣੀ ਨੂੰ ਦੂਸਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਹ ਇਕ ਕੈਂਸਰ ਜਨਕ ਵੀ ਹੈ। ਧੁਲਾਈ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਇਸ ਯੋਗਿਕ ਦਾ ਦ੍ਵ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਵਰਤੇ ਡਿਟਰਜੈਂਟ ਦੁਆਰਾ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੈਲੋਜਨੀਕ੍ਰਿਤ ਘੋਲ ਦਾ ਦ੍ਵਿਤ CO₂ ਨਾਲ ਪ੍ਰਤੀਸਥਾਪਨ ਭੂ– ਜਲ ਦੇ ਲਈ ਘੱਟ ਹਾਨੀਕਾਰਕ ਹੈ।

ਅੱਜਕਲ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ ਦੀ ਵਰਤੋਂ ਲਾਂਡਰੀ ਵਿੱਚ ਕੱਪੜਿਆਂ ਦੇ ਰੰਗ ਕੱਟਣ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਪਰਿਣਾਮ ਚੰਗੇ ਨਿਕਲਦੇ ਹੀ ਹਨ, ਪਾਣੀ ਦੀ ਘੱਟ ਵਰਤੋਂ ਵੀ ਹੰਦੀ ਹੈ।

(ii) ਕਾਗਜ਼ ਦਾ ਰੰਗ ਕੱਟਣਾ

ਪਹਿਲਾਂ ਕਾਗਜ਼ ਦੇ ਰੰਗ ਕੱਟਣ ਦੇ ਲਈ ਕਲੋਗੇਨ ਗੈਸ ਵਰਤੀ ਜਾਂਦੀ ਸੀ। ਅੱਜਕਲ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ, ਜੋ ਰੰਗ ਕੱਟਣ ਦੀ ਦਰ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ, ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ।

(iii) ਰਸਾਇਣਾਂ ਦਾ ਸੰਸਲੇਸ਼ਣ

ਓਦਯੋਗਿਕ ਲੈਵਲ ਤੇ ਈਥੀਨ ਦਾ ਆੱਕਸੀਕਰਣ ਆਇਨਿਕ ਉਤਪ੍ਰੇਰਕਾਂ ਅਤੇ ਜਲੀ ਮਾਧਿਅਮ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਕਰਵਾਇਆ ਜਾਏ, ਤਾਂ ਲਗਪਗ 90% ਈਥੇਨਲ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

$$CH_2 = CH_2 + O_2 \xrightarrow{\frac{1}{2}}{\frac{1}{2}} CH_2 \xrightarrow{\frac{1}{2}} CH_2$$

 $CH_3CHO(90\%)$

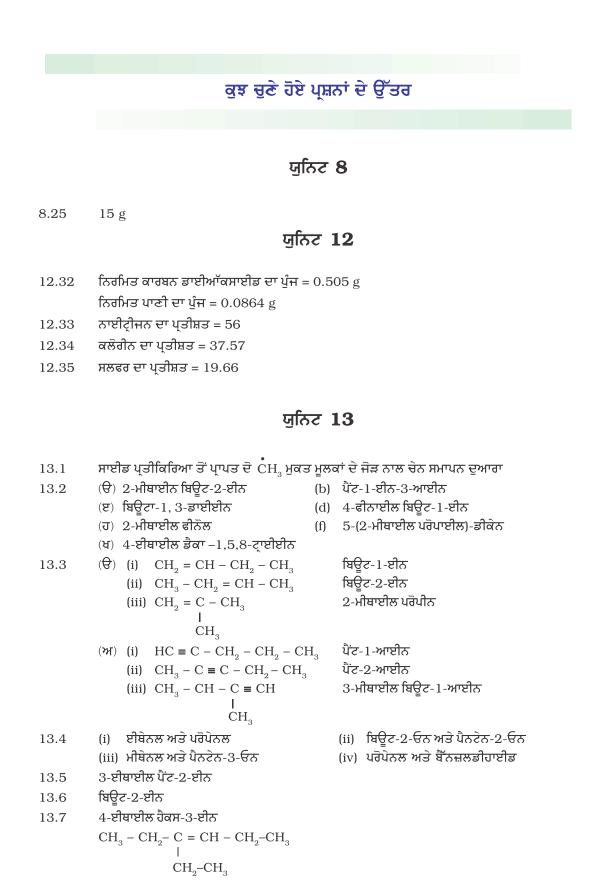
ਸੰਖੇਪ ਵਿੱਚ ਹਰੀ ਰਸਾਇਣ ਇੱਕ ਘੱਟ ਲਾਗਤ ਵਾਲਾ ਉਪਰਾਲਾ ਹੈ, ਜੋ ਘੱਟ ਪਦਾਰਥ, ਊਰਜਾ ਵਰਤੋਂ ਅਤੇ ਵੇਸਟ ਜਨਨ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ।

ਇਸ ਬਾਰੇ ਸੋਚੋ

ਮਨੁੱਖ ਹੋਣ ਦੇ ਕਰਕੇ ਵਾਤਾਵਰਣ ਨੂੰ ਸੁਰੱਖਿਅਤ ਰੱਖਣ ਲਈ ਸਾਡੀ ਕੀ ਜਿੰਮੇਵਾਰੀ ਹੈ ?

ਕਿਸੇ ਮਨੁੱਖ ਦੁਆਰਾ ਦਿੱਤੀ ਗਈਆਂ ਧਾਰਣਾਵਾਂ ਮਨੁੱਖੀ ਜੀਵਨ ਅਤੇ ਵਾਤਾਵਰਣ ਪੱਧਰ ਨੰ ਉੱਚ ਚੱਕਣ ਵਿੱਚ ਯੋਗਦਾਨ ਕਰਦੀਆਂ ਹਨ।ਤਹਾਡੇ ਬਗੀਚੇ ਜਾਂ ਘਰ ਦੀ ਕਿਸੇ ਜਗਾ ਵਿੱਚ ਕੰਪੋਸਟ ਟੀਨ ਦਾ ਡੱਬਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਇਸਦੀ ਵਰਤੋਂ ਪੌਦਿਆਂ ਦੇ ਲਈ ਖਾਦ ਬਨਾਉਣ ਦੇ ਕਾਰਜ ਵਿੱਚ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਕਿ ਖਾਦਾਂ ਦੀ ਵਰਤੋਂ ਘੱਟ ਕਰਨੀ ਪਵੇ। ਸਾਨੂੰ ਬਜਾਰ ਤੋਂ ਫਲ, ਸਬਜੀ ਅਤੇ ਪਰਚੁਣ ਦਾ ਸਮਾਨ ਅਤੇ ਹੋਰ ਵਸਤਾਂ ਖਰੀਦਦੇ ਸਮੇਂ ਕਪੜਿਆਂ ਦੇ ਥੈਲਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪਲਾਸਟਿਕ ਦੇ ਲਿਫਾਫਿਆਂ ਦੀ ਵਰਤੋਂ ਤੋਂ ਬਚਨਾ ਚਾਹੀਦਾ ਹੈ। ਤਸੀਂ ਵੇਖੋ ਕਿ ਤਹਾਡੇ ਖੇਤਰ ਵਿੱਚ ਪੁਰਾਣੀਆਂ ਅਖਬਾਰਾਂ, ਕੱਚ ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਹੋਰ ਸਾਰੀਆਂ ਵਸਤਾਂ ਦਾ ਮੁੜ ਚਕ੍ਰਣ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਵਾਤਾਵਰਣ ਸੁਰੱਖਿਆ ਲਈ ਸਾਨੂੰ ਅਜਿਹੇ ਡੀਲਰਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਕੁਝ ਪਰੇਸ਼ਾਨੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਸਾਨੂੰ ਇਹ ਸਮਝਣਾਂ ਚਾਹੀਦਾ ਹੈ ਕਿ ਹਰ ਇਕ ਸੱਮਸਿਆ ਦਾ ਨਿਵਾਰਣ ਨਹੀਂ ਹੋ ਸਕਦਾ ਪਰ ਅਸੀਂ ਆਪਣਾ ਧਿਆਨ ਉਨ੍ਹਾਂ ਪਹਿਲੂਆਂ ਉੱਤੇ ਕੇਂਦਰਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਮਨੁੱਖ ਰੂਪ ਵਿੱਚ ਮਹਿਸਸ ਕਰ ਸਕੀਏ ਅਤੇ ਉਸ ਦੇ ਲਈ ਕਈ ਕਝ ਕਰ ਸਕੀਏ। ਜੋ ਕਝ ਵੀ ਅਸੀਂ ਕਰ ਸਕਦੇ ਹਾਂ, ਉਸ ਉੱਤੇ ਅਮਲ ਵੀ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਸਾਨੂੰ ਇਹ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਵਾਤਾਵਰਣ ਦੀ ਸੰਭਾਲ ਸਾਡੇ ਤੋਂ ਹੀ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ।

ਸਾਰਾਂਸ਼

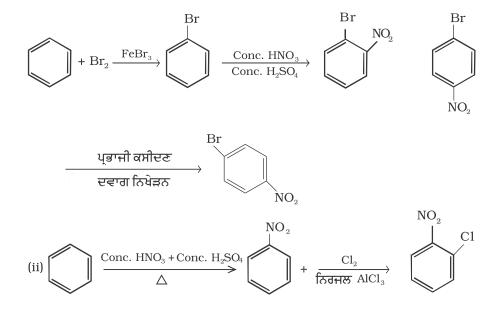

ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਵਾਤਾਵਰਣ ਵਿੱਚ ਮੁੱਖ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ। ਵਾਤਾਵਰਣ ਵਿੱਚ ਮੌਜੂਦ ਰਸਾਇਣ ਸਪੀਸ਼ੀਜ਼ ਕੁਝ ਪ੍ਰਾਕ੍ਰਿਤਕ ਹਨ ਅਤੇ ਕੁਝ ਮਨੁੱਖੀ ਕਿਰਿਆਵਾਂ ਨਾਲ ਪੈਦਾ ਹੋਈਆਂ। ਵਾਤਾਵਰਣ ਪ੍ਰਦੂਸ਼ਣ ਵਾਤਾਵਰਣ ਵਿੱਚ ਅਣਇੱਛਤ ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਰਭਾਵ ਹੈ, ਜੋ ਪੌਦਿਆਂ, ਜਾਨਵਰਾਂ ਅਤੇ ਮਨੁੱਖਾ ਦੇ ਲਈ ਹਾਨੀਕਾਰਕ ਹੈ। ਪਦਾਰਥਾ ਦੀਆਂ ਸਾਰੀਆਂ (ਤਿੰਨਾਂ) ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਪ੍ਰਦੂਸ਼ਕ ਹੁੰਦੇ ਹਨ।ਅਸੀਂ ਸਿਰਫ ਉਨ੍ਹਾਂ ਪ੍ਰਦੂਸ਼ਕਾਂ ਦਾ ਵਰਣਨ ਕੀਤਾ ਹੈ, ਜੋ ਮਨੁੱਖੀ ਕਿਰਿਆਵਾਂ ਦੇ ਦੁਆਰਾ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਅਤੇ ਜਿਨ੍ਹਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਾਯੂਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਦਾ ਅਧਿਐਨ ਆਮ ਤੌਰ ਤੇ ਪਰਿਵਰਤੀ ਮੰਡਲ ਅਤੇ ਸਮਤਾਪ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਪਰਿਵਰਤੀ ਮੰਡਲ ਵਾਯੂਮੰਡਲ ਦਾ ਹੇਠਲਾ ਸਤਰ (~10 km) ਹੈ, ਜਿਸ ਵਿੱਚ ਮਨੁੱਖ ਦੇ ਨਾਲ-ਨਾਲ ਹੋਰ ਜੀਵ ਅਤੇ ਬਨਸਪਤੀ ਵੀ ਸ਼ਾਮਲ ਹੈ, ਜਦਕਿ ਸਮਤਾਪ ਮੰਡਲ ਪਰਿਵਰਤਨ ਮੰਡਲ ਦੀ ਉਤਲੀ ਸੀਮਾਂ ਤੋਂ 40 km ਉੱਤੇ, ਅਰਥਾਤ ਸਮੁੰਦਰ ਤਲ ਤੋਂ 50 km ਦੀ ਉਚਾਈ ਤੱਕ ਸਥਿਤ ਹੈ।ਓਜ਼ੋਨ ਪਰਤ ਸਮਤਾਪ ਮੰਡਲ ਦਾ ਇੱਕ ਮੁੱਖ ਘਟਕ ਹੈ।ਪਰਿਵਰਤਨ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਮੂਲਰੂਪ ਵਿੱਚ ਸਲਫਰ, ਨਾਈਟ੍ਰੋਜਨ, ਕਾਰਬਨ, ਹੈਲੋਜਨ ਦੇ ਆੱਕਸਾਈਡ ਅਤੇ ਕਣਕੀ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।ਪਰਿਵਰਤਨ ਮੰਡਲ ਪ੍ਰਦੂਸ਼ਕ ਧਰਤੀ ਉੱਤੇ ਤੇਜਾਬ-ਵਰਖਾ ਦੇ ਰੂਪ ਵਿੱਚ ਆਉਂਦੇ ਹਨ।ਧਰਤੀ ਉੱਤੇ ਪਹੁੰਚਣ ਵਾਲੀ ਸੂਰਜੀ ਊਰਜਾ ਦਾ 75% ਹਿੱਸਾ ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਦੁਆਰਾ ਸੋਖਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬਾਕੀ ਵਾਤਾਵਰਣ ਵਿੱਚ ਮੁੜ ਵਿਕਿਰਿਤ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।ਉਪਰੋਕਤ ਵਰਣਿਤ ਗੈਸਾਂ ਤਾਪ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਕੇ ਭੂ-ਮੰਡਲੀ ਤਾਪਨ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹੈ। ਇਹ ਗੈਸ਼ਾਂ ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਦੇ ਗਈ ਵੀ ਜਿਮਵਾਰ ਹਨ, ਜੋ ਜੀਵਿਤ ਰਹਿਣ ਦੇ ਲਈ ਧਰਤੀ ਉੱਤੇ ਸੂਰਜੀ ਉਰਜਾ ਦੀ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਦੀਆਂ ਹਨ।ਗਰੀਨ ਹਾਉਸ ਗੈਸਾਂ ਵਿੱਚ ਵਾਧੇ

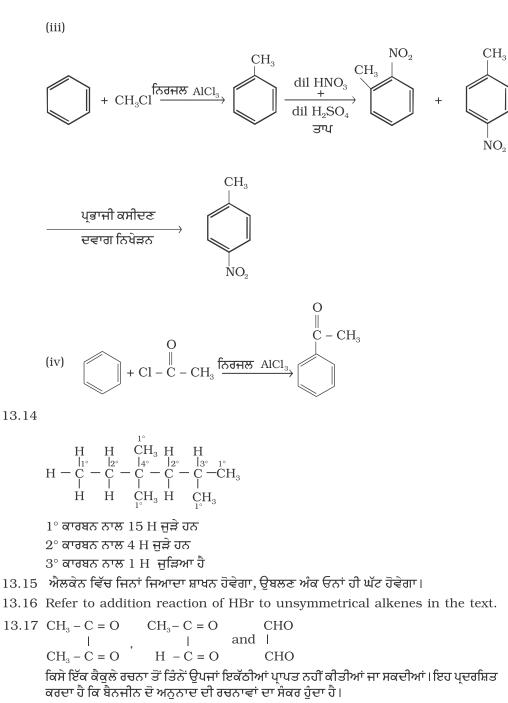
ਦੇ ਕਾਰਣ ਧਰਤੀ ਦੇ ਵਾਯੂਮੰਡਲ ਦਾ ਤਾਪਮਾਨ ਵਧਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਧਰੁਵੀ ਬਰਫ ਪਿਘਲਣ ਦੇ ਕਾਰਣ ਸਮੁੰਦਰ ਤਲ ਵਿੱਚ ਵਾਧਾ ਹੋ ਸਕਦਾ ਹੈ।ਪਰਿਣਾਮ ਸਰੂਪ ਸਮੁੰਦਰ ਤਟੀ ਖੇਤਰ ਪਾਣੀ ਨਾਲ ਭਰ ਸਕਦੇ ਹਨ। ਕਈ ਮਨੁੱਖੀ ਕਿਰਿਆਵਾਂ ਰਸਾਇਣਾਂ ਪੈਦਾ ਕਰ ਰਹੀਆਂ ਹਨ, ਜੋ ਸਮਤਾਪ ਮੰਡਲ ਵਿੱਚ ਓਜ਼ੋਨ ਛੇਕ ਵਿੱਚੋਂ ਪਰਬੈਂਗਣੀ ਵਿਕਿਰਣਾਂ ਧਰਤੀ ਦੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਦਾਖਲ ਹੁੰਦੀਆਂ ਹਨ, ਜੋ ਜੀਨਾਂ ਵਿੱਚ ਉੱਤੇ ਪਰਿਵਰਤਨ ਦਾ ਕਾਰਣ ਹਨ। ਪਾਣੀ ਸਾਡੇ ਜੀਵਨ ਦੇ ਲਈ ਬਹੁਤ ਲਾਭਦਾਇਕ ਹੈ, ਲੇਕਿਨ ਇਹੀ ਪਾਣੀ ਜੇ ਰੋਗਾਣੂ, ਕਾਰਬਨਿਕ ਵੇਸਟ ਅਤੇ ਜਹਿਰੀਲੀਆਂ ਭਾਰੀ ਧਾਤਾਂ, ਕੀਟਨਾਸ਼ਕਾਂ ਆਦਿ ਦੁਆਰਾ ਪ੍ਰਦੂਸ਼ਿਤ ਹੋ ਜਾਏ ਤਾਂ ਇਹ ਜਹਿਰ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਆਂਤਰਰਾਸ਼ਟਰੀ ਸਟੈਂਡਰਡ ਦੇ ਅਨੁਸਾਰ ਸਾਡੇ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦੇ ਸ਼ੁੱਧਤਾ ਲੈਵਲ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਉਦਯੋਗਿਕ ਕੂੜਾ ਕਰਕਟ ਅਤੇ ਕੀਟਨਾਸ਼ਕਾਂ ਦੀ ਵਧੇਰੀ ਵਰਤੋਂ ਨਾਲ ਮਿੱਟੀ ਅਤੇ ਪਾਣੀ ਦਾ ਪ੍ਰਦੂਸ਼ਣ ਹੋਇਆ ਹੈ। ਖੇਤੀਬਾੜੀ ਖੇਤਰ ਵਿੱਚ ਰਸਾਇਣਾਂ ਦਾ ਸੁੱਚਜਾ ਇਸੇਤਮਾਲ ਵਿਕਾਸ ਜਾਰੀ ਰੱਖਣ ਦੇ ਲਈ ਬੜਾ ਜਰੂਰੀ ਹੈ। ਵਾਤਾਵਰਣੀ ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਨਿਯੰਤਰਣ ਕਰਨ ਦੇ ਲਈ ਕਈ ਉਪਾਅ ਹਨ—ਜਿਵੇਂ— (i) ਕੂੜੇ ਕਰਕਟ ਦਾ ਪ੍ਰਬੰਧਨ, ਕੂੜੇ ਕਰਕਟ ਵਿੱਚ ਕਮੀਂ ਕਰਨਾ, ਉਨ੍ਹਾਂ ਦਾ ਚੰਗੀ ਤਰ੍ਹਾਂ ਨਿਸਤਾਰਣ ਅਤੇ ਪਦਾਰਥ ਅਤੇ ਊਰਜਾ ਦਾ ਮੁੜ ਚਕ੍ਰਣ ਕਰਨ (ii) ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਅਜਿਹੀਆਂ ਵਿਧੀਆਂ ਅਪਨਾਉਣੀਆਂ, ਜਿਸ ਨਾਲ ਵਾਤਾਵਰਣੀ ਪ੍ਰਦੂਸ਼ਣ ਘੱਟ ਹੋਵੇ। ਇਸ ਦੀ ਦੂਜੀ ਵਿਧੀ ਰਸਾਇਣ ਦੀ ਨਵੀਂ ਸ਼ਾਖ ਹੈ, ਜਿਸ ਨੂੰ ਹਰੀ ਰਸਾਇਣ ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਾਲ ਸਹੀ ਗਿਆਨ ਅਤੇ ਕੋਸ਼ਿਸ ਨਾਲ ਪ੍ਰਦੂਸ਼ਕਾਂ ਦਾ ਉਤਪਾਦਨ ਜਿਥੋਂ ਤੱਕ ਹੋ ਸਕੇ ਘੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਅਭਿਆਸ

- 14.1 ਵਾਤਾਵਰਣੀ ਰਸਾਇਣ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ।
- 14.2 ਪਰਿਵਰਤੀ ਮੰਡਲੀ ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਲਗਪਗ 100 ਸ਼ਬਦਾਂ ਵਿੱਚ ਸਮਝਾਓ।
- 14.3 ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਜ ਨਾਲੋਂ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਵਧੇਰੇ ਖਤਰਨਾਕ ਕਿਉਂ ਹੈ ? ਸਮਝਾਓ।
- 14.4 ਗਰੀਨ ਹਾਊਸ ਪ੍ਰਭਾਵ ਦੇ ਲਈ ਕਿਹੜੀਆਂ ਗੈਸਾਂ ਜਿੰਮੇਂਵਾਰ ਹਨ ? ਸੂਚੀ ਬਣਾਓ।
- 14.5 ਤੇਜਾਬ ਵਰਖਾ ਮੂਰਤੀਆਂ ਅਤੇ ਸਮਾਰਕਾਂ ਉੱਤੇ ਕਿਵੇਂ ਭੈੜਾ ਪ੍ਰਭਾਵ ਪਾਉਂਦੀ ਹੈ ?
- 14.6 ਧੁਆਂਖੀ ਧੁੰਦ (Smog) ਕੀ ਹੈ ? ਸਧਾਰਣ ਧੁਆਂਖੀ ਧੁੰਦ ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹੈ ?
- 14.7 ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੇ ਨਿਰਮਾਣ ਦੇ ਦੌਰਾਨ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਲਿਖੋ।
- 14.8 ਪ੍ਰਕਾਸ਼ ਰਸਾਇਣਿਕ ਧੁਆਂਖੀ ਧੁੰਦ ਦੇ ਬੁਰੇ ਪ੍ਰਭਾਵ ਕੀ ਹਨ ? ਇਨ੍ਹਾਂ ਨੂੰ ਕਿਵੇਂ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ?
- 14.9 ਸਮਤਾਪ ਮੰਡਲ ਉੱਤੇ ਓਜ਼ੋਨ ਪਰਤ ਦੇ ਵਿਰਲ ਲਈ ਹੋਣ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਕਿਹੜੀ ਹੈ ?
- 14.10 ਓਜ਼ੋਨ ਛੇਕ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਇਸ ਦੇ ਪਰਿਣਾਮ ਕੀ ਹਨ ?
- 14.11 ਪਾਣੀ-ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਮੁੱਖ ਕਾਰਣ ਕੀ ਹਨ ? ਸਮਝਾਓ।
- 14.12 ਕੀ ਤੁਸੀ ਆਪਣੇ ਖੇਤਰ ਵਿੱਚ ਪਾਣੀ-ਪ੍ਰਦੁਸ਼ਣ ਵੇਖਿਆ ਹੈ ? ਇਸ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਦੇ ਕਿਹੜੇ ਉਪਾਅ ਹਨ।
- 14.13 ਤੁਸੀਂ ਆਪਣੇ 'ਜੀਵ ਰਸਾਇਣੀ ਆਕਸੀਜਨ ਮੰਗ' (BOD) ਤੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
- 14.14 ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਨੇੜੇ ਤੇੜੇ ਦੇ ਖੇਤਰ ਵਿੱਚ ਮਿੱਟੀ-ਪ੍ਰਦੂਸ਼ਣ ਵੇਖਿਆ ਹੈ ? ਤੁਸੀਂ ਮਿੱਟੀ-ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਲਈ ਕੀ ਕੋਸ਼ਿਸਾਂ ਕਰੋਗੇ ?
- 14.15 ਕੀਟਨਾਸ਼ਕ ਅਤੇ ਨਦੀਨ ਨਾਸ਼ਕ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?ਉਦਾਹਰਣ ਸਹਿਤ ਸਮਝਾਓ।
- 14.16 ਹਰੀ ਰਸਾਇਣ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਇਹ ਵਾਤਾਵਰਣ ਪ੍ਰਦੁਸ਼ਣ ਨੂੰ ਰੋਕਣ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਸਹਾਇਕ ਹੈ ?
- 14.17 ਕੀ ਹੁੰਦਾ ਜੇ ਭੁ-ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਗਰੀਨ ਹਾਉਸ ਗੈਸਾਂ ਨਾਂ ਹੁੰਦੀਆਂ। ਵਿਆਖਿਆ ਕਰੋ।
- 14.18 ਇੱਕ ਝੀਲ ਵਿੱਚ ਅਚਾਨਕ ਅਸੰਖਾਂ ਮਰੀਆਂ ਮੱਛੀਆਂ ਤੈਰਦੀਆਂ ਹੋਈਆਂ ਮਿਲੀਆਂ। ਇਸ ਵਿੱਚ ਕੋਈ ਜਹਿਰੀਲਾ ਪਦਾਰਥ ਨਹੀਂ ਸੀ, ਪਰੰਤੂ ਵੱਡੀ ਮਾਤਰ ਵਿੱਚ ਫਾਈਟੋਪਲੈਂਕਟਨ ਮਿਲੇ। ਮੱਛੀਆਂ ਦੇ ਮਰਨ ਦਾ ਕਾਰਣ ਦੱਸੋ।
- 14.19 ਘਰੇਲੂ ਕੂੜਾ ਕਰਕਟ ਕਿਸ ਤਰ੍ਹਾਂ ਖਾਦ ਦੇ ਰੂਪ ਵਿੱਚ ਕੰਮ ਆ ਸਕਦਾ ਹੈ ?
- 14.20 ਤੁਸੀਂ ਆਪਣੇ ਖੇਤੀ ਖੇਤਰ ਜਾਂ ਬਗੀਚੇ ਵਿੱਚ ਕੰਪੋਸਟ ਖਾਦ ਲਈ ਟੋਏ ਬਣਾਏ ਹੋਏ ਹਨ।ਉੱਤਮ ਕੰਪੋਸਟ ਬਨਾਉਣ ਦੇ ਲਈ ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੀ ਵਿਆਖਿਆ ਭੈੜੀ ਗੰਧ, ਮੱਖੀਆਂ ਅਤੇ ਵੇਸਟ ਦੀ ਚੱਕਰੀ ਕਰਣ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਕਰੋ।

415


13.8 (Θ) C₄H₁₀(g)+13/2O₂(g) $\xrightarrow{\Delta}$ 4CO₂(g)+5H₂O(l) () $C_5H_{10}(g)+15/2O_2(g)$ $\xrightarrow{\Delta}$ $5CO_2(g) + 5H_2O(l)$ $\xrightarrow{\Delta}$ $(\mathfrak{F}) \quad C_6 H_{10}(g) + 17/2 \ O_2(g)$ $6CO_2(g) + 5H_2O(l)$ (π) $C_7H_8(g) + 9O_2(g) \xrightarrow{\Delta} 7CO_2(g) + 4H_2O(l)$ 13.9 CH_3 $CH_2 - CH_2 - CH_3$ C = CC = CΗ Η $CH_2 - CH_2 - CH_3$ Η ਸਮਪੱਖੀ-ਹੈਕਸ-2-ਈਨ ਵਿਪੱਖੀ-ਹੈਕਸ-2-ਈਨ


> ਵਧੇਰੇ ਧਰੁਵਿਤ ਪ੍ਰਕਿਰਤੀ ਦੇ ਕਾਰਣ ਸਮਪੱਖੀ ਰੂਪ ਵਿੱਚ ਵਧੇਰੇ ਅੰਤਰ ਅਣਵੀਂ ਦੋ ਧਰੁਵ ਦੋ ਧਰਵ ਅੰਤਰ ਧਰੁਵ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਅਣੂਆਂ ਨੂੰ ਵੱਖ ਕਰਨ ਵਿੱਚ ਵਧੇਰੇ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਫਲਸਰੁਪ ਇਸ ਦਾ ਉਬਲਣ ਅੰਕ ਉੱਚ ਹੋਵੇਗਾ।

- 13.10 ਅਨੁਨਾਦ ਦੇ ਕਾਰਣ
- 13.11 ਸਮਤਲੀ, (4n+2) π ਇਲੈਕਟ੍ਰਾਨ ਯੁਕਤ ਸੰਯੁਗਮਿਤ ਰਿੰਗ ਸਿਸਟਮ ਜਿੱਥੇ 'n' ਇੱਕ ਪੁਰਣ ਅੰਕ ਹੈ।

13.12 ਰਿੰਗ ਸਿਸਟਮ ਵਿੱਚ (4n +2) π ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿਸਥਾਨੀਕਰਣ ਨਾ ਹੋਣ ਦੇ ਕਾਰਣ।

13.13 (i)

13.18 ਬੈੱਨਜ਼ੀਨ ਵਿੱਚ 33 ਪ੍ਰਤੀਸ਼ਤ ਅਤੇ *n*-ਹੈਕਸੇਨ ਵਿੱਚ 25 ਪ੍ਰਤੀਸ਼ਤ *s*-ਆੱਰਬਿਟਲ ਗੁਣ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਈਥਾਈਨ ਵਿੱਚ ਬੜਾ ਜਿਆਦਾ *s* ਆੱਰਬਿਟਲ ਗੁਣ (50%) ਹੋਣ ਦੇ ਕਾਰਣ ਤੇਜਾਬੀਪਨ ਦਾ ਘਟਦਾ ਹੋਇਆ ਕ੍ਰਮ ਹੋਵੇਗਾ—

 $H - C \equiv C - H > C_6 H_6 > C_6 H_{14}.$

13.19 6 π ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੀ ਮੋਜੂਦਗੀ ਦੇ ਕਾਰਣ ਬੈੱਨਜੀਨ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦਾ ਧਨੀ ਸਰੋਤ ਹੈ, ਇਸ ਲਈ ਇਲੈਕਟ੍ਰਾਂਨ ਘੱਟ ਅਭਿਕਰਮਕ ਇਸ ਉੱਤੇ ਅਸਾਨੀ ਨਾਲ ਹਮਲਾ ਕਰੇਗਾ।

873K (ii) $C_2H_4 \xrightarrow{Br_2} CH_2 - CH_2 \xrightarrow{alc. KOH} CH_2 = CHBr \xrightarrow{NaNH_2} CHBr \xrightarrow{NaNH_2} CH_2 = CHBr \xrightarrow{NaNH_2} CHBr \xrightarrow{NA} CHBr \xrightarrow{NaNH_2} CHBr \xrightarrow{NA} CHBr \xrightarrow{NA} CHBr \xrightarrow{NA} CHBr \xrightarrow{NA} CHBr \xrightarrow{NA} CHBr \xrightarrow{NA} CHBr$ Br Br ਗਰਮ ਲਾਲ $HC \equiv HC$ -ਲੋਹੇ ਦੀ ਟਿੳਬ 873k $C_6H_{14} = \frac{Cr_2O_3 / V_2O_5/Mo_2O_3}{773 \text{ K}, 10-20 \text{ atom}}$ (iii) CH_3 Т 2-ਮੀਥਾਈਲ ਬਿਊਟ-1-ਈਨ $13.21 \text{ CH}_{2} = \text{C} - \text{CH}_{2} - \text{CH}_{3}$ CH₃ $CH_{a} - C = CH - CH_{a}$ 2-ਮੀਥਾਈਲ ਬਿਊਟ-2-ਈਨ CH_3 $CH_3 - CH - CH = CH_3$ 3-ਮੀਥਾਈਲ ਬਿਊਟ-1-ਈਨ 13.22 (ੳ) ਕਲੋਰੋਬੈਨਜ਼ੀਨ > 2,4 – ਡਾਈਨਾਈਟ੍ਰੋਕਲੋਬੈਨਜੀਨ-1-ਈਨ (ਅ) ਟਾੱਲੂਈਨ > p-CH₃-C₆H₄-NO₂ > p-O₂N-C₆H₄-NO₂

- 13.23 ਮੀਥਾਈਲ ਗਰੁੱਪ ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਦੇਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦੇ ਕਾਰਣ ਟਾੱਲੂਈਨ ਦਾ ਨਾਈਟ੍ਰੀਕਰਣ ਅਸਾਨੀ ਨਾਲ ਹੋਵੇਗਾ।
- 13.24 FeCl_3
- 13.25 ਸਹਿ ਉਪਜਾਂ ਦੇ ਨਿਰਮਾਣ ਦੇ ਕਾਰਣ।ਉਦਾਹਰਣ ਵਜੋਂ ਜੇ ਪ੍ਰਤੀਕਿਰਿਆ 1-ਬ੍ਰੋਮੋਪਰੋਪੇਨ ਅਤੇ 1-ਬ੍ਰੋਮੋਬਿਊਟੇਨ ਵਿੱਚ ਕਰਵਾਈ ਜਾਏ ਤਾਂ ਹੈਟਪੇਨ ਦੇ ਨਾਲ ਹੈਕਸੇਨ ਅਤੇ ਔਕਟੇਨ ਸਹਿ ਉਪਜਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋਣਗੀਆਂ।

419

INDEX

Α		– salts of oxoacids	301
Acid rain	401, 403	– solution in liquid ammonia	300
Acidic dehydration	380		
Activating groups	395	– uses	300
Acyclic compounds	331	– reactivity	300
Alicyclic compounds	331	– sulphates	301
Alkali metals	292	Alkanes	366
– atomic radii	292	– aromatisation	374
– chemical properties	293	– chain isomerism	378
– halides	295	– combustion	373
– hydration enthalpy	292	 controlled oxidation 	374
– hydroxides	295	– geometrical isomerism	378
– ionic radii	292	– halogenation	372
– ionisation enthalpy	292	– halogenation mechanism	373
– oxides	295	– Isomerisation	374
– physical properties	292	– ozonolysis	383
– reactivity towards air	293	– pyrolysis	374
– reactivity towards dihydrogen	294	– reaction with steam	374
– reactivity towards halogens	294	Alkenes	376
 reactivity towards water 	294	– addition of dihydrogen	380
– reducing nature	294	– addition of hydrogen halides	380
– salts of oxoacids	295	– addition of hydrogen halides, mechanism	381
– solution in liquid ammonia	294	– addition of sulphuric acid	382
– uses	294	– addition of water	383
Alkaline earth metals	298	– chemical properties	380
– atomic radii	298	– geometrical isomers	378
– carbonates	301	– oxidation	383
 chemical properties 	299	– physical properties	380
 electronic configuration 	298	– position isomerism	378
– halides	301	– preparation	379
– hydration enthalpies	299	– structural isomerism	377
– hydroxides	301	Alkynes	384
– ionic radii	298	– acidic characters	386
 ionisation enthalpies 	299	– addition of dihydrogen	387
– nitrates	301	– addition of halogens	387
– oxides	301	– addition of hydrogen halides	387
– physical properties	299	– addition of water	387
– reactivity towards air	300	– addition reaction	386
– reactivity towards halogens	300	– cyclic polymerisation	388
 reactivity towards water 	300	– linear polymerisation	387
– reducing nature	300	– polymerisation	387

420

– preparation	385	С	
Allotropes of carbon	317	Calcium	298, 299
_	309, 310, 314	– hydroxide	303
Aluminium, uses	314	– oxide	302
Angle of tortion	375	– sulphate (Plaster of Paris)	303
Anti Markovnikov rule	382	– sulphate	303
Arenes	388	Carbocation	341
Arenium ion, formation	393		314, 315, 317
Arenium ion, stabilisation	393	– allotropes	317
Aromatic compounds	331	– anomalous behaviour	317
Aromaticity	391	– uses	319
Atmospheric pollution	399	Carbon monoxide	319
		Carbon dioxide	320
B		Carcinogenicity	395
Baking soda	298	Catenation	317
Balancing of redox reaction	266	Caustic soda	297
Benzene	392	Cement	304
– Friedel-crafts alkylation	392	Cement, setting	304
– chemical properties	392	Cement, uses	304
– combustion	394	Chain isomerism	340
– electrophilic substitution	392	Chain isomers, alkanes	367
– Friedel–crafts acylation	392	Characteristic features of double bor	nd 327
- mechanism of electrophilic substitu	ution 393	Chemical pollutants	407
– nitration	392	Chromatography	352
– physical properties	392	Chromatography, adsorption	352
– preparation	391	Chromatography, column	352
– resonance	390	Chromatography, partition	353
– stability	390	Chromatography, thin layer	353
– structure	389	<i>Cis</i> -isomer	378
– sulphonation	392	Combination reactions	262
Benzenoid aromatic compounds	331		
Benzenoids	388	Compressed natural gas (CNG)	365
Beryllium	298	Condensed Structural formula	328
– anomalous behaviour	302	Conformation	375
- diagonal relationship with alumini	um 302	Conformation Eclipsed	375
Biochemical oxygen demand (BOD)	407	Conformation Staggered	375
Biological importance of calcium	304	Conformational isomers	375
Biological importance of magnesium	304	Conformations, relative stability	376
Biological importance of potassium	298	Crystallisation	348
Biological importance of sodium	298	D	
Bond line structural formula	328	D	
Borax	312	Deactivating groups	395
Borohydrides	314	Decarboxylation	371
Boron, anomalous properties	312	Decomposition reaction	262
Boron, uses	314	Dehalogenation	380
Branched chain hydrocarbons	333	Detection of Carbon	354

Detection of hydrogen	354
Deuterium	277
Diamond	317
Diborane	313
Differential extraction	350
Dihedral angle	375
Dihydrogen	277
Dihydrogen, as a fuel	281, 286
Dihydrogen, chemical properties	278
Dihydrogen, commercial production	278
Dihydrogen, laboratory preparation	278
Dihydrogen, physical properties	278
Dihydroges, uses	279
Directive influence of functional groups	394
Displacement reaction	262
Disproportionation reaction	264
Distillation under reduced pressure	350
Distillation	348
Dry ice	320

E

Effects of depletion of the ozone layer	406
Electrochemical series	259
Electrodes	270
Electrode potential	270
Electrode process	269
Electromeric effect	346
Electron deficient molecules	311
Electronic configuration,	
– <i>p</i> -block elements	307, 309
– s-block elements	292
Electrophile	342
Electrophilic reaction	342
Electrophilic substitution reaction	392
β-Elimination reaction	380
Environment pollution, control	410
Environmental pollution	398
Estimation of halogens, Carius method	358
Estimation of nitrogen, Dumas method	356
Estimation of nitrogen, Kjeldahl's method	d 357
Estimation of oxygen	360
Estimation of phosphorous	359
Estimation of sulphur	359
Eutrophication	407
F	

F

Fractional distillation

	421
Fullerenes	317
Functional group isomerism	340
Functional groups	332

G

u	
Gaseous air pollutants	399
Global warming	400
Graphite	318
Green chemistry	410
Green house effect	320, 401
Group 13 elements, atomic radii	309
– chemical properties	310
– electronegativity	309
– ionisation enthalpy	309
– oxidation states	310
– physical properties	310
– reactivity towards acids	311
– reactivity towards air	311
 reactivity towards alkalies 	311
– reactivity towards halogens	311
– trends in chemical reactivity	310
Group 14 elements, chemical properties	316
– covalent radius	315
– electronegativity	315
– electronic configuration	315
 ionization enthalpy 	315
 oxidation states 	316
– physical properties	315
– reactivity towards halogens	316
 reactivity towards oxygen 	316
 reactivity towards water 	316
– trends in chemical reactivity	316
н	
Heavy hydrogen	277
Heterolytic cleavage	341
Homologous series	332, 366
Homolytic cleavage	341, 342
Hückel rule	391
Hydrate formation	283
Hydration enthalpy s-block elements	292
Hydrides	280

Tryundes	200
– covalent	280
– interstitial	281
– ionic	280
– electron precise	280

Downloaded from https:// www.studiestoday.com

– electron rich	280
– metallic	281
– molecular	280
– non-stoichiometric	281
– saline	280
Hydrogen economy	287
Hydrogen peroxide	285
– chemical properties	286
– oxidising action in acidic medium	286
– oxidising action in basic medium	286
– physical properties	285
– preparation	285
– reducing action in acidic medium	286
– reducing action in basic medium	286
– storage	286
– structure	286
– uses	286
Hydrogen storage	281
Hydrogenation	370
Hydrolysis	283
Hyperconjugation	347

Ι

Ice structure	282
Inductive effect	344
Industrial waste	409
Inert pair effect	307
Inner core	307
International standard for drinking water	407
Ionisation enthalpy, s-block elements	292
Isomerism 34	0, 366
Isotopes	277

\mathbf{K}

Kekulé, structure Kharash effect Kolbe's electrolytic method	389 382 371
L	
Lassaigne's test	354
Liquified petroleum gas (LPG)	365
Lithium 292, 293	, 296
– anomalus properties	296
– difference from alkali metals	296
– points of similarities with magnesium	296

Μ

Markovnikov rule	381
Meta directing groups	395
Metal activity series	259
Metal carbonyles	320
Metamerism	341
Methyl carbocation	342
Molecular models	330
Monomers	384

Ν

Newman projections of ethane	375
Nomenclature	332
– alkanes	366
– alkenes	376
– arenes	388
– IUPAC system	332
– of substituted benzene compounds	338
Non-benzenoids	388
Non-benzenoid aromatic compounds	332
Nucleophiles	342
Nucleophilic reaction	342

Ortho directing groups	394
Orthoboric acid	312
Oxidant	261
Oxidation number	259
Oxidation state	260
Oxidation	257, 261
Ozone hole	405

Ρ

Para directing groups	394
Particulate pollutant	403
Permanent hardness	284
– removal by calagon's method	284
– removal by ion exhange method	284
– removal by synthetic resins	284
Peroxide effect	382
Photochemical smog	405
Photochemical smog control	405
Photochemical smog, effects	404
Photosynthesis	320
Plaster of paris	303
Polar reaction	342
Polymerisation	383

Portland cement	304
Position isomerism	340
Potassium	292, 293, 298
Producer gas	319
Protium	277

g

Quantitative analysis for carbon	355
Quantitative analysis for halogens	358
Quantitative analysis for hydrogen	355
Quantitative analysis for nitrogen	356
Quick lime	302

R

Redox couple	270
Redox reactions	255, 261, 283
Redox reactions, type	262
Reducing Agent	257, 261
Reductant	261
Reduction	257, 261
Resonance effect	346
Resonance stabilisation energy	345
Resonance structure	344
R _f value	353
Rotamers	375

S

Sawhorse projections of ethane	375
Sigma complex	393
Silicates	322
Silicic acid	317
Silicon dioxide	320
Silicones	321
Slaked lime	303
Smog	403
Sodium carbonate	296
Sodium carbonate, properties	297
Sodium chloride	297
Sodium hydrogencarbonate	298
Sodium hydroxide	297
Soil pollution	408
Standard electrode potential	270, 271
Steam distillation	350
Stereoisoisomers, alkenes	378
Stereoisomerisms	341
Stock notation	261
Straight chain hydrocarbons	333

Stratospheric pollution	405
Structural isomerism	340
Structural isomers, alkanes	367
Structure of double bond	376
Structure of triple bond	385
Sublimation	348
Syngas	278
Synthesis gas	278, 319

Т

-	
Temporary hardness	284
Test for halogens	355
Test for nitrogen	354
Test for phosphorous	355
Test for sulphur	354
Tortional strain	375, 376
Trans-isomer	378
Tritium	277
Tropospheric pollution	400

W

Water, hard Water, heavy Water gas Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	296 283 283 283 283
Water, chemical properties Water, hard Water, heavy Water gas Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	283 283
Water, hard Water, heavy Water gas Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	283
Water, heavy Water gas Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	
Water gas Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	286
Water pollution Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	
Water pollution, causes Water, hydrate formation Water, in hydrolysis reactions	319
Water, hydrate formation Water, in hydrolysis reactions	406
Water, in hydrolysis reactions	406
	283
Wedness and and a second second second	283
Water, physical properties	281
Water, Soft	283
Water, structure	282
Water-gas shift reaction	278
Wurtz reaction	371

Z

Zeolites

322