

विषय-सूची

भाग - 2

क्रम. सं.	NCERT अध्याय सं.	अध्याय नाम	पृष्ठ सं.
I	अध्याय 4	कार्बन एवं उसके यौगिक	1–24
II	अध्याय 5	तत्वों का आवर्त वर्गीकरण	25–39
III	अध्याय 8	जीव जनन कैसे करते हैं	40-55
IV	अध्याय 9	आनुवंशिकता एवं जैव विकास	56–75
V	अध्याय 10	प्रकाश-परावर्तन तथा अपवर्तन	76–106
VI	अध्याय 11	मानव नेत्र तथा रंगबिरंगा संसार	107–120
VII	अध्याय 14	ऊर्जा के स्रोत	121–137
VIII	अध्याय 16	प्राकृतिक संसाधनों का संपोषित प्रबंधन	138–154
4		<i>उत्तरमाला</i>	155–155
		पारिभाषिक शब्दावली	156–166

अध्याय 4 कार्बन एवं उसके योगिक

छले अध्याय में हमने अनेक ऐसे यौगिकों का अध्ययन किया है जो हमारे लिए महत्वपूर्ण हैं। इस अध्याय में हम कुछ अन्य रोचक यौगिकों एवं उनके गुणधर्मों के बारे में पढ़ेंगे। यहाँ हम एक तत्व के रूप में कार्बन का भी अध्ययन करेंगे जिसका हमारे लिए तात्विक एवं संयुक्त दोनों रूपों में अत्यधिक महत्त्व होता है।

क्रियाकलाप 4.1

- सुबह से आपने जिन वस्तुओं का उपयोग अथवा उपभोग किया हो,
 उनमें से दस वस्तुओं की सूची बनाइए।
- इस सूची को अपने सहपाठियों द्वारा बनाई सूची के साथ मिलाइए तथा सभी वस्तुओं को साथ में दी गई सारणी में वर्गीकृत कीजिए।
- एक से अधिक सामग्रियों से बनी वस्तुओं को सारणी के उपयुक्त स्तम्भों में रिखए।

धातु से बनी वस्तुएँ	काँच⁄मिट्टी से बनी वस्तुएँ	अन्य

आपके द्वारा भरी हुई उपर्युक्त सारणी के अंतिम स्तंभ में आने वाली वस्तुओं पर ध्यान दीजिए—आपके शिक्षक आपको बताएँगे कि इनमें से अधिकांश वस्तुएँ कार्बन के यौगिकों से बनी हैं। इसका परीक्षण करने के लिए क्या आप कोई विधि सोच सकते हैं? कार्बन से युक्त यौगिक को जलाने पर क्या उत्पाद मिलेगा? क्या आप इसकी पुष्टि करने वाले किसी परीक्षण को जानते हैं?

आपके द्वारा सूचीबद्ध की गई भोजन, कपड़े, दवाओं, पुस्तकों, आदि अनेक वस्तुएँ इस सर्वतोमुखी तत्व कार्बन पर आधारित होती हैं। इनके अतिरिक्त, सभी सजीव संरचनाएँ कार्बन पर आधारित होती हैं। भूपर्पटी तथा वायुमंडल में अत्यंत अल्प मात्रा में कार्बन उपस्थित है। भूपर्पटी में खिनजों (जैसे कार्बोनेट, हाइड्रोजनकार्बोनेट, कोयला एवं पेट्रोलियम) के रूप में केवल 0.02% कार्बन उपस्थित है तथा वायुमंडल में 0.03% कार्बन डाइऑक्साइड उपस्थित है। प्रकृति में इतनी अल्प मात्रा में कार्बन उपस्थित होने के बावजूद कार्बन का अत्यधिक महत्त्व है। इस अध्याय में हम कार्बन के इन गुणों का अध्ययन करेंगे जिनके कारण कार्बन इतना महत्वपूर्ण है।

4.1 कार्बन में आबंधन-सहसंयोजी आबंध

पिछले अध्याय में हमने आयिनक यौगिकों के गुणधर्मों का अध्ययन किया। हमने देखा कि आयिनक यौगिकों के गलनांक एवं क्वथनांक उच्च होते हैं तथा ये विलयन में अथवा कार्बन एवं उसके यौगिक

गलित अवस्था में विद्युत चालन करते हैं। हमने देखा कि आयनिक यौगिकों में आबंधन की प्रकृति इन गुणधर्मों की व्याख्या करती है।

सारणी 4.1 कार्बन के कुछ यौगिकों कि गलनांक एवं क्वथनांक

यौगिक	गलनांक (K)	क्वथनांक (K)
एसीटिक एसिड ($\mathrm{CH_{_3}}$ COOH)	290	391
क्लोरोफॉर्म (CHCl ₃)	209	334
एथेनॉल (CH ₃ CH ₂ OH)	156	351
मेथेन (CH4)	90	111

जैसा कि हमने अध्याय 2 में देखा, अधिकांश कार्बन यौगिक अच्छे विद्युत चालक नहीं होते हैं। उपरोक्त यौगिकों के क्वथनांक एवं गलनांकों जो कि आयनिक यौगिकों के क्वथनांक तथा गलनांक की तुलना में काफ़ी कम है (अध्याय 3) के आँकड़ों (सारणी 4.1) के आधार पर हम इस निष्कर्ष पर पहुँच सकते हैं कि इन परमाणुओं के बीच प्रबल आकर्षण बल नहीं है। चूँकि अधिकांशत: ये यौगिक विद्युत के कुचालक होते हैं, अत: हम

इस निष्कर्ष पर पहुँच सकते हैं कि इन यौगिकों के आबंधन से किसी आयन की उत्पत्ति नहीं होती।

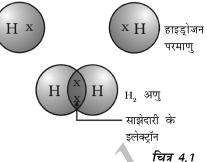
कक्षा 9 में हमने विभिन्न तत्वों की संयोजन क्षमता तथा संयोजकता इलेक्ट्रॉनों की संख्या पर इनकी निर्भरता के बारे में अध्ययन किया। अब हम कार्बन के इलेक्ट्रॉनिक विन्यास के बारे में अध्ययन करेंगे। कार्बन की परमाणु संख्या 6 है। कार्बन के विभिन्न कक्षों में इलेक्ट्रॉनों का वितरण कैसे होगा? कार्बन में कितने संयोजकता इलेक्ट्रॉन होंगे?

हम जानते हैं कि बाहरी कोश को पूरी तरह से भर देने अर्थात उत्कृष्ट गैस विन्यास को प्राप्त करने की प्रवृत्ति के आधार पर तत्वों की अभिक्रियाशीलता समझायी जाती है। आयिनक यौगिक बनाने वाले तत्व सबसे बाहरी कोश से इलेक्ट्रॉन प्राप्त करके या उनका हास करके इसे प्राप्त करते हैं। कार्बन के सबसे बाहरी कोश में चार इलेक्ट्रॉन होते हैं तथा उत्कृष्ट गैस विन्यास को प्राप्त करने के लिए इसको चार इलेक्ट्रॉन प्राप्त करने या खोने की आवश्यकता होती है। यदि इन्हें इलेक्ट्रॉनों को प्राप्त करना या खोना हो तो:

- (i) ये चार इलेक्ट्रॉन प्राप्त कर C⁴- ऋणायन बना सकता है। लेकिन छ: प्रोटॉन वाले नाभिक के लिए दस इलेक्ट्रॉन, अर्थात चार अतिरिक्त इलेक्ट्रॉन धारण करना मुश्किल हो सकता है।
- (ii) ये चार इलेक्ट्रॉन खो कर C⁴⁺ धनायन बना सकता है। लेकिन चार इलेक्ट्रॉनों को खो कर छ: प्रोटॉन वाले नाभिक में केवल दो इलेक्ट्रॉनों का कार्बन धनायन बनाने के लिए अत्यधिक ऊर्जा की आवश्यकता होगी।

कार्बन अपने अन्य परमाणुओं अथवा अन्य तत्वों के परमाणुओं के साथ संयोजकता इलेक्ट्रॉनों की साझेदारी करके इस समस्या को सुलझा लेता है। केवल कार्बन ही नहीं बिल्क अनेक अन्य तत्व भी इसी प्रकार इलेक्ट्रॉन की साझेदारी करके अणुओं का निर्माण करते हैं। जिन इलेक्ट्रॉनों की साझेदारी की जाती है वे दोनों परमाणुओं के बाहरी कोश के ही होते हैं, तथा इनके फलस्वरूप दोनों ही परमाणु उत्कृष्ट गैस विन्यास की स्थित को प्राप्त करते हैं। कार्बन के यौगिकों की चर्चा करने से पहले इलेक्ट्रॉनों की साझेदारी से बने कुछ सामान्य अणुओं को समझते हैं।

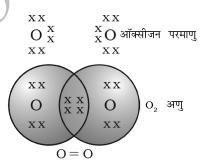
इस तरह से बने अणुओं में सबसे सामान्य अणु हाइड्रोजन का है। जैसा कि आपने पहले अध्ययन किया है, हाइड्रोजन की परमाणु संख्या 1 है। अतः इसके K कोश में एक इलेक्ट्रॉन है तथा K कोश को भरने के लिए इसको एक और इलेक्ट्रॉन की आवश्यकता होती है। इसलिए हाइड्रोजन के दो परमाणु अपने इलेक्ट्रॉनों की साझेदारी करके हाइड्रोजन का अणु, H_2 बनाते हैं। परिणामस्वरूप हाइड्रोजन का प्रत्येक अणु अपने निकटतम उत्कृष्ट गैस, हीलियम के इलेक्ट्रॉनिक विन्यास को प्राप्त करता है, जिसके K कोश में दो इलेक्ट्रॉन होते हैं। संयोजकता इलेक्ट्रॉन दर्शाने के लिए हम बिंदुओं अथवा क्रॉस का उपयोग कर सकते हैं (चित्र 4.1)।

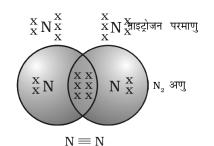

इलेक्ट्रॉन के सहभागी युग्म हाइड्रोजन के दो परमाणुओं के बीच सहसंयोजी एक आबंध बनाते हैं। इस आबंध को दो परमाणुओं के बीच एक रेखा के द्वारा भी व्यक्त किया जाता है जैसा कि चित्र 4.2 में दिखाया गया है।

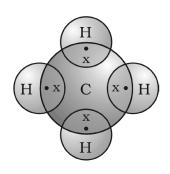
क्लोरीन की परमाणु संख्या 17 है। इसका इलेक्ट्रॉनिक विन्यास तथा संयोजकता क्या होगी? क्लोरीन द्विपरमाणुक अणु, Cl₂ बनाती है। क्या आप इस अणु की इलेक्ट्रॉन बिंदु संरचना बना सकते हैं? याद रखिए कि केवल संयोजकता कोश इलेक्ट्रॉन को ही चित्रित करने की आवश्यकता होती है।

ऑक्सीजन के दो परमाणुओं के बीच द्विआबंध का बनना दिखाई देता है। ऐसा इसिलए होता है क्योंकि ऑक्सीजन के परमाणु के L कोश में छ: इलेक्ट्रॉन होते हैं (ऑक्सीजन की परमाणु संख्या आठ है) तथा इसे अष्टक पूरा करने के लिए दो और इलेक्ट्रॉनों की आवश्यकता होती है। अत: ऑक्सीजन का प्रत्येक परमाणु ऑक्सीजन के अन्य परमाणु के साथ दो इलेक्ट्रॉनों की साझेदारी करता है, जिससे हमें चित्र 4.3 के अनुसार संरचना प्राप्त होती है। ऑक्सीजन के प्रत्येक परमाणु के द्वारा प्रदान किए गए दो इलेक्ट्रॉनों से इलेक्ट्रॉनों के दो सहभागी युग्म प्राप्त होते हैं। इसे दो परमाणुओं के बीच द्विआबंध बनना कहते हैं।

क्या अब आप जल के अणु को चित्रित कर सकते हैं, जिसमें ऑक्सीजन के एक परमाणु एवं हाइड्रोजन के दो परमाणुओं के बीच आबंधन की प्रकृति को दर्शाया गया हो? इस अणु में एक आबंध है, अथवा द्विआबंध?


नाइट्रोजन के द्विपरमाणुक अणु में कैसा आबंध होगा? नाइट्रोजन की परमाणु संख्या 7 है। इसका इलेक्ट्रॉनिक विन्यास एवं संयोजन क्षमता क्या होगी? अष्टक प्राप्त करने के लिए नाइट्रोजन के एक अणु में नाइट्रोजन का प्रत्येक परमाणु तीन इलेक्ट्रॉन देता है, जिससे इलेक्ट्रॉन के तीन **सहभागी** युग्म प्राप्त होते हैं। इसे दो परमाणुओं के बीच त्रिआबंध का बनना कहा जाता है। N_2 की इलेक्ट्रॉन बिंदु संरचना तथा इसके त्रिआबंध को चित्र 4.4 के अनुसार दर्शाया जा सकता है। कार्बन एवं उसके यौगिक


ाचत्र ४.1 हाइड्रोजन का एक अणु


चित्र 4.2 हाइड्रोजन के दो परमाणुओं के बीच एकल बंध

चित्र 4.3 ऑक्सीजन के दो परमाणुओं के बीच दोहरा बंध

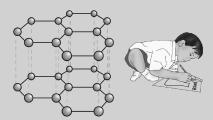
चित्र 4.4 नाइट्रोजन के दो परमाणुओं के बीच त्रिआबंध

चित्र 4.5 मेथेन की इलेक्ट्रॉन बिंदु संरचना

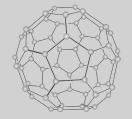
अमोनिया के अणु का सूत्र NH_3 है। क्या आप इस अणु की इलेक्ट्रॉन बिंदु संरचना को चित्रित कर सकते हैं, जिसमें यह दर्शाया गया हो कि कैसे सभी चार परमाणुओं को उत्कृष्ट गैस विन्यास की स्थिति प्राप्त हुई? इन अणुओं में एक, द्वि अथवा त्रि कौन सा आबंध होगा?


अब हम मेथेन को देखते हैं जो कार्बन का यौगिक है। ईंधन के रूप में मेथेन का अधिकाधिक उपयोग होता है तथा यह बायोगैस एवं संपीडित प्राकृतिक गैस (CNG) का प्रमुख घटक है। यह कार्बन के सर्वाधिक सरल यौगिकों में से एक है। मेथेन का सूत्र CH_4 है। जैसा कि आप जानते हैं, हाइड्रोजन की संयोजकता 1 है। कार्बन चतु:संयोजक है क्योंकि इसमें चार संयोजकता इलेक्ट्रॉन होते हैं। उत्कृष्ट गैस विन्यास की स्थिति को प्राप्त करने के लिए कार्बन इन इलेक्ट्रॉनों की साझेदारी हाइड्रोजन के चार परमाणुओं के साथ करता है, जैसा कि चित्र 4.5 में दिखाया गया है।

इस प्रकार दो परमाणुओं के बीच इलेक्ट्रॉन के एक युग्म की साझेदारी के द्वारा बनने वाले आबंध सहसंयोजी आबंध कहलाते हैं। सहसंयोजी आबंध वाले अणुओं में भीतर तो प्रबल आबंध होता है, लेकिन इनका अंतराअणुक बल दुर्बल होता है। फलस्वरूप इन यौंगिकों के क्वथनांक एवं गलनांक कम होते हैं। चूँिक परमाणुओं के बीच इलेक्ट्रॉनों की साझेदारी होती है और आवेशित कण बनते हैं; सामान्यत: ऐसे सहसंयोजी यौंगिक विद्युत के कुचालक होते हैं।


ๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅ

कार्बन के अपररूप


प्रकृति में कार्बन तत्व अनेक विभिन्न भौतिक गुणों के साथ विविध रूपों में पाया जाता है। हीरा एवं ग्रेफ़ाइट दोनों ही कार्बन के परमाणुओं से बने हैं, कार्बन के परमाणुओं के परस्पर आबंधन के तरीकों के आधार पर ही इनमें अंतर होता है। हीरे में कार्बन का प्रत्येक परमाणु कार्बन के चार अन्य परमाणुओं के साथ आबंधित होता है जिससे एक दृढ़ त्रिआयामी संरचना बनती है। ग्रेफ़ाइट में कार्बन के प्रत्येक परमाणु का आबंधन कार्बन के तीन अन्य परमाणुओं के साथ एक ही तल पर होता है जिससे षट्कोणीय व्यूह मिलता है। इनमें से एक आबंध द्विआबंधी होता है जिसके कारण कार्बन की संयोजकता पूर्ण होती है। ग्रेफ़ाइट की संरचना में षट्कोणीय तल एक दूसरे के ऊपर व्यवस्थित होते हैं।

हीरे की संरचना

ग्रेफ़ाइट की संरचना

C-60 बकमिंसटरफुलेरीन की संरचना

इन दो विभिन्न संरचनाओं के कारण हीरे एवं ग्रेफ़ाइट के भौतिक गुणधर्म अत्यन्त भिन्न होते हैं, जबिक उनके रासायनिक गुणधर्म एकसमान होते हैं। हीरा अब तक का ज्ञात सर्वाधिक कठोर पदार्थ है, जबिक ग्रेफ़ाइट

जानिए

₽ T

र्ध

चिकना तथा फिसलनशील होता है। पिछले अध्याय में आपने जिन अधातुओं के बारे में अध्ययन किया, उनके विपरीत ग्रेफ़ाइट विद्युत का सुचालक होता है।

शुद्ध कार्बन को अत्यधिक उच्च दाब एवं ताप पर उपचारित (subjecting) करके हीरे को संश्लेषित किया जा सकता है। ये संश्लिष्ट हीरे आकार में छोटे होते हैं, लेकिन अन्यथा ये प्राकृतिक हीरों से अभेदनीय होते हैं। फुलेरीन कार्बन अपररूप का अन्य वर्ग है। सबसे पहले C-60 की पहचान की गई जिसमें कार्बन के परमाणु फुटबॉल के रूप में व्यवस्थित होते हैं। चूँकि यह अमेरिकी आर्किटेक्ट बकमिंसटर फुलर (Buckminster Fuller) द्वारा डिजाइन किए गए जियोडेसिक गुंबद के समान लगते हैं, इसीलिए इस अणु को फुलेरीन नाम दिया गया।

प्रश्न

- 1. CO_2 सूत्र वाले कार्बन डाइऑक्साइड की इलेक्ट्रॉन बिंदु संरचना क्या होगी?
- सल्फ़र के आठ परमाणुओं से बने सल्फ़र के अणु की इलेक्ट्रॉन बिंदु संरचना क्या होगी? (संकेत: सल्फ़र के आठ परमाणु एक अँगूठी के रूप में आपस में जुड़े होते हैं।)

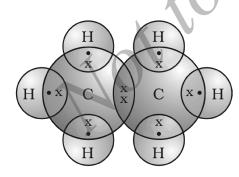
4.2 कार्बन की सर्वतोमुखी प्रकृति

विभिन्न तत्वों एवं यौगिकों में हमने इलेक्ट्रॉनों की साझेदारी द्वारा सहसंयोजी आबंध का निर्माण देखा। हमने सरल कार्बन यौगिक, मेथेन की संरचना भी देखी। अध्याय के आरंभ में हमने देखा कि कितनी वस्तुओं में कार्बन पाया जाता है। वस्तुत:, हम स्वयं भी कार्बन के यौगिकों से बने हुए हैं। हाल ही में रसायनशास्त्रियों द्वारा सूत्र सहित ज्ञात कार्बन यौगिकों की गणना की गई है जो लगभग कई मिलियन आँकी गई है। अन्य सभी तत्वों के यौगिकों को एक साथ रखने पर भी इनकी संख्या उन सबसे कहीं अधिक है। ऐसा क्यों है कि यह गुणधर्म केवल कार्बन में ही मिलता है किसी और तत्व में नहीं? सहसंयोजी बंध की प्रकृति के कारण कार्बन में बड़ी संख्या में यौगिक बनाने की क्षमता होती है। कार्बन में दो कारक देखे गए हैं:

(i) कार्बन में कार्बन के ही अन्य परमाणुओं के साथ आबंध बनाने की अद्वितीय {lerk gleh gSft | | scMh | þ; k esv. kqcursg&b| xqk d le शृंखलन (catenation) कहते हैं। इन यौगिकों में कार्बन की लंबी शृंखला, कार्बन की विभिन्न शाखाओं वाली शृंखला अथवा वलय में व्यवस्थित कार्बन भी पाए जाते हैं। साथ ही, कार्बन के परमाणु एक, द्वि अथवा त्रि आबंध से जुड़े हो सकते हैं। कार्बन परमाणुओं के बीच केवल एक आबंध से जुड़े कार्बन के यौगिक संतृप्त यौगिक कहलाते हैं। द्वि– अथवा त्रि–आबंध वाले कार्बन के यौगिक असंतृप्त यौगिक कहलाते हैं। कार्बन यौगिकों में जिस सीमा तक शृंखलन का गुण पाया जाता है वह किसी और तत्व में नहीं मिलता। सिलिकॉन हाइड्रोजन के साथ यौगिक बनाते हैं जिनमें सात या आठ परमाणुओं तक की शृंखला हो सकती है, लेकिन यह यौगिक अति अभिक्रियाशील होते हैं। कार्बन–कार्बन आबंध अत्यधिक प्रबल होता है, अतः

कार्बन एवं उसके यौगिक

यह स्थायी होता है। फलस्वरूप अनेक कार्बन परमाणुओं के साथ आपस में जुड़े हुए अनेक यौगिक प्राप्त होते हैं।


(ii) चूँिक कार्बन की संयोजकता चार होती है, अत: इसमें कार्बन के चार अन्य परमाणुओं अथवा कुछ अन्य एक संयोजक तत्वों के परमाणुओं के साथ आबंधन की क्षमता होती है। ऑक्सीजन, हाइड्रोजन, नाइट्रोजन, सल्फ़र, क्लोरीन तथा अनेक अन्य तत्वों के साथ कार्बन के यौगिक बनते हैं, फलस्वरूप ऐसे विशेष गुण वाले यौगिक बनते हैं जो अणु में कार्बन के अतिरिक्त उपस्थित तत्व पर निर्भर करते हैं।

अधिकतर अन्य तत्वों के साथ कार्बन द्वारा बनाए गए आबंध अत्यंत प्रबल होते हैं जिनके फलस्वरूप ये यौगिक अतिशय रूप में स्थायी होते हैं। कार्बन द्वारा प्रबल आबंधों के निर्माण का एक कारण इसका छोटा आकार भी है। इसके कारण इलेक्ट्रॉन के सहभागी युग्मों को नाभिक मज़बूती से पकड़े रहता है। बड़े परमाणुओं वाले तत्वों से बने आबंध तुलना में अत्यंत दुर्बल होते हैं।

कार्वनिक यौगिक

कार्बन में पाए जाने वाले दो विशिष्ट लक्षणों, चतुःसंयोजकता और शृंखलन से बड़ी संख्या में यौगिकों का निर्माण होता है। अनेक यौगिकों के अकार्बनिक परमाणु अथवा परमाणु के समूह विभिन्न कार्बन शृंखलाओं से जुड़े होते हैं। मूल रूप से इन यौगिकों को प्राकृतिक पदार्थों से प्राप्त किया गया था तथा यह समझा गया था कि ये कार्बन यौगिक अथवा कार्बनिक यौगिक केवल सजीवों में ही निर्मित हो सकते हैं। अर्थात, यह माना गया कि उनके संश्लेषण के लिए एक 'जीवन शक्ति' आवश्यक थी। 1828 में फ्रेडिरिक वोहलर (Friedrich Wöhler) ने अमोनियम सायनेट से यूरिया बनाकर इसे असत्य प्रमाणित किया। लेकिन कार्बन, कार्बोनेट तथा बाइकार्बोनेट लवणों के अतिरिक्त सभी कार्बन यौगिकों का अध्ययन अभी भी कार्बनिक रसायन के अंतर्गत होता है।

4.2.1 संतृप्त एवं असंतृप्त कार्बन यौगिक

चित्र 4.6 (c) एथेन की इलेक्ट्रॉन बिंदु संरचना

जानिए

₽

मेथेन की संरचना हम पहले ही समझ चुके हैं। कार्बन एवं हाइड्रोजन से बनने वाला अन्य यौगिक एथेन है जिसका सूत्र C_2H_6 है। सरल कार्बन यौगिकों की संरचना प्राप्त करने के लिए सबसे पहले कार्बन के परमाणुओं को एक आबंध के द्वारा आपस में जोड़ा जाता है तथा फिर कार्बन की शेष संयोजकता को संतुष्ट करने के लिए हाइड्रोजन के परमाणुओं का उपयोग करते हैं। उदाहरण के लिए, निम्न चरणों में एथेन की संरचना को प्राप्त किया जाता है:

C—C चरण

चित्र 4.6 (a) एक आबंध के द्वारा जुड़े कार्बन परमाणु

विज्ञान

Downloaded from https://www.studiestoday.com

प्रत्येक कार्बन परमाणु की तीन संयोजकता असंतुष्ट रहती है, अत: प्रत्येक का आबंध तीन हाइड्रोजन परमाणुओं के साथ किया जाता है जिससे निम्न प्राप्त होता है:

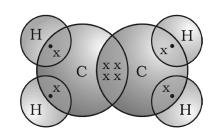
चित्र 4.6 (b) तीन हाइड्रोजन परमाणुओं से जुड़े प्रत्येक कार्बन परमाणु एथेन की इलेक्ट्रॉन बिंदु संरचना को चित्र 4.6 (c) में दर्शाया गया है।

क्या आप इसी प्रकार प्रोपेन की संरचना चित्रित कर सकते हैं जिसका आणविक सूत्र C_3H_8 होता है? आप देखेंगे कि सभी परमाणुओं की संयोजकता उनके बीच बने एक आबंध से संतुष्ट होती है। ऐसे यौगिकों को संतृष्त यौगिक कहते हैं। सामान्यत: ये यौगिक अधिक अभिक्रियाशील नहीं होते।

किंतु कार्बन एवं हाइड्रोजन के एक अन्य यौगिक का सूत्र $\mathbf{C_2H_4}$ है जिसे एथीन कहते हैं। इस अणु को कैसे चित्रित कर सकते हैं? हम पहले जैसी चरणबद्ध विधि अपनाएँगे।

C—C **चरण** 1

एक आबंध के द्वारा जुड़े कार्बन परमाणु (चरण 1)


H SHOT 2

हम देखते हैं कि प्रति कार्बन परमाणु की एक संयोजकता असंतुष्ट रहती है (चरण 2)। इसको तभी संतुष्ट किया जा सकता है जब दो कार्बनों के बीच द्विआबंध हो (चरण 3) जिससे हमें निम्न प्राप्त हो:

H C=C H चरण 3

चित्र 4.7 में एथीन की इलेक्ट्रॉन बिंदु संरचना दी गई है।

हाइड्रोजन एवं कार्बन के एक अन्य यौगिक का सूत्र C_2H_2 है जिसे एथाइन कहते हैं। क्या आप एथाइन की इलेक्ट्रॉन बिंदु संरचना का चित्रण कर सकते हैं? इनकी संयोजकता को संतुष्ट करने के लिए दो कार्बन परमाणुओं के बीच कितने आबंध आवश्यक हैं? कार्बन परमाणुओं के बीच इस प्रकार द्वि– या त्रि–आबंध वाले कार्बन यौगिकों को कार्बन यौगिक कहते हैं तथा ये संतृप्त कार्बन यौगिकों की तुलना में अधिक अभिक्रियाशील होते हैं।

चित्र 4.7 एथीन की संरचना

कार्बन एवं उसके यौगिक

4.2.2 शृंखलाएँ, शाखाएँ एवं वलय

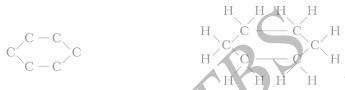
पिछले खंड में हमने क्रमश: 1, 2 तथा 3 कार्बन परमाणुओं वाले कार्बन यौगिकों मेथेन, एथेन तथा प्रोपेन की चर्चा की। कार्बन परमाणुओं की इस प्रकार की शृंखलाओं में दसों कार्बन परमाणु हो सकते हैं। इनमें से छ: के नाम तथा संरचना सारणी 4.2 में दिए गए हैं।

सारणी 4.2 कार्बन तथा हाइड्रोजन के संतृप्त यौगिकों के सूत्र तथा संरचनाएँ

कार्बन परमाणु की संख्या	नाम	सूत्र	संरचना
1	मेथेन	CH ₄	Н Н-С-Н Н
2	एथेन	C_2H_6	H H H-C-C-H H H
3	प्रोपेन	C ₃ H ₈	H H H H-C-C-C-H H H H
4	ब्यूटेन	C_4H_{10}	H H H H
5	पेन्टेन	$\mathrm{C_5H}_{12}$	H H H H H-C-C-C-C-C-H
6	हेक्सेन	$\mathrm{C_6H_{14}}$	H H H H H H-C-C-C-C-C-H

किंतु आइए हम ब्यूटेन पर पुनर्विचार करें। यदि हम चार कार्बन परमाणुओं से कार्बन 'कंकाल' बनाएँ तो हमें पता चलता है कि दो विभिन्न 'कंकाल' बन सकते हैं:

C-C-C


चित्र 4.8 (a) दो संभावित कार्बन कंकाल

शेष संयोजकता के स्थान पर हाइड्रोजन भरने से हमें निम्नलिखित प्राप्त होता है:

चित्र 4.8 (b) $C_4 H_{10}$ सूत्र से दो संरचनाओं के लिए संपूर्ण अणु

हम देखते हैं कि इन दोनों संरचनाओं में एक ही सूत्र $\mathbf{C_4}\mathbf{H_{10}}$ है। समान आणिवक सूत्र लेकिन विभिन्न संरचाओं वाले ऐसे यौगिक संरचनात्मक समावयन कहलाते हैं।

सीधी तथा शाखाओं वाली कार्बन शृंखलाओं के अतिरिक्त कुछ यौगिकों में कार्बन के परमाणु वलय के आकार में व्यवस्थित होते हैं। जैसे, साइक्लोहेक्सेन का सूत्र C_6H_{12} है तथा उसकी संरचना निम्न है:

चित्र 4.9 साइक्लोहेक्सेन की संरचना (a) कार्बन कंकाल (b) संपूर्ण अणु

क्या आप साइक्लोहेक्सेन की इलेक्ट्रॉन बिंदु संरचना को चित्रित कर सकते हैं? सीधी शृंखला, शाखित शृंखला तथा चक्रीय कार्बन यौगिक सभी संतृप्त अथवा असंतृप्त यौगिक हो सकते हैं। जैसे, बेन्जीन (C_eH_e) की संरचना निम्न है:

चित्र 4.10 बेन्जीन की संरचना

केवल कार्बन एवं हाइड्रोजन वाले ये सभी कार्बन यौगिक हाइड्रोकार्बन कहलाते हैं। इनमें से संतृप्त हाइड्रोकार्बन 'ऐल्केन' कहलाते हैं। ऐसे असंतृप्त हाइड्रोकार्बन जिनमें एक या अधिक दोहरे आबंध होते हैं 'ऐल्कीन' कहलाते हैं। एक या अधिक त्रि-आबंध वाले 'ऐल्काइन' कहलाते हैं।

4.2.3 मुझसे दोस्ती करेंगे?

कार्बन अत्यंत मैत्रीपूर्ण तत्व है। अभी तक हमने कार्बन तथा हाइड्रोजन के यौगिकों की चर्चा की। लेकिन कार्बन अन्य तत्वों; जैसे—हैलोजेन, ऑक्सीजन, नाइट्रोजन तथा सल्फ़र के साथ भी आबंध बनाता है। हाइड्रोकार्बन शृंखला में यह तत्व एक या अधिक हाइड्रोजन को इस प्रकार प्रतिस्थापित करते हैं कि कार्बन की संयोजकता संतुष्ट रहती है। ऐसे यौगिकों में हाइड्रोजन को प्रतिस्थापित करने वाले तत्वों को विषम परमाणु कहते हैं। यह विषम परमाणु कुछ प्रकार्यात्मक समुहों में भी उपस्थित होते हैं, जैसा कि सारणी 4.3 में

कार्बन एवं उसके यौगिक

दिया गया है। यह विषम परमाणु और वे प्रकार्यात्मक समूह जिनमें यह उपस्थित होते हैं; यौगिकों को विशिष्ट गुण प्रदान करते हैं। यह गुण कार्बन शृंखला की लम्बाई और प्रकृति पर निर्भर नहीं होते, फलस्वरूप यह प्रकार्यात्मक समूह (Functional group) कहलाते हैं। सारणी 4.3 में कुछ महत्वपूर्ण प्रकार्यात्मक समूह दिए गए हैं। एकल रेखा के द्वारा समूह की मुक्त संयोजकता अथवा संयोजकताएँ दर्शायी गई हैं। हाइड्रोजन के एक या अधिक अणुओं को प्रतिस्थापित करके इस संयोजकता के द्वारा प्रकार्यात्मक समूह कार्बन शृंखला से जुड़े रहते हैं।

सारणी 4.3 कार्बन यौगिकों में कुछ प्रकार्यात्मक समूह

विषम परमाणु	यौगिकों का प्रकार प्रकार्यात्मक समूह का फॉर्मूला	V
Cl/Br	हैलो - (क्लोरो / ब्रोमो) —Cl, —Br ऐल्केन (हाइड्रोजन परमाणु के प्रतिस्थापी)	
ऑक्सीजन	1. ऐल्कोहॉल —OH 4. कार्बोक्सिलिक अम्ल —OH 4. कार्बोक्सिलिक अम्ल OH 4. कार्बोक्सिलिक अम्ल OH	

4.2.4 समजातीय श्रेणी

आपने देखा कि कार्बन परमाणुओं को आपस में जोड़कर विभिन्न लंबाई की शृंखलाएँ बनाई जा सकती हैं। ये शृंखलाएँ शाखित भी हो सकती हैं। साथ ही, इन कार्बन शृंखलाओं में स्थित हाइड्रोजन तथा अन्य परमाणुओं को उपरोक्त किसी भी प्रकार्यात्मक समूहों से प्रतिस्थापित किया जा सकता है। एल्कोहॉल जैसे प्रकार्यात्मक समूह की उपस्थित कार्बन यौगिक के गुणधर्मों को तय करती है, चाहे कार्बनशृंखला की लंबाई कुछ भी हो। जैसे, $\mathrm{CH_3OH}$, $\mathrm{C_2H_5OH}$, $\mathrm{C_3H_7OH}$ तथा $\mathrm{C_4H_9OH}$ के रासायनिक गुणधर्मों में अत्यधिक समानता है। अत: यौगिकों की ऐसी शृंखला जिसमें कार्बन शृंखला में स्थित हाइड्रोजन को एक ही प्रकार का प्रकार्यात्मक समूह प्रतिस्थापित करता है, उसे समजातीय श्रेणी कहते हैं। अब हम सारणी 4.2 में वर्णित समजातीय श्रेणी को देखेंगे। यदि हम उत्तरोत्तर यौगिकों

अब हम सारणा 4.2 म वाणत समजाताय श्रणा का दखग। याद हम उत्तरात्तर यागिक के सूत्रों को देखें, जैसे:

 ${
m CH_4}$ तथा ${
m C_2H_6}$ - ${
m \xi}$ = ${
m TH}$ एक ${
m -CH_2}$ - ${
m \xi}$ = ${
m SH}$ का अंतर है ${
m C_2H_6}$ तथा ${
m C_3H_8}$ - ${
m SH}$ एवं ब्यूटेन ${
m (C_4H_{10})}$ में क्या अंतर है?

क्या आप इन युग्मों के आणिवक द्रव्यमानों में अंतर ज्ञात कर सकते हैं (कार्बन का परमाणिवक द्रव्यमान 12u है तथा हाइड्रोजन का परमाणिवक द्रव्यमान 1u है)?

इसी प्रकार, ऐल्कीनों की समजातीय श्रेणी को देखिए। श्रेणी का पहला सदस्य एथीन है जिसके बारे में हम पहले ही अनुभाग 4.2.1 में अध्ययन कर चुके हैं। एथेन का सूत्र क्या है? उत्तरोत्तर सदस्यों के सूत्र C_3H_{6} , C_4H_8 तथा C_5H_{10} हैं। क्या इनमें भी $-CH_2$ - इकाई का अंतर है?

क्या आपको इन यौगिकों में कार्बन एवं हाइड्रोजन के परमाणुओं की संख्या के बीच कोई संबंध प्रतीत होता है? ऐल्कीनों का सामान्य सूत्र C_nH_{2n} के रूप में लिखा जा सकता है, जहाँ n=2,3,4 है। क्या आप इसी प्रकार ऐल्केनों तथा ऐल्काइनों का सामान्य सूत्र बना सकते हैं?

जब किसी समजातीय श्रेणी में आणिवक द्रव्यमान बढ़ता है तो भौतिक गुणधर्मों में क्रमबद्धता दिखाई देती है। ऐसा इसलिए होता है क्योंकि आणिवक द्रव्यमान के बढ़ने के साथ गलनांक एवं क्वथनांक में वृद्धि होती है। किसी विशेष विलायक में विलेयता जैसे भौतिक गुणधर्म भी इसी प्रकार की क्रमबद्धता दर्शाते हैं। किंतु पूर्ण रूप से प्रकार्यात्मक समूह के द्वारा सुनिश्चित किए जाने वाले रासायनिक गुण समजातीय श्रेणी में एकसमान बने रहते हैं।

■ सूत्रों तथा आणविक द्रव्यमानों में अंतर की गणना कीजिए: (a). CH₃OH तथा

क्रियाकलाप 4.2

C₂H₂OH (b) C₂H₂OH तथा C₃H₂OH एवं (c) C₃H₂OH तथा C₄H₂OH

- क्या इन तीनों में कोई समानता है?
- एक परिवार तैयार करने के लिए इन ऐल्कोहॉलों को कार्बन परमाणुओं के बढ़ते हुए क्रम
 में व्यवस्थित कीजिए। क्या इनको एक समजातीय श्रेणी का परिवार कहा जा सकता है?
- सारणी 4.3 में दिए गए अन्य प्रकार्यात्मक समूहों के लिए चार कार्बनों तक के यौगिकों वाली समजातीय श्रेणी तैयार कीजिए।

4.2.5 कार्बन यौगिकों की नामपद्धति

किसी समजातीय श्रेणी में यौगिकों के नामों का आधार बेसिक कार्बन की उन मूल शृंखलाओं पर आधारित होता है जिनको प्रकार्यात्मक समूह की प्रकृति के अनुसार 'पूर्वलग्न' 'उपसर्ग' या 'अनुलग्न' 'प्रत्यय' के द्वारा संशोधित किया गया हो। जैसे क्रियाकलाप 4.2 में लिए गए ऐल्कोहॉलों के नाम हैं—मेथेनॉल, एथेनॉल, प्रोपेनॉल तथा ब्युटेनॉल।

निम्न विधि के द्वारा किसी कार्बन यौगिक का नामकरण किया जा सकता है:

- (i) यौगिक में कार्बन परमाणुओं की संख्या ज्ञात कीजिए। तीन कार्बन परमाणु वाले यौगिक का नाम प्रोपेन होगा।
- (ii) प्रकार्यात्मक समूह की उपस्थिति में इसको पूर्वलग्न अथवा अनुलग्न के साथ यौगिक के नाम में दर्शाया जाता है (सारणी 4.4 के अनुसार)।

कार्बन एवं उसके यौगिक

- (iii) यदि प्रकार्यात्मक सूमह का नाम अनुलग्न के आधार पर दिया जाना हो तथा यदि प्रकार्यात्मक समूह के अनुलग्न नाम स्वर a, e, i, o, u से प्रारंभ होता हो तो कार्बन शृंखला के नाम से अंत का 'e' हटाकर, उसमें समुचित अनुलग्न लगाकर संशोधित करते हैं। जैसे, कीटोन सूमह की तीन कार्बन वाली शृंखला को निम्न विधि से नाम दिया जाएगा: Propane 'e' = propan + 'one' = propanone प्रोपेनोन.
- (iv) असंतृप्त कार्बन शृंखला में कार्बन शृंखला के नाम में दिए गए अंतिम 'ane' को सारणी 4.4 के अनुसार 'ene' या 'yne' से प्रतिस्थापित करते हैं। जैसे, द्विआबंध वाली तीन कार्बन की शृंखला प्रोपीन कहलाएगी तथा त्रि-आबंध होने पर यह प्रोपाइन (propyne) कहलाएगी।

सारणी 4.4 कार्बनिक यौगिकों की नामपद्धति

सारणा 4.4 काबानक यागिका	का नामपद्धात		
यौगिकों का प्रकार	पूर्वलग्न/अनुलग्न	उदाहरण	100
1. हैलो ऐल्केन	पूर्वलग्न क्लोरो, ब्रोमो, आदि	H H H H-C-C-C-C1 H H H	क्लोरोप्रोपेन
		H H H H-C-C-C-Br H H H	ब्रोमोप्रोपेन
2. ऐल्कोहॉल	अनुलग्न - ol	H H H H-C-C-C-C-OH H H H	्रोपेनॉल
3. ऐल्डिहाइड	अनुलग्न - al	$\begin{array}{cccc} & H & H & H \\ H - C - C - C - C = O \\ & & H & H \end{array}$	प्रोपेनैल
4. कीटोन	अनुलग्न - one	H H H-C-C-C-H H O H	प्रोपेनोन
5. कार्बोक्सिलक अम्ल	अनुलग्न - oic acid	H H O H-C-C-C-C-OH H H	प्रोपेनॉइक अम्ल
6. ऐल्कीन	अनुलग्न – ene	$ \begin{array}{cccc} H & H \\ H - C - C = C \\ H & H \end{array} $	प्रोपीन
7. ऐल्काइन	अनुलग्न – yne	$ \begin{array}{c} H \\ H - \overset{\mid}{C} - C \equiv C - H \\ H \end{array} $	प्रोपाइन

प्रश्न

- 1. पेन्टेन के लिए आप कितने संरचनात्मक समावयवों का चित्रण कर सकते हैं?
- 2. कार्बन के दो गुणधर्म कौन से हैं जिनके कारण हमारे चारों ओर कार्बन यौगिकों की विशाल संख्या दिखाई देती है?
- 3. साइक्लोपेन्टेन का सूत्र तथा इलेक्ट्रॉन बिंदु संरचना क्या होंगे?
- 4. निम्न यौगिकों की संरचनाएँ चित्रित कीजिए:
 - (i) एथेनॉइक अम्ल
- (ii) ब्रोमोपेन्टेन*

(iii) ब्यूटेनोन

(iv) हेक्सेनैल

*क्या ब्रोमोपेन्टेन के संरचनात्मक समावयव संभव हैं?

- निम्न यौगिकों का नामकरण कैसे करेंगे?
 - (i) CH₃—CH₂—Br

4.3 कार्बन यौगिकों के रासायनिक गुणधर्म

इस भाग में हम कार्बन यौगिकों के कुछ रासायनिक गुणधर्मों का अध्ययन करेंगे। चूँिक हमारे द्वारा उपयोग में लाए जाने वाले अधिकांश ईंधन कार्बन अथवा उसके यौगिक होते हैं, अत: सर्वप्रथम हम दहन के विषय में पढेंगे।

4.3.1 दहन

अपने सभी अपररूपों में कार्बन, ऑक्सीजन में दहन करके ऊष्मा एवं प्रकाश के साथ कार्बन डाइऑक्साइड देता है। दहन पर अधिकांश कार्बन यौगिक भी प्रचुर मात्रा में ऊष्मा एवं प्रकाश को मुक्त करते हैं। निम्नलिखित वे ऑक्सीकरण अभिक्रियाएँ हैं जिनका अध्ययन आपने पहले अध्याय में किया था:

- (i) $C + O_2 \rightarrow CO_2 + 3$ ष्मा एवं प्रकाश
- (ii) $CH_4 + O_2 \rightarrow CO_2 + H_2O + ऊष्मा एवं प्रकाश$
- (iii) CH2CH2OH + O2 → CO2 + H2O + ऊष्मा एवं प्रकाश

पहले अध्याय में अध्ययन की गई विधि से (ii), (iii) अभिक्रियाओं को संतुलित कीजिए।

क्रियाकलाप 4.3

सावधानी: इस क्रियाकलाप के लिए शिक्षक का पर्यवेक्षण अनिवार्य है।

एक स्पैचुला में एक-एक करके कुछ कार्बन यौगिकों (नैफ्थलीन, कैम्फर, ऐल्कोहॉल)
 को लेकर जलाइए।

कार्बन एवं उसके यौगिक

- ज्वाला की प्रकृति का प्रेक्षण कीजिए तथा लिखिए कि धुआँ उत्पन्न हुआ या नहीं।
- ज्वाला के ऊपर धातु की एक तश्तरी रिखए। इनमें से किसी भी यौगिक के कारण क्या तश्तरी पर कोई निक्षेपण हुआ?

क्रियाकलाप 4.4

- एक बुन्सेन बर्नर जलाइए तथा विभिन्न प्रकार की ज्वालाओं / धुएँ की उपस्थिति को
 प्राप्त करने के लिए उसके आधार पर वायु छिद्र को व्यवस्थित कीजिए।
- पीली, कज्जली ज्वाला कब प्राप्त हुई?
- नीली ज्वाला कब प्राप्त हुई?

संतृप्त हाइड्रोकार्बन से सामान्यत: स्वच्छ ज्वाला निकलेगी जबिक असंतृप्त कार्बन यौगिकों से अत्यधिक काले धुएँ वाली पीली ज्वाला निकलेगी। इसके परिणामस्वरूप क्रियाकलाप 4.3 में धातु की तश्तरी पर कज्जली निक्षेपण होगा। लेकिन, वायु की आपूर्ति को सीमित कर देने से अपूर्ण दहन होने पर संतृप्त हाइड्रोकार्बनों से भी कज्जली ज्वाला निकलेगी। घरों में उपयोग में लाई जाने वाली गैस/केरोसीन के स्टोव में वायु के लिए छिद्र होते हैं जिनसे पर्याप्त मात्रा में ऑक्सीजन-समृद्ध मिश्रण जलकर स्वच्छ नीली ज्वाला देता है।

यदि कभी बर्तनों के तले काले होते हुए दिखाई दें तो इसका अर्थ होगा कि वायु छिद्र अवरुद्ध हैं तथा ईधन का व्यर्थ व्यय हो रहा है। कोयले तथा पेट्रोलियम जैसे ईंधनों में कुछ मात्रा में नाइट्रोजन तथा सल्फर होती हैं। इनके दहन के फलस्वरूप सल्फ़र तथा नाइट्रोजन के ऑक्साइड का निर्माण होता है जो पर्यावरण में प्रमुख प्रदूषक हैं।

\overline{a}

क्यों जलते हुए पदार्थ ज्वाला उत्पन्न करते हैं अथवा नहीं करते हैं?

क्या आपने कभी कोयले अथवा लकड़ी की अग्नि को देखा है? यदि नहीं, तो अगली बार जब भी अवसर मिले तो आप ध्यान से देखिए कि लकड़ी अथवा कोयले का जलना आरंभ होने पर क्या होता है। आपने देखा कि एक मोमबत्ती या गैस स्टोव की एल.पी.जी., जलते समय ज्वाला उत्पन्न करती है। यद्यपि आप देखेंगे कि अँगीठी में जलने वाला कोयला या तारकोल कभी-कभी लाल रंग के समान उज्ज्वल होता है तथा बिना ज्वाला के ऊष्मा देता है। ऐसा इसलिए होता है क्योंकि केवल गैसीय पदार्थों के जलने पर ही ज्वाला उत्पन्न होती है। लकड़ी या तारकोल जलाने पर उपस्थित वाष्पशील पदार्थ वाष्पीकृत हो जाते हैं तथा आरंभ में ज्वाला के साथ जलते हैं।

गैसीय पदार्थों के परमाणुओं को ताप देने पर एक दीप्त ज्वाला दिखाई देती है तथा उज्ज्वल होना आरंभ करती है। प्रत्येक तत्व के द्वारा उत्पन्न रंग उस तत्व का अभिलाक्षणिक गुण होता है। गैस स्टोव की ज्वाला में ताँबे के तार को जलाने का प्रयास कीजिए तथा इसके रंग का प्रेक्षण कीजिए। आपने देखा कि अपूर्ण दहन से कज्जल उत्पन्न होता है जो कार्बन होता है। इसके आधार पर आप मोमबत्ती की पीले रंग की ज्वाला का क्या कारण बताएँगे?

$\overline{}$

कोयले तथा पेट्रोलियम का निर्माण

यह भी जानिए!

कोयले तथा पेट्रोलियम का निर्माण जैवमात्रा से हुआ है जो विभिन्न जैविकीय तथा भूवैज्ञानिक प्रक्रियाओं पर निर्भर करते हैं। कोयला लाखों वर्ष पुराने वृक्षों, फ़र्न तथा अन्य पौधे का अवशेष है। संभवत: भूकंप अथवा ज्वालामुखी फटने के कारण ये धरती में चट्टानों की परतों के नीचे दब गए थे तथा धीरे-धीरे क्षय होकर ये कोयला बन गए। तेल तथा गैस लाखों वर्ष पुराने छोटे समुद्री पौधों तथा जीवों के अवशेष हैं। उनके मृत होने पर उनके शरीर समुद्र-तल में डूब गए तथा गाद से ढक गए। उन मृत अवशेषों पर बैक्टीरिया के आक्रमण से प्रबल दाब के कारण तेल तथा गैस का निर्माण हुआ। इसी बीच गाद धीरे-धीरे दबकर चट्टान बन गया। चट्टान के छिद्रित भागों से तेल तथा गैस का रिसाव हुआ और ये पानी में स्पंज की तरह फँस गए। क्या आप अनुमान लगा सकते हैं कि कोयले तथा पेट्रोलियम को जीवाशमी ईंधन क्यों कहते हैं?

4.3.2 ऑक्सीकरण

क्रियाकलाप 4.5

- एक परखनली में लगभग 3 mL एथेनॉल लीजिए तथा इसे जल ऊष्मक में साबधानी से गर्म कीजिए।
- इस विलयन में क्षारीय पोटैशियम परमैंगनेट का 5% एक-एक बूँद करके डालिए।
- डालने पर आरंभ में क्या पोटैशियम परमैंगनेट का रंग बना रहता है?
- अधिक मात्रा में डालने पर पोटैशियम परमैंगनेट का रंग लुप्त क्यों नहीं होता?

प्रथम अध्याय में आपने ऑक्सीकरण की अभिक्रियाओं का अध्ययन किया। दहन करने पर कार्बन यौगिकों को सरलता से ऑक्सीकृत किया जा सकता है। इस पूर्ण ऑक्सीकरण के अतिरिक्त ऐसी अभिक्रियाएँ भी होती हैं जिनमें ऐल्कोहॉल को कार्बोक्सिलिक अम्ल में बदला जाता है:

हम देखते हैं कि कुछ पदार्थों में अन्य पदार्थों को ऑक्सीजन देने की क्षमता होती है। इन पदार्थों को **ऑक्सीकारक** कहा जाता है।

क्षारीय पोटैशियम परमैंगनेट अथवा अम्लीकृत पोटैशियम डाइक्रोमेट ऐल्कोहॉलों को अम्लों में आक्सीकृत करते हैं अर्थात ये आरंभिक पदार्थ में ऑक्सीजन जोड़ते हैं। अतएव इनको ऑक्सीकारक कहते हैं।

4.3.3 संकलन अभिक्रिया

पैलेडियम अथवा निकैल जैसे उत्प्रेरकों की उपस्थिति में असंतृप्त हाइड्रोकार्बन हाइड्रोजन जोड़कर संतृप्त हाइड्रोकार्बन देते हैं। उत्प्रेरक वे पदार्थ होते हैं जिनके कारण अभिक्रिया कार्बन एवं उसके यौगिक

भिन्न दर से आगे बढ़ती है जो अभिक्रिया को प्रभावित नहीं करते हैं। निकैल उत्प्रेरक का उपयोग करके साधारणत: वनस्पित तेलों के हाड्रोजनीकरण में इस अभिक्रिया का उपयोग होता है। वनस्पित तेलों में साधारणत: लंबी असंतृप्त कार्बन शृंखलाएँ होती हैं जबिक जंतु वसा में संतृप्त कार्बन शृंखलाएँ होती हैं।

आपने देखा होगा कि कुछ विज्ञापनों में कहा जाता है कि वनस्पित तेल 'स्वास्थ्यवर्धक' होते हैं। साधारणत:, जंतु वसा में संतृप्त वसा अम्ल होते हैं जो स्वास्थ्य के लिए हानिकारक माने जाते हैं। भोजन पकाने के लिए असंतृप्त वसा अम्लों वाले तेलों का उपयोग करना चाहिए।

4.3.4 प्रतिस्थापन अभिक्रिया

संतृप्त हाइड्रोकार्बन अत्यधिक अनिभिक्रत होते हैं तथा अधिकांश अभिकर्मकों की उपस्थित में अक्रिय होते हैं। हालाँकि, सूर्य के प्रकाश की उपस्थित में अति तीव्र अभिक्रिया में क्लोरीन का हाइड्रोकार्बन में संकलन होता है। क्लोरीन एक-एक करके हाइड्रोजन के परमाणुओं का प्रतिस्थापन करती है। इसको प्रतिस्थापन अभिक्रिया कहते हैं, क्योंकि एक प्रकार का परमाणु, अथवा परमाणुओं के समूह दूसरे का स्थान लेते हैं। साधारणत:, उच्च समजातीय ऐल्केन के साथ अनेक उत्पादों का निर्माण होता है।

$$_4$$
 + Cl $_2$ $\xrightarrow{}$ (सूर्य $\stackrel{\checkmark}{\sim}$ प्रकास की उपस्थिति में) \longrightarrow CH $_3$ Cl + HC

प्रश्न

- 1. एथनॉल से एथेनॉइक अम्ल में परिवर्तन को ऑक्सीकरण अभिक्रिया क्यों कहते हैं?
- ऑक्सीजन तथा एथाइन के मिश्रण का दहन वेल्डिंग के लिए किया जाता है। क्या आप बता सकते हैं कि एथाइन तथा वायु के मिश्रण का उपयोग क्यों नहीं किया जाता?

4.4 कुछ महत्वपूर्ण कार्बन यौगिक : एथनॉल तथा एथेनॉइक अम्ल

अनेक कार्बन यौगिक हमारे लिए अनमोल होते हैं। किंतु यहाँ हम व्यावसायिक रूप से महत्वपूर्ण दो यौगिकों- एथनॉल तथा एथेनॉइक अम्लों के गुणधर्मों का अध्ययन करेंगे।

4.4.1 एथनॉल के गुणधर्म

एथनॉल कक्ष के ताप पर द्रव अवस्था में होता है (एथनॉल के गलनांक एवं क्वथनांक के लिए सारणी 4.1 देखिए)। सामान्यत: एथेनॉल को ऐल्कोहॉल कहा जाता है तथा यह सभी ऐल्कोहॉली पेय पदार्थों का महत्वपूर्ण अवयव होता है। इसके अतिरिक्त यह एक

अच्छा विलायक है इसिलए इसका उपयोग टिंचर आयोडीन, कफ़ सीरप, टॉनिक आदि जैसी औषधियों में होता है। एथनॉल को किसी भी अनुपात में जल में मिलाया जा सकता है। तनु एथनॉल की थोड़ी सी भी मात्रा लेने पर नशा आ जाता है। हालॉंकि ऐल्कोहॉल पीना निंदनीय है लेकिन समाज में बड़े पैमाने पर प्रचलित है। लेकिन शुद्ध एथनॉल (पिरशुद्ध ऐल्कोहॉल) की थोड़ी सी भी मात्रा घातक सिद्ध हो सकती है। काफ़ी समय तक ऐल्कोहॉल का सेवन करने से स्वास्थ्य संबंधी कई समस्याएँ उत्पन्न हो जाती हैं।

क्रियाकलाप 4.6

शिक्षक के द्वारा प्रदर्शन-

- लगभग दो चावल के आकार के बराबर सोडियम के एक छोटे टुकड़े को एथनॉल (पिरशुद्ध ऐल्कोहॉल) में डालिए।
- आप क्या प्रेक्षित करते हैं?
- उत्सर्जित गैस की आप कैसे जाँच करेंगे?

एथनॉल की अभिक्रियाएँ

(i) सोडियम के साथ अभिक्रिया-

2Na + 2CH $_3$ CH $_2$ OH \longrightarrow 2CH $_3$ CH $_2$ O Na $^+$ + H $_2$

ऐल्कोहॉल सोडियम से अभिक्रिया कर हाइड्रोजन गैस उत्सर्जित करता है। एथनॉल के साथ अभिक्रिया में दूसरा उत्पाद सोडियम एथॉक्साइड बनता है। क्या आप बता सकते हैं कि कौन सा दूसरा पदार्थ धातु से अभिक्रिया कर हाइड्रोजन बनाता है?

(ii) असंतृप्त हाइड्रोकार्बन बनाने की अभिक्रिया: 443K तापमान पर एथनॉल को अधिक्य सांद्र सल्फ़्यूरिक अम्ल के साथ गर्म करने पर एथनॉल का निर्जलीरण होकर एथीन बनता है।

 $CH_3 - CH_2OH - H_2O + H_2O$

इस अभिक्रिया में सल्फ़्यूरिक अम्ल निर्जलीकारक के रूप में काम करता है जो एथनॉल से जल को अलग कर देता है।

सजीव प्राणियों पर ऐल्कोहॉल का क्या प्रभाव पड़ता है?

जब अधिक मात्रा में एथनॉल का सेवन किया जाता है तो इससे उपापचयी प्रक्रिया धीमी हो जाती है तथा केंद्रीय तंत्रिका तंत्र कमज़ोर हो जाता है। इसके फलस्वरूप समन्वय की कमी, मानसिक दुविधा, उनींदापन, सामान्य अर्न्तबाध का कम हो जाना एवं भावशून्यता आती है। यद्यपि व्यक्ति राहत महसूस करता है लेकिन उसे पता नहीं चल पाता कि उसके सोचने, समझने की क्षमता तथा मांसपेशी बुरी तरह प्रभावित हुई है। एथनॉल के विपरीत मेथेनॉल की थोड़ी सी थी मात्रा लेने से मृत्यु हो सकती है। यकृत में मेथेनॉल ऑक्सीकृत होकर मेथेनैल बन जाता है। मेथेनैल यकृत की कोशिकाओं के घटकों के साथ शीघ्र अभिक्रिया

कार्बन एवं उसके यौगिक

tic

जानते

करने लगता है। इससे प्रोटोप्लाज्म उसी प्रकार स्कंदित हो जाता है जिस प्रकार पकाने पर अंडा स्कंदित होता है। मेथेनैल चाक्षुष तंत्रिका को भी प्रभावित करता है जिससे व्यक्ति अंधा हो सकता है। एथनॉल एक महत्वपूर्ण औद्योगिक विलायक है। औद्योगिक उपयोग के लिए तैयार एथनॉल का दुरुपयोग रोकने के लिए इसमें मेथेनॉल जैसा जहरीला पदार्थ मिला दिया जाता है जिससे यह पीने योग्य न रह जाए। ऐल्कोहॉल की पहचान करने के लिए इसमें रंजक मिलाकर इसका रंग नीला बना दिया जाता है। इसे विकृत ऐल्कोहॉल कहा जाता है।

ईंधन के रूप में ऐल्कोहॉल

गन्ना सूर्य के प्रकाश को रासायनिक ऊर्जा में बदलने में सर्वाधिक सक्षम होता है। गन्ने का रस मोलेसस (सिरा) बनाने के उपयोग में लाया जाता है जिसका किण्वन करके ऐल्कोहॉल (एथनॉल) तैयार किया जाता है। कुछ देशों में ऐल्कोहॉल में पेट्रोल मिलाकर उसे स्वच्छ ईंधन के रूप में इस्तेमाल किया जाता है। यह ईंधन पर्याप्त ऑक्सीजन होने पर केवल कार्बन डाइऑक्साइड एवं जल उत्पन्न करता है।

4.4.2 एथेनॉइक अम्ल के गुणधर्म

क्रियाकलाप 4.7

- लिटमस पत्र एवं सार्वित्रिक सूचक का उपयोग कर तनु ऐसीटिक अम्ल तथा हाइड्रोक्लोरिक अम्ल के pH मान की तुलना कीजिए।
- क्या लिटमस परीक्षण में दोनों अम्ल सूचित होते हैं?
- सार्वित्रक सूचक से क्या दोनों अम्लों के प्रबल होने का पता चलता है?

चित्र 4.11 एस्टर का निर्माण

एथेनॉइक अम्ल को सामान्यतः ऐसीटिक अम्ल कहा जाता है तथा यह कार्बोक्सिलिक अम्ल समूह से संबंधित है। ऐसीटिक अम्ल के 3-4% विलयन को सिरका कहा जाता है एवं इसे अचार में पिरिक्षक के रूप में इस्तेमाल किया जाता है। शुद्ध एथनॉइक अम्ल का गलनांक 290 K होता है और इसलिए ठंडी जलवायु में शीत के दिनों में यह जम जाता है। इस कारण इसे ग्लैशल ऐसीटिक अम्ल कहते हैं। कार्बोक्सिलिक अम्ल कहा जाने वाला कार्बिनक यौगिकों के समूह का अभिलक्षण इसकी अम्लीयता होती है। हालाँकि खनिज अम्लों के विपरीत कार्बोक्सिलिक अम्ल दुर्बल अम्ल होते हैं। खनिज अम्ल जैसे हाइड्रोक्लोरिक अम्ल, पूरी तरह आयनीकृत हो जाते हैं।

क्रियाकलाप 4.8

- एक परखनली में सांद्र सल्फ़्यूरिक अम्ल की कुछ बूँदें, एक-एक mL एथेनॉल (पिरशुद्ध ऐल्कोहॉल) एवं ग्लैशल ऐसीटिक अम्ल लीजिए।
- कम से कम पाँच मिनट तक जल ऊष्मक में उसे गर्म करें जैसा चित्र 4.1 में दिखाया गया है।
- अब इसे उस बीकर में उड़ेल दीजिए जिसमें
 20-50 mL जल हो तथा उस मिश्रण को सूँघिए।

विज्ञान

एथेनॉइक अम्ल की अभिक्रियाएँ

(i) एस्टरीकरण अभिक्रिया : एस्टर मुख्य रूप से अम्ल एवं ऐल्कोहॉल की अभिक्रिया से निर्मित होते हैं। एथेनॉइक अम्ल किसी अम्ल उत्प्रेरक की उपस्थिति में परिशुद्ध एथनॉल से अभिक्रिया करके एस्टर बनाते हैं:

सामान्यतया एस्टर की गंध मृदु होती है। इसका उपयोग इत्र बनाने एवं स्वाद उत्पन्न करने वाले कारक के रूप में किया जाता है। सोडियम हाइड्रॉक्साइड से अभिक्रिया द्वारा, जो एक क्षार है, एस्टर पुन: ऐल्कोहॉल एवं कार्बोक्सिलिक अम्ल का सोडियम लवण बनाता है। इस अभिक्रिया को साबुनीकरण कहा जाता है क्योंकि इससे साबुन तैयार किया जाता है। साबुन दीर्घ शृंखला वाले कार्बोक्सिलिक अम्लों सोडियम अथवा पोटैशियम लवण होते हैं।

$$CH_3COOC_2H_5 \xrightarrow{NaOH} C_2H_5OH_4CH_3COONa$$

(ii) क्षारक के साथ अभिक्रिया: खिनज अम्ल की भाँति एथेनाँइक अम्ल सोडियम हाइड्रोक्साँइड जैसे क्षारक से अभिक्रिया करके लवण (सोडियम एथेनोएट या सोडियम ऐसीटेट) तथा जल बनाता है।

एथेनॉइक अम्ल कार्बोनेट एवं हाइड्रोजन कार्बोनेट से कैसे अभिक्रिया करता है? जानने के लिए आइए हम एक क्रियाकलाप करें।

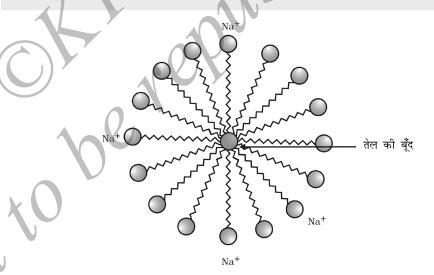
क्रियाकलाप 4.9

- अध्याय 2 के क्रियाकलाप 2.5 के अनुसार उपकरण तैयार कीजिए।
- एक परखनली में एक स्पैचुला भरकर सोडियम कार्बोनेट लीजिए तथा उसमें 2 mL तनु एथेनॉइक अम्ल मिलाइए।
- आप क्या प्रेक्षित करते हैं?
- ताजे चुने के जल में इस गैस को प्रवाहित कीजिए। आप क्या देखते हैं?
- क्या इस परीक्षण से एथेनॉइक अम्ल एवं सोडियम कार्बोनेट की अभिक्रिया से उत्पन्न गैस का पता चल सकता है?
- अब सोडियम कार्बोनेट के स्थान पर सोडियम हाइडोजनकार्बोनेट के साथ यह क्रियाकलाप दोहराइए।
- (iii) कार्बोनेट एवं हाइड्रोजनकार्बोनेट के साथ अभिक्रिया : एथेनॉइक अम्ल कार्बोनेट एवं हाइड्रोजनकार्बोनेट के साथ अभिक्रिया करके लवण, कार्बन डाइऑक्साइड एवं जल बनाता है। इस अभिक्रिया में उत्पन्न लवण को सोडियम ऐसीटेट कहते हैं।

$$\begin{aligned} & 2\text{CH}_3\text{COOH} + \text{Na}_2\text{CO}_3 \longrightarrow 2\text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2 \\ & \text{CH}_3\text{COOH} + \text{NaHCO}_3 \longrightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2 \end{aligned}$$

कार्बन एवं उसके यौगिक

प्रश्न


- 1. प्रयोग द्वारा आप ऐल्कोहॉल एवं कार्बोक्सिलिक अम्ल में कैसे अंतर कर सकते हैं?
- 2. ऑक्सीकारक क्या हैं?

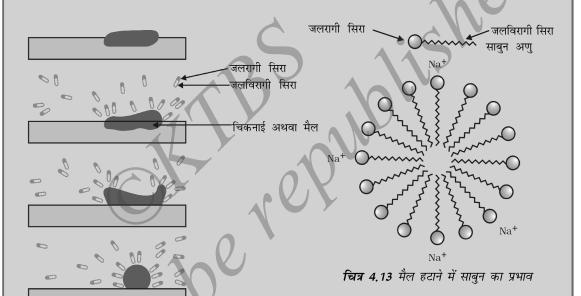
4.5 साबुन और अपमार्जक

क्रियाकलाप 4.10

- दोनों में एक-एक बूँद तेल (पाक तेल) डालिए एवं उन्हें 'А' तथा 'В' नाम दीजिए।
- परखनली 'B' में साबुन के घोल की कुछ बूँदें डालिए।
- दोनों परखनलियों को समान समय तक जोर-जोर से हिलाइए।
- क्या हिलाना बंद करने के बाद दोनों परखनिलयों में आप तेल एवं जल की परतों को अलग-अलग देख सकते हैं?
- कुछ देर तक दोनों परखनिलयों को स्थिर रिखए एवं फिर उस पर ध्यान दीजिए। क्या तेल की परत अलग हो जाती है? ऐसा किस परखनिली में पहले होता है।

इस क्रियाकलाप से सफ़ाई में साबुन के प्रभाव का पता चलता है। अधिकांश मैल

चित्र 4.12 मिसेल का निर्माण


तैलीय होते हैं और आप जानते हैं कि तेल पानी में अघुलनशील है। साबुन के अणु लंबी शृंखला वाले कार्बोक्सिलिक अम्लों के सोडियम एवं पोटैशियम लवण होते हैं। साबुन का आयिनक भाग जल से जबिक कार्बन शृंखला तेल से पारस्परिक क्रिया करती है। इस प्रकार साबुन के अणु मिसेली संरचना तैयार करते हैं (चित्र 4.12) जहाँ अणु का एक सिरा तेल कण की ओर तथा आयिनक सिरा बाहर की ओर होता है। इससे पानी में

इमल्शन बनता है। इस प्रकार साबुन का मिसेल मैल को पानी बाहर निकलने में मदद करता है और हमारे कपड़े साफ़ हो जाते है (चित्र 4.13)।

क्या आप मिसेल की संरचना बना सकते हैं जो साबुन को हाइड्रोकार्बन में घोलने से बनता है?

मिसेल

साबुन के अणु ऐसे होते हैं जिनके दोनों सिरों के विभिन्न गुणधर्म होते हैं। जल में विलेय एक सिरे को जलरागी कहते हैं तथा हाइड्रोकार्बन में विलेय दूसरे सिरे को जलविरागी कहते हैं। जब साबुन जल की सतह पर होता है तब इसके अणु अपने को इस प्रकार व्यवस्थित कर लेते हैं कि इसका आयनिक सिरा जल के

अंदर होता है जबिक हाइड्रोकार्बन पूँछ (दूसरा छोर) जल के बाहर होती है। जल के अंदर इन अणुओं की एक विशेष व्यवस्था होती है जिससे इसका हाइड्रोकार्बन सिरा जल के बाहर बना होता है। ऐसा अणुओं का बड़ा गुच्छा बनने के कारण होता है जिसमें जलविरागी पूँछ गुच्छे के आंतरिक हिस्से में होती है जबिक उसका आयनिक सिरा गुच्छे की

सतह पर होता है। इस संरचना को मिसेल कहते हैं। मिसेल के रूप में साबुन स्वच्छ करने में सक्षम होता है क्योंकि तैलीय मैल मिसेल के केंद्र में एकत्र हो जाते हैं। मिसेल विलयन में कोलॉइड के रूप में बने रहते हैं तथा आयन-आयन विकर्षण के कारण वे अवक्षेपित नहीं होते। इस प्रकार मिसेल में तैरते मैल आसानी से हटाए जा सकते हैं। साबुन के मिसेल प्रकाश को प्रकीर्णित कर सकते हैं। यही कारण है कि साबुन का घोल बादल जैसा दिखता है।

यह भी जानिए

कार्बन एवं उसके यौगिक

क्रियाकलाप 4.11

- अलग-अलग परखनलियों में 10-10 mL आसुत जल (अथवा वर्षा जल) एवं कठोर जल (हैंडपंप या कुएँ का जल) लीजिए।
- दोनों में साबुन के घोल की कुछ बूँदें मिलाइए।
- दोनों परखनिलयों को एक ही समय तक हिलाइए एवं उससे बनने वाले झाग पर ध्यान दीजिए।
- किस परखनली में अधिक झाग बनता है?
- किस परखनली में श्वेत दही जैसा अवक्षेप प्राप्त होता है?
- शिक्षक के लिए निर्देश: यदि आपके आसपास कठोर जल उपलब्ध नहीं है तो साधारण जल में हाइड्रोजन कार्बोनेट/सल्फेट/मैग्नीशियम या कैल्सियम के क्लोराइड को घोलकर कठोर जल तैयार कीजिए।

क्रियाकलाप 4.12

- दो परखनलियाँ लीजिए और प्रत्येक में 10-10 mL कठोर जल डालिए।
- एक में साबुन के घोल की पाँच बूँदें तथा दूसरे में अपमार्जक के घोल की पाँच बूँदें डालिए।
- दोनों परखनिलयों को एक ही समय तक हिलाएँ।
- क्या दोनों में झाग की मात्रा समान है?
- किस परखनली में दही जैसा ठोस पदार्थ बनता है?

क्या आपने कभी स्नान करते समय अनुभव किया है कि झाग मुश्किल से बन रहा है एवं जल से शरीर धो लेने के बाद भी कुछ अघुलनशील पदार्थ (स्कम) जमा रहता है। ऐसा इसलिए होता है, क्योंकि साबुन कठोर जल में उपस्थित कैल्सियम एवं मैग्नीशियम लवणों से अभिक्रिया करता है। ऐसे में आपको अधिक मात्रा में साबुन का उपयोग करना पड़ता है। एक अन्य प्रकार के यौगिक यानी अपमार्जक का उपयोग कर इस समस्या को निपटाया जा सकता है। अपमार्जक सामान्यत: लंबी कार्बन शृंखला वाले सल्फ़ोनिक लवण अथवा लंबी कार्बन शृंखला वाले अमोनियम लवण होते हैं जो क्लोराइड या बोमाइड आयनों के साथ बनते हैं। इन यौगिकों का आवेशित सिरा कठोर जल में उपस्थित कैल्शियम एवं मैग्नीशियम आयनों के साथ अघुलनशील पदार्थ नहीं बनाते हैं। इस प्रकार वह कठोर जल में भी प्रभावी बने रहते हैं। सामान्यत: अपमार्जकों का उपयोग शैंपू एवं कपड़े धोने के उत्पाद बनाने में होता है।

प्रश्न

- क्या आप डिटरजेंट का उपयोग कर बता सकते हैं कि कोई जल कठोर है अथवा नहीं?
- 2. लोग विभिन्न प्रकार से कपड़े धोते हैं। सामान्यत: साबुन लगाने के बाद लोग कपड़े को पत्थर पर पटकते हैं, डंडे से पीटते हैं, ब्रुश से रगड़ते हैं या वाशिंग मशीन में कपड़े रगड़े जाते हैं। कपड़ा साफ़ करने के लिए उसे रगड़ने की क्यों आवश्यकता होती है?

?

<u>आपने</u> क्या सीखा

- कार्बन एक सर्वतोमुखी तत्व है जो सभी जीवों एवं हमारे उपयोग में आने वाली वस्तुओं का आधार है।
- कार्बन की चतुःसंयोजकता एवं शृंखलन प्रकृति के कारण यह कई यौगिक बनाता है।
- अपने-अपने बाहरी कोशों को पूर्ण रूप से भरने के लिए दो परमाणुओं के बीच इलेक्ट्रॉनों की साझेदारी से सहसंयोजक आबंध बनता है।
- कार्बन अपने या दूसरे तत्वों; जैसे-हाइड्रोजन, ऑक्सीजन, सल्फ़र, नाइट्रोजन एवं क्लोरीन के साथ सहसंयोजक आबंध बनाता है।
- कार्बन ऐसे यौगिक भी बनाता है जिसमें कार्बन परमाणुओं के बीच द्वि-या त्रिआबंध होते हैं। कार्बन की यह शृंखला, सीधी, शाखायुक्त या वलीय किसी भी रूप में हो सकती है।
- कार्बन की शृंखला बनाने की क्षमता के कारण यौगिकों की एक समजाती श्रेणी उत्पन्न होती है जिसमें
 विभिन्न लंबाई वाली कार्बन शृंखला से समान प्रकार्यात्मक समूह जुड़ा होता है।
- ऐल्कोहॉल, ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल जैसे समूह कार्बन यौगिकों का अभिलाक्षणिक गुण प्रदान करते हैं।
- कार्बन तथा उसके यौगिक हमारे ईंधन के प्रमुख स्रोत हैं।
- कार्बन यौगिक एथनॉल एवं एथेनॉइक अम्ल का हमारे दैनिक जीवन में काफ़ी महत्व है।
- साबुन एवं अपमार्जक की प्रक्रिया अणुओं में जलग्रागी तथा जलिवरागी दोनों समूहों की उपस्थिति पर आधारित है। इसकी मदद से तैलीय मैल का पायस बनता है और बाहर निकलता है।

अभ्यास

- 1. एथेन का आण्विक सूत्र C_2H_6 है। इसमें:
 - (a) 6 सहसंयोजक आबंध हैं
 - (b) 7 सहसंयोजक आबंध हैं
 - (c) 8 सहसंयोजक आबंध हैं
 - (d) 9 सहसंयोजक आबंध हैं
- 2. ब्यूटेनॉन चर्तु-कार्बन यौगिक है जिसका प्रकार्यात्मक समूह
 - (a) कार्बोक्सिलिक अम्ल
- (b) ऐल्डिहाइड

(c) कीटोन

- (d) ऐल्कोहॉल
- 3. खाना बनाते समय यदि बर्तन की तली बाहर से काली हो रही है तो इसका मतलब है कि
 - (a) भोजन पूरी तरह नहीं पका है।
 - (b) ईंधन पूरी तरह से नहीं जल रहा है।
 - (c) ईंधन आर्द्र है।
 - (d) ईंधन पूरी तरह से जल रहा है।

कार्बन एवं उसके यौगिक

- 4. CH₂CI में आबंध निर्माण का उपयोग कर सहसंयोजक आबंध की प्रकृति समझाइए।
- 5. इलेक्ट्रॉन बिंदु संरचना बनाइए:
 - (a) एथेनॉइक अम्ल
 - (b) $H_{o}S$
 - (c) प्रोपेनोन
 - (d) F_{2}
- 6. समजातीय श्रेणी क्या है? उदाहरण के साथ समझाइए।
- 7. भौतिक एवं रासायनिक गुणधर्मों के आधार पर एथनॉल एवं एथेनॉइक अम्ल में आप कैसे अंतर करेंगे?
- 8. जब साबुन को जल में डाला जाता है तो मिसेल का निर्माण क्यों होता है? क्या एथनॉल जैसे दूसरे विलायकों में भी मिसेल का निर्माण होगा।
- 9. कार्बन एवं उसके यौगिकों का उपयोग अधिकतर अनुप्रयोगों में ईंधन के रूप में क्यों किया जाता है?
- 10. कठोर जल को साबुन से उपचारित करने पर झाग के निर्माण को समझाइए।
- 11. यदि आप लिटमस पत्र (लाल एवं नीला) से साबुन की जाँच करें तो आपका प्रेक्षण क्या होगा?
- 12. हाइड्रोजनीकरण क्या है? इसका औद्योगिक अनुप्रयोग क्या है?
- 13. दिए गए हाइड्रोकार्बन: C,H,, C,H,, C,H, एवं CH, में किसमें संकलन अभिक्रिया होती है?
- 14. संतृप्त एवं असंतृप्त कार्बन के बीच रासायनिक अंतर समझने के लिए एक परीक्षण बताइए।
- 15. साबुन की सफ़ाई प्रक्रिया की क्रियाविधि समझाइए।

सामूहिक क्रियाकलाप

- 🛾 🔳 आणविक मॉडल किट का उपयोग कर इस अध्याय में पढ़े यौगिकों का मॉडल बनाइए।
- II एक बीकर में 20 mL कैस्टर तेल/कपास बीज का तेल/तीसी का तेल/सोयाबीन का तेल लीजिए। इसमें 20 प्रतिशत सोडियम हाइड्रॉक्साइड का 30 mL विलयन डालिए। मिश्रण के गाढ़ा होने तक कुछ मिनट लगातार हिलाते हुए इसे गर्म कीजिए। इसमें 5-10 g साधारण नमक मिलाइए। मिश्रण को अच्छी तरह मिलाकर उसे ठंडा कीजिए।
 - साबुन को आप आकर्षक आकार में काट सकते हैं। इसके जमने से पहले इसमें आप इत्र भी मिला सकते हैं।

अध्याय 5 तत्वों का आवर्त वर्गीकरण

वीं कक्षा में हमने सीखा कि हमारे आसपास के पदार्थ तत्व, मिश्रण एवं यौगिक के रूप में उपस्थित रहते हैं। हमने यह भी सीखा कि तत्व एक ही प्रकार के परमाणुओं से बने होते हैं। क्या आप जानते हैं कि आज तक कितने तत्वों का पता चल चुका है? आज तक हमें 118 तत्वों की जानकारी है। इन सभी तत्वों के गुण भिन्न-भिन्न हैं। इनमें से 94 तत्व प्राकृतिक रूप में पाये जाते हैं।

जैसे-जैसे विभिन्न तत्वों की खोज हो रही थी, वैज्ञानिक इन तत्वों के गुणधर्मों के बारे में अधिक से अधिक जानकारी एकत्र करने लगे। उन्हें तत्वों की इन जानकारियों को व्यवस्थित करना बड़ा ही कठिन लगा। उन्होंने इन गुणधर्मों में एक ऐसा प्रतिरूप ढूँढ़ना आरंभ किया जिसके आधार पर इतने सारे तत्वों का आसानी से अध्ययन किया जा सके।

संगीत के सुर

5.1 अव्यवस्थित को व्यवस्थित करना-तत्वों के वर्गीकरण के प्रारंभिक प्रयास

हमने पढ़ा कि कैसे विभिन्न वस्तुओं एवं प्राणियों को उनके गुणधर्मों के आधार पर वर्गीकृत किया जा सकता है। अन्य स्थितियों में भी हमें गुणधर्मों के आधार पर व्यवस्थित होने के उदाहरण मिलते हैं। जैसे, दुकानों में साबुनों को एक साथ एक स्थान पर रखा जाता है, जबिक बिस्कुटों को एक साथ दूसरे स्थान पर रखा जाता है। यहाँ तक कि साबुनों में भी, नहाने के साबुन को कपड़ा धोने के साबुन से अलग रखा जाता है। इसी प्रकार वैज्ञानिकों ने भी तत्वों को उनके गुणधर्मों के आधार पर वर्गीकृत करने के कई प्रयास किए तािक अव्यवस्थित को व्यवस्थित किया सके।

सबसे पहले, ज्ञात तत्वों को धातु एवं अधातु में वर्गीकृत किया गया। जैसे-जैसे तत्वों एवं उनके गुणधर्मों के बारे में हमारा ज्ञान बढ़ता गया, वैसे-वैसे उन्हें वर्गीकृत करने के प्रयास किए गए।

5.1.1 डॉबेराइनर के त्रिक

सन् 1817 में जर्मन रसायनज्ञ, वुल्फगांग डॉबेराइनर ने समान गुणधर्मों वाले तत्वों को समूहों में व्यवस्थित करने का प्रयास किया। उन्होंने तीन-तीन तत्व तत्वों का आवर्त वर्गीकरण

चित्र 5.1

कल्पना कीजिए कि आपको तथा आपके दोस्तों को टुकड़ों में बँटा हुआ एक नक्शा मिलता है जो किसी खज़ाने का पता बताता है। क्या उस खज़ाने तक का रास्ते का पता करना आसान होगा या अव्यवस्थित? रसायन विज्ञान में भी ऐसी ही अव्यवस्था थी, तत्व तो ज्ञात थे लेकिन उनके वर्गीकरण एवं अध्ययन की कोई विधि ज्ञात नहीं थी।

वाले कुछ समूहों को चुना एवं उन समूहों को त्रिक कहा। डॉबेराइनर ने बताया कि त्रिक के तीनों तत्वों को उनके परमाणु द्रव्यमान के आरोही क्रम में रखने पर बीच वाले तत्व का परमाणु द्रव्यमान, अन्य दो तत्वों के परमाणु द्रव्यमान का लगभग औसत होता है।

उदाहरण के लिए, लीथियम (Li), सोडियम (Na) एवं पोटैशियम (K) वाले त्रिक पर ध्यान दीजिए, जिनके परमाणु द्रव्यमान क्रमश: 6.9, 23.0 तथा 39.0 हैं। लीथियम एवं पोटैशियम के परमाणु द्रव्यमानों का औसत क्या है? सोडियम के परमाणु द्रव्यमान से इसकी तुलना कैसे की जा सकती है?

निम्न सारणी 5.1 में तीन तत्वों के कुछ समूह दिए गए हैं। इन तत्वों को परमाणु द्रव्यमान के आरोही क्रम में ऊपर से नीचे की ओर व्यवस्थित किया गया है। क्या आप बता सकते हैं कि इनमें से कौन-सा समूह डॉबेराइनर त्रिक बनाता है।

सारणी 5.1

समूह A के तत्व	परमाणु द्रव्यमान	समूह B के तत्व	परमाणु द्रव्यमान	समूह C के तत्व	परमाणु द्रव्यमान
N	14.0	Ca	40.1	C1	35.5
P	31.0	Sr	87.6	Br	79.9
As	74.9	Ва	137.3	I	126.9

आप देखेंगे कि समूह B तथा समूह C डॉबेराइनर त्रिक बनाते हैं। डॉबेराइनर उस समय तक ज्ञात तत्वों में केवल तीन त्रिक ही ज्ञात कर सके थे (सारणी 5.2)। इसलिए त्रिक में वर्गीकृत करने की यह पद्धति सफल नहीं रही।

सारणी 5.2 डॉबेराइनर त्रिक

Li	Ca	Cl
Na	Sr	Br
K	Ва	I

जे. डब्ल्यू डॉबेराइनर (1780-1849)

जोहान्न वुल्फगांग डॉबेराइनर ने जर्मनी के म्यून्शबर्ग में औषधि विज्ञान की पढ़ाई की और उसके बाद स्ट्रैसबर्ग में रसायन शास्त्र का अध्ययन किया। फिर वे जेना विश्वविद्यालय में रसायन एवं औषधि विज्ञान के प्रोफ़ेसर बन गए। उन्होंने ही सबसे पहले प्लैटिनम को उत्प्रेरक के रूप में पहचाना तथा समान त्रिक की खोज की जिससे तत्वों की आवर्त सारणी का विकास हुआ।

5.1.2 न्यूलैंड्स का अष्टक सिद्धांत

डॉबेराइनर के प्रयासों ने दूसरे रसायनज्ञों को तत्वों के गुणधर्मों का उनके परमाणु द्रव्यमान के साथ संबंध स्थापित करने के लिए प्रोत्साहित किया। सन् 1866 में अंग्रेज़ वैज्ञानिक जॉन न्यूलैंड्स ने ज्ञात तत्वों को परमाणु द्रव्यमान के आरोही क्रम में व्यवस्थित किया। उन्होंने सबसे कम परमाणु द्रव्यमान वाले तत्व हाइड्रोजन से आरंभ किया तथा 56वें तत्व थोरियम पर इसे समाप्त किया। उन्होंने पाया कि प्रत्येक आठवें तत्व का गुणधर्म पहले

तत्व के गुणधर्म के समान है। उन्होंने इसकी तुलना संगीत के अष्टक से की और इसलिए उन्होंने इसे अष्टक का सिद्धांत कहा। इसे 'न्यूलैंड्स का अष्टक सिद्धांत' के नाम से जाना जाता है। न्यूलैंड्स के अष्टक में लीथियम एवं सोडियम के गुणधर्म समान थे। सोडियम, लीथियम के बाद आठवाँ तत्व है। इसी तरह बेरिलियम एवं मैग्नीशियम में अधिक समानता है। न्यूलैंड्स के अष्टक के मूल रूप का एक भाग सारणी 5.3 में दिया गया है।

सारणी 5.3 न्यूलैंड्स का अष्टक

सा (डो)	रे (रे)	गा (मि)	मा (फा)	पा (सो)	धा (ल)	नि (टि)
Н	Li	Ве	В	С	N	О
F	Na	Mg	Al	Si	P	s
C1	K	Ca	Cr	Ti	Mn	Fe
Co तथा Ni	Cu	Zn	Y	In	As	Se C
Br	Rb	Sr	Ce तथा La	Zr		1-1

क्या आप जानते हैं?

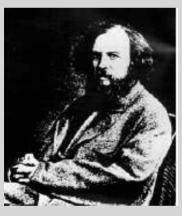
क्या आप संगीत के सुरों से परिचित हैं?

भारतीय संगीत प्रणाली में संगीत के सात सुर होते हैं— सा रे गा मा पा धा नि। पाश्चात्य संगीत में, लोग इन सुरों का ऐसे उपयोग करते हैं— डो रे मि फा सो ल टि। सुर के स्केल, पूर्णटोन और अर्द्धटोन आवृत्ति अंतराल से अलग किए गए होते हैं। इन सुरों का उपयोग कर कोई संगीतकार संगीत की रचना करता है। स्पष्ट है कि कुछ सुर बार-बार दुहराए जाते हैं। प्रत्येक आठवाँ सुर पहले सुर जैसा होता है तथा अगली पंक्ति का पहला सुर होता है।

- ऐसा देखा गया कि अष्टक का सिद्धांत केवल कैल्सियम तक ही लागू होता था,
 क्योंकि कैल्सियम के बाद प्रत्येक आठवें तत्व का गुणधर्म पहले तत्व से नहीं मिलता।
- न्यूलैंड्स ने कल्पना की कि प्रकृति में केवल 56 तत्व विद्यमान हैं तथा भविष्य
 में कोई अन्य तत्व नहीं मिलेगा। लेकिन, बाद में कई नए तत्व पाए गए जिनके
 गुणधर्म, अष्टक सिद्धांत से मेल नहीं खाते थे।
- अपनी सारणी में इन तत्वों को समंजित करने के लिए न्यूलैंड्स ने दो तत्वों को एक साथ रख दिया और कुछ असमान तत्वों को एक स्थान में रख दिया। क्या आप सारणी 5.3 में ऐसे उदाहरण ढूँढ़ सकते हैं? ध्यान दीजिए कि कोबाल्ट तथा निकैल एक साथ में हैं तथा इन्हें एक साथ उसी स्तंभ में रखा गया है जिसमें फ्लुओरीन, क्लोरीन एवं ब्रोमीन हैं यद्यपि इनके गुणधर्म उन दोनों तत्वों से भिन्न हैं। आयरन को कोबाल्ट एवं निकैल से दूर रखा गया है जबकि उनके गुणधर्मों में समानता होती है।
- इस प्रकार, न्यूलैंड्स अष्टक सिद्धांत केवल हलके तत्वों के लिए ही ठीक से लागू हो पाया।
- नोबल गैसों की खोज के पश्चात अष्टक का सिद्धांत अप्रासंगिक हो गया।
 तत्वों का आवर्त वर्गीकरण

प्रश्न

- क्या डॉबेराइनर के त्रिक, न्यूलैंड्स के अष्टक के स्तंभ में भी पाए जाते हैं? तुलना करके
- डॉबेराइनर के वर्गीकरण की क्या सीमाएँ हैं? 2.
- न्यूलैंड्स के अष्टक सिद्धांत की क्या सीमाएँ हैं?


5.2 अव्यवस्थित से व्यवस्थित करना-मेन्डेलीफ की आवर्त सारणी

न्यूलैंड्स के अष्टक सिद्धांत के अस्वीकार होने के बाद भी कई वैज्ञानिकों ने ऐसे प्रतिरूपों की खोज जारी रखी जिससे तत्वों के गुणधर्मों का, उनके परमाणु द्रव्यमान के साथ संबंध स्थापित हो सके।

तत्वों के वर्गीकरण का मुख्य श्रेय रूसी रसायनज्ञ डिमित्री इवानोविच मेन्डेलीफ को जाता है। तत्वों की आवर्त सारणी के प्रारंभिक विकास में उनका प्रमुख योगदान रहा। उन्होंने अपनी सारणी में तत्वों को उनके मूल गुणधर्म, परमाणु द्रव्यमान तथा रासायनिक गुणधर्मों में समानता के आधार पर व्यवस्थित किया।

डिमित्री इवानोविच मेन्डेलीफ (1834-1907)

मेन्डेलीफ का जन्म 8 फरवरी 1834 में रूस के पश्चिमी साइबेरिया के टोबोलस्क स्थान में हुआ था। अपनी प्रारंभिक शिक्षा के बाद मेन्डेलीफ अपनी माँ के प्रयासों के कारण ही विश्वविद्यालय में प्रवेश पा सके। अपनी खोज को उन्होंने माँ को समर्पित करते हुए लिखा, ''उन्होंने मुझे उदाहरण देकर समझाया, प्यार से समझाया, अपने शेष संसाधनों एवं शक्ति व्यय करके मेरे साथ विभिन्न स्थानों पर गईं। वह

जानती थीं कि विज्ञान की मदद से, बिना हिंसा के, लेकिन प्यार एवं दूढ़ता से अंधविश्वास, असत्य धारणाओं एवं गलतियों को दूर किया जा सकता है।'' उनके द्वारा प्रस्तावित तत्वों की व्यवस्था को मेन्डेलीफ की आवर्त सारणी कहा जाता है। आवर्त सारणी रसायन में एकमेव सिद्धांत साबित हुआ। इससे नए तत्वों की खोज के लिए प्रेरणा मिली।

जब मेन्डेलीफ ने अपना कार्य आरंभ किया तब तक 63 तत्व ज्ञात थे। उन्होंने

तत्वों के परमाणु द्रव्यमान एवं उनके भौतिक तथा रासायनिक गुणधर्मों के बीच संबंधों

का अध्ययन किया। रासायनिक गुणधर्मों के अंतर्गत मेन्डेलीफ ने तत्वों के ऑक्सीजन एवं हाइड्रोजन के साथ बनने वाले यौगिकों पर अपना ध्यान केंद्रित किया। उन्होंने ऑक्सीजन एवं हाइड्रोजन का इसिलए चुनाव किया क्योंकि ये अत्यंत सिक्रय हैं तथा अधिकांश तत्वों के साथ यौगिक बनाते हैं। तत्व से बनने वाले हाइड्राइड एवं ऑक्साइड के सूत्र को तत्वों के वर्गीकरण के लिए मूलभूत गुणधर्म माना गया। फिर उन्होंने 63 कार्ड लिए एवं प्रत्येक कार्ड पर अलग-अलग तत्वों के गुणधर्मों को लिखा। उन्होंने समान गुणधर्म वाले तत्वों को अलग कर दिया तथा इन पत्तों को पिन लगाकर दीवार पर लटका दिया। उन्होंने देखा कि अधिकांश तत्वों को आवर्त सारणी में स्थान मिल गया था तथा अपने परमाणु द्रव्यमान के आरोही क्रम में ये तत्व व्यवस्थित हो गए। यह भी देखा गया कि समान भौतिक एवं रासायनिक गुणधर्म वाले विभिन्न तत्व एक निश्चित अंतराल के बाद फिर आ जाते हैं। इसी आधार पर मेन्डेलीफ ने आवर्त सारणी बनाई, जिसका सिद्धांत है—तत्वों के गुणधर्म उनके परमाणु द्रव्यमान का आवर्त फलन होते हैं।

मेन्डेलीफ की आवर्त सारणी में ऊर्ध्व स्तंभ को 'ग्रुप' (समूह) तथा क्षैतिज पंक्तियों को 'पीरियड' (आवर्त) कहते हैं (सारणी 5.4)।

सारणी 5.4 मेन्डेलीफ की आवर्त सारणी

समूह	I	п	ш	IV	v	VI	VII	VIII
ऑक्साइड हाइड्राइड	R₂O RH	RO RH ₂	R_2O_3 RH_3	RO ₂ RH ₄	R_2O_5 RH_3	${ m RO_3} \ { m RH_2}$	R ₂ O ₇ RH	RO_4
आवर्त 	A B	A B	A B	A B	A B	A B	A B	संक्रमण श्रेणी
1	H 1.008							
2	Li 6.939	Be 9.012	B 10.81	C 12.011	N 14.007	O 15.999	F 18.998	
3	Na 22.99	Mg 24.31	Al 29.98	Si 28.09	P 30.974	S 32.06	Cl 35.453	
4 प्रथम श्रेणी: द्वितीय श्रेणी:	K 39.102 Cu 63.54	Ca 40.08 Zn 65.37	Ga	47.90 Ge	As	50.20 Se	54.94 Br	Fe Co Ni 55.85 58.93 58.71
5 प्रथम श्रेणी: द्वितीय श्रेणी:	Ag	Sr 87.62 Cd 112.40	88.91 In	91.22 Sn		95.94 Te	99 I	Ru Rh Pd 101.07 102.91 106.4
6 प्रथम श्रेणी: द्वितीय श्रेणी:	132.90	137.34 Hg	La 138.91 Tl 204.37	178.49 Pb	Ta 180.95 Bi 208.98	W 183.85		Os Ir Pt 190.2 192.2 195.09

तत्वों का आवर्त वर्गीकरण

मेन्डेलीफ की आवर्त सारणी 1872 में जर्मन पत्रिका में प्रकाशित हुई थी। स्तंभ के शीर्ष पर ऑक्साइड तथा हाइड्राइड के सूत्र में अंग्रेज़ी का अक्षर 'R', समूह के किसी भी तत्व को दर्शाता है। सूत्र को लिखने के तरीके पर ध्यान दीजिए। उदाहरण के लिए, कार्बन के हाइड्राइड CH, को RH, तथा उसके ऑक्साइड CO, को RO लिखा गया है।

5.2.1 मेन्डेलीफ की आवर्त सारणी की उपलब्धियाँ

आवर्त सारणी व्यवस्थित करते समय मेन्डेलीफ को सारणी में अधिक द्रव्यमान वाले तत्व को कभी-कभी कम द्रव्यमान वाले तत्व से पहले रखना पडा। क्रम इसलिए उलटना पडा ताकि समान गुणधर्म वाले तत्वों को एक साथ रखा जा सके। उदाहरण के लिए कोबाल्ट (परमाणु द्रव्यमान 58.9) सारणी में निकैल (परमाणु द्रव्यमान 58.7) से पहले है। सारणी 5.4 को देखकर क्या आप ऐसी ही एक अन्य विसंगति ढूँढ सकते हैं।

इसके अतिरिक्त, मेन्डेलीफ ने अपनी आवर्त सारणी में कुछ रिक्त स्थानों को छोड़ दिया। इन रिक्त स्थानों को दोष के रूप में देखने के बजाय मेन्डेलीफ ने दृढ़तापूर्वक कुछ ऐसे तत्वों के अस्तित्व का अनुमान किया जो उस समय तक ज्ञात नहीं थे। इनका नामकरण उन्होंने उसी समृह में इससे पहले आने वाले तत्व के नाम में एका (संस्कृत शब्द) उपसर्ग लगाकर किया। जैसे बाद में ज्ञात होने वाले स्कैंडियम, गैलियम, जर्मेनियम के गुणधर्म क्रमशः एका-बोरॉन, एका-ऐलुमिनियम तथा एका-सिलिकॉन के समान थे। मेन्डेलीफ द्वारा अनुमानित एका-ऐलुमिनियम तथा बाद में ज्ञात गैलियम के गुणधर्म को सारणी 5.5 में सूचीबद्ध किया गया है:

सारणी 5.5 एका-ऐलुमिनियम तथा गैलियम के गुणधर्म

गुणधर्म	एका-ऐलुमिनियम	गैलियम
परमाणु द्रव्यमान	68	69.7
ऑक्साइड का सूत्र	$E_2^{}O_3^{}$	$\mathrm{Ga_2O_3}$
क्लोराइड का सूत्र	ECl_3	GaCl_3

इससे मेन्डेलीफ की आवर्त सारणी की परिशुद्धता तथा उपयोगिता के ठोस प्रमाण मिल गए। इसके अलावा मेन्डेलीफ के अनुमान की असाधारण सफलता के कारण रसायनज्ञों ने उनकी आवर्त सारणी को न केवल स्वीकार किया अपितु उनको इस सिद्धांत की अवधारणा का सृजक भी माना। उत्कृष्ट गैसों; जैसे–हीलियम (He), निऑन (Ne) एवं आर्गन (Ar) का पहले भी कई संदर्भ में उल्लेख किया गया। इन गैसों का पता देर से चला क्योंकि ये अक्रिय हैं तथा वायुमंडल में इनकी मात्रा बहुत कम है। मेन्डेलीफ की आवर्त सारणी की एक विशेषता यह भी थी कि जब इन गैसों का पता चला तब पिछली व्यवस्था को छेड़े बिना ही इन्हें नए समूह में रखा जा सका।

5.2.3 मेन्डेलीफ के वर्गीकरण की सीमाएँ

हाइड्रोजन का इलेक्ट्रॉनिक विन्यास क्षार धातुओं से मिलता है। क्षार धातुओं की भाँति हाइड्रोजन भी हैलोजन, ऑक्सीजन एवं सल्फ़र के साथ एक जैसे सुत्र वाले यौगिक

बनाती है जैसा उदाहरण में दिखाया गया है:

दूसरी ओर, हैलोजन की भाँति हाइड्रोजन भी द्विपरमाणुक अणु के रूप में पाई जाती है और धातुओं एवं अधातुओं के साथ सहसंयोजक यौगिक बनाती है।

हाइड्रोजन के यौगिक	सोडियम के यौगिक
HCl	NaCl
$H_2^{}O$	$\mathrm{Na_{_2}O}$
H_2S	Na ₂ S

क्रियाकलाप 5.1

- क्षार धातुओं एवं हैलोजन कुल की समानता को ध्यान में रखते हुए हाइड्रोजन को मेन्डेलीफ की आवर्त सारणी में उचित स्थान पर रखिए।
- हाइड्रोजन को किस समूह एवं आवर्त में रखना चाहिए?

निश्चित रूप से आवर्त सारणी में हाइड्रोजन को नियत स्थान नहीं दिया जा सकता है। यह मेन्डेलीफ की आवर्त सारणी की पहली कमी थी। वह अपनी सारणी में हाइड्रोजन को सही स्थान नहीं दे पाए।

मेन्डेलीफ के तत्वों के आवर्त वर्गीकरण तैयार होने के पर्याप्त समय बाद समस्थानिकों का पता चला। हम जानते हैं कि किसी तत्व के समस्थानिकों के रासायनिक गुणधर्म समान होते हैं लेकिन उनके परमाणु द्रव्यमान भिन्न-भिन्न होते हैं।

क्रियाकलाप 5.2

- क्लोरीन के समस्थानिक C1-35 तथा C1-37 पर विचार कीजिए।
- उनके परमाण् द्रव्यमान भिन्न-भिन्न होने के कारण क्या आप उन्हें अलग-अलग रखेंगे?
- या रासायनिक गुणधर्म समान होने के कारण आप दोनों को एक ही स्थान पर रखेंगे?

इस प्रकार सभी तत्वों के समस्थानिक मेन्डेलीफ के आवर्त नियम के लिए एक चुनौती थी। दूसरी समस्या यह थी कि एक तत्व से दूसरे तत्व की ओर आगे बढ़ने पर परमाणु द्रव्यमान नियमित रूप से नहीं बढ़ते। इसलिए यह अनुमान लगाना कठिन हो गया कि दो तत्वों के बीच कितने तत्व खोजे जा सकते हैं, विशेषकर जब हम भारी तत्वों पर विचार करते हैं तो कठिनाई आती है।

प्रश्न

- 1. पन्डलीफ की आवर्त सारणी का उपयोग कर निम्नलिखित तत्वों के ऑक्साइड के सूत्र का अनुमान कोजिए: K, C, Al, Si, Ba
- 2. गैलियम के अतिरिक्त, अब तक कौन-कौन से तत्वों का पता चला है जिसके लिए मेन्डेलीफ ने अपनी आवर्त सारणी में खाली स्थान छोड़ दिया था? दो उदाहरण दीजिए।
- 3. मेन्डेलीफ ने अपनी आवर्त सारणी तैयार करने के लिए कौन सा मापदंड अपनाया?
- आपके अनुसार उत्कृष्ट गैसों को अलग समूह में क्यों रखा गया?

5.3 अव्यवस्थित से व्यवस्थित करना-आधुनिक आवर्त सारणी

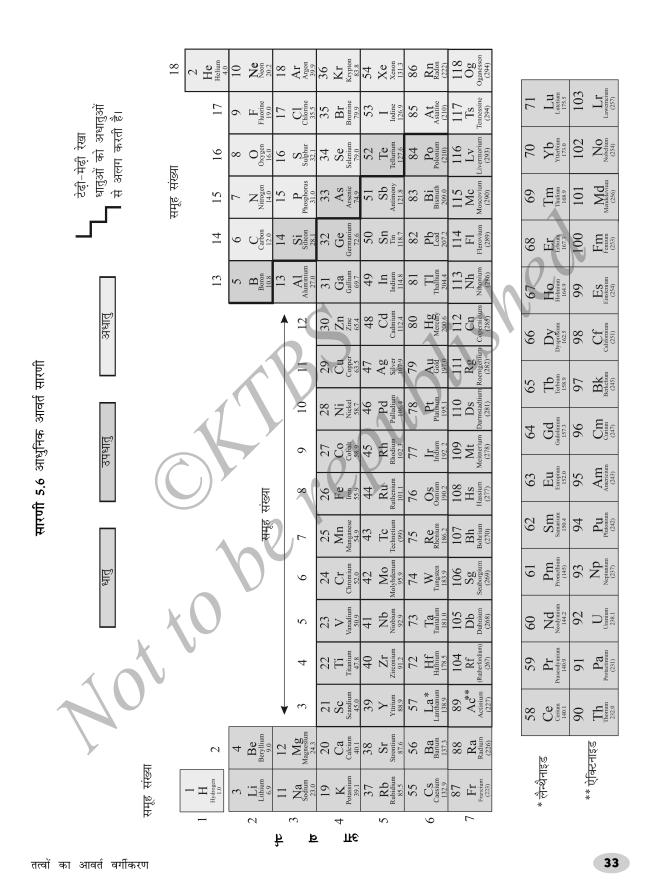
सन् 1913 में हेनरी मोज्ले ने बताया कि तत्व के परमाणु द्रव्यमान की तुलना में उसका परमाणु-संख्या (Z) अधिक आधारभूत गुणधर्म है। तदनुसार, मेन्डेलीफ की आवर्त सारणी में परिवर्तन किया गया तथा परमाणु-संख्या को आधुनिक आवर्त सारणी के आधार के रूप में स्वीकार किया गया। इस आधुनिक आवर्त नियम को इस प्रकार वर्णित किया जा सकता है:

'तत्वों के गुणधर्म उनकी परमाणु-संख्या का आवर्त फलन होते हैं।'

आप जानते हैं कि परमाणु संख्या से हमें परमाणु के नाभिक में स्थित प्रोटोनों की संख्या का पता चलता है तथा एक तत्व से दूसरे तक बढ़ने पर इस संख्या में एक की बढ़ोतरी होती है। तत्वों को उनकी परमाणु-संख्या के आरोही क्रम में व्यवस्थित करने पर जो वर्गीकरण प्राप्त होता है उसे आधुनिक आवर्त सारणी कहा जाता है (सारणी 5.6)। तत्वों को परमाणु-संख्या के आरोही क्रम में व्यवस्थित करने पर तत्वों के गुणधर्मों का अधिक परिशुद्धता से अनुमान लगाया जा सकता है।

क्रियाकलाप 5.3

- आधुनिक आवर्त सारणी में कोबाल्ट एवं निकेल के स्थान कैसे निर्धारित किए गए हैं?
- आधुनिक आवर्त सारणी में विभिन्न तत्वों के समस्थानिकों का स्थान कैसे सुनिश्चित किया गया हैं।
- क्या 1.5 परमाणु-संख्या वाले किसी तत्व को हाइड्रोजन एवं हीलियम के मध्य रखा जा सकता है?
- आपके अनुसार आधुनिक आवर्त सारणी में हाइड्रोजन को कहाँ रखना चाहिए?


आप देख सकते हैं कि आधुनिक आवर्त सारणी में मेन्डेलीफ की आवर्त सारणी की तीनों किमयों को सुधारा गया है। आधुनिक आवर्त सारणी में तत्वों का स्थान किन बातों पर निर्भर करता है, यह जानने के बाद हम हाइड्रोजन की असंगत स्थिति की चर्चा करेंगे।

5.3.1 आधुनिक आवर्त सारणी में तत्वों की स्थिति

आधुनिक आवर्त सारणी में 18 ऊर्ध्व स्तंभ हैं जिन्हें 'समूह' कहा जाता है तथा 7 क्षैतिज पक्तियाँ हैं जिन्हें 'आवर्त' कहा जाता है। आइए, देखते हैं कि किसी 'समूह' अथवा 'आवर्त' में तत्वों की स्थिति किस बात पर निर्भर करती है।

क्रियाकलाप 5.4

- आधुनिक आवर्त सारणी के समृह 1 में उपस्थित तत्वों के नाम बताइए।
- समृह 1 के पहले तीन तत्वों के इलेक्ट्रॉनिक विन्यास लिखिए।
- इन तत्वों के इलेक्ट्रॉनिक विन्यास में क्या समानता है?
- इन तीनों तत्वों में कितने संयोजकता इलेक्ट्रॉन हैं?

Downloaded from https://www.studiestoday.com

आप देखेंगे कि इन सभी तत्वों के संयोजकता इलेक्ट्रॉनों की संख्या समान है। इसी प्रकार आप देखेंगे कि एक ही समूह के सभी तत्वों के संयोजकता इलेक्ट्रॉनों की संख्या समान है। जैसे फ्लुओरीन (F) तथा क्लोरीन (Cl) जो समूह-17 के तत्व हैं। फ्लुओरीन एवं क्लोरीन के बाहरी कोश में कितने इलेक्ट्रॉन हैं? इससे पता चलता है कि आधुनिक आवर्त सारणी में समूह, बाहरी कोश के सर्वसम इलेक्ट्रॉनिक विन्यास को दर्शाता है। यद्यपि समूह में ऊपर से नीचे की ओर जाने पर कोशों की संख्या बढ़ती जाती है।

हाइड्रोजन की स्थिति अनिश्चित रहती है क्योंकि इसे पहले आवर्त के समूह 1 या समूह 17 किसी में भी रखा जा सकता है। क्या आप बता सकते हैं क्यों?

क्रियाकलाप 5.5

- यदि आप आवर्त सारणी के आधुनिक (सारणी 5.6) रूप को देखें तो आपको पता चलेगा कि Li, Be, B, C, N, O, F तथा Ne दूसरे आवर्त के तत्व हैं। इनका इलेक्ट्रॉनिक विन्यास लिखिए।
- क्या इन सभी तत्वों के भी संयोजकता इलेक्ट्रॉनों की संख्या समान है।
- क्या इनके कोशों की संख्या समान है।

आप देखेंगे कि इन दूसरे आवर्त के तत्वों के संयोजकता इलेक्ट्रॉनों की संख्या तो भिन्न-भिन्न है लेकिन इनमें कोशों की संख्या समान है। आप यह भी देखेंगे कि आवर्त में बाईं से दाईं ओर जाने पर यदि परमाणु-संख्या में इकाई की वृद्धि होती है तो संयोजकता इलेक्ट्रॉनों की संख्या में भी इकाई वृद्धि होती है।

आप कह सकते हैं कि अध्यासित कोशों की समान संख्या वाले विभिन्न तत्वों के परमाणु एक ही आवर्त में स्थित हैं। Na, Mg, Al, Si, P, S, Cl एवं Ar आधुनिक आवर्त सारणी के तीसरे आवर्त में स्थित हैं क्योंकि इनके परमाणुओं के इलेक्ट्रॉन K, L एवं M कोशों में स्थित हैं। इन तत्वों के इलेक्ट्रॉनिक विन्यास लिखकर इस कथन की पुष्टि कीजिए। प्रत्येक आवर्त दर्शाता है कि एक नया कोश इलेक्ट्रॉनों से भरा गया।

पहले, दूसरे, तीसरे एवं चौथे आवर्त में कितने तत्व हैं?

विभिन्न कक्षों में भरे जाने वाले इलेक्ट्रॉनों की संख्या के आधार पर हम इन आवर्तों में तत्वों की संख्या बता सकते हैं। आगे की कक्षा में आप इस बारे में विस्तार से अध्ययन करेंगे। आप जानते हैं कि किसी कोश में इलेक्ट्रॉनों की अधिकतम संख्या एक सूत्र $2n^2$ पर निर्भर करती है जहाँ n, नाभिक से नियत कोश की संख्या को दर्शाता है। जैसे,

K कोश -2 $(1)^2 = 2$, प्रथम आवर्त में दो तत्व हैं। L कोश -2 $(2)^2 = 8$, दूसरे आवर्त में आठ तत्व हैं। तीसरे, चौथे, पाँचवें, छटवें एवं सातवें आवर्त में तत्वों की संख्या क्रमश: 8, 18, 18, 32, 32, होती है, इसका कारण आप उच्च कक्षा में पढ़ेंगे।

आवर्त सारणी में तत्वों की स्थिति से उनकी रासायनिक अभिक्रियाशीलता का पता चलता है। आप जानते हैं कि तत्व द्वारा निर्मित आबंध के प्रारूप तथा इसकी संख्या संयोजकता इलेक्ट्रॉनों द्वारा निर्धारित होती है। क्या अब आप बता सकते हैं कि मेन्डेलीफ

ने अपनी सारणी में तत्वों की स्थिति निर्धारित करने के लिए यौगिकों के सूत्र को आधार बनाया था, वह शुद्ध था। इस आधार पर समान रासायनिक गुणधर्म वाले तत्वों को एक ही समूह में कैसे रखा जा सकता है?

5.3.2 आधुनिक आवर्त सारणी की प्रवृत्ति

संयोजकता: आप जानते हैं कि किसी भी तत्व की संयोजकता उसके परमाणु के सबसे बाहरी कोश में उपस्थित संयोजकता इलेक्ट्रॉनों की संख्या से निर्धारित होती है।

क्रियाकलाप 5.6

- किसी तत्व के इलेक्ट्रॉनिक विन्यास से आप उसकी संयोजकता का परिकलन कैसे करेंगे?
- परमाणु-संख्या 12 वाले मैग्नीशियम तथा परमाणु-संख्या 16 वाले सल्फ़र की संयोजकता क्या है?
- इसी प्रकार पहले 20 तत्वों की संयोजकताएँ ज्ञात कीजिए।
- आवर्त में बाईं से दाईं ओर जाने पर संयोजकता किस प्रकार परिवर्तित होती है?
- समूह में ऊपर से नीचे जाने पर संयोजकता किस प्रकार परिवर्तित होती है?

परमाणु साइज्

परमाणु साइज़ से परमाणु की त्रिज्या का पता चलता है। एक स्वतंत्र परमाणु के केंद्र से उसके सबसे बाहरी कोश की दूरी ही परमाणु के साइज़ को दर्शाती है। हाइड्रोजन परमाणु की त्रिज्या 37 pm (पीकोमीटर, 1 pm = 10⁻¹² m) है।

आइए, हम समूह तथा आवर्त में परमाणु साइज़ की विभिन्नता का अध्ययन करें।

क्रियाकलाप 5.7

- दूसरे आवर्त के तत्वों की परमाणु त्रिज्याएँ नीचे दी गई हैं:
 दूसरे आवर्त के तत्व
 Be
 O
 N
 Li
 C
 परमाणु त्रिज्या (pm)
 88
 111
 66
 74
 152
 77
- इन्हें परमाण् त्रिज्या के अवरोही क्रम में व्यवस्थित कीजिए।
- क्या ये तत्व अब आवर्त सारणी के आवर्त की तरह ही व्यवस्थित हैं?
- किस तत्व का परमाणु सबसे बड़ा है एवं किसका सबसे छोटा है?
- आवर्त में बाईं से दाईं ओर जाने पर परमाणु त्रिज्या किस प्रकार बदलती है?

आप देखेंगे कि आवर्त में बाईं से दाईं ओर जाने पर परमाणु त्रिज्या घटती है। नाभिक में आवेश के बढ़ने से यह इलेक्ट्रॉनों को नाभिक की ओर खींचता है जिससे परमाणु का साइज़ घटता जाता है।

35

तत्वों का आवर्त वर्गीकरण

क्रियाकलाप 5.8

 प्रथम समूह के तत्वों के परमाणु त्रिज्या में परिवर्तन का अध्ययन कीजिए तथा उन्हें आरोही क्रम में व्यवस्थित कीजिए।

प्रथम समूह के तत्व : Na Li Rb Cs K परमाणु त्रिज्या (pm) : 186 152 244 262 231

- किस तत्व का परमाणु सबसे छोटा तथा किसका सबसे बडा है?
- समूह में ऊपर से नीचे जाने पर परमाणु साइज़ में कैसा परिवर्तन होगा?

आप देखेंगे कि समूह में ऊपर से नीचे जाने पर परमाणु का साइज़ बढ़ता है। ऐसा इसिलए होता है क्योंकि नीचे जाने पर एक नया कोश जुड़ जाता है। इससे नाभिक तथा सबसे बाहरी कोश के बीच की दूरी बढ़ जाती है और इस कारण नाभिक का आवेश बढ जाने के बाद भी परमाणु का साइज बढ जाता है।

धात्विक एवं अधात्विक गुणधर्म

क्रियाकलाप 5

- तीसरे आवर्त के तत्वों की जाँच कर उन्हें धातु एवं अधातु में वर्गीकृत कीजिए।
- सारणी के किस ओर धातुएँ स्थित हैं?
- सारणी के किस ओर अधातुएँ स्थित हैं?

Na एवं Mg जैसी धातुएँ सारणी के बाईं ओर तथा सल्फ़र एवं क्लोरीन जैसी अधातुएँ दाईं ओर स्थित हैं। मध्य में, सिलिकन स्थित है जिसे अर्द्धधातु या उपधातु कहते हैं। यह अधातु एवं धातु दोनों के गुणधर्म प्रदर्शित करती है।

आधुनिक आवर्त सारणी में एक टेढ़ी-मेढ़ी रेखा धातुओं को अधातुओं से अलग करती है। इस रेखा पर आने वाले तत्व—बोरोन, सिलिकन, जर्मेनियम, आर्सेनिक, ऐंटिमनी, टेल्यूरियम एवं पोलोनियम धातुओं एवं अधातुओं दोनों के गुणधर्म प्रदर्शित करते हैं। इसलिए इन्हें अर्द्धधातु या उपधातु भी कहते हैं।

तीसरे अध्याय में आपने देखा कि आबंध बनाते समय धातु में इलेक्ट्रॉन त्यागने की प्रवृत्ति होती है अर्थात यह विद्युत धनात्मक होते हैं।

क्रियाकलाप 5.10

- समूह में इलेक्ट्रॉन त्यागने की प्रवृत्ति किस प्रकार बदलती है?
- आवर्त में यह प्रवृत्ति कैसे बदलेगी?

आवर्त में जैसे-जैसे संयोजकता कोश के इलेक्ट्रॉनों पर किया जाने वाला प्रभावी नाभिकीय आवेश बढ़ता है, इलेक्ट्रॉन त्यागने की प्रवृत्ति घट जाती है। समूह में नीचे की ओर, संयोजकता इलेक्ट्रॉन पर क्रिया करने वाला प्रभावी नाभिकीय आवेश घटता है क्योंकि सबसे बाहरी इलेक्ट्रॉन नाभिक से दूर होते हैं। इसलिए यह इलेक्ट्रॉन सुगमतापूर्वक

निकल जाते हैं। इसलिए धात्विक अभिलक्षण आवर्त में घटता है तथा समूह में नीचे जाने पर बढ़ता है।

दूसरी ओर, अधातुएँ विद्युत ऋणात्मक होती हैं। उनमें इलेक्ट्रॉन ग्रहण करके आबंध बनाने की प्रवृत्ति होती है। आइए, इन गुणधर्मों की विविधता के बारे में जानकारी प्राप्त करें।

क्रियाकलाप 5.11

- आवर्त में बाईं से दाईं ओर जाने पर इलेक्ट्रॉन ग्रहण करने की प्रवृत्ति कैसे परिवर्तित होगी।
- समूह में ऊपर से नीचे जाने पर इलेक्ट्रॉन ग्रहण करने की प्रवृत्ति कैसे पिरविर्तित होगी।

विद्युतऋणात्मकता की प्रवृत्ति के अनुसार अधातुएँ आवर्त सारणी के दाहिनी ओर ऊपर की ओर स्थित होती हैं।

इन प्रवृत्तियों से हमें इन तत्वों से बने ऑक्साइडों की प्रकृति का भी पता चलता है क्योंकि धातुओं के ऑक्साइड क्षारकीय तथा अधातुओं के ऑक्साइड सामान्यत: अम्लीय होते हैं।

प्रश्न

- आधुनिक आवर्त सारणी द्वारा किस प्रकार से मेन्डेलीफ की आवर्त सारणी की विविध विसंगतियों को दूर किया गया?
- 2. मैग्नीशियम की तरह रासायनिक अभिक्रियाशीलता दिखाने वाल दो तत्वों के नाम लिखिए? आपके चयन का क्या आधार है?
- 3. के नाम बताइए:
 - (a) तीन तत्वों जनके सबसे बाहरी कोश में एक इलेक्ट्रॉन उपस्थित हो।
 - (b) दो तत्वों जिनके सबसे बाहरी कोश में दो इलेक्ट्रॉन उपस्थित हों।
 - (c) तीन तत्वों जिनका बाहरी कोश पूर्ण हो।
- 4. (a) लीथियम, सोडियम, पोटेशियम, चे सभी धातुएँ जल से अभिक्रिया कर हाइड्रोजन गैस मुक्त करती हैं। क्या इन तत्वों के प्रमाणुओं में कोई समानता है?
 - (b) हीलियम एक अक्रियाशील गैस है जबिक निऑन की अभिक्रियाशीलता अत्यंत कम है। इनके परमाणुओं में कोई समानता है?
- आधुनिक आवर्त सारणी में पहले दस तत्वों में कौन सी धातुएँ हैं?
- आवर्त सारणी में इनके स्थान के आधार पर इनमें से किस तत्व में सबसे अधिक धात्विक अभिलक्षण की विशेषता है?
 - Ga Ge As Se Be

आपने क्या सीखा

- तत्वों को उनके गुणधर्मों में समानता के आधार पर वर्गीकृत किया गया है।
- डॉबेराइन ने तत्वों को त्रिक में वर्गीकृत किया जबिक न्यूलैंड्स ने अष्टक का सिद्धांत दिया।
- मेन्डेलीफ ने तत्वों को उनके परमाणु द्रव्यमान के आरोही क्रम तथा रासायनिक गुणधर्मों के आधार पर वर्गीकृत किया।

तत्वों का आवर्त वर्गीकरण

- मेन्डेलीफ ने आवर्त सारणी में खाली स्थानों के आधार पर नए तत्वों की भविष्यवाणी की।
- तत्वों को परमाणु द्रव्यमान के आरोही क्रम में व्यवस्थित करने से होने वाली विसंगतियाँ, परमाणु संख्या के आरोही क्रम में व्यवस्थित करने से दूर हो गईं। तत्व के इस आधारभूत गुणधर्म अर्थात संख्या की खोज मोज्ले ने की।
- आधुनिक आवर्त सारणी में तत्वों को 18 ऊर्ध्व स्तंभों, जिन्हें समूह कहते हैं तथा 7 क्षैतिज पंक्तियों जिन्हें आवर्त कहते हैं, में व्यवस्थित किया।
- इस प्रकार व्यवस्थित तत्व, परमाणु साइज़, संयोजकता या संयोजन क्षमता तथा धात्विक एवं अधात्विक अभिलक्षण जैसे गुणधर्मों में आवर्तिता प्रदर्शित करते हैं।

अभ्यास

- 1. आवर्त सारणी में बाईं से दाईं ओर जाने पर, प्रवृत्तियों के बारे में कौन सा कथन असत्य है?
 - (a) तत्वों की धात्विक प्रकृति घटती है।
 - (b) संयोजकता इलेक्ट्रॉनों की संख्या बढ़ जाती है।
 - (c) परमाणु आसानी से इलेक्ट्रॉन का त्याग करते हैं।
 - (d) इनके ऑक्साइड अधिक अम्लीय हो जाते हैं।
- 2. तत्व X, XCl_2 सूत्र का वाला एक क्लोराइड बनाता है जो एक ठोस है तथा जिसका गलनांक अधिक है। आवर्त सारणी में यह तत्व संभवत: किस समूह के अंतर्गत होगा?
 - (a) Na
- (b) Mg
- (c) Al
- (d) Si

- 3. किस तत्व में
 - (a) दो कोश हैं तथा दोनों इलेक्ट्रॉनों से पूरित हैं?
 - (b) इलेक्ट्रॉनिक विन्यास 2, 8, 2 है?
 - (c) कुल तीन कोश हैं तथा संयोजकता कोश में चार इलेक्ट्रॉन हैं?
 - (d) कुल दो कोश हैं तथा संयोजकता कोश में तीन इलेक्ट्रॉन हैं?
 - (e) दूसरे कोश में पहले कोश से दोगुने इलेक्ट्रॉन हैं?
- 4. (a) आवर्त सारणी में बोरान के स्तंभ के सभी तत्वों के कौन से गुणधर्म समान हैं?
 - (b) आवर्त सारणी में फ्लुओरीन के स्तंभ के सभी तत्वों के कौन से गुणधर्म समान हैं?
- 5. एक परमाणु का इलेक्ट्रॉनिक विन्यास 2, 8, 7 है।
 - (a) इस तत्व की परमाणु-संख्या क्या है?
 - (b) निम्न में किस तत्व के साथ इसकी रासायनिक समानता होगी? (परमाणु–संख्या कोष्ठक में दी गई है)

N(7) F(9) P(15) Ar(18)

6. आवर्त सारणी में तीन तत्व A, B तथा C की स्थिति निम्न प्रकार है:

समूह 16 समूह 17 - - A - - -

अब बताइए कि:

- (a) A धातु है या अधातु।
- (b) A की अपेक्षा C अधिक अभिक्रियाशील है या कम?
- (c) C का साइज B से बड़ा होगा या छोटा?
- (d) तत्व A, किस प्रकार के आयन, धनायन या ऋणायन बनाएगा?
- 7. नाइट्रोजन (परमाणु-संख्या 7) तथा फ़ॉस्फ़ोरस (परमाणु-संख्या 15) आवर्त सारणी के समूह 15 के तत्व हैं। इन दोनों तत्वों का इलेक्ट्रॉनिक विन्यास लिखिए। इनमें से कौन सा तत्व अधिक ऋण विद्युत होगा और क्यों?
- 8. तत्वों के इलेक्ट्रॉनिक विन्यास का आधुनिक आवर्त सारणी में तत्व की स्थिति से क्या संबंध है?
- 9. आधुनिक आवर्त सारणी में कैल्सियम (परमाणु-संख्या 20) के चारों ओर 12, 19, 21 तथा 38 परमाणु-संख्या वाले तत्व स्थित हैं। इनमें से किन तत्वों के भौतिक एवं रासायनिक गुणधर्म कैल्सियम के समान हैं?
- 10. आधुनिक आवर्त सारणी एवं मेन्डेलीफ की आवर्त सारणी में तत्वों की व्यवस्था की तुलना कीजिए।

सामूहिक क्रियाकलाप

- हमने तत्वों के वर्गीकरण के लिए किए गए कुछ प्रमुख प्रयासों पर चर्चा की। (इंटरनेट या पुस्तकालय से) इस वर्गीकरण के लिए अन्य प्रयासों का पता लगाइए।
- 2. हमने आवर्त सारणी के विस्तृत रूप का अध्ययन किया है। आधुनिक आवर्त नियम का प्रयोग कर तत्वों को अन्य प्रकार से भी व्यवस्थित किया गया है, इनका पता लगाइए।

तत्वों का आवर्त वर्गीकरण

वों के जनन की क्रिया-विधि पर चर्चा करने से पूर्व आइए, हम एक मूलभूत प्रश्न करें—जीव जनन क्यों करते हैं? वास्तव में पोषण, श्वसन अथवा उत्सर्जन जैसे आवश्यक जैव-प्रक्रमों की तुलना में किसी व्यिष्ट (जीव) को जीवित रहने के लिए जनन आवश्यक नहीं है। दूसरी ओर, जीव को संतित उत्पन्न करने के लिए अत्यिधक ऊर्जा व्यय करनी पड़ती है। फिर जीव उस प्रक्रम में अपनी ऊर्जा व्यर्थ क्यों करे, जो उसके जीवित रहने के लिए आवश्यक नहीं है? कक्षा में इस प्रश्न के संभावित उत्तर खोजना अत्यंत रोचक होगा।

इस प्रश्न का जो भी उत्तर हो, परंतु यह स्पष्ट है कि हमें विभिन्न जीव इसीलिए दृष्टिगोचर होते हैं, क्योंकि वे जनन करते हैं। यदि वह जीव एकल होता तथा कोई भी जनन द्वारा अपने सदृश व्यष्टि उत्पन्न नहीं करता, तो संभव है कि हमें उनके अस्तित्व का पता भी नहीं चलता। किसी स्पीशीज में पाए जाने वाले जीवों की विशाल संख्या ही हमें उसके अस्तित्व का ज्ञान कराती है। हमें कैसे पता चलता है कि दो व्यष्टि एक ही स्पीशीज के सदस्य हैं? सामान्यत: हम ऐसा इसलिए कहते हैं क्योंकि वे एकसमान दिखाई देते हैं। अत: जनन करने वाले जीव संतित का सृजन करते हैं जो बहुत सीमा तक उनके समान दिखते हैं।

8.1 क्या जीव पूर्णतः अपनी प्रतिकृति का सृजन करते हैं?

विभिन्न जीवों की अभिकल्प, आकार एवं आकृति समान होने के कारण ही वे सदृश प्रतीत होते हैं। शरीर का अभिकल्प समान होने के लिए उनका ब्लूप्रिंट भी समान होना चाहिए अत: अपने आधारभूत स्तर पर जनन जीव के अभिकल्प का ब्लूप्रिंट तैयार करता है। कक्षा 9 में आप पढ़ चुके हैं कि कोशिका के केंद्रक में पाए जाने वाले गुणसूत्रों के डी.एन.ए.—DNA (डि. आक्सीराइबोन्यूक्लीक अम्ल) के अणुओं में आनुवंशिक गुणों का संदेश होता है जो जनक से संतित पीढ़ी में जाता है। कोशिका के केंद्रक के डी.एन.ए. में प्रोटीन संश्लेषण हेतु सूचना निहित होती है। इस संदेश के भिन्न होने की अवस्था में बनने वाली प्रोटीन भी भिन्न होगी। विभिन्न प्रोटीन के कारण अंतत: शारीरिक अभिकल्प में भी विविधता होगी।

अतः जनन की मूल घटना डी.एन.ए. (DNA) की प्रतिकृति बनाना है। डी.एन.ए. की प्रतिकृति बनाने के लिए कोशिकाएँ विभिन्न रासायनिक क्रियाओं का उपयोग करती हैं। जनन कोशिका में इस प्रकार डी.एन.ए. की दो प्रतिकृतियाँ बनती हैं तथा उनका एक-दूसरे से अलग होना आवश्यक है। परंतु डी.एन.ए. की एक प्रतिकृति को मूल कोशिका में रखकर दूसरी प्रतिकृति को उससे बाहर निकाल देने से काम नहीं चलेगा क्योंकि दूसरी प्रतिकृति के पास जैव-प्रक्रमों के अनुरक्षण हेतु संगठित कोशिकीय संरचना तो नहीं होगी। इसलिए डी.एन.ए. की प्रतिकृति बनने के साथ-साथ दूसरी कोशिकीय संरचनाओं का सृजन भी होता रहता है, इसके बाद डी.एन.ए. की प्रतिकृतियाँ विलग हो जाती हैं। परिणामतः एक कोशिका विभाजित होकर दो कोशिकाएँ बनाती है।

यह दोनों कोशिकाएँ यद्यपि एकसमान हैं, परंतु क्या वे पूर्णरूपेण समरूप हैं? इस प्रश्न का उत्तर इस बात पर निर्भर करता है कि प्रतिकृति की प्रक्रियाएँ कितनी यथार्थता से संपादित होती हैं। कोई भी जैव-रासायनिक प्रक्रिया पूर्णरूपेण विश्वसनीय नहीं होती। अत: यह अपेक्षित है कि डी.एन.ए. प्रतिकृति की प्रक्रिया में कुछ विभिन्नता आएगी। परिणामत:, बनने वाली डी.एन.ए. प्रतिकृतियाँ एकसमान तो होंगी, परंतु मौलिक डी.एन.ए. का समरूप नहीं होंगी। हो सकता है कि कुछ विभिन्नताएँ इतनी उग्र हों कि डी.एन.ए. की नयी प्रतिकृति अपने कोशिकीय संगठन के साथ समायोजित नहीं हो पाए। इस प्रकार की संति कोशिका मर जाती है। दूसरी ओर डी.एन.ए. प्रतिकृति की अनेक विभिन्नताएँ इतनी उग्र नहीं होतीं। अत: संति कोशिकाएँ समान होते हुए भी किसी न किसी रूप में एक दूसरे से भिन्न होती हैं। जनन में होने वाली यह विभिन्नताएँ जैव-विकास का आधार हैं. जिसकी चर्चा हम अगले अध्याय में करेंगे।

8.1.1 विभिन्तता का महत्व

अपनी जनन क्षमता का उपयोग कर जीवों की समष्टि पारितंत्र में स्थान अथवा निकेत ग्रहण करते हैं। जनन के दौरान डी.एन.ए. प्रतिकृति का अविरोध जीव की शारीरिक संरचना एवं डिजाइन के लिए अत्यंत महत्वपूर्ण है जो उसे विशिष्ट निकेत के योग्य बनाती है। अतः किसी प्रजाति (स्पीशीज़) की समष्टि के स्थायित्व का संबंध जनन से है।

परंतु, निकेत में अनेक परिवर्तन आ सकते हैं जो जीवों के नियंत्रण से बाहर हैं। पृथ्वी का ताप कम या अधिक हो सकता है, जल स्तर में परिवर्तन अथवा किसी उल्का पिंड का टकराना इसके कुछ उदाहरण हैं। यदि एक समिष्ट अपने निकेत के अनुकूल है तथा निकेत में कुछ उग्र परिवर्तन आते हैं तो ऐसी अवस्था में समिष्ट का समूल विनाश भी संभव है। परंतु, यदि समिष्ट के जीवों में कुछ विभिन्नता होगी तो उनके जीवित रहने की कुछ संभावना है। अतः यदि शीतोष्ण जल में पाए जाने वाले जीवाणुओं की कोई समिष्ट है तथा वैश्विक ऊष्मीकरण (global warming) के कारण जल का ताप बढ़ जाता है तो अधिकतर जीवाणु व्यष्टि मर जाएँगे, परंतु उष्ण प्रतिरोधी क्षमता वाले कुछ परिवर्त ही जीवित रहते हैं तथा वृद्धि करते हैं। अतः विभिन्नताएँ स्पीशीज की उत्तरजीविता बनाए रखने में उपयोगी हैं।

जीव जनन कैसे करते हैं

प्रश्न

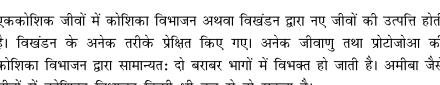
- डी.एन.ए. प्रतिकृति का प्रजनन में क्या महत्त्व है?
- 2. जीवों में विभिन्नता स्पीशीज़ के लिए तो लाभदायक है परंतु व्यष्टि के लिए आवश्यक नहीं

8.2 एकल जीवों में प्रजनन की विधि

क्रियाकलाप 8.1

- 100 mL जल में लगभग 10 g चीनी को घोलिए।
- एक परखनली में इस विलयन का 20 mL लेकर उसमें एक चुटकी यीस्ट पाउडर
- परखनली के मुख को रूई से ढक कर किसी गर्म स्थान पर रखिए।
- 1 या 2 घंटे पश्चात, परखनली से यीस्ट-संवर्ध की एक बूँद स्लाइड पर लेकर उस पर कवर-स्लिप रखिए।
- सूक्ष्मदर्शी की सहायता से स्लाइड का प्रेक्षण कीजिए।

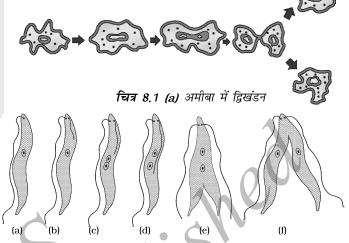
क्रियांकलाप 8.2


- डबल रोटी के एक टुकड़े को जल में भिगो कर ठंडे, नम तथा अँधेरे स्थान पर
- आवर्धक लैंस की सहायता से स्लाइस की सतह का निरीक्षण कीजिए।
- अपने एक सप्ताह के प्रेक्षण कॉपी में रिकॉर्ड कीजिए।

यीस्ट की वृद्धि एवं दूसरी क्रियाकलाप में कवक की वृद्धि के तरीके की तुलना कीजिए तथा ज्ञात कीजिए कि इनमें क्या अंतर है।

इस चर्चा के बाद कि जनन किस प्रकार कार्य करता है, आइए, हम जानें कि विभिन्न जीव वास्तव में किस प्रकार जनन करते हैं। विभिन्न जीवों के जनन की विधि उनके शारीरिक अभिकल्प पर निर्भर करती है।

एककोशिक जीवों में कोशिका विभाजन अथवा विखंडन द्वारा नए जीवों की उत्पत्ति होती है। विखंडन के अनेक तरीके प्रेक्षित किए गए। अनेक जीवाणु तथा प्रोटोजोआ की कोशिका विभाजन द्वारा सामान्यत: दो बराबर भागों में विभक्त हो जाती है। अमीबा जैसे जीवों में कोशिका विभाजन किसी भी तल से हो सकता है।



42

क्रियाकलाप 8.3

- अमीबा की स्थायी स्लाइड का सूक्ष्मदर्शी की सहायता से प्रेक्षण कीजिए।
- इसी प्रकार अमीबा के द्विखंडन की स्थायी
 स्लाइड का प्रेक्षण कीजिए।
- अब दोनों स्लाइडों की तुलना कीजिए।

परंतु, कुछ एककोशिक जीवों में शारीरिक संरचना अधिक संगठित होती है। उदाहरणतः कालाजार के रोगाणु, लेस्मानिया में कोशिका के एक सिरे पर कोड़े के समान सूक्ष्म संरचना होती है। ऐसे जीवों में द्विखंडन एक निर्धारित तल से होता है। मलेरिया परजीवी, प्लैज्मोडियम जैसे अन्य एककोशिक जीव एक साथ अनेक

चित्र 8.1 (b) लेस्मानिया में द्विखंडन

संतित कोशिकाओं में विभाजित हो जाते हैं, जिसे बहुखंडन कहते हैं।

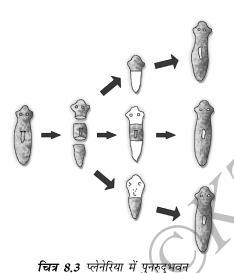
दूसरी ओर यीस्ट कोशिका से छोटे मुकुल उभर कर कोशिका से अलग हो जाते हैं तथा स्वतंत्र रूप से वृद्धि करते हैं जैसा कि हम क्रियाकलाप 8.1 में देख चुके हैं।

8.2.2 खंडन

क्रियाकलाप 8/4/

- किसी झील अथवा तालाब जिसका जल गहरा हरा दिखाई देता हो और जिसमें तंतु के समान संरचनाएँ हों, उससे कुछ जल एकत्र कीजिए।
- एक स्लाइड पर एक अथवा दो तंतु रिखए।
- इन तंतुओं पर ग्लिसरीन की एक बूँद डाल कर कवर-स्लिप से ढक दीजिए।
- सूक्ष्मदर्शी के नीचे स्लाइड का प्रेक्षण कीजिए।
- क्या आप स्पाइरोगाइरा तंतुओं में विभिन्न ऊतक पहचान सकते हैं?

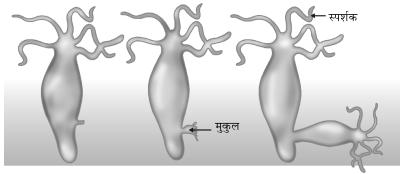
सरल संरचना वाले बहुकोशिक जीवों में जनन की सरल विधि कार्य करती है। उदाहरणत: स्पाइरोगाइरा सामान्यत: विकसित होकर छोटे–छोटे टुकड़ों में खंडित हो जाता है। यह टुकड़े अथवा खंड वृद्धि कर नए जीव (व्यिष्ट) में विकसित हो जाते हैं। क्रियाकलाप 8.4 के प्रेक्षण के आधार पर क्या हम इसका कारण खोज सकते हैं?


परंतु यह सभी बहुकोशिक जीवों के लिए सत्य नहीं है। वे सरल रूप से कोशिका-दर-कोशिका विभाजित नहीं होते। ऐसा क्यों है? इसका कारण है कि अधिकतर बहुकोशिक जीव विभिन्न कोशिकाओं का समूह मात्र ही नहीं हैं। विशेष कार्य हेतु विशिष्ट कोशिकाएँ संगठित होकर ऊतक का निर्माण करती हैं तथा ऊतक संगठित होकर अंग बनाते हैं, शरीर में इनकी स्थिति भी निश्चित होती है। ऐसी सजग व्यवस्थित परिस्थिति में कोशिका-दर-कोशिका विभाजन अव्यावहारिक है। अत: बहुकोशिक जीवों को जनन के लिए अपेक्षाकृत अधिक जटिल विधि की आवश्यकता होती है।

चित्र 8.2 प्लैज़्मोडियम में बहुखंडन

जीव जनन कैसे करते हैं

बहुकोशिक जीवों द्वारा प्रयुक्त एक सामान्य युक्ति यह है कि विभिन्न प्रकार की कोशिकाएँ विशिष्ट कार्य के लिए दक्ष होती हैं। इस सामान्य व्यवस्था का परिपालन करते हुए इस प्रकार के जीवों में जनन के लिए विशिष्ट प्रकार की कोशिकाएँ होती हैं। क्या जीव अनेक प्रकार की कोशिकाओं का बना होता है? इसका उत्तर है कि जीव में कुछ ऐसी कोशिकाएँ होनी चाहिए जिनमें वृद्धि, क्रम, प्रसरण तथा उचित परिस्थिति में विशेष प्रकार की कोशिका बनाने की क्षमता हो।


8.2.3 पुनरुद्भवन (पुनर्जनन)

पूर्णरूपेण विभेदित जीवों में अपने कायिक भाग से नए जीव के निर्माण की क्षमता होती है। अर्थात यदि किसी कारणवश जीव क्षत-विक्षत हो जाता है अथवा कुछ टुकड़ों में टूट जाता है तो इसके अनेक टुकड़े वृद्धि कर नए जीव में विकसित हो जाते हैं। उदाहरणतः हाइड्रा तथा प्लेनेरिया जैसे सरल प्राणियों को यदि कई टुकड़ों में काट दिया जाए तो प्रत्येक टुकड़ा विकसित होकर पूर्णजीव का निर्माण कर देता है। यह पुनरुद्भवन कहलाता है (चित्र 8.3)। पुनरुद्भवन (पुनर्जनन) विशिष्ट कोशिकाओं द्वारा संपादित होता है। इन कोशिकाओं के क्रमप्रसरण से अनेक कोशिकाएँ बन जाती हैं। कोशिकाओं के इस समूह से परिवर्तन के दौरान विभिन्न प्रकार की कोशिकाएँ एवं ऊतक बनते हैं। यह परिवर्तन बहुत व्यवस्थित रूप एवं क्रम से होता है जिसे परिवर्धन कहते हैं। परंतु पुनरुद्भवन जनन के समान नहीं है इसका मुख्य कारण यह है कि प्रत्येक जीव के किसी भी भाग को काट कर सामान्यतः नया जीव उत्पन्न नहीं होता।

8.2.4 मुकुलन

हाइड्रा जैसे कुछ प्राणी पुनर्जनन की क्षमता वाली कोशिकाओं का उपयोग मुकुलन के लिए करते हैं। हाइड्रा में कोशिकाओं के नियमित विभाजन के कारण एक स्थान पर उभार विकसित हो जाता है। यह उभार (मुकुल) वृद्धि करता हुआ नन्हे जीव में बदल जाता है तथा पूर्ण विकसित होकर जनक से अलग होकर स्वतंत्र जीव बन जाता है।

चित्र 8.4 हाइड्डा में मुकुलन

विज्ञान

8.2.5 कायिक प्रवर्धन

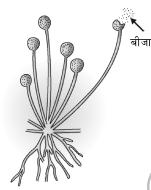
ऐसे बहुत से पौधे हैं जिनमें कुछ भाग जैसे जड़, तना तथा पित्तयाँ उपयुक्त पिरिस्थितियों में विकिसत होकर नया पौधा उत्पन्न करते हैं। अधिकतर जंतुओं के विपरीत, एकल पौधे इस क्षमता का उपयोग जनन की विधि के रूप में करते हैं। परतन, कलम अथवा रोपण जैसी कायिक प्रवर्धन की तकनीक का उपयोग कृषि में भी किया जाता है। गन्ना, गुलाब अथवा अंगूर इसके कुछ उदाहरण हैं। कायिक प्रवर्धन द्वारा उगाए गए पौधों में बीज द्वारा उगाए पौधों की अपेक्षा पुष्प एवं फल कम समय में लगने लगते हैं। यह पद्धित केला, संतरा, गुलाब एवं चमेली जैसे उन पौधों को उगाने के लिए उपयोगी है जो बीज उत्पन्न करने की क्षमता खो चुके हैं। कायिक प्रवर्धन का दूसरा लाभ यह भी है कि इस प्रकार उत्पन्न सभी पौधे आनुवांशिक रूप से जनक पौधे के समान होते हैं।

क्रियाकलाप 8.5

- एक आलू लेकर उसकी सतह का निरीक्षण कीजिए। क्या इसमें कुछ गर्त दिखाई देते हैं?
- आलू को छोटे-छोटे टुकड़ों में इस प्रकार काटिए कि कुछ में तो यह गर्त हों और कुछ में नहीं।
- एक ट्रे में रूई की पतली पर्त बिछा कर उसे गीला कीजिए। किलका (गर्त) वाले टुकड़ों को एक ओर तथा बिना गर्त वाले टुकड़ों को दूसरी ओर रख दीजिए।
- अगले कुछ दिनों तक इन टुकड़ों में होने वाले परिवर्तनों का प्रेक्षण कीजिए। ध्यान रिखए कि रूई में नमी बनी रहे।
- वे कौन से टुकड़े हैं जिनसे हरे प्ररोह तथा जड़ विकसित हो रहे हैं?

चित्र 8.5 कलिकाओं के साथ ब्रायोफिलम की पत्ती

इसी प्रकार ब्रायोफिलम की पत्तियों की कोर पर कुछ कलिकाएँ विकसित होकर मृदा में गिर जाती हैं तथा नए पौधे में विकसित हो जाती हैं (चित्र 8.5)।


क्रियाकलाप 8.6

- एक मनीप्लांट लीजिए।
- 🔳 इसे कुछ टुकड़ों में इस प्रकार काटिए कि प्रत्येक में कम से कम एक पत्ती अवश्य हो।
- दो पत्तियों के मध्य वाले भाग के कुछ टुकड़े काटिए।
- सभी टुकड़ों के एक सिरे को जल में डुबोकर रिखए तथा अगले कुछ दिनों तक उनका अवलोकन कीजिए।
- कौन से टुकड़ों में वृद्धि होती है तथा नयी पित्तयाँ निकली हैं।
- आप अपने प्रेक्षणों से क्या निष्कर्ष निकाल सकते हैं।

जीव जनन कैसे करते हैं

ऊतक संवर्धन तकनीक में पौधे के ऊतक अथवा उसकी कोशिकाओं को पौधे के शीर्ष के वर्धमान भाग से पृथक कर नए पौधे उगाए जाते हैं। इन कोशिकाओं को कृत्रिम पोषक माध्यम में रखा जाता है जिससे कोशिकाएँ विभाजित होकर अनेक कोशिकाओं का छोटा समूह बनाती हैं जिसे कैलस कहते हैं। कैलस को वृद्धि एवं विभेदन के हार्मीन युक्त एक अन्य माध्यम में स्थानांतरित करते हैं। पौधे को फिर मिट्टी में रोप देते हैं जिससे कि वे वृद्धि कर विकसित पौधे बन जाते हैं। ऊतक संवर्धन तकनीक द्वारा किसी एकल पौधे से अनेक पौधे संक्रमण-मुक्त परिस्थितियों में उत्पन्न किए जा सकते हैं। इस तकनीक का उपयोग सामान्यत: सजावटी पौधों के संवर्धन में किया जाता है।

8.2.6 बीजाणु समासंघ

भी जानिए

ड्स

चित्र 8.6 राइजोपस में बीजाणु समासंघ

अनेक सरल बहुकोशिक जीवों में भी विशिष्ट जनन संरचनाएँ पाई जाती हैं। ^{बीजाणु} क्रियाकलाप 8.2 में ब्रेड पर धागे के समान कुछ संरचनाएँ विकसित हुई थीं। यह राइजोपस का कवक जाल है। ये जनन के भाग नहीं हैं। परंतु ऊर्ध्व तंतुओं पर सूक्ष्म गुच्छ (गोल) संरचनाएँ जनन में भाग लेती हैं। ये गुच्छ बीजाणुधानी हैं जिनमें विशेष कोशिकाएँ अथवा बीजाणु पाए जाते (चित्र 8.6) हैं। यह बीजाणु वृद्धि करके राइजोपस के नए जीव उत्पन्न करते हैं। बीजाणु के चारों ओर एक मोटी भित्ति होती है जो प्रतिकूल परिस्थितियों में उसकी रक्षा करती है, नम सतह के संपर्क में आने पर वह वृद्धि करने लगते हैं।

अब तक जनन की जिन विधियों की हमने चर्चा की उन सभी में नयी पीढी का सृजन केवल एकल जीव द्वारा होता है। इसे अलैंगिक जनन कहते हैं।

प्रश्न

- द्विखंडन बहुखंडन से किस प्रकार भिन्न है? 1.
- बीजाणु द्वारा जनन से जीव किस प्रकार लाभान्वित होता है? 2.
- क्या आप कुछ कारण सोच सकते हैं जिससे पता चलता हो कि जटिल संरचना वाले जीव 3. पुनरुद्भवन द्वारा नयी संतति उत्पन्न नहीं कर सकते?
- कुछ (पौधों को उगाने के लिए कायिक प्रवर्धन का उपयोग क्यों किया जाता है? 4.
- की प्रतिकृति बनाना जनन के लिए आवश्यक क्यों है?

8.3 लैंगिक जनन

हम जनन की उस विधि से भी परिचित हैं जिसमें नयी संतति उत्पन्न करने हेतु दो व्यष्टि (एकल जीवों) की भागीदारी होती है। न तो एकल बैल संतित बछड़ा पैदा कर सकता है, और न ही एकल मुर्गी से नए चूजे उत्पन्न हो सकते हैं। ऐसे जीवों में नवीन संतित उत्पन्न करने हेतु नर एवं मादा दोनों लिंगों की आवश्यकता होती है। इस लैंगिक

विज्ञान

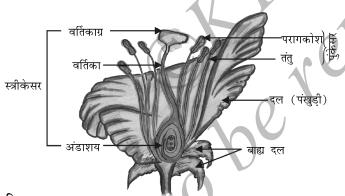
जनन की सार्थकता क्या है? क्या अलैंगिक जनन की कुछ सीमाएँ हैं, जिनकी चर्चा हम ऊपर कर चुके हैं?

8.3.1 लैंगिक जनन प्रणाली क्यों?

एकल (पैत्रक) कोशिका से दो संतित कोशिकाओं के बनने में डी.एन.ए. की प्रतिकृति बनना एवं कोशिकीय संगठन दोनों ही आवश्यक हैं। जैसा कि हम जान चुके हैं कि डी.एन.ए. प्रतिकृति की तकनीक पूर्णत: यथार्थ नहीं है, परिणामी त्रुटियाँ जीव की समिष्ट में विभिन्नता का स्रोत हैं। जीव की प्रत्येक व्यष्टि विभिन्नताओं द्वारा संरक्षित नहीं हो सकती, परंतु स्पीशीज़ की समिष्ट में पाई जाने वाली विभिन्नता उस स्पीशीज़ के अस्तित्व को बनाए रखने में सहायक है। अत: जीवों में जनन की कोई ऐसी विधि अधिक सार्थक होगी जिसमें अधिक विभिन्नता उत्पन्न हो सके।

यद्यपि डी.एन.ए. प्रतिकृति की प्रणाली पूर्णरूपेण यथार्थ नहीं है वह इतनी परिशुद्ध अवश्य है जिसमें विभिन्नता अत्यंत धीमी गित से उत्पन्न होती है। यदि डी.एन.ए. प्रतिकृति की क्रियाविधि कम परिशुद्ध होती, तो बनने वाली डी.एन.ए. प्रतिकृतियाँ कोशिकीय संरचना के साथ सामंजस्य नहीं रख पातीं। परिणामतः कोशिका की मृत्यु हो जाती। अतः परिवर्त उत्पन्न करने के प्रक्रम को किस प्रकार गित दी जा सकती है? प्रत्येक डी.एन.ए. प्रतिकृति में नयी विभिन्नता के साथ-साथ पूर्व पीढ़ियों की विभिन्नताएँ भी संग्रहित होती रहती हैं। अतः समिष्ट के दो जीवों में संग्रहित विभिन्नताओं के पैटर्न भी काफी भिन्न होंगे। क्योंकि यह सभी विभिन्नताएँ जीवित व्यष्टि में पाई जा रही हैं, अतः यह सुनिश्चित ही है कि यह विभिन्नताएँ हानिकारक नहीं हैं। दो अथवा अधिक एकल जीवों की विभिन्नताओं के संयोजन से विभिन्नताओं के नए संयोजन उत्पन्न होंगे। क्योंकि इस प्रक्रम में दो विभिन्न जीव भाग लेते हैं अतः प्रत्येक संयोजन अपने आप में अनोखा होगा। लैंगिक जनन में दो भिन्न जीवों से प्राप्त डी.एन.ए. को समाहित किया जाता है।

परंतु इससे एक और समस्या पैदा हो सकती है। यदि संतित पीढ़ी में जनक जीवों के डी.एन.ए. का युग्मन होता रहे, तो प्रत्येक पीढ़ी में डी.एन.ए. की मात्रा पूर्व पीढ़ी की अपेक्षा दोगुनी होती जाएगी। इससे डी.एन.ए. द्वारा कोशिकी संगठन पर नियंत्रण टूटने की अत्यधिक संभावना है। इस समस्या के समाधान के लिए हम कितने तरीके सोच सकते हैं?

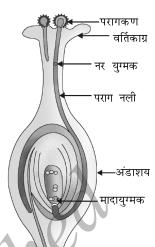

हम पहले ही जान चुके हैं कि जैसे-जैसे जीवों की जटिलता बढ़ती जाती है वैसे-वैसे ऊतकों की विशिष्टता बढ़ती जाती है। उपरोक्त समस्या का समाधान जीवों ने इस प्रकार खोजा जिसमें विशिष्ट अंगों में कुछ विशेष प्रकार की कोशिकाओं की परत होती है जिनमें जीव की कायिक कोशिकाओं की अपेक्षा गुणसूत्रों की संख्या आधी होती है तथा डी.एन.ए. की मात्रा भी आधी होती है। यह कोशिका विभाजन की प्रक्रिया जिसे अर्द्धसूत्री विभाजन कहते हैं, के द्वारा प्राप्त किया जाता है। अत: दो भिन्न जीवों की यह युग्मक कोशिकाएँ लैंगिक जनन में युग्मन द्वारा युग्मनज (जायगोट) बनाती हैं तो संति में गुणसूत्रों की संख्या एवं डी.एन.ए. की मात्रा पुनर्स्थापित हो जाती है।

जीव जनन कैसे करते हैं

यदि युग्मनज वृद्धि एवं परिवर्धन द्वारा नए जीव में विकसित होता है तो इसमें ऊर्जा का भंडार भी पर्याप्त होना चाहिए। अति सरल संरचना वाले जीवों में प्राय: दो जनन कोशिकाओं (युग्मकों) की आकृति एवं आकार में विशेष अंतर नहीं होता अथवा वे समाकृति भी हो सकते हैं। परंतु जैसे ही शारीरिक डिज़ाइन अधिक जटिल होता है, जनन कोशिकाएँ भी विशिष्ट हो जाती हैं। एक जनन-कोशिका अपेक्षाकृत बड़ी होती है एवं उसमें भोजन का पर्याप्त भंडार भी होता है जबिक दूसरी अपेक्षाकृत छोटी एवं अधिक गतिशील होती है। गतिशील जनन-कोशिका को नर युग्मक तथा जिस जनन कोशिका में भोजन का भंडार संचित होता है, उसे मादा युग्मक कहते हैं। अगले कुछ अनुभागों में हम देखेंगे कि इन दो प्रकार के युग्मकों के सृजन की आवश्यकता ने नर एवं मादा व्यष्टियों (जनकों) में विभेद उत्पन्न किए हैं तथा कुछ जीवों में नर एवं मादा में शारीरिक अंतर भी स्पष्ट दृष्टिगोचर होते हैं।

8.3.2 पुष्पी पौधों में लैंगिक जनन

आवृतबीजी (एंजियोस्पर्म) के जननांग पुष्प में अवस्थित होते हैं। आप पुष्प के विभिन्न भागों के विषय में पहले ही पढ़ चुके हैं—बाह्यदल, दल (पंखुड़ी), पुंकेसर एवं स्त्रीकेसर। पुंकेसर एवं स्त्रीकेसर पुष्प के जनन भाग हैं जिनमें जनन–कोशिकाएँ होती हैं। पंखुडी एवं बाह्यदल के क्या कार्य हो सकते हैं?


चित्र 8.7 पुष्प की अनुदैर्घ्य काट जब पुष्प में पुंकेसर अथवा स्त्रीकेसर में से कोई एक जननांग उपस्थित होता है तो पुष्प एकिलंगी कहलाते हैं (पपीता, तरबूज)। जब पुष्प में पुंकेसर एवं स्त्रीकेसर दोनों उपस्थित होते हैं, (गुड़हल, सरसों) तो उन्हें उभयिलंगी पुष्प कहते हैं। पुंकेसर नर जननांग है जो परागकण बनाते हैं। परागकण सामान्यत: पीले हो सकते हैं। आपने देखा होगा कि जब आप किसी पुष्प के पुंकेसर को छूते हैं तब हाथ में एक पीला पाउडर लग जाता है। स्त्रीकेसर पुष्प के केंद्र में अवस्थित होता

है तथा यह पुष्प का मादा जननांग है। यह तीन भागों से बना होता है। आधार पर उभरा-फूला भाग अंडाशय है, मध्य में लंबा भाग वर्तिका है तथा शीर्ष भाग वर्तिकाग्र है जो प्राय: चिपचिपा होता है। अंडाशय में बीजांड होते हैं तथा प्रत्येक बीजांड में एक अंड-कोशिका होती है। परागकण द्वारा उत्पादित नर युग्मक अंडाशय की अंडकोशिका (मादा युग्मक) से संलियत हो जाता है। जनन कोशिकाओं के इस युग्मन अथवा निषेचन से युग्मनज बनता है जिसमें नए पौधे में विकसित होने की क्षमता होती है।

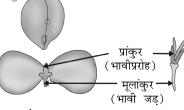
अत: परागकणों को पुंकेसर से वर्तिकाग्र तक स्थानांतरण की आवश्यकता होती है। यदि परागकणों का यह स्थानांतरण उसी पुष्प के वर्तिकाग्र पर होता है तो यह स्वपरागण कहलाता है। परंतु एक पुष्प के परागकण दूसरे पुष्प पर स्थानांतिरत होते हैं, तो उसे परपरागण कहते हैं। एक पुष्प से दूसरे पुष्प तक परागकणों का यह स्थानांतरण वायु, जल अथवा प्राणी जैसे वाहक द्वारा संपन्न होता है।

परागकणों के उपयुक्त, वर्तिकाग्र पर पहुँचने के पश्चात नर युग्मक को अंडाशय में स्थित मादा–युग्मक तक पहुँचना होता है। इसके लिए परागकण से एक निलका विकसित होती है तथा वर्तिका से होती हुई बीजांड तक पहुँचती है।


निषेचन के पश्चात, युग्मनज में अनेक विभाजन होते हैं तथा बीजांड में भ्रूण विकसित होता है। बीजांड से एक कठोर आवरण विकसित होता है तथा यह बीज में परिवर्तित हो जाता है। अंडाशय तीव्रता से वृद्धि करता है तथा परिपक्व होकर फल बनाता है। इस अंतराल में बाह्यदल, पंखुड़ी, पुंकेसर, वर्तिका एवं वर्तिकाग्र प्राय: मुरझाकर गिर जाते हैं। क्या आपने कभी पुष्प के किसी भाग को फल के साथ स्थायी रूप से जुड़े हुए देखा है? सोचिए, बीजों के बनने से पौधे को क्या लाभ है। बीज में भावी पौधा अथवा भ्रूण होता है जो उपयुक्त परिस्थितियों में नवोद्भिद में विकसित हो जाता है। इस प्रक्रम को अंकुरण कहते हैं।

चित्र 8.8 वर्तिकाग्र पर परागकणों का अंकुरण

क्रियाकलाप 8.7


- चने के कुछ बीजों को एक रात तक जल में भिगो दीजिए।
- अधिक जल को फेंक दीजिए तथा भीगे हुए बीजों को गीले कपड़े से ढक कर एक दिन के लिए रख दीजिए। ध्यान रहे कि बीज सूखें नहीं।
- बीजों को सावधानी से खोल कर उसके विभिन्न भागों का प्रेक्षण कीजिए।
- अपने प्रेक्षण की तुलना चित्र 8.9 से कीजिए, क्या आप सभी भागों को पहचान सकते हैं?

अब तक हम विभिन्न स्पीशीज में जनन की विभिन्न प्रणालियों की चर्चा करते रहे हैं। आइए, अब हम उस स्पीशीज के विषय में जानें जिसमें हमारी सर्वाधिक रुचि है, वह है मनुष्य। मानव में लैंगिक जनन होता है। यह प्रक्रम किस प्रकार कार्य करता है?

आइए, अब स्थूल रूप से एक असंबद्ध बिंदु से प्रारंभ करते हैं। हम सभी जानते हैं कि आयु के साथ-साथ हमारे शरीर में कुछ परिवर्तन आते हैं। आपने पहले भी कक्षा 8 में शरीर में होने वाले बदलावों के बारे में सीखा। कक्षा 1 से 10 तक पहुँचते-पहुँचते हमारी लंबाई एवं भार बढ़ जाता है। हमारे दाँत जो गिर जाते हैं, दूध के दाँत कहलाते हैं तथा नए दाँत निकल आते हैं। इन सभी परिवर्तनों को एक सामान्य प्रक्रम वृद्धि में समूहबद्ध कर सकते हैं जिसमें शारीरिक वृद्धि होती है। परंतु किशोरावस्था के प्रारंभिक वर्षों में, कुछ ऐसे परिवर्तन होते हैं जिन्हें मात्र शारीरिक वृद्धि नहीं कहा जा सकता। जबिक, शारीरिक सौष्ठव ही बदल जाता है। शारीरिक अनुपात बदलता है, नए लक्षण आते हैं तथा संवेदना में भी परिवर्तन आते हैं।

इनमें से कुछ परिवर्तन तो लड़के एवं लड़िकयों में एकसमान होते हैं। हम देखते हैं िक शरीर के कुछ नए भागों जैसे िक काँख एवं जाँघों के मध्य जननांगी क्षेत्र में बाल-गुच्छ निकल आते हैं तथा उनका रंग भी गहरा हो जाता है। पैर, हाथ एवं चेहरे पर भी महीन रोम आ जाते हैं। त्वचा अक्सर तैलीय हो जाती है तथा कभी-कभी मुँहासे भी निकल आते हैं। हम अपने और दूसरों के प्रति अधिक सजग हो जाते हैं। जीव जनन कैसे करते हैं

बीजपत्र

(खाद्य संग्रह)

चित्र 8.9 अंकुरण

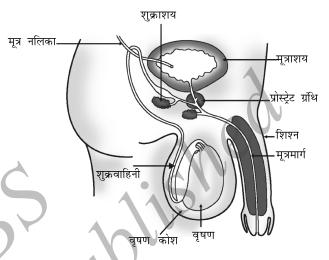
दूसरी ओर, कुछ ऐसे भी परिवर्तन हैं जो लड़कों एवं लड़िकयों में भिन्न होते हैं। लड़िकयों में स्तन के आकार में वृद्धि होने लगती है तथा स्तनाग्र की त्वचा का रंग भी गहरा होने लगता है। इस समय लड़िकयों में रजोधर्म होने लगता है। लड़कों के चेहरे पर दाढ़ी-मूँछ निकल आती है तथा उनकी आवाज़ फटने लगती है। साथ ही दिवास्वप्न अथवा रात्रि में शिश्न भी अक्सर विवर्धन के कारण ऊर्ध्व हो जाता है।

ये सभी परिवर्तन महीनों एवं वर्षों की अवधि में मंद गित से होते हैं। ये परिवर्तन सभी व्यक्तियों में एक ही समय अथवा एक निश्चित आयु में नहीं होते। कुछ व्यक्तियों में ये परिवर्तन कम आयु में एवं तीव्रता से होते हैं जबिक अन्य में मंद गित से होते हैं। प्रत्येक परिवर्तन तीव्रता से पूर्ण भी नहीं होता। उदाहरणत: लड़कों के चेहरे पर पहले छितराए हुए से कुछ मोटे बाल परिलक्षित होते हैं, तथा धीरे-धीरे यह वृद्धि एक जैसी हो जाती है। फिर भी इन सभी परिवर्तनों में विभिन्न व्यक्तियों के बीच विविधता परिलक्षित होती है। जैसे कि हमारे नाक-नक्श अलग-अलग हैं उसी प्रकार इन बालों की वृद्धि का पैटर्न, स्तन अथवा शिश्न की आकृति एवं आकार भी भिन्न होते हैं। यह सभी परिवर्तन शरीर की लैंगिक परिपक्वता के पहलू हैं।

इस आयु में शरीर में लैंगिक परिपक्वता क्यों परिलक्षित होती है? हम बहुकोशिक जीवों में विशिष्ट कार्यों के संपादन हेतु विशिष्ट प्रकार की कोशिकाओं की आवश्यकता की बात कर चुके हैं। लैंगिक जनन में भाग लेने के लिए जनन कोशिकाओं का उत्पादन इसी प्रकार का एक विशिष्ट कार्य है तथा हम देख चुके हैं कि पौधों में भी इस हेतु विशेष प्रकार की कोशिकाएँ एवं ऊतक विकसित होते हैं। प्राणियों, जैसे कि मानव भी इस कार्य हेतु विशिष्ट ऊतक विकसित करता है यद्यपि किसी व्यक्ति के शरीर में युवावस्था के आकार हेतु वृद्धि होती है, परंतु शरीर के संसाधन मुख्यत: इस वृद्धि की प्राप्ति की ओर लगे रहते हैं। इस प्रक्रम के चलते जनन ऊतक की परिपक्वता मुख्य प्राथमिकता नहीं होती अत: जैसे-जैसे शरीर की सामान्य वृद्धि दर धीमी होनी शुरू होती है, जनन-ऊतक परिपक्व होना प्रारंभ करते हैं। किशोरावस्था की इस अविध को यौवनारंभ (puberty) कहा जाता है।

अत: वे सभी परिवर्तन जिनकी हमने चर्चा की जनन-प्रक्रम से किस प्रकार संबद्ध हैं? हमें याद रखना चाहिए कि लैंगिक जनन प्रणाली का अर्थ है, कि दो भिन्न व्यक्तियों की जनन कोशिकाओं का परस्पर संलयन। यह जनन कोशिकाओं के बाह्य-मोचन द्वारा हो सकता है जैसे कि पुष्पी पौधों में होता है। अथवा दो जीवों के परस्पर संबंध द्वारा जनन कोशिकाओं के आंतरिक स्थानांतरण द्वारा भी हो सकता है, जैसे कि अनेक प्राणियों में होता है। यदि जंतुओं को संगम के इस प्रक्रम में भाग लेना हो, तो यह आवश्यक है कि दूसरे जीव उनकी लैंगिक परिपक्वता की पहचान कर सकें। यौवनारंभ की अविध में अनेक परिवर्तन जैसे कि बालों का नवीन पैटर्न इस बात का संकेत है कि लैंगिक परिपक्वता आ रही है।

दूसरी ओर, दो व्यक्तियों के बीच जनन कोशिकाओं के वास्तिवक स्थानांतरण हेतु विशिष्ट अंग/संरचना की आवश्यकता होती है; उदाहरण के लिए शिश्न के ऊर्ध्व होने की क्षमता। स्तनधारियों जैसे कि मानव में शिश्न माँ के शरीर में लंबी अविध तक गर्भस्थ रहता


40

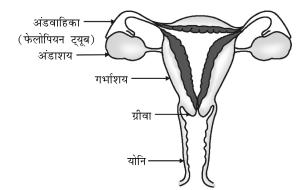
है तथा जन्मोपरांत स्तनपान करता है। इन सभी स्थितियों के लिए मादा के जननांगों एवं स्तन का परिपक्व होना आवश्यक है। आइए, जनन तंत्र के विषय में जानें।

8.3.3 (a) नर जनन तंत्र

जनन कोशिका उत्पादित करने वाले अंग एवं जनन कोशिकाओं को निषेचन के स्थान तक पहुँचाने वाले मूत्र निलका अंग, संयुक्त रूप से, **नर जनन तंत्र** (चित्र 8.10) बनाते हैं।

नर जनन-कोशिका अथवा शुक्राणु का निर्माण वृषण में होता है। यह उदर गुहा के बाहर वृषण कोष में स्थित होते हैं। इसका कारण यह है कि शुक्राणु उत्पादन के लिए आवश्यक ताप शरीर के ताप से कम होता है। टेस्टोस्टेरॉन हार्मोन के उत्पादन एवं स्रवण में वृषण की भूमिका की चर्चा हम पिछले अध्याय में कर चुके हैं। शुक्राणु उत्पादन के नियंत्रण के अतिरिक्त टेस्टोस्टेरॉन लड़कों में यौवनावस्था के लक्षणों का भी नियंत्रण करता है।

चित्र 8.10 मानव का नर जनन तंत्र


उत्पादित शुक्राणुओं का मोचन शुक्रवाहिकाओं द्वारा होता है। ये शुक्रवाहिकाएँ मूत्राशय से आने वाली नली से जुड़ कर एक संयुक्त नली बनाती है। अत: मूत्रमार्ग (urethra) शुक्राणुओं एवं मूत्र दोनों के प्रवाह के उभय मार्ग है। प्रोस्ट्रेट तथा शुक्राशय अपने म्राव शुक्रवाहिका में डालते हैं जिससे शुक्राणु एक तरल माध्यम में आ जाते हैं। इसके कारण इनका स्थानांतरण सरलता से होता है साथ ही यह म्राव उन्हें पोषण भी प्रदान करता है। शुक्राणु सूक्ष्म सरंचनाएँ हैं जिसमें मुख्यत: आनुवंशिक पदार्थ होते हैं तथा एक लंबी पूँछ होती है जो उन्हें मादा जनन-कोशिका की ओर तैरने में सहायता करती है।

8.3.3 (b) मादा जनन तंत्र

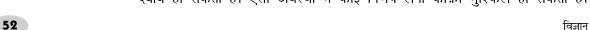
मादा जनन-कोशिकाओं अथवा अंड-कोशिका का निर्माण अंडाशय में होता है। वे कुछ

हार्मोन भी उत्पादित करती हैं। चित्र 8.11 को ध्यानपूर्वक देखिए तथा मादा जनन तंत्र के विभिन्न अंगों को पहचानिए।

लड़की के जन्म के समय ही अंडाशय में हजारों अपिरपक्व अंड होते हैं। यौवनारंभ में इनमें से कुछ पिरपक्व होने लगते हैं। दो में से एक अंडाशय द्वारा प्रत्येक माह एक अंड पिरपक्व होता है। महीन अंडवाहिका अथवा फेलोपियन ट्यूब द्वारा यह अंडकोशिका गर्भाशय तक ले जाए जाते हैं। दोनों अंडवाहिकाएँ संयुक्त होकर एक लचीली थैलेनुमा संरचना का निर्माण करती हैं जिसे गर्भाशय कहते हैं। गर्भाशय ग्रीवा द्वारा योनि में खुलता है। जीव जनन कैसे करते हैं

चित्र 8.11 मानव का मादा जनन तंत्र

मैथुन के समय शुक्राणु योनि मार्ग में स्थापित होते हैं जहाँ से ऊपर की ओर यात्रा करके वे अंडवाहिका तक पहुँच जाते हैं, जहाँ अंडकोशिका से मिल सकते हैं। निषेचित अंडा विभाजित होकर कोशिकाओं की गेंद जैसी संरचना या भ्रूण बनाता है। भ्रूण गर्भाशय में स्थापित हो जाता है, जहाँ यह लगातार विभाजित होकर वृद्धि करता है तथा अंगों का विकास करता है। हम पहले पढ़ चुके हैं कि माँ का शरीर गर्भधारण एवं उसके विकास के लिए विशेष रूप से अनुकूलित होता है। अत: गर्भाशय प्रत्येक माह भ्रूण को ग्रहण करने एवं उसके पोषण हेतु तैयारी करता है। इसकी आंतरिक पर्त मोटी होती जाती है तथा भ्रूण के पोषण हेतु रुधिर प्रवाह भी बढ़ जाता है।


भूण को माँ के रुधिर से ही पोषण मिलता है, इसके लिए एक विशेष संरचना होती है जिसे प्लैसेंटा कहते हैं। यह एक तश्तरीनुमा संरचना है जो गर्भाशय की भित्त में धँसी होती है। इसमें भ्रूण की ओर के ऊतक में प्रवर्ध होते हैं। माँ के ऊतकों में रक्तस्थान होते हैं जो प्रवर्ध को आच्छादित करते हैं। यह माँ से भ्रूण को खूकोज, ऑक्सीजन एवं अन्य पदार्थों के स्थानांतरण हेतु एक बृहद क्षेत्र प्रदान करते हैं। विकासशील भ्रूण द्वारा अपशिष्ट पदार्थ उत्पन्न होते हैं जिनका निपटान उन्हें प्लैसेंटा के माध्यम से माँ के रुधिर में स्थानांतरण द्वारा होता है। माँ के शरीर में गर्भ को विकसित होने में लगभग 9 मास का समय लगता है। गर्भाशय के पेशियों के लयबद्ध संकुचन से शिशु का जन्म होता है।

8.3.3 (c) क्या होता है जब अंड का निषेचन नहीं होता?

यदि अंडकोशिका का निषेचन नहीं हो तो यह लगभग एक दिन तक जीवित रहती है। क्योंकि अंडाशय प्रत्येक माह एक अंड का मोचन करता है, अत: निषेचित अंड की प्राप्ति हेतु गर्भाशय भी प्रति माह तैयारी करता है। अत: इसकी अंत:भित्ति मांसल एवं स्पोंजी हो जाती है। यह अंड के निषेचन होने की अवस्था में उसके पोषण के लिए आवश्यक है। परंतु निषेचन न होने की अवस्था में इस पर्त की भी आवश्यकता नहीं रहती। अत: यह पर्त धीरे-धीरे टूट कर योनि मार्ग से रुधिर एवं म्यूकस के रूप में निष्कासित होती है। इस चक्र में लगभग एक मास का समय लगता है तथा इसे ऋतुम्राव अथवा रजोधर्म कहते हैं। इसकी अविध लगभग 2 से 8 दिनों की होती है।

8.3.3 (d) जनन स्वास्थ्य

जैसा कि हम देख चुके हैं, लैंगिक परिपक्वता एक क्रमिक प्रक्रम है तथा यह उस समय होता है जब शारीरिक वृद्धि भी होती रहती है। अत: किसी सीमा (आंशिक रूप से) तक लैंगिक परिपक्वता का अर्थ यह नहीं है कि शरीर अथवा मस्तिष्क जनन क्रिया अथवा गर्भधारण योग्य हो गए हैं। हम यह निर्णय किस प्रकार ले सकते हैं कि शरीर एवं मस्तिष्क इस मुख्य उत्तरदायित्व के योग्य हो गया है? इस विषय पर हम सभी पर किसी न किसी प्रकार का दबाव है। इस क्रिया के लिए हमारे मित्रों का दबाव भी हो सकता है, भले ही हम चाहें या न चाहें। विवाह एवं संतानोत्पत्ति के लिए पारिवारिक दबाव भी हो सकता है। संतानोत्पत्ति से बचकर रहने का, सरकारी तंत्र की ओर से भी दबाव हो सकता है। ऐसी अवस्था में कोई निर्णय लेना काफ़ी मुश्किल हो सकता है।

यौन क्रियाओं के स्वास्थ्य पर पड़ने वाले प्रभाव के विषय में भी हमें सोचना चाहिए। हम कक्षा 9 में पढ़ चुके हैं कि एक व्यक्ति से दूसरे व्यक्ति को रोगों का संचरण अनेक प्रकार से हो सकता है क्योंकि यौनक्रिया में प्रगाढ़ शारीरिक संबंध स्थापित होते हैं, अतः इसमें आश्चर्य की कोई बात नहीं है कि अनेक रोगों का लैंगिक संचरण भी हो सकता है। इसमें जीवाणु जिनत जैसे गोनेरिया तथा सिफलिस एवं वाइरस संक्रमण जैसे कि मस्सा (Wart) तथा HIV-AIDS शामिल हैं। लैंगिक क्रियाओं के दौरान क्या इन रोगों के संचरण का निरोध संभव है? शिश्न के लिए आवरण अथवा कंडोम के प्रयोग से इनमें से अनेक रोगों के संचरण का कुछ सीमा तक निरोध संभव है।

यौन (लैंगिक) क्रिया द्वारा गर्भधारण की संभावना सदा ही बनी रहती है। गर्भधारण की अवस्था में स्त्री के शरीर एवं भावनाओं की माँग एवं आपूर्ति बढ जाती है एवं यदि वह इसके लिए तैयार नहीं है तो इसका उसके स्वास्थ्य पर विपरीत प्रभाव पड़ता है। अत: गर्भधारण रोकने के अनेक तरीके खोजे गए हैं। यह गर्भरोधी तरीके अनेक प्रकार के हो सकते हैं। एक तरीका यांत्रिक अवरोध का है जिससे शुक्राणु अंडकोशिका तक न पहुँच सके। शिश्न को ढकने वाले कंडोम अथवा योनि में रखने वाली अनेक युक्तियों का उपयोग किया जा सकता है। दूसरा तरीका शरीर में हार्मोन संतुलन के परिवर्तन का है, जिससे अंड का मोचन ही नहीं होता अत: निषेचन नहीं हो सकता। ये दवाएँ सामान्यत: गोली के रूप में ली जाती हैं। परंतु ये हार्मोन संतुलन को परिवर्तित करती हैं अत: उनके कुछ विपरीत प्रभाव भी हो सकते हैं। गर्भधारण रोकने के लिए कुछ अन्य युक्तियाँ जैसे कि लूप अथवा कॉपर-टी (Copper-T) को गर्भाशय में स्थापित करके भी किया जाता है। परंतु गर्भाशय के उत्तेजन से भी कुछ विपरीत प्रभाव हो सकते हैं। यदि पुरुष की शुक्रवाहिकाओं को अवरुद्ध कर दिया जाए तो शुक्राणुओं का स्थानांतरण रुक जाएगा। यदि स्त्री की अंडवाहिनी अथवा फेलोपियन नलिका को अवरुद्ध कर दिया जाए तो अंड (डिंब) गर्भाशय तक नहीं पहुँच सकेगा। दोनों ही अवस्थाओं में निषेचन नहीं हो पाएगा। शल्यक्रिया तकनीक द्वारा इस प्रकार के अवरोध उत्पन्न किए जा सकते हैं। यद्यपि शल्य तकनीक भविष्य के लिए पूर्णत: सुरक्षित है, परंतु असावध ानीपूर्वक की गई शल्यक्रिया से संक्रमण अथवा दूसरी समस्याएँ उत्पन्न हो सकती हैं। शल्यक्रिया द्वारा अनचाहे गर्भ को हटाया भी जा सकता है। इस तकनीक का दुरुपयोग उन लोगों द्वारा किया जा सकता है जो किसी विशेष लिंग का बच्चा नहीं चाहते, ऐसा गैरकानूनी कार्य अधिकतर मादा गर्भ के चयनात्मक गर्भपात हेतु किया जा रहा है। एक स्वस्थ समाज के लिए, मादा-नर लिंग अनुपात बनाए रखना आवश्यक है। यद्यपि हमारे देश में भ्रूण लिंग निर्धारण एक कानूनी अपराध है। हमारे समाज की कुछ इकाइयों में मादा भ्रूण की निर्मम हत्या के कारण हमारे देश में शिशु लिंग अनुपात तीव्रता से घट रहा है जो चिंता का विषय है।

हमने पहले देखा कि जनन एक ऐसा प्रक्रम है जिसके द्वारा जीव अपनी समिष्ट की वृद्धि करते हैं। एक समिष्ट में जन्मदर एवं मृत्युदर उसके आकार का निर्धारण करते हैं। जनसंख्या का विशाल आकार बहुत लोगों के लिए चिंता का विषय है। इसका मुख्य कारण जीव जनन कैसे करते हैं

यह है कि बढ़ती हुई जनसंख्या के कारण प्रत्येक व्यक्ति के जीवन स्तर में सुधार लाना दुष्कर कार्य है। यदि सामाजिक असमानता हमारे समाज के निम्न जीवन स्तर के लिए उत्तरदायी है तो जनसंख्या के आकार का महत्व इसके लिए अपेक्षाकृत कम हो जाता है। यदि हम अपने आसपास देखें तो क्या आप जीवन के निम्न स्तर के लिए उत्तरदायी सबसे महत्वपूर्ण कारण की पहचान कर सकते हैं?

प्रश्न

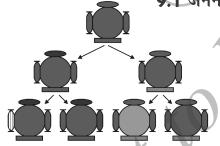
- 1. परागण क्रिया निषेचन से किस प्रकार भिन्न है?
- 2. शुक्राशय एवं प्रोस्टेट ग्रंथि की क्या भूमिका है?
- 3. यौवनारंभ के समय लडिकयों में कौन से परिवर्तन दिखाई देते हैं?
- 4. माँ के शरीर में गर्भस्थ भ्रूण को पोषण किस प्रकार प्राप्त होता है?
- 5. यदि कोई महिला कॉपर-टी का प्रयोग कर रही है तो क्या यह उसकी यौन-संचरित रोगों से रक्ष करेगा?

आपने क्या सीखा

- अन्य जैव प्रक्रमों के विपरीत किसी जीव के अपने अस्तित्व के लिए जनन आवश्यक नहीं है।
- जनन में एक कोशिका द्वारा डी.एन.ए. प्रतिकृति का निर्माण तथा अतिरिक्त कोशिकीय संगठन का सृजन होता है।
- विभिन्न जीवों द्वारा अपनाए जाने वाले जनन की प्रणाली उनके शारीरिक अभिकल्प पर निर्भर करती है।
- खंडन विधि में जीवाणु एवं प्रोटोजोआ की कोशिका विभाजित होकर दो या अधिक संतित कोशिका का निर्माण करती है।
- यदि हाइड्रा जैसे जीवों का शरीर कई टुकड़ों में विलग हो जाए तो प्रत्येक भाग से पुनरुद्भवन द्वारा
 नए जीव विकसित हो जाते हैं। इनमें कुछ मुकुल भी उभर कर नए जीव में विकसित हो जाते हैं।
- कुछ पौधों में कायिक प्रवर्धन द्वारा जड़, तना अथवा पत्ती से नए पौधे विकसित होते हैं।
- उपरोक्त अलैंगिक जनन के उदाहरण हैं जिसमें संतित की उत्पत्ति एक एकल जीव (व्यष्टि) द्वारा होती है।
- लैंगिक जनन में संतित उत्पादन हेतु दो जीव भाग लेते हैं।
- डी.एन.ए. प्रतिकृति की तकनीक से विभिन्नता उत्पन्न होती है जो स्पीशीज़ के अस्तित्व के लिए लाभप्रद है। लैंगिक जनन द्वारा अधिक विभिन्नताएँ उत्पन्न होती हैं।
- पुष्पी पौधों में जनन प्रक्रम में परागकण परागकोश से स्त्रीकेसर के वर्तिकाग्र तक स्थानांतरित होते हैं
 जिसे परागण कहते हैं। इसका अनुगमन निषेचन द्वारा होता है।
- यौवनारंभ में शरीर में अनेक परिवर्तन आते हैं, उदाहरण के लिए लड़िकयों में स्तन का विकास तथा लड़कों के चेहरे पर नए बालों का आना, लैंगिक परिपक्वता के चिह्न हैं।

- मानव में नर जनन तंत्र में वृषण, शुक्राणुवाहिनी, शुक्राशय, प्रोस्टेट ग्रंथि, मूत्र मार्ग तथा शिश्न होते हैं। वृषण शुक्राणु उत्पन्न करते हैं।
- मानव के मादा जनन तंत्र में अंडाशय, डिंबवाहिनी, गर्भाशय तथा योनि पाए जाते हैं।
- मानव में लैंगिक जनन प्रक्रिया में शुक्राणुओं का स्त्री की योनि में स्थानांतरण होता है तथा निषेचन डिम्बवाहिनी में होता है।
- गर्भिनरोधी युक्तियाँ अपनाकर गर्भधारण रोका जा सकता है। कंडोम, गर्भिनरोधी गोलियाँ, कॉपर-टी तथा अन्य युक्तियाँ इसके उदाहरण हैं।

अभ्यास


- 1. अलैंगिक जनन मुकुलन द्वारा होता है।
 - (a) अमीबा
 - (b) यीस्ट
 - (c) प्लैज्मोडियम
 - (d) लेस्मानिया
- 2. निम्न में से कौन मानव में मादा जनन तंत्र का भाग नहीं है?
 - (a) अंडाशय
 - (b) गर्भाशय
 - (c) शुक्रवाहिका
 - (d) डिंबवाहिनी
- 3. परागकोश में होते हैं -
 - (a) बाह्यदल
 - (b) अंडाशय
 - (c) अंडप
 - (d) पराग कण
- 4. अलैंगिक जनन की अपेक्षा लैंगिक जनन के क्या लाभ हैं?
- 5. मानव में वृषण के क्या कार्य हैं?
- 6. ऋतुस्राव क्यों होता है?
- 7. पुष्प की अनुदैर्घ्य काट का नामांकित चित्र बनाइए।
- 8. गर्भनिरोधन की विभिन्न विधियाँ कौन सी हैं?
- 9. एक-कोशिक एवं बहुकोशिक जीवों की जनन पद्धित में क्या अंतर है?
- 10. जनन किसी स्पीशीज़ की समष्टि के स्थायित्व में किस प्रकार सहायक है?
- 11. गर्भनिरोधक युक्तियाँ अपनाने के क्या कारण हो सकते हैं?

जीव जनन कैसे करते हैं

अध्याय 9 आनुवंशिकता एवं जैव विकास

मने देखा कि जनन प्रक्रमों द्वारा नए जीव (व्यष्टि) उत्पन्न होते हैं जो जनक के समान होते हुए भी कुछ भिन्न होते हैं। हमने यह चर्चा की है कि अलैंगिक जनन में भी कुछ विभिन्नताएँ कैसे उत्पन्न होती हैं। अधिकतम संख्या में सफल विभिन्नताएँ लैंगिक प्रजनन द्वारा ही प्राप्त होती हैं। यदि हम गन्ने के खेत का अवलोकन करें तो हमें व्यष्टिगत पौधों में बहुत कम विभिन्नताएँ दिखाई पड़ती हैं। मानव एवं अधिकतर जंतु जो लैंगिक जनन द्वारा उत्पन्न होते हैं, इनमें व्यष्टिगत स्तर पर अनेक भिन्नताएँ परिलक्षित होती हैं। इस अध्याय में हम उन क्रियाविधियों का अध्ययन करेंगे जिनके कारण विभिन्नताएँ उत्पन्न एवं वंशागत होती हैं। विभिन्नताओं के संचयन के लंबे समय तक होने वाले अनुवर्ती प्रभाव का अध्ययन अत्यंत रोचक है तथा जैव विकास में हम इसका अध्ययन करेंगे।

9.1 जनन के दौरान विभिन्नताओं का संचयन

चित्र 9.1

उत्तरोत्तर पीढ़ियों में विविधता की उत्पत्ति। शीर्ष पर दर्शाए गए पहली पीढ़ी के जीव, मान लीजिए कि दो संतित को जन्म देंगे जिनकी आधारभूत शारीरिक संरचना तो एकसमान होगी परंतु विभिन्नताएँ भी होंगी। इनमें से प्रत्येक अगली पीढ़ी में दो जीवों को उत्पन्न करेगा। चित्र में सबसे नीचे दिखाए गए चारों जीव व्यष्टि स्तर पर एक दूसरे से भिन्न होंगे। कुछ विभिन्नताएँ विशिष्ट होंगी जबिक कुछ उन्हें अपने जनक से प्राप्त हुई हैं जो स्वयं आपस में एक-दूसरे से भिन्न थे। पूर्ववर्ती पीढ़ी से वंशागित संतित को एक आधारिक शारीरिक अभिकल्प (डिजाइन) एवं कुछ विभिन्नताएँ प्राप्त होती हैं। अब जरा सोचिए, िक इस नयी पीढ़ी के जनन का क्या परिणाम होगा? दूसरी पीढ़ी में पहली पीढ़ी से आहरित विभिन्नताएँ एवं कुछ नयी विभिन्नताएँ उत्पन्न होगी।

चित्र 9.1 में उस स्थित को दर्शाया गया है जबिक केवल एकल जीव जनन करता है, जैसा कि अलैंगिक जनन में होता है। यदि एक जीवाणु विभाजित होता है, तो परिणामत: दो जीवाणु उत्पन्न होते हैं जो पुन: विभाजित होकर चार (व्यिष्ट) जीवाणु उत्पन्न करेंगे जिनमें आपस में बहुत अधिक समानताएँ होंगी। उनमें आपस में बहुत कम अंतर होगा जो डी. एन. ए. प्रतिकृति के समय न्यून त्रुटियों के कारण उत्पन्न हुई होंगी। परंतु यदि लैंगिक जनन होता तो विविधता अपेक्षाकृत और अधिक होती। इसके विषय में हम आनुवंशिकता के नियमों की चर्चा के समय देखेंगे।

क्या किसी स्पीशीज में इन सभी विभिन्नताओं के साथ अपने अस्तित्व में रहने की संभावना एकसमान है? निश्चित रूप से नहीं। प्रकृति की विविधता के आधार पर विभिन्न जीवों को विभिन्न

प्रकार के लाभ हो सकते हैं। ऊष्णता को सहन करने की क्षमता वाले जीवाणुओं को अधिक गर्मी से बचने की संभावना अधिक होती है। उसकी चर्चा हम पहले कर चुके हैं। पर्यावरण कारकों द्वारा उत्तम परिवर्त का चयन जैव विकास प्रक्रम का आधार बनाता है जिसकी चर्चा हम आगे करेंगे।

प्रश्न

- यदि एक 'लक्षण A' अलैंगिक प्रजनन वाली समष्टि के 10 प्रतिशत सदस्यों में पाया जाता है तथा 'लक्षण - B' उसी समष्टि में 60 प्रतिशत जीवों में पाया जाता है, तो कौन सा लक्षण पहले उत्पन्न हुआ होगा?
- 2. विभिन्नताओं के उत्पन्न होने से किसी स्पीशीज का अस्तित्व किस प्रकार बढ़ जाता है?

9.2 आनुवंशिकता

जनन प्रक्रम का सबसे महत्वपूर्ण परिणाम संतित के जीवों के समान डिज़ाइन (अभिकल्पना) का होना है। आनुवंशिकता नियम इस बात का निर्धारण करते हैं जिनके द्वारा विभिन्न लक्षण पूर्ण विश्वसनीयता के साथ वंशागत होते हैं। आइए, इन नियमों का ध्यानपूर्वक अध्ययन करें।

9.2.1 वंशागत लक्षण

वास्तव में समानता एवं विभिन्तताओं से हमारा क्या अभिप्राय है? हम जानते हैं कि शिशु में मानव के सभी आधारभूत लक्षण होते हैं। फिर भी यह पूर्णरूप से अपने जनकों जैसा दिखाई नहीं पड़ता तथा मानव समष्टि में यह विभिन्तता स्पष्ट दिखाई देती है।

अपनी कक्षा के सभी छात्रों के कान का अवलोकन कीजिए। ऐसे छात्रों की सूची बनाइए जिनकी कर्णपालि (ear lobe) स्वतंत्र हो तथा जुड़ी हो (चित्र 9.2)। जुड़े कर्णपालि वाले छात्रों एवं स्वतंत्र कर्णपालि वाले छात्रों के प्रतिशत की गणना कीजिए। प्रत्येक छात्र के कर्णपालि के प्रकार को उनके जनक से मिलाकर देखिए। इस प्रेक्षण के आधार पर कर्णपालि के वंशागित के संभावित नियम का सुझाव दीजिए।

9.2.2 लक्षणों की वंशागित के नियम : मेंडल का योगदान

मानव में लक्षणों की वंशागित के नियम इस बात पर आधारित हैं कि माता एवं पिता दोनों ही समान मात्रा में आनुवंशिक पदार्थ को संतित (शिशु) में स्थानांतरित करते हैं। इसका अर्थ यह है कि प्रत्येक लक्षण पिता और माता के डी.एन.ए. से प्रभावित हो सकते हैं। अत: प्रत्येक लक्षण के लिए प्रत्येक संतित में दो विकल्प होंगे। फिर संतान में कौन-सा लक्षण परिलक्षित होगा? मेंडल (बॉक्स में देखिए) ने इस प्रकार की वंशागित के कुछ मुख्य नियम प्रस्तुत किए। उन प्रयोगों के बारे में जानना अत्यंत रोचक होगा जो उसने लगभग एक शताब्दी से भी पहले किए थे।

(a)

चित्र 9.2

(a) स्वतंत्र तथा (b) जुड़े कर्ण पालि। कान के निचले भाग को कर्णपालि कहते हैं। यह कुछ लोगों में सिर के पाश्व में पूर्ण रूप से जुड़ा होता है परंतु कुछ में नहीं। स्वतंत्र एवं जुड़े कर्णपालि मानव समष्टि में पाए जाने वाले दो परिवर्त हैं।

आनुवंशिकता एवं जैव विकास

ग्रेगर जॉन मेंडल (1822-1884)

चित्र 9.3

दो पीढ़ियों तक लक्षणों की वंशानुगति

मेंडल की प्रारंभिक शिक्षा एक गिरजाघर में हुई थी तथा वह विज्ञान एवं गणित के अध्ययन के लिए वियना विश्वविद्यालय गए। अध्यापन हेतु सर्टिफिकेट की परीक्षा में असफल होना उनकी वैज्ञानिक खोज की प्रवृत्ति को दबा नहीं सका। वह अपने मोनेस्ट्री में वापस गए तथा मटर पर प्रयोग करना प्रारंभ किया। उनसे पहले भी बहुत से वैज्ञानिकों ने मटर एवं अन्य जीवों के वंशागत गुणों का अध्ययन किया था। परंतु मेंडल ने अपने विज्ञान एवं गणितीय ज्ञान को समिश्रित किया। वह पहले वैज्ञानिक थे जिन्होंने प्रत्येक पीढ़ी के एक-एक पौधे द्वारा प्रदर्शित लक्षणों का रिकॉर्ड रखा तथा गणना की। इससे उन्हें वंशागत नियमों के प्रतिपादन में सहायता मिली।

मेंडल ने मटर के पौधे के अनेक विपर्यासी (विकल्पी) लक्षणों का अध्ययन किया जो स्थूल रूप से दिखाई देते हैं। उदाहरणत: गोल/झुर्रीदार बीज, लंबे/बौने पौधे, सफेद/बैंगनी फूल इत्यादि। उसने विभिन्न लक्षणों वाले मटर के पौधों को लिया जैसे कि लंबे पौधे तथा बौने पौधे। इससे प्राप्त संतित पीढ़ी में लंबे एवं बौने पौधों के प्रतिशत की

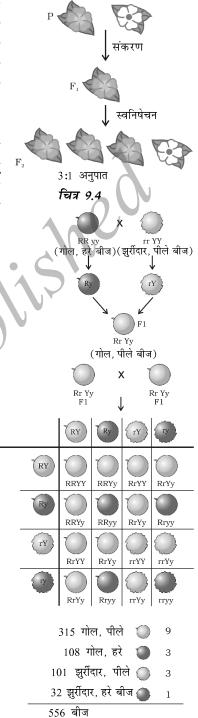
गणना की। प्रथम संतति पीढ़ी अथवा F₁ में कोई पौधा बीच की ऊँचाई का नहीं था। सभी पौधे

 लंबे थे। इसका अर्थ था कि दो लक्षणों में से केवल एक पैतृक जनकीय लक्षण ही दिखाई देता है, उन दोनों का मिश्रित प्रभाव दृष्टिगोचर नहीं होता। तो अगला प्रश्न था कि क्या F, पीढ़ी के पौधे अपने पैतृक लंबे पौधों से पूर्ण रूप से समान थे? मेंडल ने अपने प्रयोगों में दोनों प्रकार के पैतृक पौधों एवं F, पीढ़ी के पौधों को स्वपरागण द्वारा उगाया। पैतृक पीढ़ी के पौधों से प्राप्त सभी संतित भी लंबे पौधों की थी। परंतु F, पीढ़ी के लंबे पौधों की दूसरी पीढ़ी अर्थात \mathbf{F}_{2} पीढ़ी के सभी पौधे लंबे नहीं थे वरन् उनमें से एक चौथाई संतित बौने पौधे थे। यह इंगित करता है कि 📭 पौधों द्वारा लंबाई एवं बौनेपन दोनों विशेषकों (लक्षणों) की वंशानुगति हुई। परंतु केवल लंबाई वाला लक्षण ही व्यक्त हो पाया। अत: लैंगिक जनन द्वारा उत्पन्न होने वाले जीवों में किसी भी लक्षण की दो प्रतिकृतियों की (स्वरूप) वंशानुगति होती है। ये दोनों एकसमान हो सकते हैं अथवा भिन्न हो सकते हैं जो उनके जनक पर निर्भर करता है। इस परिकल्पना के आधार पर वंशानुगति का तैयार किया गया एक पैटर्न चित्र 9.3 में दर्शाया गया है।

क्रियाकलाप 9.2

 चित्र 9.3 में हम कौन सा प्रयोग करते हैं जिससे यह सुनिश्चित होता है कि F₂ पीढ़ी में वास्तव में TT, Tt तथा tt का संयोजन 1:2:1 अनुपात में प्राप्त होता है?

इस व्याख्या में 'TT' एवं 'Tt' दोनों ही लंबे पौधे हैं जबिक केवल 'tt' बौने पौधे हैं। दूसरे शब्दों में, 'T' की एक प्रति ही पौधे को लंबा बनाने के लिए पर्याप्त है जबिक बौनेपन के लिए 't' की दोनों प्रतियाँ 't' ही होनी चाहिए। 'T' जैसे लक्षण 'प्रभावी' लक्षण कहलाते हैं जबिक जो लक्षण 't' की तरह व्यवहार करते हैं 'अप्रभावी' कहलाते हैं। चित्र 9.4 में कौन-सा लक्षण प्रभावी है तथा कौन-सा अप्रभावी है।

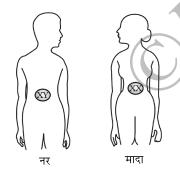

क्या होता है जब मटर के पौधों में एक विकल्पी जोडे के स्थान पर दो विकल्पी जोडों का अध्ययन करने के लिए संकरण कराया जाए? गोल बीज वाले लंबे पौधों का यदि झुर्रीदार बीजों वाले बौने पौधों से संकरण कराया जाए तो प्राप्त संतित कैसी होगी? F, पीढ़ी के सभी पौधे लंबे एवं गोल बीज वाले होंगे। अत: लंबाई तथा गोल बीज 'प्रभावी' लक्षण हैं। परंतु क्या होता है जब \mathbf{F}_1 संतित के स्वनिषेचन से \mathbf{F}_2 पीढ़ी की संतित प्राप्त होती है? मेंडल द्वारा किए गए पहले प्रयोग के आधार पर हम कह सकते हैं कि F, संतित के कुछ पौधे गोल बीज वाले लंबे पौधे होंगे तथा कुछ झुरींदार बीज वाले बौने पौधे। परंतु 🗜, की संतित के कुछ पौधे नए संयोजन प्रदर्शित करेंगे। उनमें से कुछ पौधे लंबे परंतु झुर्रीदार बीज तथा कुछ पौधे बौने परंतु गोल बीज वाले होंगे। यहाँ आप देख सकते हैं कि किस तरह F, पीढ़ी में नए लक्षणों का संयोजन देखने को मिला जब बीज के आकार व रंग को नियंत्रित करने वाले कारकों के पुनर्संयोजन से युग्मनज बना जो F्रपीढ़ी में अग्रणी रहा। अत: लंबे/बौने लक्षण तथा गोल/झुरींदार लक्षण स्वतंत्र रूप से वंशानुगत होते हैं। एक और उदाहरण चित्र 9.5 में दर्शाया गया है।

9.2.3 यह लक्षण अपने आपको किस प्रकार व्यक्त करते हैं?

आनुवंशिकता कार्य विधि किस प्रकार होती है? कोशिका के डी.एन.ए. में प्रोटीन संश्लेषण के लिए एक सूचना स्रोत होता है। डी.एन.ए. का वह भाग जिसमें किसी प्रोटीन संश्लेषण के लिए सूचना होती है, उस प्रोटीन का जीन कहलाता है। प्रोटीन विभिन्न लक्षणों की अभिव्यक्ति को किस प्रकार नियंत्रित करती है, इसकी हम यहाँ चर्चा करते हैं? आइए, पौधों की लंबाई के एक लक्षण को उदाहरण के रूप में लेते हैं। हम जानते हैं कि पौधों में कुछ हार्मोन होते हैं जो लंबाई का नियंत्रण करते हैं। अत: किसी पौधे की लंबाई पौधे में उपस्थित उस हार्मोन की मात्रा पर निर्भर करेगी जिसके द्वारा यह उत्पादित होता है। एंजाइम इस प्रक्रम के लिए महत्वपूर्ण है। यदि यह एंजाइम (प्रकिण्व) दक्षता से कार्य करेगा तो हार्मोन पर्याप्त मात्रा में बनेगा तथा पौधा लंबा होगा। यदि इस प्रोटीन के जीन में कुछ

परिवर्तन आते हैं तो बनने वाली प्रोटीन की दक्षता पर प्रभाव पड़ेगा वह कम दक्ष होगी अत: बनने वाले हार्मोन की मात्रा भी कम होगी तथा पौधा बौना होगा। अत: जीन लक्षणों (traits) को नियंत्रित करते हैं।

आनुवंशिकता एवं जैव विकास


चित्र 9.5

दो अलग-अलग लक्षणों (बीजों की आकृति एवं रंग) की स्वतंत्र वंशानुगति

यदि मेंडल के प्रयोगों की व्याख्या जिसकी हम चर्चा कर रहे थे, ठीक है तो इसकी चर्चा हम पिछले अध्याय में कर चुके हैं। लैंगिक प्रजनन के दौरान संतित के डी.एन.ए. में दोनों जनक का समान रूप से योगदान होगा। यदि दोनों जनक संतित के लक्षण के निर्धारण में सहायता करते हैं तो दोनों जनक एक ही जीन की एक प्रतिकृति संतित को प्रदान करेंगे। इसका अर्थ है कि मटर के प्रत्येक पौधे में सभी जीन के दो–सेट होंगे, प्रत्येक जनक से एक सेट की वंशानुगित होती है। इस तरीके को सफल करने के लिए प्रत्येक जनन कोशिका में जीन का केवल एक ही सेट होगा।

जबिक सामान्य कायिक कोशिका में जीन के सेट की दो प्रतियाँ (copies) होती हैं, फिर इनसे जनन कोशिका में इसका एक सेट किस प्रकार बनता है? यदि संतित पौधे को जनक पौधे से संपूर्ण जीनों का एक पूर्ण सेट प्राप्त होता है तो चित्र 9.5 में दर्शाया प्रयोग सफल नहीं हो सकता। इसका मुख्य कारण यह है कि दो लक्षण 'R' तथा 'y' सेट में एक-दूसरे से संलग्न रहेंगे तथा स्वतंत्र रूप में आहरित नहीं हो सकते। इसे इस तथ्य के आधार पर समझा जा सकता है कि वास्तव में एक जीन सेट केवल एक डी.एन.ए. शृंखला के रूप में न होकर डी.एन.ए. के अलग-अलग स्वतंत्र रूप में होते हैं, प्रत्येक एक गुण सूत्र कहलाता है। अत: प्रत्येक कोशिका में प्रत्येक गुणसूत्र की दो प्रतिकृतियाँ होती हैं जिनमें से एक नर तथा दूसरी मादा जनक से प्राप्त होती हैं। प्रत्येक जनक कोशिका (पैतृक अथवा मातृक) से गुणसूत्र के प्रत्येक जोड़े का केवल एक

गुणसूत्र ही एक जनन कोशिका (युग्मक) में जाता है। जब दो युग्मकों का संलयन होता है तो बने हुए युग्मनज में गुणसूत्रों की संख्या पुन: सामान्य हो जाती है तथा संतित में गुणसूत्रों की संख्या निश्चित बनी रहती है, जो स्पीशीज के डी.एन.ए. के स्थायित्व को सुनिश्चित करता है। वंशागित की इस क्रियाविधि से मेंडल के प्रयोगों के परिणाम की व्याख्या हो जाती है। इसका उपयोग लैंगिक जनन वाले सभी जीव करते हैं। परंतु अलैंगिक जनन करने वाले जीव भी वंशागित के इन्हीं नियमों का पालन करते हैं। क्या हम पता लगा सकते हैं कि उनमें वंशानुगित किस प्रकार होती है?

चित्र 9.6 मानव में लिंग निर्धारण

60

9.2.4 लिंग निर्धारण

इस बात की चर्चा हम कर चुके हैं कि लैंगिक जनन में भाग लेने वाले दो एकल जीव किसी न किसी रूप में एक-दूसरे से भिन्न होते हैं, जिसके कई कारण हैं। नवजात का लिंग निर्धारण कैसे होता है? अलग-अलग स्पीशीज इसके लिए अलग-अलग युक्ति अपनाते हैं। कुछ पूर्ण रूप से पर्यावरण पर निर्भर करते हैं। इसलिए कुछ प्राणियों में (जैसे कुछ सरीसृप) लिंग निर्धारण निषेचित अंडे (युग्मक) के ऊष्मायन ताप पर निर्भर करता है कि संतित नर होगी या मादा। घोंघे जैसे कुछ प्राणी अपना लिंग बदल सकते हैं, जो इस बात का संकेत है कि इनमें लिंग निर्धारण आनुवंशिक नहीं है। लेकिन, मानव में लिंग निर्धारण आनुवंशिक आधार पर होता है। दूसरे शब्दों में, जनक जीवों से वंशानुगत जीन ही इस बात का निर्णय करते हैं कि संतित लड़का होगा अथवा

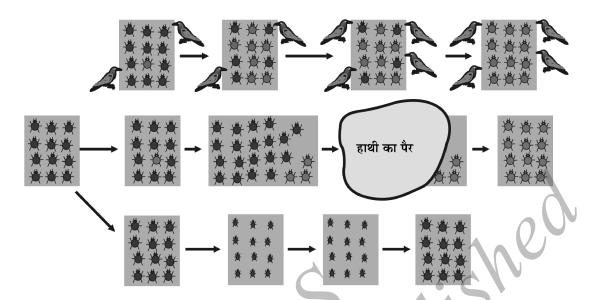
लड़की। परंतु अभी तक हम मानते रहे हैं कि दोनों जनकों से एक जैसे जीन सेट संतित में जाते हैं। यदि यह शाश्वत नियम है तो फिर लिंग निर्धारण वंशानुगत कैसे हो सकता है?

इसकी व्याख्या इस तथ्य में निहित है कि मानव के सभी गुणसूत्र पूर्णरूपेण युग्म नहीं होते। मानव में अधिकतर गुणसूत्र माता और पिता के गुणसूत्रों के प्रतिरूप होते हैं। इनकी संख्या 22 जोड़े हैं। परंतु एक युग्म जिसे लिंग सूत्र कहते हैं, जो सदा पूर्णजोड़े में नहीं होते। स्त्री में गुणसूत्र का पूर्ण युग्म होता है तथा दोनों 'X' कहलाते हैं। लेकिन पुरुष (नर) में यह जोड़ा परिपूर्ण जोड़ा नहीं होता, जिसमें एक गुण सूत्र सामान्य आकार का 'X' होता है तथा दूसरा गुणसूत्र छोटा होता है जिसे 'Y' गुणसूत्र कहते हैं। अत: स्त्रियों में 'XX' तथा पुरुष में 'XY' गुणसूत्र होते हैं। क्या अब हम X और Y का वंशानुगत पैटर्न पता कर सकते हैं?

जैसा कि चित्र 9.6 में दर्शाया गया है, सामान्यत: आधे बच्चे लड़के एवं आधे लड़की हो सकते हैं। सभी बच्चे चाहे वह लड़का हो अथवा लड़की, अपनी माता से 'X' गुणसूत्र प्राप्त करते हैं। अत: बच्चों का लिंग निर्धारण इस बात पर निर्भर करता है कि उन्हें अपने पिता से किस प्रकार का गुणसूत्र प्राप्त हुआ है। जिस बच्चे को अपने पिता से 'X' गुणसूत्र वंशानुगत हुआ है वह लड़की एवं जिसे पिता से 'Y' गुणसूत्र वंशानुगत होता है, वह लड़का।

प्रश्न

- 1. मेंडल के प्रयोगों द्वारा कैसे पता चला कि लक्षण प्रभावी अथवा अप्रभावी होते हैं?
- 2. मेंडल के प्रयोगों से कैसे पता चला कि विभिन्न लक्षण स्वतंत्र रूप से वंशानुगत होते हैं?
- उ. एक 'A-रुधिर वर्ग वाला पुरुष एक स्त्री जिसका रुधिर वर्ग 'O' है, से विवाह करता है। उनकी पुत्री का रुधिर वर्ग 'O' है। क्या यह सूचना पर्याप्त है यदि आपसे कहा जाए कि कौन सा विकल्प लक्षण-रुधिर वर्ग- 'A' अथवा 'O' प्रभावी लक्ष्मण हैं? अपने उत्तर का स्पष्टीकरण दीजिए।
- 4. मानव में बच्चे का लिंग निर्धारण कैसे होता है?


9.3 विकास

हमने देखा कि जनन प्रक्रिया में विभिन्नता की प्रवृत्ति अंतर्निहित होती है जो डी.एन.ए. प्रतिकृति में त्रुटियों एवं लैंगिक जनन दोनों से उत्पन्न होती है। आइए, हम इस प्रवृत्ति के कुछ परिणामों का अध्ययन करें।

9.3.1 एक दृष्टांत

सोचिए कि 12 लाल भृंगों (beetles) का एक समूह है। वे हरी पत्ती वाली झाड़ियों में रहते हैं। उनकी समिष्ट लैंगिक प्रजनन द्वारा वृद्धि करती है तथा विभिन्नताएँ उत्पन्न हो सकती हैं। हम इसकी भी कल्पना करें कि कौए भृंग को खाते हैं। कौए जितने भृंग खाएँगे उतने कम भृंग जनन के लिए उपलब्ध होंगे। अब हम अन्य परिस्थितियों की कल्पना करें (चित्र 9.7) जो इन भृंगों की समिष्ट में विकसित हो सकें।

आनुवंशिकता एवं जैव विकास

चित्र 9.7 एक समष्टि में विभिन्तताएँ–वंशानुगत तथा अन्य

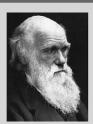
प्रथम स्थिति में, जनन के दौरान एक रंग की विभिन्नता का उद्भव हो सकता है, जिससे समिष्ट में लाल के बजाय एक हरा भूंग दिखाई देता है। हरा भूंग अपना रंग अपनी संतान को (वंशागत) आहरित करता है जिसके कारण इसकी सारी संतित का रंग हरा होगा। कौए हरी पित्तयों की झाड़ियों में हरे भूंग को नहीं देख पाते, अत: उन्हें नहीं खा पाते। क्या होगा? हरे भृंग की संतित का शिकार नहीं होता जबिक लाल भूंग की संतित लगातार शिकार होती रहती है। फलस्वरूप, भूंगों की समिष्ट में लाल भूंगों की अपेक्षा हरे भूंगों की संख्या बढ़ती जाती है।

दूसरी परिस्थिति में, जनन के समय एक रंग की विभिन्नता का उद्भव होता है। परंतु इस समय भृंग का रंग लाल के स्थान पर नीला है। यह भृंग भी अपना रंग अगली पीढ़ी की वंशानुगत कर सकता है। फलस्वरूप इस भृंग की सारी संतित नीली होती है। कौए नीले-लाल भृंगों को हरी पितयों में पहचान कर उन्हें खा सकते हैं। प्रारंभ में क्या होता है? समष्टि का आकार जैसे-जैसे बढ़ता है उसमें बहुत कम नीले भृंग हैं, परंतु अधिकतर भृंग लाल थे। परंतु इस स्थिति में एक हाथी वहाँ आता है तथा उन झाड़ियों को रौंद देता है जिसमें यह भृंग रहते थे। इससे बहुत से भृंग मारे जाते हैं। संयोग से कुछ नीले भृंग बच जाते हैं। इनकी समष्टि धीरे-धीरे बढ़ती है परंतु इसमें अधिकतर भृंग नीले हैं।

यह स्वाभाविक है कि दोनों स्थितियों में जो दुर्लभ भिन्नता थी, समय के अंतराल में एक सामान्य लक्षण बन गई। दूसरे शब्दों में, वंशागत लक्षण की पीढ़ियों में आवृत्ति में परिवर्तन आए। क्योंकि जीन ही लक्षणों का नियंत्रण करते हैं। अत: हम कह सकते हैं कि किसी समष्टि में कुछ जीन की आवृत्ति पीढ़ियों में बदल जाती है। यह जैव विकास की परिकल्पना का सार है।

परंतु दोनों परिस्थितियों में कुछ रोचक अंतर भी हैं। प्रथम स्थिति में, विभिन्नता एक सामान्य विभिन्नता बनी क्योंकि इसमें उत्तरजीविता के लाभ की स्थिति थी। दूसरे शब्दों में, यह एक प्राकृतिक चयन था। हम देख सकते हैं कि प्राकृतिक चयन कौओं द्वारा किया गया। जितने अधिक कौए होंगे उतने अधिक लाल भृंग उनके शिकार बनेंगे तथा समिष्ट में हरे भृंगों का अनुपात/संख्या बढ़ता जाएगा। अत: प्राकृतिक चयन भृंग समिष्ट में विकास की ओर ले जा रहा है। यह भृंग समिष्ट में अनुकूल दर्शा रहा है जिससे समिष्ट पर्यावरण में और अच्छी तरह से रह सके।

दूसरी स्थित में, रंग परिवर्तन से अस्तित्व के लिए कोई लाभ नहीं मिला। वास्तव में यह मात्र संयोग ही था कि दुर्घटना के कारण एक रंग की भृंग समष्टि बच गई जिससे समष्टि का स्वरूप बदल गया। यदि भृंग की समष्टि का आकार बड़ा होता तो हाथी का उस पर कोई प्रभाव नहीं पड़ता। अत: छोटी समष्टि में दुर्घटनाएँ किसी जीन की आवृत्ति को प्रभावित कर सकती हैं जबिक उनका उत्तरजीविता हेतु कोई लाभ न हो। यह आनुवंशिक अपवाद का सिद्धांत है जो बिना किसी अनुकूलन के भी विभिन्नता उत्पन्न करता है।


अब तीसरी स्थित को देखिए। इसमें भृंग समिष्ट बढ़ना प्रारंभ करती है, झाड़ियों में पादप रोग लग जाता है। भृंगों के लिए पत्तियाँ कम होती जाती हैं। परिणामत: भृंग अल्प पोषित रह जाता है। भृंग के औसत भार में अपेक्षाकृत कमी आई है। कुछ वर्षों के बाद इस दुर्भिक्ष की स्थिति में भृंगों की कुछ पीढ़ियों के उपरांत जब पौधों के रोग समाप्त हो जाते हैं, भोजन की पर्याप्त मात्रा उपलब्ध होती है तब भृंगों के भार में क्या परिवर्तन आएगा, इस पर विचार कीजिए?

9.3.2 उपार्जित एवं आनुवंशिक लक्षण

हम पहले चर्चा कर चुके हैं कि लैंगिक जनन करने वाले जीवों में युग्मक अथवा जनन कोशिकाएँ विशिष्ट जनन ऊतकों में बनते हैं। यदि बुभुक्षण के कारण भृंगों के शरीर के भार में कमी आती है तो इससे जनन कोशिकाओं के डी.एन.ए. के संगठन पर कोई प्रभाव नहीं पड़ेगा। अत: बुभुक्षण के कारण यदि समष्टि में कुछ भृंग कम भार के हों तो भी इसे विकास की संज्ञा नहीं दी जा सकती। इसका मुख्य कारण इस लक्षण का वंशानुगत न होना है। कायिक ऊतकों में होने वाले परिवर्तन, लैंगिक कोशिकाओं के डी.एन.ए. में नहीं जा सकते। किसी व्यक्ति के जीवन काल में अर्जित अनुभव क्योंकि जनन कोशिकाओं के डी.एन.ए. में कोई अंतर नहीं लाता, इसलिए इसे भी जैव विकास नहीं कह सकते।

आइए, यह जानने के लिए कि अर्जित अनुभव/लक्षण जैव प्रक्रम द्वारा अगली पीढ़ी को वंशानुगत नहीं होते एक प्रयोग द्वारा समझते हैं। यदि हम पूँछ वाले चूहों का संवर्धन करें तो उसकी अगली पीढ़ी की संतित के भी पूँछ होगी, जैसा कि हम अनुमान लगा रहे थे। अब यदि इन चूहों की पूँछ को कई पीढ़ी तक काटते रहें, तो क्या इन चूहों से बिना पूँछ (पूँछविहीन) वाली संतित प्राप्त होगी? इसका उत्तर है, नहीं। जो स्वाभाविक भी है, क्योंकि पूँछ काटने से जनन कोशिकाओं के जीन पर कोई प्रभाव नहीं पड़ता। आनुवाशकता एवं जैव विकास

चार्ल्स रॉबर्ट डार्विन (1809-1882)

चार्ल्स डार्विन जब 22 वर्ष के थे तो उन्होंने साहिसक समुद्री यात्रा की। पाँच वर्षों में उन्होंने दक्षिणी अमेरिका तथा इसके विभिन्न द्वीपों की यात्रा की। इस यात्रा का उद्देश्य पृथ्वी पर जैव विविधता के स्वरूप का ज्ञान प्राप्त करना था। उनकी इस यात्रा ने जैवविविधता के विषय में उस समय व्याप्त दृष्टिकोण को सदा के लिए बदल दिया। यह भी अत्यंत रोचक है कि इंग्लैंड वापस आने के बाद वह पुन: किसी और यात्रा पर नहीं गए। वह घर पर ही रहे तथा उन्होंने अनेक प्रयोग किए जिनके आधार पर उन्होंने अपने

'प्राकृतिक वरण द्वारा जैव विकास' के अपने सिद्धांत की परिकल्पना की। वह यह नहीं जानते थे कि किस विधि द्वारा स्पीशीज में विभिन्नताएँ आती हैं। उन्हें मेंडल के प्रयोगों का लाभ मिलता, परंतु ये दोनों व्यक्ति-वैज्ञानिक न तो एक-दूसरे को और न ही उनके कार्य के विषय में जानते थे! हम डार्विन के केवल उनके जैव विकासवाद के कारण ही जानते हैं। परंत वह एक प्रकृतिशास्त्री भी थे

हम डार्विन के केवल उनके जैव विकासवाद के कारण ही जानते हैं। परंतु वह एक प्रकृतिशास्त्री भी थे तथा उनका एक शोध भूमि की उर्वरता बनाने में केंचुओं की भूमिका के विषय में था।

यही कारण है कि आनुवंशिकता एवं वंशानुगित जिनकी चर्चा हम पहले कर चुके हैं, का ज्ञान जैव विकासवाद को समझने के लिए आवश्यक हैं। यही कारण है कि उन्नीसवीं शताब्दी में प्राकृतिक वरण द्वारा जैव विकास का सिद्धांत प्रतिपादित करने वाले चार्ल्स डार्विन भी इसकी क्रियाविधि नहीं खोज सके। वह अवश्य ही ऐसा कर पाते यदि उन्होंने अपने समकालीन आस्ट्रियन ग्रेगर मेंडल के प्रयोगों के महत्त्व को जाना होता। मेंडल भी डार्विन के सिद्धांतों से अनिभज्ञ थे।

पृथ्वी पर जीवन की उत्पत्ति

डार्विन के सिद्धांत हमें बताते हैं कि पृथ्वी पर सरल जीवों से जटिल स्वरूप वाले जीवों का विकास किस प्रकार हुआ। मेंडल के प्रयोगों से हमें एक पीढ़ी से दूसरी पीढ़ी में लक्षणों की वंशानुगति की कार्यविधि का पता चला। परन्तु दोनों ही यह बताने में असमर्थ रहे कि पृथ्वी पर जीवन की उत्पत्ति कैसे हुई अर्थात इसका सर्वप्रथम आविर्भाव किस प्रकार हुआ।

एक ब्रिटिश वैज्ञानिक जे.बी.एस. हाल्डेन (जो बाद में भारत के नागरिक हो गए थे।) ने 1929 में यह सुझाव दिया कि जीवों की सर्वप्रथम उत्पत्ति उन सरल अकार्बनिक अणुओं से ही हुई होगी जो पृथ्वी की उत्पत्ति के समय बने थे। उसने कल्पना की कि पृथ्वी पर उस समय का वातावरण, पृथ्वी के वर्तमान वातावरण से सर्वथा भिन्न था। इस प्राथमिक वातावरण में संभवत: कुछ जटिल कार्बनिक अणुओं का संश्लेषण हुआ जो जीवन के लिए आवश्यक थे। सर्वप्रथम प्राथमिक जीव अन्य रासायनिक संश्लेषण द्वारा उत्पन्न हुए होंगे। यह कार्बनिक अणु किस प्रकार उत्पन्न हुए? इसके उत्तर की परिकल्पना स्टेनले एल. मिलर तथा हेराल्ड सी. उरे द्वारा 1953 में किए गए प्रयोगों के आधार पर की जा सकती है। उन्होंने कृत्रिम रूप से ऐसे वातावरण का निर्माण किया जो संभवत: प्राथमिक/प्राचीन वातावरण के समान था (इसमें अमोनिया, मीथेन तथा हाइड्रोजन सल्फाइड के अणु थे परंतु ऑक्सीजन के नहीं), पात्र में जल भी था। इसे 100 सेल्सियस से कुछ कम ताप पर रखा गया। गैसों के मिश्रण में चिनगारियाँ उत्पन्न की गईं जैसे आकाश में बिजली एक सप्ताह के बाद, 15 प्रतिशत कार्बन (मीथेन से) सरल कार्बनिक यौगिकों में परिवर्तित हो गए। इनमें एमीनो अम्ल भी संश्लेषित हुए जो प्रोटीन के अणुओं का निर्माण करते हैं। तो, क्या पृथ्वी पर आज भी जीवन की उत्पत्ति हो सकती है?

प्रश्न

- वे कौन से विभिन्न तरीके हैं जिनके द्वारा एक विशेष लक्षण वाले व्यष्टि जीवों की संख्या समिष्ट में बढ सकती है।
- 2. एक एकल जीव द्वारा उपार्जित लक्षण सामान्यत: अगली पीढ़ी में वंशानुगत नहीं होते। क्यों?
- बाघों की संख्या में कमी आनुवंशिकता के दृष्टिकोण से चिंता का विषय क्यों है।

9.4 जाति उद्भव

अभी तक हमने जो कुछ भी समझा वह सूक्ष्म-विकास था। इसका अर्थ है कि यह परिवर्तन बहुत छोटे हैं यद्यपि महत्वपूर्ण हैं। फिर भी ये विशिष्ट स्पीशीज की समिष्ट के सामान्य लक्षणों (स्वरूप) में परिवर्तन लाते हैं, परंतु इससे यह नहीं समझा जा सकता कि नयी स्पीशीज (जाति) का उद्भव किस प्रकार होता है। यह तभी कहा जा सकता था जबिक भृंगों का यह समूह जिसकी हम चर्चा कर रहे हैं, दो भिन्न समिष्टियों में बँट जाएँ तो आपस में जनन करने में असमर्थ हों। जब यह स्थिति उत्पन्न हो जाती है, तब हम उन्हें दो स्वतंत्र स्पीशीज कह सकते हैं। तो क्या हम उन कारणों का विस्तारण करें जिसका ज़िक्र हमने ऊपर किया है और स्पीशीज की उत्पत्ति के सिद्धांत को समझने का प्रयास करें?

सोचिए, क्या होगा कि वे झाड़ियाँ जिन पर भृंग भोजन के लिए निर्भर करते हैं, एक पर्वत शृंखला के बृहद क्षेत्र में फैल जाएँ। परिणामतः समिष्ट का आकार भी विशाल हो जाता है। परंतु व्यष्टि भृंग अपने भोजन के लिए जीवन-भर अपने आसपास की कुछ झाड़ियों पर ही निर्भर करते हैं। वे बहुत दूर नहीं जा सकते। अतः भृंगों की इस विशाल समिष्ट के आसपास उप-समिष्ट होगी। क्योंकि नर एवं मादा भृंग जनन के लिए आवश्यक हैं अतः जनन प्रायः इन उप समिष्टियों के सदस्यों के मध्य ही होगा। हाँ, कुछ साहसी भृंग एक स्थान से दूसरे स्थान पर जा सकते हैं अथवा कौआ एक भृंग को एक स्थान से उठाकर बिना हानि पहुँचाए दूसरे स्थान पर छोड़ देता है। दोनों ही स्थितियों में अप्रवासी भृंग स्थानीय समिष्ट के साथ ही जनन करेगा। परिणामतः अप्रवासी भृंग के जीन नयी समिष्ट में प्रविष्ट हो जाएँगे। इस प्रकार का जीन-प्रवाह उन समिष्टियों में होता रहता है जो आंशिक रूप से अलग-अलग हैं; परंतु पूर्णरूपेण अलग नहीं हुई हैं। परंतु, यिद इस प्रकार की दो उप समिष्टियों के मध्य एक विशाल नदी आ जाए, तो दोनों समिष्टियाँ और अधिक पृथक हो जाएँगी। दोनों के मध्य जीन-प्रवाह का स्तर और भी कम हो जाएगा।

उत्तरोत्तर पीढ़ियों में आनुवंशिक विचलन प्रत्येक उप-समिष्ट में विभिन्न परिवर्तनों का संग्रहण हो जाएगा। भौगोलिक रूप से विलग इन समिष्टियों में प्राकृतिक चयन का तरीका भी भिन्न होगा। अत: उदाहरण के लिए, एक उप-समिष्ट की सीमा में उकाब/चील द्वारा कौए समाप्त हो जाते हैं। परंतु दूसरी उप-समिष्ट में यह घटना नहीं

होती, जहाँ पर कौओं की संख्या बहुत अधिक है। परिणामत: पहले स्थान पर भृंगों का हरा रंग (लक्षण) का प्राकृतिक चयन नहीं होगा जबिक दूसरे स्थान पर इसका चयन होगा।

भृंगों की इन पृथक उप-समिष्टियों में आनुवंशिक विचलन एवं प्राकृतिक-वरण (चयन) के संयुक्त प्रभाव के कारण प्रत्येक समिष्ट एक-दूसरे से अधिक भिन्न होती जाती है। यह भी संभव है कि अंतत: इन समिष्टियों के सदस्य आपस में एक-दूसरे से मिलने के बाद भी अंतर्जनन में असमर्थ हों।

अनेक तरीके हैं जिनके द्वारा यह परिवर्तन संभव है। यदि डी.एन.ए. में यह परिवर्तन पर्याप्त है जैसे गुणसूत्रों की संख्या में परिवर्तन, तो दो समष्टियों के सदस्यों की जनन कोशिकाएँ (युग्मकों) संलयन करने में असमर्थ हो सकती हैं। अथवा संभव है कि ऐसी विभिन्नता उत्पन्न हो जाए जिसमें हरे रंग की मादा भृंग लाल रंग के नर भृंग के साथ जनन की क्षमता ही खो दे, वह केवल हरे रंग के नर भृंग के साथ ही जनन कर सकते हैं। यह हरे रंग के प्राकृतिकवरण के लिए एक अत्यंत दृढ़ परिस्थिति है। अब यदि ऐसी हरी मादा भृंग दूसरे समूह के लाल नर से मिलती है तो उसका व्यवहार ऐसा होगा कि जनन न हो। परिणामत: भृंगों की नयी स्पीशीज़ का उद्भव होता है।

प्रश्न

- 1. वे कौन से कारक हैं जो नयी स्पीशीज़ के डद्भव में सहायक हैं?
- क्या भौगोलिक पृथक्करण स्वपरागित स्वीशीज़ के पौधों के जाति-उद्भव का प्रमुख कारण हो सकता है? क्यों या क्यों नहीं?
- क्या भौगोलिक पृथक्करण अलैंगिक जनन वाले जीवा के जाति उद्भव का प्रमुख कारक हो सकता है? क्यों अथवा क्यों नहीं?

9.5 विकास एवं वर्गीकरण

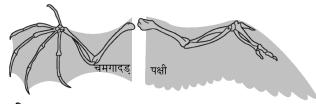
इन सिद्धांतों के आधार पर हम अपने चहुँओर पायी जाने वाली विभिन्न स्पीशीज़ के बीच विकासीय संबंध स्थापित कर सकते हैं। यह एक प्रकार से समय घड़ी से पीछे जाना है। हम ऐसा विभिन्न स्पीशीज़ के अभिलक्षणों के पदानुक्रम का निर्धारण करके कर सकते हैं। इस प्रक्रम को समझने के लिए हम कक्षा 9 में पढ़े जीवों के वर्गीकरण को स्मरण करें।

विभिन्न जीवों के मध्य समानताएँ हमें उन जीवों को एक समूह में रखने और फिर उनके अध्ययन का अवसर प्रदान करती हैं। इसके लिए कौन से अभिलक्षण जीवों के मध्य आधारभूत विभिन्नताओं का निर्णय करते हैं तथा कौन से अभिलक्षण कम महत्वपूर्ण अंतरों का निर्णय लेते हैं? अभिलक्षणों से हमारा क्या अभिप्राय है? बाह्य आकृति अथवा व्यवहार का विवरण अभिलक्षण कहलाता है। दूसरे शब्दों में, विशेष स्वरूप अथवा विशेष प्रकार्य अभिलक्षण कहलाता है। हमारे चार पाद होते हैं, यह एक अभिलक्षण है। पौधों में प्रकाशसंश्लेषण होता है, यह भी एक अभिलक्षण है।

कुछ आधारभूत अभिलक्षण अधिकतर जीवों में समान होते हैं। कोशिका सभी जीवों की आधारभूत इकाई है। वर्गीकरण के अगले स्तर पर कोई अभिलक्षण अधिकतर जीवों में समान हो सकता है परंतु सभी जीवों में नहीं। कोशिका के अभिकल्प का आधारभूत अभिलक्षण का एक उदाहरण कोशिका में केंद्रक का होना या न होना है जो विभिन्न जीवों में भिन्न हो सकता है। जीवाणु कोशिका में केंद्रक नहीं होता, जबिक अधिकतर दूसरे जीवों की कोशिकाओं में केंद्रक पाया जाता है। केंद्रक युक्त कोशिका वाले जीवों के एक-कोशिक अथवा बहुकोशिक होने का गुण शारीरिक अभिकल्प में एक आधारभूत अंतर दर्शाता है जो कोशिकाओं एवं उतकों के विशिष्टीकरण के कारण है। बहुकोशिक जीवों में प्रकाशसंश्लेषण का होना या न होना वर्गीकरण का अगला स्तर है। उन बहुकोशिक जीवों जिनमें प्रकाशसंश्लेषण नहीं होता, में कुछ जीव ऐसे हैं जिनमें अंत: कंकाल होता है तथा कुछ में बाह्य-कंकाल का अभिलक्षण एक अन्य प्रकार का आधारभूत अभिकल्प अंतर है। इन थोड़े से प्रश्नों, जो हमने यहाँ पूछे हैं, के द्वारा भी हम देख सकते हैं कि पदानुक्रम विकसित हो रहा है जिसके आधार पर वर्गीकरण के लिए समृह बना सकते हैं।

दो स्पीशीज़ के मध्य जितने अधिक अभिलक्षण समान होंगे उनका संबंध भी उतना ही निकट का होगा। जितनी अधिक समानताएँ उनमें होंगी उनका उद्भव भी निकट अतीत में समान पूर्वजों से हुआ होगा। इसे हम उदाहरण की सहायता से समझ सकते हैं। एक भाई एवं बहन अति निकट संबंधी हैं। उनसे पहली पीढ़ी में उनके पूर्वज समान थे अर्थात वे एक ही माता-पिता की संतान हैं। लड़की के चचेरे/ममेरे भाई-बहन (Ist Cousin) भी उससे संबंधित है परन्तु उसके अपने भाई से कम हैं। इसका मुख्य कारण है कि उनके पूर्वज समान हैं, अर्थात दादा-दादी जो उनसे दो पीढ़ी पहले के हैं, न कि एक पीढ़ी पहले के। अब आप इस बात को भली प्रकार समझ सकते हैं कि स्पीशीज़/जीवों का वर्गीकरण उनके विकास के संबंधों का प्रतिबंब है।

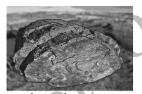
अत: हम स्पीशीज के ऐसे समूह का निर्माण कर सकते हैं जिनके पूर्वज निकट अतीत में समान थे, इसके बाद इन समूह का एक बड़ा समूह बनाइए जिनके पूर्वज अपेक्षाकृत अधिक दूर (समय के अनुसार) के हों। सैद्धांतिक रूप से इस प्रकार अतीत की किंड्यों का निर्माण करते हुए हम विकास की प्रारंभिक स्थिति तक पहुँच सकते हैं जहाँ मात्र एक ही स्पीशीज थी। यदि यह सत्य है तो जीवन की उत्पत्ति अवश्य ही अजैविक पदार्थों से हुई होगी। यह किस प्रकार संभव हुआ होगा, इसके विषय में अनेक सिद्धांत हैं। यह रोचक होगा यदि हम अपने सिद्धांतों का प्रतिपादन कर सकें।


9.5.1 विकासीय संबंध खोजना

जब हम विकासीय संबंधों को जानने का प्रयास करते हैं तो हम समान अभिलक्षणों की पहचान किस प्रकार करते हैं। विभिन्न जीवों में यह अभिलक्षण समान होंगे क्योंकि वे समान जनक से वंशानुगत हुए हैं। उदाहरण के तौर पर, इस वास्तविकता को ही लेते हैं कि पिक्षयों, सरीसृप एवं जल-स्थलचर (amphibians) की भाँति ही स्तनधारियों के चार पाद (पैर) होते हैं (चित्र 9.8)। सभी में पादों की आधारभूत संरचना एकसमान है, यद्यपि विभिन्न कशेरुकों में भिन्न-भिन्न कार्य करने के लिए इनमें रूपांतरण हुआ आनुवंशिकता एवं जैव विकास

चित्र १.8 समजात अंग

है, तथापि पाद की आधारभूत संरचना एकसमान है। ऐसे समजात अभिलक्षण से भिन्न दिखाई देने वाली विभिन्न स्पीशीज़ के बीच विकासीय संबंध की पहचान करने में सहायता मिली है।

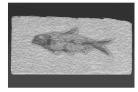

चित्र 9.9 समरूप अंग : चमगादड एवं पक्षी के पंख

परंतु किसी अंग की आकृति में समानताएँ होने का एकमात्र कारण समान (उभयनिष्ठ) पूर्वज परंपरा नहीं है। चमगादड़ एवं पक्षी के पंख (चित्र 9.9) के विषय में आपके क्या विचार हैं? पक्षी एवं चमगादड़ के पंख होते हैं, परंतु गिलहरी एवं छिपकली के नहीं। तो क्या पक्षी एवं चमगादड़ों के बीच संबंध गिलहरी अथवा छिपकली की अपेक्षा अधिक घुनिष्ठ हैं?

इससे पहले कि हम कोई निष्कर्ष निकालें, हमें पक्षी एवं चमगादड़ के पंखों को और बारीकी से देखना होगा। जब हम ऐसा करते हैं तो हमें पता चलता है कि चमगादड़ के पंख मुख्यत: उसकी दीर्घित अँगुली के मध्य की त्वचा के फैलने से बना है। परंतु पक्षी के पंख उसकी पूरी अग्रबाहु की त्वचा के फैलाव से बनता है जो परों से ढकी रहती है। अत: दो पंखों के अभिकल्प, उनकी संरचना एवं संघटकों में बहुत अंतर है। वे एक जैसे दिखाई देते हैं क्योंकि वे उड़ने के लिए इसका उपयोग करते हैं परंतु सभी की उत्पत्ति पूर्णत: समान नहीं है। इस कारण यह उन्हें समरूप अभिलक्षण बनाता है न कि समजात अभिलक्षण। अब यह विचार करना रोचक होगा कि पक्षी के अग्रपाद एवं चमगादड़ के अग्रपाद को समजात माना जाए अथवा समरूप!

9.5.2 जीवाश्म

अंगों की संरचना केवल वर्तमान स्पीशीज पर ही नहीं की जा सकती, वरन् उन स्पीशीज पर भी की जा सकती है जो अब जीवित नहीं हैं। हम कैसे जान पाते हैं कि ये विलुप्त स्पीशीज कभी अस्तित्व में भी थीं? यह हम जीवाश्म द्वारा ही जान पाते हैं (चित्र 9.10 देखिए)। जीवाश्म क्या हैं? सामान्यत: जीव की मृत्यु के बाद उसके शरीर


जीवाश्म-पेड् का तना

जीवाश्म-अकशेरुकी (आमोनाइट)

जीवाश्म-अकशेरुकी (ट्राइलोबाइट)

जीवाश्म-मछली (नाइटिया)

जीवाश्म-डाइनोसॉर कपाल (राजासौरस)

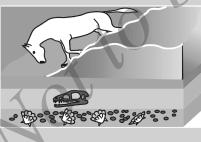
चित्र 9.10 विभिन्न प्रकार के जीवाश्म। विभिन्न आविर्भाव तथा परिरक्षित विस्तृत अवस्थाओं को देखिए। डाइनोसॉर का कपाल जीवाश्म जो दिखाया गया है, कुछ वर्ष पूर्व नर्मदा घाटी में पाया गया था।

का अपघटन हो जाता है तथा वह समाप्त हो जाता है। परंतु कभी-कभी जीव अथवा उसके कुछ भाग ऐसे वातावरण में चले जाते हैं जिसके कारण इनका अपघटन पूरी तरह से नहीं हो पाता। उदाहरण के लिए, यदि कोई मृत कीट गर्म मिट्टी में सूख कर कठोर हो जाए तथा उसमें कीट के शरीर की छाप सुरक्षित रह जाए। जीव के इस प्रकार के परिरक्षित अवशेष जीवाशम कहलाते हैं।

हम यह कैसे जान पाते हैं कि जीवाश्म कितने पुराने हैं? इस बात के आकलन के दो घटक हैं। एक है सापेक्ष। यदि हम किसी स्थान की खुदाई करते हैं और एक गहराई तक खोदने के बाद हमें जीवाश्म मिलने प्रारंभ हो जाते हैं तब ऐसी स्थिति में यह सोचना तर्कसंगत है कि पृथ्वी की सतह के निकट वाले जीवाश्म गहरे स्तर पर पाए गए जीवाश्मों की अपेक्षा अधिक नए हैं। दूसरी विधि है 'फॉसिल डेटिंग' जिसमें जीवाश्म में पाए जाने वाले किसी एक तत्व के विभिन्न समस्थानिकों का अनुपात के आधार पर जीवाश्म का समय-निर्धारण किया जाता है। यह जानना रोचक होगा कि यह विधि किस प्रकार कार्य करती है।

$\overline{1}$

जीवाश्म एक के बाद एक परत कैसे बनाते हैं?


आइए 10 करोड़ (100 मिलियन) वर्ष पहले से प्रारंभ करते हैं। समुद्र तल पर कुछ अकशेरुकीय जीवों की मृत्यु हो जाती है तथा वे रेत में दब जाते हैं। धीरे-धीरे और अधिक रेत एकत्र होती जाती है तथा अधिक दाब के कारण चट्टान बन जाती है।

कुछ मिलियन वर्षों बाद, क्षेत्र में रहने वाले डाइनोसॉर मर जाते हैं तथा उनका शरीर भी मिट्टी में दब जाता है। यह मिट्टी भी दबकर चट्टान बन जाती है। जो

पहले वाले अकशेरुकीय जीवाश्म वाली चट्टान के ऊपर बनती है।

फिर इसके कुछ और मिलियन वर्षों बाद इस क्षेत्र में घोड़े के समान कुछ जीवों के जीवाश्म चट्टानों में दब जाते हैं।

इसके काफी समय उपरांत मृदा अपरदन (मान लीजिए जल प्रवाह) के कारण कुछ चट्टानें फट जाती हैं तथा घोड़े के समान जीवाश्म प्रकट होते हैं। जैसे-जैसे हम गहरी खुदाई करते जाते हैं, वैसे-वैसे पुराने तथा और पुराने जीवाश्म प्राप्त होते हैं।

आनुवंशिकता एवं जैव विकास

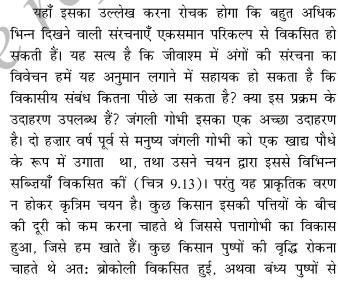
~ itc

जानप्

आप

हुन

9.5.3 विकास के चरण



चित्र 9.11 प्लैनेरिया नाम के चपटे कृमि की अति सरल आँख होती है जो वास्तव में नेत्रबिंद् है जो प्रकाश को पहचान सकता है।

यहाँ यह प्रश्न उठता है कि यदि जटिल अंग, उदाहरण के लिए आँख का चयन उनकी उपयोगिता के आधार पर होता है तो वे डी.एन.ए. में मात्र एक परिवर्तन द्वारा किस प्रकार संभव है? निश्चित रूप से ऐसे जटिल अंगों का विकास क्रमिक रूप से अनेक पीढियों में हुआ होगा। परंतु बीच के परिवर्तन किस प्रकार चयनित होते हैं? इसके लिए अनेक संभावित स्पष्टीकरण हैं। एक बीच का चरण (चित्र 9.11) जैसे कि अल्पवर्धित आँख, किसी सीमा तक उपयोगी हो सकती है। यह योग्यता को लाभ के लिए पर्याप्त हो सकता है। वास्तव में पंख की तरह आँख भी एक व्यापक अनुकूलन है। यह कीटों में पाई जाती है, उसी प्रकार ऑक्टोपस तथा कशेरुकी में भी, तथा आँख की संरचना इन सभी जीवों में भिन्न है जिसका मुख्य कारण अलग-अलग विकासीय उत्पत्ति है।

साथ ही, एक परिवर्तन जो एक गुण के लिए उपयोगी हैं, कालांतर में

किसी अन्य कार्य के लिए भी उपयोगी हो सकता है। उदाहरण के लिए, पर जो संभवत: ठंडे मौसम में ऊष्मारोधन के लिए विकसित हुए थे, कालांतर में उडने के लिए भी उपयोगी हो गए। वास्तव में कुछ उड़ने में समर्थ नहीं थे। बाद में संभवत: पक्षियों ने परों को उड़ने के लिए अपनाया। डाइनोसॉर सरीसृप थे अत: हम यह अर्थ निकाल सकते हैं कि पक्षी बहुत निकटता से सरीसृप से संबंधित हैं।

विज्ञान

छोटा डाइनोसॉर है।

यह ड्रोमोसॉर परिवार का डाइनोसॉर की इन अस्थियों के साथ परों की छाप भी परिरक्षित हो गई थी। यहाँ हम अग्रबाहु पर स्थित परों की छाप देख सकते हैं।

जीवाश्म के शीर्ष परों का निकट चित्र, यह डाइनोसॉर उड़ने में असमर्थ थे। यह संभव है परों के विकास का उड़ने से कोई संबंध न रहा हो।

चित्र 9.12 डायनोसॉर और परों का विकास

70

फुलगोभी विकसित हुई। कुछ ने फुले हुए भाग का चयन किया अत: गाँठगोभी विकसित हुई। कुछ ने केवल चौडी पत्तियों को ही पसंद किया तथा 'केल' नामक सब्ज़ी का विकास किया। यदि मनुष्य ने स्वयं ऐसा नहीं किया होता तो क्या हम कभी ऐसा सोच सकते थे

कि उपरोक्त सभी समान जनक से विकसित हुई हैं?

चित्र 9.13 जंगली गोभी का विकास

विकासीय संबंध खोजने का एक अन्य तरीका उस मौलिक परिकल्पना पर निर्भर करता है जिससे हमने प्रारंभ किया था। वह विचार था कि जनन के दौरान डी.एन.ए. में होने वाले परिवर्तन विकास की आधारभूत घटना है। यदि, यह सत्य है तो विभिन्न स्पीशीज़ के डी.एन.ए. की संरचना की तुलना से हम सीधे ही इसका निर्धारण कर सकते हैं कि इन स्पीशीज़ के उद्भव के दौरान डी.एन.ए. में क्या-क्या और कितने परिवर्तन आए। विकासीय संबंध स्थापित करने में इस विधि का व्यापक स्तर पर प्रयोग हो रहा है।

आणविक जातिवृत्त

हम इस बात की चर्चा करते हैं कि कोशिका विभाजन के समय डी.एन.ए. में होने वाले परिवर्तन से उस प्रोटीन में भी परिवर्तन आएगा जो नए डी.एन.ए. से बनेगी, दूसरी बात यह हुई कि यह परिवर्तन उत्तरोत्तर पीढ़ियों में संचित होते जाएँगे। क्या हम समय के साथ पीछे जाकर यह जान सकते हैं कि यह परिवर्तन किस समय हुए? आणविक जातिवृत्त वास्तव में यही करता है। इस अध्ययन में यह विचार सिन्निहत है कि दूरस्थ संबंधी जीवों के डी.एन.ए. में ये विभिन्नताएँ अधिक संख्या में संचित होंगी। इस प्रकार के अध्ययन विकासीय संबंधों को खोजते हैं तथा यह अत्यंत महत्वपूर्ण है कि विभिन्न जीवों के बीच आणविक जातिवृत्त द्वारा स्थापित संबंध वर्गीकरण से सुमेलित होते हैं जिसके विषय में हम कक्षा 9 में पढ़ चुके हैं।

प्रश्न

- उन अभिलक्षणों का एक उदाहरण दीजिए जिनका उपयोग हम दो स्पीशीज़ के विकासीय संबंध निर्धारण के लिए करते हैं?
- 2. क्या एक तितली और चमगादड़ के पंखों को समजात अंग कहा जा सकता है? क्यों अथवा क्यों नहीं?
- जीवाश्म क्या हैं? वे जैव-विकास प्रक्रम के विषय में क्या दर्शाते हैं?

₽

ट्य

आनुवंशिकता एवं जैव विकास

9.6 विकास को प्रगति के समान नहीं मानना चाहिए

स्पीशीज़ के वंश-वृक्ष की कड़ियाँ ढूँढ़ने के इस प्रयास में हमें कुछ बातों का ध्यान रखना होता है। पहली, इस प्रक्रम के प्रत्येक स्तर पर अनेक शाखाएँ संभव हैं। अत: ऐसा नहीं है कि नयी स्पीशीज़ के उद्भव के लिए पहली स्पीशीज़ विलुप्त हो जाए। एक नयी स्पीशीज़ की उत्पत्ति हुई है, भृंग के उदाहरण में देखा था, नयी स्पीशीज़ की उत्पत्ति के लिए यह आवश्यक नहीं है कि पहली विलुप्त हो जाए। यह सब पर्यावरण पर निर्भर करता है। इसका अर्थ यह भी नहीं है कि विकसित हुई नयी स्पीशीज़ अपनी पूर्वज स्पीशीज़ से 'उत्तम' ही हो। केवल प्राकृतिक वरण एवं आनुवंशिक विचलन के संयुक्त प्रभाव से ऐसी समध्टि बनी जिसके सदस्य पहली स्पीशीज़ के साथ जनन में असमर्थ हैं। अत: उदाहरण के लिए, यह सत्य नहीं है कि मानव का विकास चिम्पेंज़ी से हुआ। वरन् पहले मानव एवं चिम्पेंजी दोनों ही के पूर्वज समान थे। वे न चिम्पेंजी की तरह थे और न मानव की तरह। यह भी आवश्यक नहीं है कि पूर्वजों से विलग होने के प्रथम चरण में ही आधुनिक चिम्पेंजी या मानव की उत्पत्ति हो गई हो। परंतु इस बात की संभावना अधिक है कि दोनों स्पीशीज़ का विकास अलग–अलग ढंग से विभिन्न शाखाओं में अपने तरीके से हुआ होगा जिससे आधुनिक स्पीशीज़ का वर्तमान स्वरूप बना है।

वास्तव में, जैव-विकास के सिद्धांत का अर्थ कोई वास्तविक 'प्रगित' नहीं है। विविधताओं की उत्पत्ति एवं प्राकृतिक चयन द्वारा उसे स्वरूप देना मात्र ही विकास है। जैव विकास में प्रगित की यदि कोई प्रवृत्ति दिखाई पड़ती है तो वह है समय के साथ-साथ शारीरिक अभिकल्प की जटिलता में वृद्धि। लेकिन इसका अर्थ यह कदिप नहीं है कि पूर्व (प्राचीन) अभिकल्प अदक्ष हैं! अनेक अति प्राचीन एवं सरल अभिकल्प आज भी अस्तित्व में हैं। वास्तव में, सरलतम अभिकल्प वाला एक समूह-जीवाणु-विषम पर्यावरण जैसे कि ऊष्ण झरने, गहरे समुद्र के गर्म स्रोत तथा अंटार्कटिका की बर्फ में भी पाए जाते हैं। दूसरे शब्दों में, मानव जैव विकास के शिखर पर नहीं है, वरन जैव विकास शृंखला में उत्पन्न एक और स्पीशीज़ है।

9.6.1 मानव विकास

मानव विकास के अध्ययन के लिए भी उन्हीं साधनों का उपयोग करते हैं जिनका जैव विकास के लिए किया था; यथा—उत्खनन, समय-निर्धारण तथा जीवाश्म अध्ययन के

साथ डी.एन.ए. अनुक्रम का निर्धारण मानव विकास के अध्ययन के मुख्य साधन हैं। इस धरती/ग्रह पर मानव के रंग-रूप एवं आकृति में अत्यधिक विविधताएँ दृष्टिगोचर होती हैं। ये विविधताएँ इतनी अधिक एवं प्रखर हैं कि लंबे समय तक लोग मनुष्य की 'प्रजातियों' की ही बात करते थे। आमतौर पर त्वचा का रंग इस प्रकार की प्रजाति के निर्धारण के लिए प्रयुक्त किया जाता था। कुछ को पीला, कुछ को काला, सफेद या भूरा कहा जाता था। लंबे

चित्र 9.14

72

समय तक यह बहस चलती रही है कि क्या इन आभासी समूहों का विकास अलग-अलग हुआ है? पिछले कुछ वर्षों में प्रमाण अति स्पष्ट हो गए हैं। हम कह सकते हैं कि इन आभासी प्रजातियों का कोई जैविक आधार नहीं है। सभी मानव एक ही स्पीशीज़ के सदस्य हैं।

केवल यही नहीं, कि हम पिछले कितने हजार वर्षों से कहाँ रह रहे हैं बल्कि हम सभी का उद्भव अफ्रीका से हुआ। आधुनिक मानव स्पीशीज़ 'होमो सैपियंस' के सर्वप्रथम (प्राचीनतम) सदस्यों को वहीं पर खोजा जा सकता है। हमारे आनुवंशिक छाप को कालगर्त में अफ्रीकी मूल में ही खोजा जा सकता है। कुछ हजार वर्ष पूर्व हमारे पूर्वजों ने अफ्रीका छोड़ दिया जबिक कुछ वहीं रह गए। जबिक वहाँ के मूल निवासी पूरे अफ्रीका में फैल गए, उत्प्रवासी धीरे-धीरे समूचे ग्रह (संसार) में फैल गए—अफ्रीका से पश्चिमी एशिया, तथा वहाँ से मध्य एशिया, यूरेशिया, दिक्षणी एशिया तथा पूर्व एशिया। वहाँ से उन्होंने इंडोनेशिया के द्वीपों तथा फिलीपींस से ऑस्ट्रेलिया तक का सफर किया। वे बेरिंग लैंड ब्रिज को पार करके अमेरिका पहुँचे। क्योंकि वे मात्र यात्रा के उद्देश्य से सफर नहीं कर रहे थे अत: उन्होंने एक ही मार्ग का चुनाव नहीं किया। वे विभिन्न समूहों में कभी आगे तथा कभी पीछे गए। समूह कई बार परस्पर विलग हो गए। कभी–कभी अलग होकर विभिन्न दिशाओं में आगे बढ़ गए जबिक कुछ वापस आकर परस्पर मिल गए। जाने–आने का यह सिलसिला चलता रहा। इस ग्रह की अन्य स्पीशीज़ की तरह ही उनकी उत्पत्ति जैव–विकास की एक घटना मात्र ही थी तथा वे अपना जीवन सर्वोत्तम तरीके से जीने का प्रयास कर रहे थे।

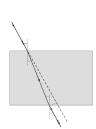
प्रश्न

- क्या कारण है कि आकृति, आकार, रंग-रूप में इतने भिन्न दिखाई पड़ने वाले मानव एक ही स्पीशीज़ के सदस्य हैं?
- विकास के आधार पर क्या आप बता सकते हैं कि जीवाणु, मकड़ी, मछली तथा चिम्पैंजी में किसका शारीरिक अभिकल्प उत्तम है? अपने उत्तर की व्याख्या कीजिए।

आपने क्या सीखा

- जनन के समय उत्पन्न विभिन्नताएँ वंशानुगत हो सकती हैं।
- इन विभिन्तताओं के कारण जीव की उत्तरजीविता में वृद्धि हो सकती है।
- लैंगिक जनन वाले जीवों में एक अभिलक्षण (Trait) के जीन के दो प्रतिरूप (Copies) होते हैं।
 इन प्रतिरूपों के एकसमान न होने की स्थिति में जो अभिलक्षण व्यक्त होता है उसे प्रभावी लक्षण तथा अन्य को अप्रभावी लक्षण कहते हैं।
- विभिन्न लक्षण किसी जीव में स्वतंत्र रूप से वंशानुगत होते हैं। संतित में नए संयोग उत्पन्न होते हैं।
- विभिन्न स्पीशीज़ में लिंग निर्धारण के कारक भिन्न होते हैं। मानव में संतान का लिंग इस बात पर निर्भर करता है कि पिता से मिलने वाले गुणसूत्र 'X' (लड़िकयों के लिए) अथवा 'Y' (लड़कों के लिए) किस प्रकार के हैं।

आनुवंशिकता एवं जैव विकास


- स्पीशीज में विभिन्नताएँ उसे उत्तरजीविता के योग्य बना सकती हैं अथवा केवल आनुवंशिक विचलन में योगदान देती हैं।
- कायिक ऊतकों में पर्यावरणीय कारकों द्वारा उत्पन्न परिवर्तन वंशानुगत नहीं होते।
- विभिन्नताओं के भौगोलिक पार्थक्य के कारण स्पीशीकरण हो सकता है।
- विकासीय संबंधों को जीवों के वर्गीकरण में ढूँढा जा सकता है।
- काल में पीछे जाकर समान पूर्वजों की खोज से हमें अंदाजा होता है कि समय के किसी बिंदु पर अजैव पदार्थों ने जीवन की उत्पत्ति की।
- जैव-विकास को समझने के लिए केवल वर्तमान स्पीशीज़ का अध्ययन पर्याप्त नहीं है, वरन् जीवाश्म अध्ययन भी आवश्यक है।
- अस्तित्व लाभ हेतु मध्यवर्ती चरणों द्वारा जटिल अंगों का विकास हुआ।
- जैव-विकास के समय अंग अथवा आकृति नए प्रकार्यों के लिए अनुकूलित होते हैं। उदाहरण के लिए, पर जो प्रारंभ में ऊष्णता प्रदान करने के लिए विकसित हुए थे, क्रालांतर में उड़ने के लिए अनुकूलित हो गए।
- विकास को 'निम्न' अभिरूप से 'उच्चतर' अभिरूप को 'प्रगति' नहीं कहा जा सकता। वरन् यह
 प्रतीत होता है कि विकास ने अधिक जटिल शारीरिक अभिकल्प उत्पन्न किए हैं जबिक सरलतम
 शारीरिक अभिकल्प भलीभाँति अपना अस्तित्व बनाए हुए हैं।
- मानव के विकास के अध्ययन से हमें पता चलता है कि हम सभी एक ही स्पीशीज़ के सदस्य हैं जिसका उदय अफ्रीका में हुआ और चरणों में विश्व के विभिन्न भागों में फैला।

अभ्यास

- 1. मेंडल के एक प्रयोग में लंबे मटर के पौधे जिनके बैंगनी पुष्प थे, का संकरण बौने पौधों जिनके सफेद पुष्प थे, से कराया गया। इनकी संतित के सभी पौधों में पुष्प बैंगनी रंग के थे। परंतु उनमें से लगभग आधे बौने थे। इससे कहा जा सकता है कि लंबे जनक पौधों की आनुवंशिक रचना निम्न थी—
 - (a) TTWW
 - (b) TTww
 - (c) TtWW
 - (d) TtWw
- 2. समजात अंगों का उदाहरण है-
 - (a) हमारा हाथ तथा कुत्ते के अग्रपाद
 - (b) हमारे दाँत तथा हाथी के दाँत
 - (c) आलू एवं घास के उपरिभूस्तारी
 - (d) उपरोक्त सभी

- 3. विकासीय दृष्टिकोण से हमारी किस से अधिक समानता है-
 - (a) चीन के विद्यार्थी
 - (b) चिम्पैंजी
 - (c) मकड़ी
 - (d) जीवाणु
- 4. एक अध्ययन से पता चला कि हलके रंग की आँखों वाले बच्चों के जनक (माता-पिता) की आँखें भी हलके रंग की होती हैं। इसके आधार पर क्या हम कह सकते हैं कि आँखों के हलके रंग का लक्षण प्रभावी है अथवा अप्रभावी? अपने उत्तर की व्याख्या कीजिए।
- 5. जैव-विकास तथा वर्गीकरण का अध्ययन क्षेत्र किस प्रकार परस्पर संबंधित है।
- 6. समजात तथा समरूप अंगों को उदाहरण देकर समझाइए।
- 7. कुत्ते की खाल का प्रभावी रंग ज्ञात करने के उद्देश्य से एक प्रोजेक्ट बनाइए।
- 8. विकासीय संबंध स्थापित करने में जीवाश्म का क्या महत्त्व है?
- 9. किन प्रमाणों के आधार पर हम कह सकते हैं कि जीवन की उत्पत्ति अजैविक पदार्थों से हुई है?
- 10. अलैंगिक जनन की अपेक्षा लैंगिक जनन द्वारा उत्पन्न विभिन्नताएँ अधिक स्थायी होती हैं, व्याख्या कीजिए। यह लैंगिक प्रजनन करने वाले जीवों के विकास को किस प्रकार प्रभावित करता है?
- 11. संतित में नर एवं मादा जनकों द्वारा आनुवंशिक योगदान में बराबर की भागीदारी किस प्रकार सुनिश्चित की जाती है।
- 12. केवल वे विभिन्नताएँ जो किसी एकल जीव (व्यष्टि) के लिए उपयोगी होती हैं, समष्टि में अपना अस्तित्व बनाए रखती हैं। क्या आप इस कथन से सहमत हैं? क्यों एवं क्यों नहीं?

अध्याय 10

प्रकाश – परावर्तन तथा अपवर्तन

म इस संसार में अपने चारों ओर अनेक प्रकार की वस्तुएँ देखते हैं। तथापि, किसी अँधेरे कमरे में हम कुछ भी देखने में असमर्थ हैं। कमरे को प्रकाशित करने पर चीजें दिखलाई देने लगती हैं। वह क्या है जो वस्तुओं को दृश्यमान बनाता है। दिन के समय सूर्य का प्रकाश वस्तुओं को देखने में हमारी सहायता करता है। कोई वस्तु उस पर पड़ने वाले प्रकाश को परावर्तित करती है। यह परावर्तित प्रकाश जब हमारी आँखों द्वारा ग्रहण किया जाता है, तो हमें वस्तुओं को देखने योग्य बनाता है। हम किसी पारदर्शी माध्यम के आर-पार देख सकते हैं क्योंकि प्रकाश इसमें से पार (transmitted) हो जाता है। प्रकाश से संबद्ध अनेक सामान्य तथा अद्भुत परिघटनाएँ हैं; जैसे—दर्पणों द्वारा प्रतिबंब का बनना, तारों का टिमटिमाना, इंद्रधनुष के सुंदर रंग, किसी माध्यम द्वारा प्रकाश को मोड़ना आदि। प्रकाश के गुणों का अध्ययन इनके अन्वेषण में हमारी सहायता करेगा।

अपने चारों ओर कुछ सामान्य प्रकाशिक परिघटनाओं को देख कर हम यह निष्कर्ष निकाल सकते हैं कि प्रकाश सरल रेखाओं में गमन करता प्रतीत होता है। यह तथ्य कि एक छोटा प्रकाश स्रोत किसी अपारदर्शी वस्तु की तीक्ष्ण छाया बनाता है, प्रकाश के एक सरलरेखीय पथ की ओर इंगित करता है, जिसे प्राय: प्रकाश किरण कहते हैं।

यदि प्रकाश के पथ में रखी अपारदर्शी वस्तु अत्यंत छोटी हो तो प्रकाश सरल रेखा में चलने

यदि प्रकाश के पथ में रखी अपारदर्शी वस्तु अत्यंत छोटी हो तो प्रकाश सरल रेखा में चलने की बजाय इसके किनारों पर मुड़ने की प्रवृत्ति दर्शाता है—इस प्रभाव को प्रकाश का विवर्तन कहते हैं। तब वह प्रकाशिकी जिसमें सरलरेखीय व्यवहार के आधार पर किरणों का उपयोग करते हैं असफल होने लगती हैं। विवर्तन जैसी परिघटनाओं की व्याख्या करने के लिए प्रकाश को तरंग के रूप में माना जाता है जिसका विस्तृत अध्ययन आप उच्च कक्षाओं में करेंगे। पुन, 20वीं शताब्दी के प्रारंभ में यह स्पष्ट हो गया कि प्रकाश की द्रव्य के साथ अन्योन्यक्रिया के विवेचन में प्रकाश का तरंग सिद्धांत अपर्याप्त है तथा प्रकाश प्राय: कणों के प्रवाह की भाँति व्यवहार करता है। प्रकाश की सही प्रकृति के बारे में यह उलझन कुछ वर्षों तक चलती रही जब तक कि प्रकाश का आधुनिक क्वांटम सिद्धांत उभर कर सामने नहीं आया जिसमें प्रकाश को न तो 'तरंग' माना गया न ही 'कण'। इस नए सिद्धांत ने प्रकाश के कण संबंधी गुणों तथा तरंग प्रकृति के बीच सामंजस्य स्थापित किया।

यह भी जानिए!

74

इस अध्याय में हम प्रकाश के परावर्तन तथा अपवर्तन की परिघटनाओं का, प्रकाश के सरलरेखीय गमन का उपयोग करके, अध्ययन करेंगे। ये मूल धारणाएँ प्रकृति में घटनेवाली कुछ प्रकाशिक परिघटनाओं के अध्ययन में हमारी सहायता करेंगी। इस अध्याय में हम गोलीय दर्पणों द्वारा प्रकाश के परावर्तन, प्रकाश के अपवर्तन एवं वास्तविक जीवन में उनके अनुप्रयोगों को समझने का प्रयत्न करेंगे।

10.1 प्रकाश का परावर्तन

उच्च कोटि की पॉलिश किया हुआ पृष्ठ, जैसे कि दर्पण, अपने पर पड़नेवाले अधिकांश प्रकाश को परावर्तित कर देता है। आप प्रकाश के परावर्तन के नियमों से पहले से ही परिचित हैं। आइए, इन नियमों को स्मरण करें:

- (i) आपतन कोण, परावर्तन कोण के बराबर होता है, तथा
- (ii) आपितत किरण, दर्पण के आपतन बिंदु पर अभिलंब तथा परावर्तित किरण, सभी एक ही तल में होते हैं।

परावर्तन के ये नियम गोलीय पृष्ठों सिंहत सभी प्रकार के परावर्तक पृष्ठों के लिए लागू होते हैं। आप समतल दर्पण द्वारा प्रतिबिंब के बनने से परिचित हैं। प्रतिबिंब की क्या विशेषताएँ हैं? समतल दर्पण द्वारा बना प्रतिबिंब सदैव आभासी तथा सीधा होता है। प्रतिबिंब का साइज़ बिंब (वस्तु) के साइज़ के बराबर होता है। प्रतिबिंब दर्पण के पीछे उतनी ही दूरी पर बनता है, जितनी दूरी पर दर्पण के सामने बिंब रखा होता है। इसके अतिरिक्त प्रतिबिंब पार्श्व परिवर्तित होता है। यदि परावर्तक पृष्ठ विक्रत हों तो प्रतिबिंब कैसे बनेंगे? आइए देखें।

क्रियाकलाप 10.1

- एक बड़ी चमकदार चम्मच लीजिए। इसके विक्रत पृष्ठ में अपना चेहरा देखने का प्रयत्न कीजिए।
- क्या आप प्रतिबिंब देख पाते हैं? यह छोटा है या बडा?
- चम्मच को धीरे-धीरे अपने चेहरे से दूर ले जाइए। प्रतिबिंब को देखते रिहए। यह कैसे परिवर्तित होता है?
- चम्मच को उलटा कीजिए (पलटिए) तथा दूसरे पृष्ठ से क्रियाकलाप को दोहराइए।
 अब प्रतिबिंब कैसा दिखलाई देता है?
- दोनों पृष्ठों पर प्रतिबिंब के अभिलक्षणों की तुलना कीजिए।

चमकदार चम्मच का विक्रित पृष्ठ एक विक्रित दर्पण की भाँति माना जा सकता है। सबसे अधिक उपयोग में आने वाले सामान्यत: विक्रित दर्पण का प्रारूप गोलीय दर्पण है। इस प्रकार के दर्पणों के परावर्तक पृष्ठ किसी गोले के पृष्ठ का एक भाग माना जा सकता है। ऐसे दर्पण जिनका परावर्तक पृष्ठ गोलीय है, गोलीय दर्पण कहलाते हैं। अब हम गोलीय दर्पणों के बारे में कुछ विस्तार से अध्ययन करेंगे।

10.2 गोलीय दर्पण

गोलीय दर्पण का परावर्तक पृष्ठ अंदर की ओर या बाहर की ओर वक्रित हो सकता है। गोलीय दर्पण जिसका परावर्तक पृष्ठ अंदर की ओर अर्थात गोले के केंद्र की ओर विक्रत है, वह अवतल दर्पण कहलाता है। वह गोलीय दर्पण जिसका परावर्तक पृष्ठ बाहर की ओर विक्रत है, उत्तल दर्पण कहलाता है। इन दर्पणों का आरेखीय निरूपण चित्र 10.1 में किया गया है। इन चित्रों में नोट कीजिए कि दर्पणों का पृष्ठभाग छायांकित है।

अब आप समझ सकते हैं कि चम्मच का अंदर की ओर वक्रित पृष्ठ लगभग अवतल दर्पण जैसा है तथा चम्मच का बाहर की ओर उभरा पृष्ठ लगभग उत्तल दर्पण जैसा है।

गोलीय दर्पणों के बारे में और अधिक ज्ञान प्राप्त करने से पहले आइए हम कुछ शब्दों अथवा पदों (terms) को जानें तथा उनका अर्थ समझें। ये शब्द गोलीय दर्पणों के बारे में चर्चा करते समय सामान्यत: प्रयोग में आते हैं। गोलीय दर्पण के परावर्तक पृष्ठ के केंद्र को दर्पण का ध्रुव कहते हैं। यह दर्पण के पृष्ठ पर स्थित होता है। ध्रुव को प्राय: P अक्षर से निरूपित करते हैं।

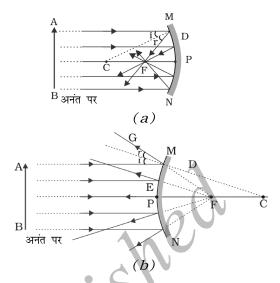
गोलीय दर्पण का परावर्तक पृष्ठ एक गोले का भाग है। इस गोले का केंद्र गोलीय दर्पण का वक्रता केंद्र कहलाता है। यह अक्षर C से निरूपित किया जाता है। कृपया ध्यान दें कि वक्रता केंद्र दर्पण का भाग नहीं है। यह परावर्तक पृष्ठ के बाहर स्थित है। अवतल दर्पण का वक्रता केंद्र परावर्तक पृष्ठ के सामने स्थित होता है। तथापि, उत्तल दर्पण में यह दर्पण के परावर्तक पुष्ठ के पीछे स्थित होता है। यह तथ्य आप चित्र 10. 2 (a) तथा 10.2 (b) में नोट कर सकते हैं। गोलीय दर्पण का परावर्तक पृष्ठ जिस गोले का भाग है, उसकी त्रिज्या दर्पण की **वक्रता त्रिज्या** कहलाती है। इसे अक्षर R से निरूपित किया जाता है। ध्यान दीजिए कि PC दूरी वक्रता त्रिज्या के बराबर है। गोलीय दर्पण के ध्रुव तथा वक्रता त्रिज्या से गुज़रने वाली एक सीधी रेखा की कल्पना कीजिए। इस रेखा को दर्पण का मुख्य अक्ष कहते हैं। याद कीजिए कि मुख्य अक्ष दर्पण के ध्रुव पर अभिलंब है। आइए, दर्पण से संबंधित एक महत्वपूर्ण शब्द को एक क्रियाकलाप द्वारा समझें।

(*b*) (a) उत्तल दर्पण अवतल दर्पण चित्र 10.1 गोलीय दर्पणों का आरेखीय निरूपण: छायांकित

भाग परावर्तक नहीं है।

क्रियाकलाप 10.2

चेतावनी : सूर्य की ओर या दर्पण द्वारा परावर्तित सूर्य के प्रकाश की ओर सीधा मत देखिए। यह आपकी आँखों को क्षतिग्रस्त कर सकता है।


- एक अवतल दर्पण को अपने हाथ में पकड़िए तथा इसके परावर्तक पृष्ठ को सूर्य की
- दर्पण द्वारा परावर्तित प्रकाश को दर्पण के पास रखी एक कागज़ की शीट पर डालिए।
- कागज़ की शीट को धीरे-धीरे आगे पीछे कीजिए जब तक कि आपको कागज़ की शीट पर प्रकाश का एक चमकदार, तीक्ष्ण बिंदु प्राप्त न हो जाए।
- दर्पण तथा कागज़ को कुछ मिनट के लिए उसी स्थिति में पकड़े रखिए। आप क्या

देखते हैं? ऐसा क्यों होता है?

सर्वप्रथम कागज सुलगना प्रारंभ करता है और धुआँ उठने लगता है। अंतत: यह आग भी पकड़ सकता है। यह क्यों जलता है? सूर्य से आने वाला प्रकाश दर्पण के द्वारा एक तीक्ष्ण, चमकदार बिंदु के रूप में अभिकेंद्रित होता है। वास्तव में कागज़ की शीट पर प्रकाश का यह बिंदु सूर्य का प्रतिबिंब है। यह बिंदु अवतल दर्पण का फोकस है। सूर्य के प्रकाश के संकेंद्रण से उत्पन्न ऊष्मा के कारण कागज़ जलता है। दर्पण की स्थिति से इस प्रतिबिंब की दूरी, दर्पण की फोकस दूरी का सन्निकट मान है।

आइए इस प्रेक्षण को एक किरण आरेख से समझने का प्रयत्न करें।

चित्र 10.2 (a) को ध्यानपूर्वक देखिए। अवतल दर्पण पर मुख्य अक्ष के समांतर कुछ किरणें आपितत हो रही हैं। परावर्तित किरणों का प्रेक्षण कीजिए। वे सभी दर्पण की मुख्य अक्ष के एक बिंदु पर मिल रही/प्रतिच्छेदी हैं। यह बिंदु अवतल दर्पण का मुख्य फोकस कहलाता है। इसी प्रकार चित्र 10.2 (b) को

चित्र 10.2 (a) अवतल दर्पण (b) उत्तल दर्पण

ध्यानपूर्वक देखिए। उत्तल दर्पण द्वारा मुख्य अक्ष के समांतर किरणें किस प्रकार परावर्तित होती हैं? परावर्तित किरणें मुख्य अक्ष पर एक बिंदु से आती हुई प्रतीत होती हैं। यह बिंदु उत्तल दर्पण का मुख्य फोकस कहलाता है। मुख्य फोकस को अक्षर F द्वारा निरूपित किया जाता है। गोलीय दर्पण के ध्रुव तथा मुख्य फोकस के बीच की दूरी फोकस दूरी कहलाती है। इसे अक्षर f द्वारा निरूपित करते हैं।

गोलीय दर्पण का परावर्तक पृष्ठ अधिकांशत: गोलीय ही होता है। इस पृष्ठ की एक वृत्ताकार सीमा रेखा होती है। गोलीय दर्पण के परावर्तक पृष्ठ की इस वृत्ताकार सीमारेखा का व्यास, दर्पण का द्वारक (aperture) कहलाता है। चित्र 10.2 में दूरी MN द्वारक को निरूपित करती है। अपने विवेचन में हम केवल उन्हीं गोलीय दर्पणों पर विचार करेंगे जिनका द्वारक इनकी वक्रता त्रिज्या से बहुत छोटा है।

क्या गोलीय दर्पण की वक्रता त्रिज्या R तथा फोकस दूरी f के बीच कोई संबंध है? छोटे द्वारक के गोलीय दर्पणों के लिए वक्रता त्रिज्या फोकस दूरी से दोगुनी होती है। हम इस संबंध को R=2f द्वारा व्यक्त कर सकते हैं। यह दर्शाता है कि किसी गोलीय दर्पण का मुख्य फोकस, उसके ध्रुव तथा वक्रता केंद्र को मिलाने वाली रेखा का मध्य बिंदु होता है।

10.2.1 गोलीय दर्पणों द्वारा प्रतिबिंब बनना

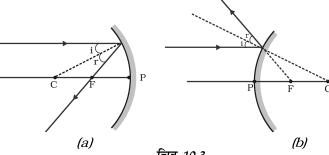
आप समतल दर्पणों द्वारा प्रतिबिंब बनने के बारे में अध्ययन कर चुके हैं। आप उनके द्वारा बनाए गए प्रतिबिंबों की प्रकृति, स्थिति तथा आपेक्षिक साइज़ के बारे में भी जानते हैं। गोलीय दर्पणों द्वारा बने प्रतिबिंब कैसे होते हैं? किसी अवतल दर्पण द्वारा बिंब की विभिन्न स्थितियों के लिए बने प्रतिबिंबों की स्थिति का निर्धारण हम किस प्रकार कर सकते हैं? ये प्रतिबिंब वास्तिवक हैं अथवा आभासी? क्या वे आवर्धित हैं, छोटे हैं या समान साइज़ के हैं? हम एक क्रियाकलाप द्वारा इसका अन्वेषण करेंगे।

क्रियाकलाप 10.3

- आप अवतल दर्पण की फोकस दूरी ज्ञात करने की विधि पहले ही सीख चुके हैं। क्रियाकलाप 10.2 में आपने देखा है कि आपको कागज पर मिला प्रकाश का तीक्ष्ण चमकदार बिंदु वास्तव में सूर्य का प्रतिबिंब है। यह अत्यंत छोटा, वास्तविक तथा उलटा है। दर्पण से इस प्रतिबिंब की दूरी माप कर आपने अवतल दर्पण की लगभग फोकस दूरी ज्ञात की थी।
- एक अवतल दर्पण लीजिए। ऊपर वर्णित विधि से इसकी सिन्नकट फोकस दूरी ज्ञात कीजिए। फोकस दूरी का मान नोट कीजिए। (आप किसी दूरस्थ वस्तु का प्रतिबिंब एक कागज़ की शीट पर प्राप्त करके भी फोकस दूरी ज्ञात कर सकते हैं)।
- मेज पर चॉक से एक लाइन बनाइए। अवतल दर्पण को एक स्टैंड पर रखिए। स्टैंड को लाइन पर इस प्रकार रखिए कि दर्पण का ध्रुव इस लाइन पर स्थित हो।
- चॉक से पहली लाइन के समांतर और इसके आगे, दो लाइनें इस प्रकार खींचिए की किन्हीं दो उत्तरोत्तर लाइनों के बीच की दूरी दर्पण की फोकस दूरी के बराबर हो। ये लाइनें अब क्रमश: बिंदुओं P, F तथा C की स्थितियों के तदनुरूपी होंगी। याद रखिए- छोटे द्वारक के गोलीय दर्पण के लिए मुख्य फोकस F, ध्रुव P तथा वक्रता केंद्र C को मिलाने वाली रेखा के मध्य बिंदु पर स्थित होता है।
- एक चमकीला बिंब, जैसे एक जलती हुई मोमबत्ती C से बहुत दूर किसी स्थिति पर रखिए।
 एक कागज का परदा रखिए तथा इसको दर्पण के सामने आगे-पीछे तब तक खिसकाइए जब तक कि आपको इस पर मोमबत्ती की लौ का तीक्ष्ण तथा चमकीला प्रतिबिंब प्राप्त न हो जाए।
- प्रतिबिंब को ध्यानपूर्वक देखिए। इसकी प्रकृति, स्थिति तथा बिंब के साइज के सापेक्ष इसका आपेक्षिक साइज नोट कीजिए।
- इस क्रियाकलाप को मोमबत्ती की निम्न स्थितियों के लिए दोहराइए—
 (a) C से थोड़ी दूर, (b) C पर, (c) F तथा C के बीच, (d) F पर तथा (e) P और F के बीच।
 - इनमें से एक स्थिति में आप परदे पर प्रतिबिंब प्राप्त नहीं कर पाएँगे। इस अवस्था में बिंब की स्थिति को अभिनिर्धारित कीजिए। तब, इसके आभासी प्रतिबिंब को सीधे दर्पण में देखिए।
- 🔳 अपने प्रेक्षणों को नोट कीजिए तथा सारणीबद्ध कीजिए।

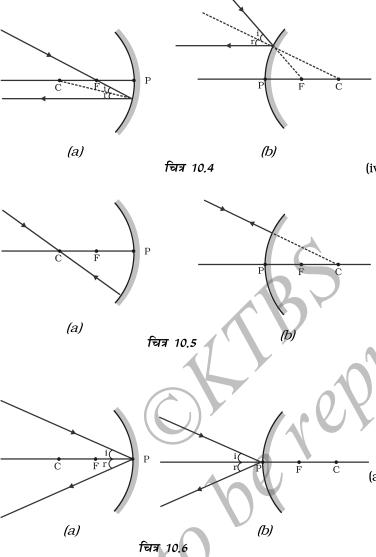
उपरोक्त क्रियाकलाप में आप देखेंगे कि अवतल दर्पण द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा साइज बिंदु P, F तथा C के सापेक्ष बिंब की स्थिति पर निर्भर करते हैं। बिंब की कुछ स्थितियों के लिए बनने वाला प्रतिबिंब वास्तविक हैं। बिंब की कुछ दूसरी स्थितियों के लिए यह आभासी होता है। बिंब की स्थिति के अनुसार ही प्रतिबिंब आवर्धित, छोटा या समान साइज का होता है। इन प्रेक्षणों का संक्षिप्त विवरण, आपके निर्देशन के लिए सारणी 10.1 में दिया गया है।

सारणी 10.1 किसी अवतल दर्पण द्वारा बिंब की विभिन्न स्थितियों के लिए बने प्रतिबिंब


बिंब की स्थिति	प्रतिबिंब की स्थिति	प्रतिबिंब का साइज़	प्रतिबिंब की प्रकृति
अनंत पर	फोकस F पर	अत्यधिक छोटा, बिंदु साइज	वास्तविक एवं उलटा
C से परे	F तथा C के बीच	छोटा	वास्तविक तथा उलटा
C पर	C पर	समान साइज	वास्तविक तथा उलटा
C तथा F के बीच	C से परे	विवर्धित (बड़ा)	वास्तविक तथा उलटा
F पर	अनंत पर	अत्यधिक विवर्धित	वास्तविक तथा उलटा
P तथा F के बीच	दर्पण के पीछे	विवर्धित (बड़ा)	आभासी तथा सीधा

10.2.2 किरण आरेखों का उपयोग करके गोलीय दर्पणों द्वारा बने प्रतिबिंबों का निरूपण

गोलीय दर्पणों द्वारा प्रतिबिंबों के बनने का अध्ययन हम किरण आरेख खींच कर भी कर सकते हैं। गोलीय दर्पण के सामने रखे एक सीमित साइज़ के विस्तारित बिंब पर विचार कीजिए। इस बिंब का प्रत्येक छोटा भाग एक बिंदु बिंब की भाँति कार्य करता है। इन बिंदुओं में प्रत्येक से अनंत किरणें उत्पन्न होती हैं। बिंब के प्रतिबिंब का स्थान निर्धारण करने के लिए, किरण आरेख बनाते समय किसी बिंदु से निकलने वाली किरणों की विशाल संख्या में से सुविधानुसार कुछ को चुना जा सकता है। तथापि, किरण आरेख की स्पष्टता के लिए दो किरणों पर विचार करना अधिक सुविधाजनक है। ये किरणें ऐसी हों कि दर्पण से परावर्तन के पश्चात उनकी दिशाओं को जानना आसान हो।


कम से कम दो परावर्तित किरणों के प्रतिच्छेदन से किसी बिंदु बिंब के प्रतिबिंब की स्थिति ज्ञात की जा सकती है। प्रतिबिंब के स्थान निर्धारण के लिए निम्न में से किन्हीं भी दो किरणों पर विचार किया जा सकता है।

- (i) *दर्पण के मुख्य अक्ष के समांतर प्रकाश किरण*, परावर्तन के पश्चात अवतल दर्पण के मुख्य फोकस से गुजरेगी अथवा उत्तल दर्पण के मुख्य फोकस से अपसरित होती प्रतीत होगी। यह चित्र 10.3 (a) एवं (b) में दर्शाया गया है।
- (ii) अवतल दर्पण के मुख्य फोकस से गुजरने वाली किरण अथवा उत्तल दर्पण के मुख्य फोकस की ओर निर्देशित किरण परावर्तन के पश्चात मुख्य अक्ष के समांतर निकलेगी। इसे चित्र 10.4 (a) तथा चित्र 10.4 (b) में दर्शाया गया है।
- (iii) अवतल दर्पण के वक्रता केंद्र से गुजरने वाली किरण अथवा उत्तल

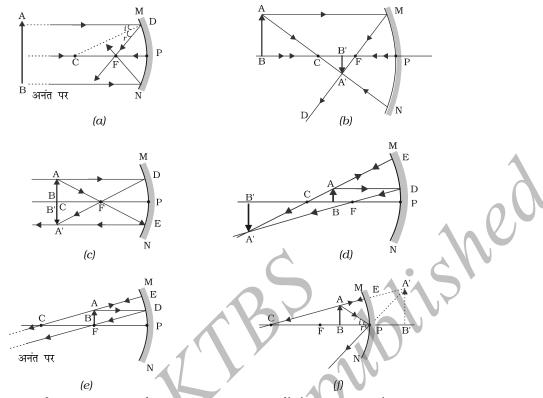
चित्र 10.3

प्रकाश – परावर्तन तथा अपवर्तन

दर्पण के वक्रता केंद्र की ओर निर्देशित किरण, परावर्तन के पश्चात उसी पथ के अनुदिश वापस परावर्तित हो जाती है। इसे चित्र 10.5 (a) तथा 10.5 (b) में दर्शाया गया है। प्रकाश की किरणें उसी पथ से इसलिए वापस आती हैं क्योंकि आपतित किरणें दर्पण के परावर्तक पृष्ठ पर अभिलंब के अनुदिश पडती हैं।

(iv) अवतल दर्पण चित्र 10.6 (a) अथवा उत्तल दर्पण चित्र 10.6 (b) के बिंदु P (दर्पण का ध्रुव) की ओर मुख्य अक्ष से तिर्यक दिशा में आपतित किरण, तिर्यक दिशा में ही परावर्तित होती है।

— आपतित तथा परावर्तित किरणें आपतन बिंदु (बिंदु P) पर मुख्य अक्ष से समान कोण बनाते हुए परावर्तन के नियमों का पालन करती हैं।


याद रिखए कि उपरोक्त सभी स्थितियों में परावर्तन के नियमों का पालन होता है। आपतन बिंदु पर आपितत किरण इस प्रकार परावर्तित होती है कि परावर्तन कोण का मान सदैव आपतन कोण के मान के बराबर हो।

अवतल दर्पण द्वारा प्रतिबिंब बनना चित्र 10.7 (a) से (f) में बिंब की विभिन्न स्थितियों के लिए अवतल दर्पण द्वारा प्रतिबिंब का बनना किरण आरेखों द्वारा दर्शाया गया है।

क्रियाकलाप 10.4

- सारणी 10.1 में दर्शायी गई बिंब की प्रत्येक स्थित के लिए स्वच्छ किरण आरेख खींचिए।
- प्रतिबिंब का स्थान निर्धारित करने के लिए आप पूर्व अनुच्छेद में वर्णित कोई दो किरणें ले सकते हैं।
- अपने चित्रों की तुलना चित्र 10.7 में दिए गए चित्रों से कीजिए।
- प्रत्येक दशा में बनने वाले प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज का वर्णन कीजिए।
- अपने परिणामों को सुविधाजनक प्रारूप में सारणीबद्ध कीजिए।

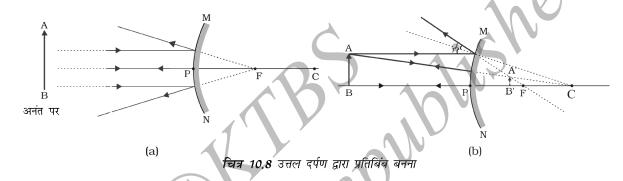
विज्ञान

चित्र 10.7 अवतल दर्पण द्वारा प्रतिबिंब का बनना दर्शाने के लिए किरण आरेख

अवतल दर्पणों के उपयोग

अवतल दर्पणों का उपयोग सामान्यत: टॉर्च, सर्चलाइट तथा वाहनों के अग्रदीपों (headlights) में प्रकाश का शिक्तिशाली समांतर किरण पुंज प्राप्त करने के लिए किया जाता है। इन्हें प्राय: चेहरे का बड़ा प्रतिबिंब देखने के लिए शेविंग दर्पणों (shaving mirrors) के रूप में उपयोग करते हैं। दंत विशेषज्ञ अवतल दर्पणों का उपयोग मरीजों के दाँतों का बड़ा प्रतिबिंब देखने के लिए करते हैं। सौर भट्टियों में सूर्य के प्रकाश को केंद्रित करने के लिए बड़े अवतल दर्पणों का उपयोग किया जाता है।

(b) उत्तल दर्पण द्वारा प्रतिबिंब बनना


हमने अवतल दर्पण द्वारा प्रतिबिंब बनने के बारे में अध्ययन किया है। अब हम उत्तल दर्पण द्वारा प्रतिबिंब बनने के बारे में अध्ययन करेंगे।

क्रियाकलाप 10.5

- कोई उत्तल दर्पण लीजिए। इसे एक हाथ में पकडिए।
- दूसरे हाथ में एक सीधी खड़ी पेंसिल पकड़िए।
- दर्पण में पेंसिल का प्रतिबिंब देखिए। प्रतिबिंब सीधा है या उलटा? क्या यह छोटा है
 अथवा विवर्धित (बडा) है?

- पेंसिल को धीरे-धीरे दर्पण से दूर ले जाइए। क्या प्रतिबिंब छोटा होता जाता है या बड़ा होता जाता है?
- क्रियाकलाप को सावधानीपूर्वक दोहराइए। बताइए कि जब बिंब को दर्पण से दूर ले जाते हैं तो प्रतिबिंब फोकस के निकट आता है अथवा उससे और दूर चला जाता है?

उत्तल दर्पण द्वारा बने प्रतिबिंब का अध्ययन करने के लिए हम बिंब की दो स्थितियों पर विचार करते हैं। पहली स्थिति में बिंब अनंत दूरी पर है तथा दूसरी स्थिति में बिंब दर्पण से एक निश्चित दूरी पर है। बिंब की इन दो स्थितियों के लिए उत्तल दर्पण द्वारा बनाए गए प्रतिबिंबों के किरण आरेखों को क्रमश: चित्र 10.8 (a) तथा 10.8 (b) में दर्शाया गया है। परिणामों का संक्षिप्त विवरण सारणी 10.2 में दिया गया है।

सारणी 10.2 उत्तल दर्पण द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज

		A J	
बिंब की स्थिति	प्रतिबिंब की स्थिति	प्रतिबिंब का साइज	प्रतिबिंब की प्रकृति
अनंत पर	फोकस F पर दर्पण के पीछे	अत्यधिक छोटा, बिंदु के साइज़ का	आभासी तथा सीधा
अनंत तथा दर्पण के ध्रुव P के बीच	P तथा F के बीच दर्पण के पीछे	छोटा	आभासी तथा सीधा

अभी तक आपने समतल दर्पण, अवतल दर्पण तथा उत्तल दर्पण द्वारा प्रतिबिंब बनाने के बारे में अध्ययन किया है। इनमें से कौन-सा दर्पण किसी बड़े बिंब का पूरा प्रतिबिंब बनाएगा? आइए एक क्रियाकलाप द्वारा इसका अन्वेषण करें।

क्रियाकलाप 10.6

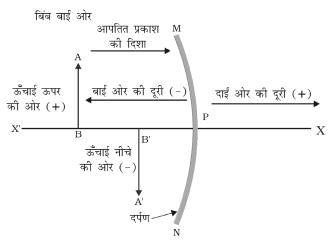
- समतल दर्पण में किसी दूरस्थ बिंब जैसे कोई दूरस्थ पेड़ का प्रतिबिंब देखिए।
- क्या आप पूर्ण-लंबाई (full-length) का प्रतिबिंब देख पाते हैं?
- विभिन्न साइज के समतल दर्पण लेकर प्रयोग दोहराइए। क्या आप दर्पण में बिंब का संपूर्ण प्रतिबिंब देख पाते हैं?

- इस क्रियाकलाप को अवतल दर्पण लेकर दोहराइए। क्या यह दर्पण बिंब की पूरी लंबाई का प्रतिबिंब बना पाता है?
- अब एक उत्तल दर्पण लेकर इस प्रयोग को दोहराइए। क्या आपको सफलता मिली?
 अपने प्रेक्षणों की कारण सिंहत व्याख्या कीजिए।

आप एक छोटे उत्तल दर्पण में किसी ऊँचे भवन/पेड़ का पूर्ण-लंबाई का प्रतिबिंब देख सकते हैं। आगरा किले की एक दीवार में ऐसा ही एक दर्पण ताजमहल की ओर लगा हुआ है। यदि आप कभी आगरा किला देखने जाएँ तो दीवार में लगे इस दर्पण में ताजमहल के पूरे प्रतिबिंब को देखने का प्रयास करें। मकबरे को स्पष्टत: देखने के लिए आपको दीवार से सटी हुई छत पर उचित स्थान पर खड़ा होना होगा।

उत्तल दर्पणों के उपयोग

उत्तल दर्पणों का उपयोग सामान्यत: वाहनों के पश्च-दृश्य (wing) दर्पणों के रूप में किया जाता है। ये दर्पण वाहन के पार्श्व (side) में लगे होते हैं तथा इनमें ड्राइवर अपने पीछे के वाहनों को देख सकते हैं जिससे वे सुरक्षित रूप से वाहन चला सकें। उत्तल दर्पणों को इसलिए भी प्राथमिकता देते हैं, क्योंकि ये सदैव सीधा प्रतिबिंब बनाते हैं यद्यपि वह छोटा होता है। इनका दृष्टि-क्षेत्र भी बहुत अधिक है क्योंकि ये बाहर की ओर विक्रत होते हैं। अत: समतल दर्पण की तुलना में उत्तल दर्पण ड्राइवर को अपने पीछे के बहुत बड़े क्षेत्र को देखने में समर्थ बनाते हैं।


प्रश्न

- 1. अवतल दर्पण के मुख्य फोकस की परिभाषा लिखिए।
- 2. एक गोलीय दर्पण की वक्रता त्रिज्या 20 cm है। इसकी फोकस दूरी क्या होगी?
- 3. उस दर्पण का नाम बताइए जो बिंब का सीधा तथा आवर्धित प्रतिबिंब बना सके।
- 4. हम वाहनों में उत्तल दर्पण को पश्च-दृश्य दर्पण के रूप में वरीयता क्यों देते हैं?

10.2.3 गोलीय दर्पणों द्वारा परावर्तन के लिए चिह्न परिपाटी

गोलीय दर्पणों द्वारा प्रकाश के परावर्तन पर विचार करते समय हम एक निश्चित चिह्न परिपाटी का पालन करेंगे, जिसे **नयी कार्तीय चिह्न परिपाटी** कहते हैं। इस परिपाटी में दर्पण के ध्रुव (P) को मूल बिंदु मानते हैं (चित्र 10.9)। दर्पण के मुख्य अक्ष को निर्देशांक पद्धित का x-अक्ष (XX') लिया जाता है। यह परिपाटी निम्न प्रकार है:

- (i) बिंब सदैव दर्पण के बाईं ओर रखा जाता है। इसका अर्थ है कि दर्पण पर बिंब से प्रकाश बाईं ओर से आपितत होता है।
- (ii) मुख्य अक्ष के समांतर सभी दूरियाँ दर्पण के ध्रुव से मापी जाती हैं।
- (iii) मूल बिंदु के दाईं ओर (+ x-अक्ष के अनुदिश) मापी गई सभी दूरियाँ धनात्मक मानी जाती हैं जबिक मूल बिंदु के बाईं ओर (- x-अक्ष के अनुदिश) मापी गई दूरियाँ ऋणात्मक मानी जाती हैं।

चित्र 10.9 गोलीय दर्पणों के लिए नयी कार्तीय चिह्न परिपाटी

- (iv) मुख्य अक्ष के लंबवत तथा ऊपर की ओर (+ y-अक्ष के अनुदिश) मापी जाने वाली दूरियाँ धनात्मक मानी जाती हैं।
- (v) मुख्य अक्ष के लंबवत तथा नीचे की ओर (-y-अक्ष के अनुदिश) मापी जाने वाली दूरियाँ ऋणात्मक मानी जाती हैं।

ऊपर वर्णित नयी कार्तीय चिह्न परिपाटी आपके संदर्भ के लिए चित्र 10.9 में दर्शायी गई है। यह चिह्न परिपाटी दर्पण का सूत्र प्राप्त करने तथा संबंधित आंकिक प्रश्नों को हल करने के लिए प्रयुक्त की गई है।

10.2.4 दर्पण सूत्र तथा आवर्धन

गोलीय दर्पण में इसके ध्रुव से बिंब की दूरी, बिंब दूरी (u) कहलाती है। दर्पण के ध्रुव से प्रतिबिंब की दूरी, प्रतिबिंब दूरी (v) कहलाती है। आपको पहले ही ज्ञात है कि ध्रुव से मुख्य फोकस की दूरी, फोकस दूरी (t) कहलाती है। इन तीनों राशियों के बीच एक संबंध है जिसे दर्पण सूत्र द्वारा प्रस्तुत किया जाता है। इस सूत्र को निम्न प्रकार व्यक्त करते हैं:

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{6}$$
 (10.1)

यह संबंध सभी प्रकार के गोलीय दर्पणों के लिए तथा बिंब की सभी स्थितियों के लिए मान्य हैं। प्रश्नों को हल करते समय, जब आप दर्पण सूत्र में u,v,f तथा R के मान प्रतिस्थापित करें तो आपको नयी कार्तीय चिह्न परिपाटी का प्रयोग करना चाहिए।

आवर्धन

गोलीय दर्पण द्वारा उत्पन्न आवर्धन वह आपेक्षिक विस्तार है जिससे ज्ञात होता है कि कोई प्रतिबिंब बिंब की अपेक्षा कितना गुना आवर्धित है। इसे प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात रूप में व्यक्त किया जाता है।

यदि h बिंब की ऊँचाई हो तथा h' प्रतिबिंब की ऊँचाई हो तो गोलीय दर्पण द्वारा उत्पन्न आवर्धन (m) प्राप्त होगा।

$$m=rac{\mathrm{yft}}{\mathrm{a}\mathrm{a}\mathrm{a}}$$
 को ऊँचाई (h') $m=rac{h'}{h}$ (10.2)

आवर्धन m बिंब दूरी (u) तथा प्रतिबिंब दूरी (v) से भी संबंधित है। इसे व्यक्त किया जाता है।

आवर्धन (m) =
$$\frac{h'}{h} = -\frac{v}{u}$$
 (10.3)

ध्यान दीजिए, बिंब की ऊँचाई धनात्मक ली जाती है क्योंकि बिंब प्राय: मुख्य अक्ष के ऊपर रखा जाता है। आभासी प्रतिबिंबों के लिए बिंब की ऊँचाई धनात्मक लेनी चाहिए। तथापि वास्तविक प्रतिबिंबों के लिए इसे ऋणात्मक लेना चाहिए। आवर्धन के मान में ऋणात्मक चिह्न से ज्ञात होता है कि प्रतिबिंब वास्तविक है। आवर्धन के मान में धनात्मक चिह्न बताता है कि प्रतिबिंब आभासी है।

उदाहरण 10.1

किसी ऑटोमोबाइल में पीछे का दृश्य देखने के लिए उपयोग होने वाले उत्तल दर्पण की वक्रता त्रिज्या $3.00~\mathrm{m}$ है। यदि एक बस इस दर्पण से $5.00~\mathrm{m}$ की दूरी पर स्थित है तो प्रतिबिंब की स्थिति, प्रकृति तथा साइज ज्ञात कीजिए।

हल

वक्रता त्रिज्या, R = + 3.00 m;

बिंब-दूरी, u = -5.00 m;

प्रतिबिंब-दूरी, v=?

प्रतिबिंब की ऊँचाई, h' = ?

फोकस दूरी $f = R/2 = + \frac{3.00 \text{ m}}{2} = + 1.50 \text{ m}$ (क्योंकि उत्तल दर्पण का मुख्य

फ़ोकस दर्पण के पीछे है।)

क्योंकि
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

या
$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = +\frac{1}{1.50} - \frac{1}{(-5.00)} = \frac{1}{1.50} + \frac{1}{5.00}$$

$$=\frac{5.00+1.50}{7.50}$$

$$v = \frac{+7.50}{6.50} = +1.15 \,\mathrm{m}$$

प्रतिबिंब दर्पण के पीछे $1.15 \ \mathrm{m}$ की दूरी पर है।

आवर्धन,
$$m = \frac{h'}{h} = -\frac{v}{u} = -\frac{1.15 \text{ m}}{-5.00 \text{ m}}$$

$$= +0.23$$

प्रतिबिब आभासी, सीधा तथा साइज में बिंब से छोटा (0.23 गुना) है।

उदाहरण 10.2

कोई 4.0 cm साइज का बिंब किसी 15.0 cm फोकस दूरी के अवतल दर्पण से 25.0 cm दूरी पर रखा है। दर्पण से कितनी दूरी पर किसी परदे को रखा जाए कि स्पष्ट प्रतिबिंब प्राप्त हो? प्रतिबिंब की प्रकृति तथा साइज ज्ञात कीजिए।

हल

बिंब-साइज, h = +4.0 cm;

बिंब-दूरी, u = -25.0 cm;

फोकस दूरी f = -15.0 cm;

प्रतिबिंब-दूरी, v=?

प्रतिबिंब-साइज, h'=?

समीकरण (10.1) से

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

या
$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-15.0} - \frac{1}{-25.0} = -\frac{1}{15.0} + \frac{1}{25.0}$$

या
$$\frac{1}{v} = \frac{-5.0 + 3.0}{75.0} = \frac{-2.0}{75.0}$$
 या, $v = -37.5$ cm

परदे को दर्पण के सामने 37.5 cm दूरी पर रखना चाहिए। प्रतिबिंब वास्तविक है।

इसी प्रकार, आवर्धन,
$$m = \frac{h'}{h} = -\frac{v}{u}$$

या
$$h' = -\frac{vh}{u} = -\frac{(-37.5 \text{ cm}) (+4.0 \text{ cm})}{(-25.0 \text{ cm})}$$

प्रतिबिंब की ऊँचाई, h' = -6.0 cmप्रतिबिंब उलटा तथा आवर्धित है।

प्रश्न

- 1. उस उत्तल दर्पण की फोकूस दूरी ज्ञात कीजिए जिसकी वक्रता-त्रिज्या 32 cm है।
- 2. कोई अवतल दर्पण आपने सामने 10 cm दूरी पर रखे किसी बिंब का तीन गुणा आवर्धित (बड़ा) वास्तविक प्रतिबिंब बनाता है। प्रतिबिंब दर्पण से कितनी दूरी पर है।

10.3 प्रकाश का अपवर्तन

किसी पारदर्शी माध्यम में प्रकाश सरल रेखा में गमन करता प्रतीत होता है। जब प्रकाश एक पारदर्शी माध्यम से दूसरे में प्रवेश करता है तो क्या होता है? क्या यह अब भी सरल रेखा में चलता है या अपनी दिशा बदलता है? हम अपने दिन-प्रतिदिन के कुछ अनुभवों को दोहराएँगे। आपने देखा होगा कि पानी से भरे किसी टैंक अथवा ताल या पोखर की तली उठी हुई प्रतीत होती है। इसी प्रकार, जब कोई मोटा काँच का स्लैब (सिल्ली) किसी मुद्रित सामग्री पर रखा जाता है, तो काँच के स्लैब के ऊपर से देखने पर अक्षर उठे हुए प्रतीत होते हैं। ऐसा क्यों होता है?

क्या आपने किसी काँच के बर्तन में रखे पानी में किसी पेंसिल को आंशिक रूप से डूबे देखा है? यह वायु तथा पानी के अंतरपृष्ठ पर (अर्थात पानी की ऊपरी सतह पर) टेढ़ी प्रतीत होती है। आपने देखा होगा कि पानी से भरे किसी काँच के बर्तन में रखे नींबू पार्श्व (side) से देखने पर अपने वास्तविक साइज़ से बड़े प्रतीत होते हैं। इन अनुभवों की व्याख्या आप किस प्रकार करेंगे?

आइए पानी में आंशिक रूप से डूबी पेंसिल के मुड़े होने की घटना पर विचार करें। पेंसिल के पानी में डूबे भाग से आपके पास पहुँचने वाला प्रकाश, पेंसिल के पानी से बाहर के भाग की तुलना में भिन्न दिशा से आता हुआ प्रतीत होता है। इसी कारण पेंसिल मुड़ी हुई प्रतीत होती है। इन्ही कारणों से, जब अक्षरों के ऊपर काँच का स्लैब रख कर देखते हैं तो वे उठे हुए प्रतीत होते हैं।

यदि पानी के स्थान पर हम कोई अन्य द्रव जैसे किरोसिन या तारपीन का तेल प्रयोग करें, क्या तब भी पेंसिल उतनी ही मुड़ी हुई दिखेगी? यदि हम काँच के स्लैब को पारदर्शी प्लास्टिक के स्लैब से प्रतिस्थापित कर दें, क्या तब भी अक्षर उसी ऊँचाई तक उठे प्रतीत होंगे? आप देखेंगे कि अलग-अलग माध्यमों के युग्मों के लिए इन प्रभावों का विस्तार अलग-अलग है। ये प्रेक्षण सूचित करते हैं कि प्रकाश सभी माध्यमों में एक ही दिशा में गमन नहीं करता। ऐसा प्रतीत होता है कि जब प्रकाश एक माध्यम से दूसरे माध्यम में तिरछा होकर जाता है तो दूसरे माध्यम में इसके संचरण की दिशा परिवर्तित हो जाती है। इस परिघटना को विस्तार से कुछ क्रियाकलाप करके समझें।

क्रियाकलाप 10/

- पानी से भरी एक बाल्टी की तली पर एक सिक्का रिखए।
- अपनी आँख को पानी के ऊपर, किसी पार्श्व (side) में रख कर सिक्के को एक बार में उठाने का प्रयत्न कीजिए। क्या आप सिक्का उठाने में सफल हो पाते हैं?
- इस क्रियाकलाप को दोहराइए। आप इसे एक बार में करने में क्यों सफल नहीं हो पाए थे?
- अपने मित्रों से इसे करने के लिए किहए। उनके साथ अपने अनुभव की तुलना कीजिए।

क्रियंकलाप 10.8

- किसी मेज पर एक बड़ा उथला कटोरा रख कर उसकी तली में एक सिक्का रिखए।
- कटोरें से धीरे-धीरे दूर हिटए। जब सिक्का ठीक दिखाई देना बंद हो जाए तो रुक जाइए।
- अपने मित्र से सिक्के को विक्षुब्ध किए बगैर कटोरे में पानी डालने को किहए।
- अपनी स्थिति से सिक्के को देखते रिहए। क्या सिक्का उसी स्थिति से पुनः
 दिखाई देने लगता है? यह कैसे संभव हो पाता है?

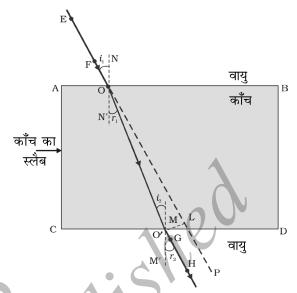
कटोरे में पानी डालने पर सिक्का फिर से दिखलाई देने लगता है। प्रकाश के अपवर्तन के कारण सिक्का अपनी वास्तविक स्थिति से थोडा-सा ऊपर उठा हुआ प्रतीत होता है।

क्रियाकलाप 10.9

- मेज पर रखे एक सफ़ेद कागज़ की शीट पर एक मोटी सीधी रेखा खींचिए।
- इस रेखा के ऊपर एक काँच का स्लैब इस प्रकार रिखए कि इसकी एक कोर इस रेखा से कोई कोण बनाए।
- स्लैब के नीचे आए रेखा के भाग को पार्श्व (side) से देखिए। आप क्या देखते हैं?
 क्या काँच के स्लैब के नीचे की रेखा कोरों (edges) के पास मुड़ी हुई प्रतीत होती है?
- अब काँच के स्लैब को इस प्रकार रिखए कि यह रेखा के अभिलंबवत हो। अब आप क्या देखते हैं? क्या काँच के स्लैब के नीचे रेखा का भाग मुड़ा हुआ प्रतीत होता है?
- रेखा को काँच के स्लैब के ऊपर से देखिए। क्या स्लैब के नीचे रेखा का भाग उठा हुआ प्रतीत होता है? ऐसा क्यों होता है?

10.3.1 काँच के आयताकार स्लैब से अपवर्तन

काँच के स्लैब से प्रकाश के अपवर्तन की परिघटना को समझने के लिए, आइए एक क्रियाकलाप करें।


क्रियाकलाप 10.10

- एक ड्राइंग बोर्ड पर सफ़ेद कागज़ की एक शीट, ड्राइंग पिनों की सहायता से लगाइए।
- शीट के ऊपर बीच में काँच का एक आयताकार स्लैब रखिए।
- पेंसिल से स्लैब की रूपरेखा खींचिए। इस रूपरेखा का नाम ABCD रखते हैं।
- चार एकसमान ऑलपिन लीजिए।
- बाली रेखा कोर AB से कोई कोण बनाती हुई हो।
- पिन E तथा F के प्रतिबिंबों को विपरीत फलक से देखिए। दूसरी दो पिनों, माना G तथा H, को इस प्रकार लगाइए कि ये पिनें एवं E तथा F के प्रतिबिंब एक सीधी रेखा पर स्थित हों।
- पिनों तथा स्लैब को हटाइए।
- पिनों E तथा F की नोकों (tip) की स्थितियों को मिलाइए तथा इस रेखा को AB तक बढ़ाइए। मान लीजिए EF, AB से बिंदु O पर मिलती है। इसी प्रकार पिनों G तथा H की नोकों की स्थितियों को मिलाइए तथा इस रेखा को कोर CD तक बढ़ाइए। मान लीजिए HG, CD से O'पर मिलती है।
- O तथा O' को मिलाइए। EF को भी P तक बढ़ाइए, जैसा कि चित्र 10.10 में बिंदुकित रेखा द्वारा दर्शाया गया है।

इस क्रियाकलाप में आप नोट करेंगे कि प्रकाश किरण ने अपनी दिशा बिंदुओं O तथा O' पर परिवर्तित की है। नोट कीजिए कि दोनों बिंदु O तथा O' दोनों पारदर्शी माध्यमों को पृथक् करने वाले पृष्ठों पर स्थित हैं। AB के बिंदु O पर एक अभिलंब NN' खींचिए तथा दूसरा अभिलंब MM', CD के बिंदु O' पर खींचिए। बिंदु O पर प्रकाश किरण विरल माध्यम से सघन माध्यम में अर्थात वायु से काँच में प्रवेश कर रही है। नोट कीजिए कि प्रकाश किरण अभिलंब की ओर झुक जाती है। O' पर, प्रकाश किरण ने काँच से वायु में अर्थात सघन माध्यम से विरल माध्यम में प्रवेश किया है। प्रकाश किरण अभिलंब से दूर मुड़ जाती है। दोनों अपवर्तक सतहों AB तथा CD पर आपतन कोण तथा अपवर्तन कोण के मानों की तुलना कीजिए।

चित्र 10.10 में सतह AB पर एक किरण EP तिरछी आपतित है, जिसे आपतित किरण कहते हैं, OO' अपवर्तित

चित्र 10.10 आयताकार काँच के स्लैब से प्रकाश का अपवर्तन

किरण है तथा O'H निर्गत किरण है। आप देख सकते हैं कि निर्गत किरण, आपितत किरण की दिशा के समांतर है। ऐसा क्यों होता है? आयाताकार काँच के स्लैब के विपरीत फलकों AB (वायु-काँच अंतरापृष्ठ) तथा CD (काँच-वायु अतरापृष्ठ) पर प्रकाश किरण के मुड़ने का परिमाण समान तथा विपरीत है। इसी कारण से निर्गत किरण, आपितत किरण के समांतर निकलती है। तथापि, प्रकाश किरण में थोड़ा सा पार्शिवक विस्थापन होता है। यदि प्रकाश किरण दो माध्यमों के अंतरापृष्ठ पर अभिलंबवत आपितत हो तब क्या होगा? स्वयं करके ज्ञात कीजिए।

अब आप प्रकाश के अपवर्तन से परिचित हैं। अपवर्तन प्रकाश के एक पारदर्शी माध्यम से दूसरे में प्रवेश करने पर प्रकाश की चाल में परिवर्तन के कारण होता है। प्रयोग दर्शाते हैं कि प्रकाश का अपवर्तन निश्चित नियमों के आधार पर होता है। परावर्तन के नियम निम्नलिखित हैं:

- आपितत किरण, अपवर्तित किरण तथा दोनों माध्यमों को पृथक् करने वाले पृष्ठ के आपतन बिंदु पर अभिलंब सभी एक ही तल में होते हैं।
- (ii) प्रकाश के किसी निश्चित रंग तथा निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या (sine) तथा अपवर्तन कोण की ज्या (sine) का अनुपात स्थिर होता है। इस नियम को स्नेल का अपवर्तन का नियम भी कहते हैं। (यह कोण 0°<i<90° के लिए सत्य है)

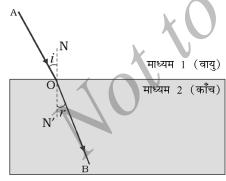
यदि i आपतन कोण हो तथा r अपवर्तन कोण हो तब

$$\frac{\sin t}{\sin r} =$$
िस्थरांक (10.4)

इस स्थिरांक के मान को दूसरे माध्यम का पहले माध्यम के सापेक्ष अपवर्तनांक (refractive index) कहते हैं। आइए अपवर्तनांक के बारे में कुछ विस्तार से अध्ययन करें।

प्रकाश – परावर्तन तथा अपवर्तन

10.3.2 अपवर्तनांक


आप पहले ही अध्ययन कर चुके हैं कि जब प्रकाश की किरण तिरछी गमन करती हुई एक पारदर्शी माध्यम से दूसरे में प्रवेश करती है तो यह दूसरे माध्यम में अपनी दिशा पिरवर्तित कर लेती है। किन्हीं दिए हुए माध्यमों के युग्म के लिए होने वाले दिशा पिरवर्तन के विस्तार को अपवर्तनांक के रूप में भी व्यक्त किया जा सकता है, जो समीकरण (10.4) में दाएँ पक्ष में प्रकट होने वाला स्थिरांक है।

अपवर्तनांक को एक महत्वपूर्ण भौतिक राशि, विभिन्न माध्यमों में प्रकाश के संचरण की आपेक्षिक चाल, से संबद्ध किया जा सकता है। यह देखा गया है कि विभिन्न माध्यमों में प्रकाश अलग-अलग चालों से संचरित होता है। निर्वात में प्रकाश 3 10° m/s की चाल से चलता है जो कि प्रकाश की किसी भी माध्यम में हो सकने वाली हुततम चाल है। वायु में प्रकाश की चाल निर्वात की अपेक्षा थोड़ी ही कम होती है। काँच या पानी में यह यथेष्ट रूप से घट जाती है। दो माध्यमों के युग्म के लिए अपवर्तनांक का मान दोनों माध्यमों में प्रकाश की चाल पर निर्भर है, जैसा कि नीचे दिया गया है।

चित्र 10.11 में दर्शाए अनुसार एक प्रकाश की किरण पर विचार करें जो माध्यम 1 से माध्यम 2 में प्रवेश कर रही है। मान लीजिए, प्रकाश की चाल माध्यम 1 में v_1 तथा माध्यम 2 में v_2 है। माध्यम 2 का माध्यम 1 के सापेक्ष अपवर्तनांक, माध्यम 1 में प्रकाश की चाल तथा माध्यम 2 में प्रकाश की चाल तथा माध्यम 2 में प्रकाश की चाल के अनुपात द्वारा व्यक्त करते हैं। इसे प्राय: संकेत n_{21} से निरूपित करते हैं। इसे समीकरण के रूप में निम्न प्रकार व्यक्त करते हैं।

$$n_{21} = \frac{\text{माध्यम 1 में प्रकाश भी चाल}}{\text{माध्यम 2 में प्रकाश की चाल}} = \frac{v_1}{v_2}$$
 (10.5)

इसी तर्क से, माध्यम 1 का माध्यम 2 के सापेक्ष अपवर्तनांक n_{12} से निरूपित करते हैं। इसे व्यक्त किया जाता है—

चित्र 10.11

$$n_{12} = \frac{\text{Hieath 2 figures and align}}{\text{Hieath 1 figures and align}} = \frac{v_2}{v_2}$$
 (10.6)

यदि माध्यम 1 निर्वात या वायु है, तब माध्यम 2 का अपवर्तनांक निर्वात के सापेक्ष माना जाता है। यह माध्यम का **निरपेक्ष अपवर्तनांक** कहलाता है। यह केवल n_2 से निरूपित किया जाता है। यदि वायु में प्रकाश की चाल c है तथा माध्यम में प्रकाश की चाल v है तब माध्यम का अपवर्तनांक n_m होगा

$$a_{\rm m} = \frac{\text{arg } + \text{i} \text{ yank } + \text{i}}{\text{yank } + \text{i}} = \frac{c}{c}$$
 (10.7)

माध्यम का निरपेक्ष अपवर्तनांक केवल *अपवर्तनांक* कहलाता है। सारणी 10.3 में अनेक माध्यमों के अपवर्तनांक दिए गए हैं। सारणी से आपको ज्ञात होगा कि जल का अपवर्तनांक, $n_w=1.33$ है। इसका अर्थ है कि वायु में प्रकाश का वेग तथा जल में प्रकाश $\frac{1}{1000}$

के वेग का अनुपात 1.33 है। इसी प्रकार क्राउन काँच का अपवर्तनांक, $n_g=1.52$ होता है। ऐसे आँकड़े अनेक स्थानों पर उपयोगी हैं। तथापि आपको इन आँकड़ों को कंठस्थ करने की आवश्यकता नहीं है।

सारणी 10.3: कुछ द्रव्यात्मक माध्यमों के निरपेक्ष अपवर्तनांक

द्रव्यात्मक माध्यम	अपवर्तनांक	द्रव्यात्मक माध्यम	अपवर्तनांक
वायु	1.0003	कनाडा बालसम	1.53
बर्फ़	1.31	खनिज नमक	1.54
जल	1.33	कार्बन डाइसल्फाइड	1.63
ऐल्कोहॉल	1.36	सघन फ्लिंट काँच	1.65
किरोसिन	1.44	रूबी (मणिक्य)	1.71
संगलित क्वार्ट्ज	1.46	नीलम	1.77
तारपीन का तेल	1.47	हीरा	2.42
बेंजीन	1.50	~ \	
क्राउन काँच	1.52		

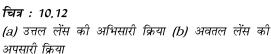
सारणी 10.3 से नोट कीजिए कि यह आवश्यक नहीं कि प्रकाशिक सघन माध्यम का द्रव्यमान घनत्व भी अधिक हो। उदाहरण के लिए, किरोसिन जिसका अपवर्तनांक जल से अधिक है, जल की अपेक्षा प्रकाशिक सघन है, यद्यपि इसका द्रव्यमान घनत्व जल से कम है।

^

यह भी जानिए!

किसी माध्यम की प्रकाश को अपवर्तित करने की क्षमता को इसके प्रकाशिक घनत्व के द्वारा भी व्यक्त किया जा सकता है। प्रकाशिक घनत्व का एक निश्चित संपृक्तार्थ (connotation) होता है। यह द्रव्यमान घनत्व के समान नहीं है। इस अध्याय में हम 'विरल माध्यम' तथा 'सघन माध्यम' शब्दों का प्रयोग कर रहे हैं। वास्तव में इनका अर्थ क्रमश: 'प्रकाशिक विरल माध्यम' तथा 'प्रकाशिक सघन माध्यम' है। हम कब कह सकते हैं कि कोई माध्यम दूसरे माध्यम की अपेक्षा प्रकाशिक सघन है? दो माध्यमों की तुलना करते समय, अधिक अपवर्तनांक वाला माध्यम दूसरे की अपेक्षा प्रकाशिक सघन है। दूसरा कम अपवर्तनांक वाला माध्यम प्रकाशिक विरल माध्यम है। विरल माध्यम में प्रकाश की चाल सघन माध्यम की अपेक्षा अधिक होती है। अत: विरल माध्यम से सघन माध्यम में गमन करने वाली प्रकाश की किरण धीमी हो जाती है तथा अभिलंब की ओर झुक जाती है। जब ये सघन माध्यम से विरल माध्यम में गमन करती है तो इसकी चाल बढ़ जाती है तथा यह अभिलंब से दूर हट जाती है।

प्रश्न


- 1. वायु में गमन करती प्रकाश की एक किरण जल में तिरछी प्रवेश करती है। क्या प्रकाश किरण अभिलंब की ओर झुकेगी अथवा अभिलंब से दूर हटेगी? बताइए क्यों?
- 2. प्रकाश वायु से 1.50 अपवर्तनांक की काँच की प्लेट में प्रवेश करता है। काँच में प्रकाश की चाल कितनी है? निर्वात में प्रकाश की चाल $3 10^8 \, \mathrm{m/s}$ है।
- 3. सारणी 10.3 से अधिकतम प्रकाशिक घनत्व के माध्यम को ज्ञात कीजिए। न्यूनतम प्रकाशिक घनत्व के माध्यम को भी ज्ञात कीजिए।
- 4. आपको किरोसिन, तारपीन का तेल तथा जल दिए गए हैं। इनमें से किसमें प्रकाश सबसे अधिक तीव्र गित से चलता है? सारणी 10.3 में दिए गए आँकडों का उपयोग कीजिए।
- 5. हीरे का अपवर्तनांक 2.42 है। इस कथन का क्या अभिप्राय है?

10.3.3 गोलीय लेंसों द्वारा अपवर्तन

आपने किसी घड़ीसाज़ को बहुत छोटे पुरज़ों को देखने के लिए छोटे आवर्धक लेंस का उपयोग करते देखा होगा। क्या कभी आपने आवर्धक लेंस के पृष्ठ को अपने हाथों से छूकर देखा है? क्या इसका पृष्ठ समतल है या विक्रत है? क्या यह बीच से मोटा है या किनारों से? चश्मों में हम लेंसों का ही उपयोग करते हैं। घड़ीसाज़ के आवर्धक में भी लेंस लगा होता है। लेंस क्या है? यह प्रकाश किरणों को किस प्रकार मोड़ता है? इस अनुच्छेद में हम इसी विषय में अध्ययन करेंगे।

दो पृष्ठों से घरा हुआ कोई पारदर्शी माध्यम, जिसका एक या दोनों पृष्ठ गोलीय हैं,

लेंस कहलाता है। इसका अर्थ यह है कि लेंस का कम से कम एक पृष्ठ गोलीय होता है। ऐसे लेंसों में दूसरा पृष्ठ समतल हो सकता है। किसी लेंस में बाहर की ओर उभरे दो गोलीय पृष्ठ हो सकते हैं। ऐसे लेंस को द्वि-उत्तल लेंस कहते हैं। इसे केवल उत्तल लेंस भी कहते हैं। यह किनारों की अपेक्षा बीच से मोटा होता है। उत्तल लेंस प्रकाश किरणों को चित्र 10.12 (a) में दर्शाए (a) अनुसार अभिसरित करता है। इसीलिए उत्तल लेंसों को अभिसारी लेंस भी कहते हैं। इसी प्रकार एक द्वि-अवतल लेंस अंदर की ओर वक्रित दो गोलीय पृष्ठों से घिरा होता है। यह बीच की अपेक्षा किनारों से मोटा होता है। ऐसे लेंस प्रकाश किरणों को चित्र 10.12 (b) में दर्शाए (b) अनुसार अपसरित करते हैं। ऐसे लेंसों को अपसारी लेंस कहते हैं। द्वि-अवतल लेंस प्राय: अवतल लेंस भी

विज्ञान

 C_1

2F,

कहलाता है।

किसी लेंस में चाहे वह उत्तल हो अथवा अवतल, दो गोलीय पृष्ठ होते हैं। इनमें से प्रत्येक पृष्ठ एक गोले का भाग होता है। इन गोलों के केंद्र लेंस के **वक्रता केंद्र** कहलाते हैं। लेंस का वक्रता केंद्र प्राय: अक्षर C द्वारा निरूपित किया जाता है। क्योंकि लेंस के दो वक्रता केंद्र हैं इसलिए इन्हें C_1 तथा C_2 द्वारा निरूपित किया जाता है। किसी लेंस के दोनों वक्रता केंद्रों से गुजरने वाली एक काल्पनिक सीधी रेखा लेंस की **मुख्य अक्ष** कहलाती है। लेंस का केंद्रीय बिंदु इसका **प्रकाशिक केंद्र** कहलाता है। इसे प्राय: अक्षर O से निरूपित करते हैं। लेंस के प्रकाशिक केंद्र से गुजरने वाली प्रकाश किरण बिना किसी विचलन के निर्गत होती है। गोलीय लेंस की वृत्ताकार रूपरेखा का प्रभावी व्यास इसका **द्वारक** (aperture) कहलाता है। इस अध्याय में अपने विवेचन में हम केवल उन्हीं लेंसों तक सीमित रहेंगे जिनका द्वारक इनकी वक्रता त्रिज्या से बहुत छोटा है और दोनों वक्रता केंद्र प्रकाशिक केंद्र से समान दूरी पर होते हैं। ऐसे लेंस छोटे द्वारक के **पतले लेंस** कहलाते हैं। जब किसी लेंस पर समांतर किरणें आपितत होती हैं तो क्या होता है? इसे समझने के लिए आइए एक क्रियाकलाप करें।

क्रियाकलाप 10.11

चेतावनी: इस क्रियाकलाप को करते समय अथवा अन्यथा भी सूर्य की ओर सीधे या लेंस से न देखें। यदि आप ऐसा करेंगे तो आपकी आँखों को क्षति हो सकती है।

- एक उत्तल लेंस को अपने हाथ में पकडिए। इसे सूर्य की ओर निर्दिष्ट कीजिए।
- सूर्य के प्रकाश को एक कागज़ की शीट पर फोकसित कीजिए। सूर्य का एक तीक्ष्ण चमकदार प्रतिबिंब प्राप्त कीजिए।
- कागज तथा लेंस को कुछ समय के लिए उसी स्थिति में पकड़े रिखए। कागज को देखते रिहए। क्या होता है? ऐसा क्यों होता है? क्रियाकलाप 10.2 के अपने अनुभवों को स्मरण कीजिए।

कागज सुलगने लगता है और धुआँ उत्पन्न होता है। कुछ समय पश्चात यह आग भी पकड़ सकता है। ऐसा क्यों होता है? सूर्य से आने वाली प्रकाश की किरणें समांतर होती हैं। लेंस द्वारा यह किरणें एक तीक्ष्ण चमकदार बिंदु के रूप में कागज़ पर अभिकेंद्रित कर दी जाती हैं। वास्तव में, कागज़ की शीट पर यह चमकदार बिंदु सूर्य का प्रतिबिंब है। एक बिंदु पर सूर्य के प्रकाश का संकेंद्रण ऊष्मा उत्पन्न करता है। इसके कारण कागज़ जलने लगता है।

अब हम एक लेंस की मुख्य अक्ष के समांतर प्रकाश किरणों पर विचार करते हैं। जब आप प्रकाश की ऐसी किरणों को किसी लेंस से गुज़ारते हैं तो क्या होता है? एक उत्तल लेंस के लिए इसे चित्र 10.12 (a) में तथा अवतल लेंस के लिए चित्र 10.12 (b) में दर्शाया गया है।

चित्र 10.12 (a) को ध्यानपूर्वक देखिए। उत्तल लेंस पर मुख्य अक्ष के समांतर प्रकाश की बहुत सी किरणें आपितत हैं। ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष पर एक बिंदु पर अभिसरित हो जाती हैं। मुख्य अक्ष पर यह बिंदु लेंस का मुख्य फोकस कहलाता है। आइए अब एक अवतल लेंस का व्यवहार देखें।

चित्र 10.12 (b) को ध्यानपूर्वक देखिए। अवतल लेंस पर मुख्य अक्ष के समांतर प्रकाश की अनेक किरणें आपितत हो रही हैं। ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष के एक बिंदु से अपसरित होती प्रतीत होती हैं। मुख्य अक्ष पर यह बिंदु अवतल लेंस का मुख्य फोकस कहलाता है।

यदि आप किसी लेंस के विपरीत पृष्ठ से समांतर किरणों को गुजरने दें तो आपको पहले से विपरीत दिशा में दूसरा मुख्य फोकस प्राप्त होगा। मुख्य फोकस को निरूपित करने के लिए प्राय: अक्षर F का प्रयोग होता है। तथापि, किसी लेंस में दो मुख्य फोकस होते हैं। इन्हें F_1 तथा F_2 द्वारा निरूपित किया जाता है। किसी लेंस के मुख्य फोकस की प्रकाशिक केंद्र से दूरी **फोकस दूरी** कहलाती है। फोकस दूरी को अक्षर 'f' द्वारा निरूपित किया जाता है। आप किसी उत्तल लेंस की फोकस दूरी किस प्रकार ज्ञात कर सकते हैं? क्रियाकलाप 10.11 को स्मरण कीजिए। इस क्रियाकलाप में लेंस की स्थिति तथा सूर्य के प्रतिबिंब की स्थिति के बीच की दूरी लेंस की सिन्तकट (लगभग) फोकस दूरी बताती है।

10.3.4 लेंसों द्वारा प्रतिबिंब बनना

लेंस प्रतिबिंब कैसे बनाते हैं? लेंस प्रकाश के अपवर्तन द्वारा प्रतिबिंब बनाते हैं। उन प्रतिबिंबों की प्रकृति क्या है? आइए, पहले उत्तल लेंस के लिए इसका अध्ययन करें।

क्रियाकलाप 10.12

- एक उत्तल लेंस लीजिए। क्रियाकलाप 10.11 में वर्णित विधि द्वारा इसकी सन्निकट फोकस दुरी ज्ञात कीजिए।
- एक लंबी मेज पर चॉक का प्रयोग करके पाँच समांतर सीधी रेखाएँ इस प्रकार खींचिए
 िक किन्हीं दो उत्तरोतर रेखाओं के बीच की दूरी लेंस की फोकस दूरी के बराबर हो।
- लेंस को एक लेंस-स्टैंड पर लगाइए। इसे मध्य रेखा पर इस प्रकार रिखए कि लेंस का प्रकाशिक केंद्र इस रेखा पर स्थित हो।
- लेंस के दोनों ओर दो रेखाएँ क्रमश: लेंस के F तथा 2F के तदनुरूपी होंगी। इन्हें उचित अक्षरों द्वारा अंकित कीजिए, जैसे क्रमश: $2\ F_1$, F_1 , F_2 तथा $2\ F_2$ ।
- एक जलती हुई मोमबत्ती को बाईं ओर, 2 F₁ से काफ़ी दूर रखिए। लेंस के विपरीत
 दिशा में रखे एक परदे पर इसका स्पष्ट एवं तीक्ष्ण प्रतिबिंब बनाइए।
- प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज नोट कीजिए।
- इस क्रियाकलाप में बिंब को $2F_1$ से थोड़ा दूर, F_1 तथा $2F_1$ के बीच, F_1 पर तथा F_1 और O के बीच रख कर दोहराइए। अपने प्रेक्षणों को नोट कीजिए तथा सारणीबद्ध कीजिए।

बिंब की विभिन्न स्थितियों के लिए उत्तल लेंस द्वारा बनाए गए प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज़ का संक्षिप्त विवरण सारणी 10.4 में दिया गया है।

सारणी 10.4 बिंब की विभिन्न स्थितियों के लिए उत्तल लेंस द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज

बिंब की स्थिति	प्रतिबिंब की स्थिति	प्रतिबिंब का आपेक्षिक साइज	प्रतिबिंब की प्रकृति
अनंत पर	फोकस F_2 पर	अत्यधिक छोटा, बिंदु आकार	वास्तविक तथा उलटा
$2F_{_1}$ से परे	${ m F_{_2}}$ तथा $2{ m F_{_2}}$ के बीच	छोटा	वास्तविक तथा उलटा
2F ₁ पर	$2 \mathrm{F}_{_2}$ पर	समान साइज	वास्तविक तथा उलटा
F ₁ तथा 2F ₁ के बीच	$2F_2$ से परे	बड़ा (विवर्धित)	वास्तविक तथा उलटा
फोकस $\mathbf{F}_{_1}$ पर	अनंत पर	असीमित रूप से बड़ा अथवा अत्यधिक विवर्धित	वास्तविक तथा उलटा
फोकस F, तथा	जिस ओर बिंब है	बड़ा (विवर्धित)	आभासी तथा सीधा
प्रकाशिक केंद्र O	लेंस के उसी ओर	षड्। (।पपापत <i>)</i>	जामासा तथा साथा
प्रकाशिक कर्र O के बीच	लस क उसा आर	3 44	3

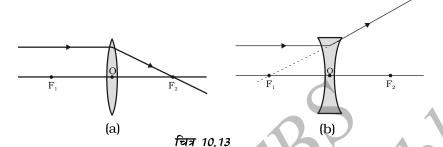
आइए अब किसी अवतल लेंस द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज का एक क्रियाकलाप द्वारा अध्ययन करें।

क्रियाकलाप 10.13

- एक अवतल लेंस लीजिए। इसे एक लेंस स्टैंड पर रखिए।
- लेंस के एक ओर एक जलती हुई मोमबत्ती को रखिए।
- लेंस के दूसरी ओर से प्रतिबिंब का प्रेक्षण कीजिए। प्रतिबिंब को यदि संभव हो तो परदे
 पर प्राप्त करने का प्रयत्न कीजिए। यदि ऐसा संभव न हो तो प्रतिबिंब को लेंस में से सीधे ही देखिए।
- प्रतिबिंब की प्रकृति, आपेक्षिक साइज तथा सिन्निकट स्थिति नोट कीजिए।
- मोमबत्ती को लेंस से दूर ले जाइए। प्रतिबिंब के साइज़ में परिवर्तन नोट कीजिए। जब मोमबत्ती को लेंस से बहुत दूर रखा जाता है तो प्रतिबिंब के साइज़ पर क्या प्रभाव पड़ता है?

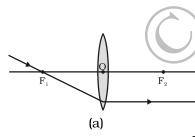
उपरोक्त क्रियाकलाप का संक्षिप्त विवरण सारणी 10.5 में दिया गया है।

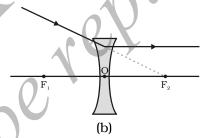
सारणी 10.5 बिंब की विभिन्न स्थितियों के लिए अवतल लेंस द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा आपेक्षिक साइज


बिंब की	प्रतिबिंब की	प्रतिबिंब का	प्रतिबिंब
स्थिति	स्थिति	आपेक्षिक साइज़	की प्रकृति
अनंत पर	फोकस F, पर	अत्यधिक छोटा,	आभासी तथा सीधा
		बिंदु आकार	
अनंत तथा लेंस के	फोकस $\mathbf{F}_{_{1}}$ तथा	छोटा	आभासी तथा सीधा
प्रकाशिक केंद्र O	प्रकाशिक ^{वे} केंद्र O		
के बीच	के बीच		

इस क्रियाकलाप से आप क्या निष्कर्ष निकालते हैं? अवतल लेंस सदैव एक आभासी, सीधा तथा छोटा प्रतिबिंब बनाएगा, चाहे बिंब कहीं भी स्थित हो।

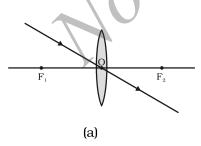
10.3.5 किरण आरेखों के उपयोग द्वारा लेंसों से प्रतिबिंब बनना

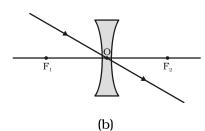

हम किरण आरेखों के उपयोग द्वारा लेंसों से प्रतिबिंबों के बनने को निरूपित कर सकते हैं। किरण आरेख लेंसों में बने प्रतिबिंबों की प्रकृति, स्थिति तथा आपेक्षिक साइज का अध्ययन करने में भी हमारी सहायता करेंगे। लेंसों में किरण आरेख बनाने के लिए गोलीय दर्पणों की भाँति हम निम्न में से किन्हीं दो किरणों पर विचार कर सकते हैं।


(i) बिंब से, मुख्य अक्ष के समांतर आने वाली कोई प्रकाश किरण उत्तल लेंस से अपवर्तन के पश्चात चित्र 10.13 (a) में दर्शाए अनुसार लेंस के दूसरी

ओर मुख्य फोकस से गुज़रेगी। अवतल लेंस की स्थिति में प्रकाश किरण चित्र 10.13 (b) में दर्शाए अनुसार लेंस के उसी ओर स्थित मुख्य फोकस से अपसरित होती प्रतीत होती है।

(ii) मुख्य फोकस से गुज़रने वाली प्रकाश किरण, उत्तल लेंस से अपवर्तन के पश्चात मुख्य अक्ष के समांतर निर्गत होगी। इसे चित्र 10.14 (a) में दर्शाया गया है।

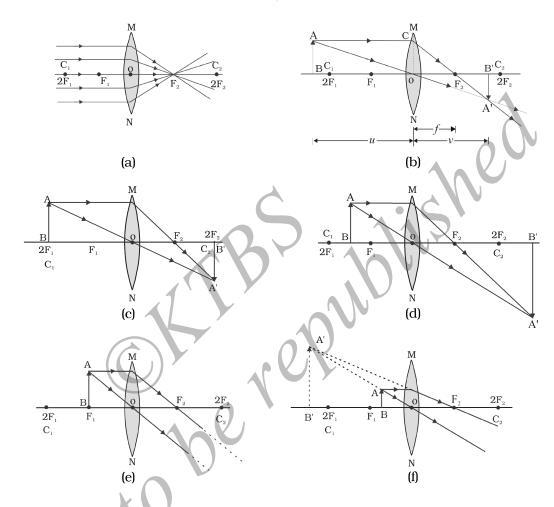


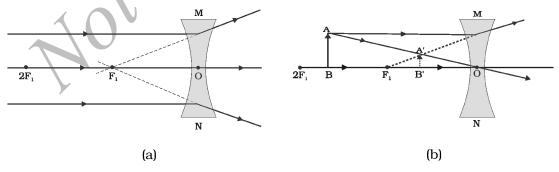


अवतल लेंस के मुख्य फोकस पर मिलती प्रतीत होने वाली प्रकाश किरण, अपवर्तन के पश्चात मुख्य अक्ष के समांतर निर्गत होगी। इसे चित्र 10.14 (b) में दर्शाया गया है।

चित्र 10.14

(iii) लेंस के प्रकाशिक केंद्र से गुज़रने वाली प्रकाश किरण अपवर्तन के पश्चात बिना किसी विचलन के निर्गत होती है। इसे चित्र 10.15 (a) तथा 10.15 (b) में दर्शाया गया है।




चित्र 10.15

विज्ञान

चित्र 10.16 में उत्तल लेंस द्वारा किसी बिंब की कुछ स्थितियों में, प्रतिबिंब बनने को किरण आरेखों द्वारा दर्शाया गया है। चित्र 10.17 में अवतल लेंस द्वारा बिंब की विभिन्न स्थितियों में प्रतिबिंब बनने को किरण आरेखों द्वारा दर्शाया गया है।

चित्र 10.16 उत्तल लेंस द्वारा बिंब की विभिन्न स्थितियों के लिए प्रतिबिंब की स्थिति, साइज एवं प्रकृति

चित्र 10.17 अवतल लेंस द्वारा बने प्रतिबिंब की प्रकृति, स्थिति तथा साइज

प्रकाश – परावर्तन तथा अपवर्तन

10.3.6 गोलीय लेंसों के लिए चिह्न-परिपाटी

लेंसों के लिए, हम गोलीय दर्पणों जैसी ही चिह्न-परिपाटी अपनाएँगे। दूरियों के चिह्नों के निर्धारण के लिए हम यहाँ भी उन्हीं नियमों को अपनाएँगे। केवल, जहाँ दर्पणों में सभी दूरियाँ उनके ध्रुवों से नापी जाती हैं वहाँ लेंसों में सभी माप उनके प्रकाशिक केंद्र से लिए जाते हैं। परिपाटी के अनुसार उत्तल लेंस की फोकस दूरी धनात्मक होती है जबिक अवतल लेंस की फोकस दूरी ऋणात्मक होती है। आपको u, v तथा f, बिंब ऊँचाई f तथा प्रतिबिंब ऊँचाई f के मान में उचित चिह्नों का चयन करने में सावधानी बरतनी चाहिए।

10.3.7 लेंस सूत्र तथा आवर्धन

जिस प्रकार हमने गोलीय दर्पणों के लिए सूत्र ज्ञात किया था उसी प्रकार गोलीय लेंसों के लिए भी लेंस सूत्र स्थापित किया गया है। यह सूत्र बिंब दूरी (u), प्रतिबिंब दूरी (v) तथा फोकस दूरी (f) के बीच संबंध प्रदान करता है। लेंस सूत्र व्यक्त किया जाता है:

$$\frac{1}{v} - \frac{1}{v} = 0$$
 (10.8)

उपरोक्त लेंस सूत्र व्यापक है तथा किसी भी गोलीय लेंस के लिए, सभी स्थितियों में मान्य है। लेंसों से संबंधित प्रश्नों को हल करने के लिए लेंस सूत्र में आंकिक मान प्रतिस्थापित करते समय विभिन्न राशियों के उचित चिह्नों का ध्यान रखना चाहिए।

आवर्धन

किसी लेंस द्वारा उत्पन्न आवर्धन, किसी गोलीय दर्पण द्वारा उत्पन्न आवर्धन की ही भाँति प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई के अनुपात के रूप में परिभाषित किया जाता है। आवर्धन को अक्षर m द्वारा निरूपित किया जाता है। यदि बिंब की ऊँचाई h हो तथा लेंस द्वारा बनाए गए प्रतिबिंब की ऊँचाई h' हो, तब लेंस द्वारा उत्पन्न आवर्धन प्राप्त होगा:

$$d = \frac{\text{yfin}(\vec{a} \cdot \vec{a} \cdot \vec{b})}{\vec{a} \cdot \vec{a} \cdot \vec{b}} = \frac{h'}{h}$$
 (10.9)

 \bigvee लेंस द्वारा उत्पन्न आवर्धन, बिंब दूरी u तथा प्रतिबिंब-दूरी v से भी संबंधित है। इस संबंध को व्यक्त करते हैं,

आवर्धन
$$(m) = \frac{h'}{h} = \frac{v}{u}$$
 (10.10)

उदाहरण 10.3

किसी अवतल लेंस की फोकस दूरी 15 cm है। बिंब को लेंस से कितनी दूरी पर रखें कि इसके द्वारा बिंब का लेंस से 10 cm दूरी पर प्रतिबिंब बने? लेंस द्वारा उत्पन्न आवर्धन भी ज्ञात कीजिए।

विज्ञान

हल

अवतल लेंस द्वारा सदैव ही आभासी, सीधा प्रतिबिंब उसी ओर बनता है जिस ओर बिंब रखा होता है।

प्रतिबिंब-दूरी v = -10 cm

फोकस दूरी f = -15 cm

बिंब-दूरी u=?

क्योंकि $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

या
$$\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$$

$$\frac{1}{u} = \frac{1}{-10} - \frac{1}{(-15)} = -\frac{1}{10} + \frac{1}{15}$$

या
$$\frac{1}{u} = \frac{-3+2}{30} = \frac{1}{-30}$$

या *u = -*30 cm

इसी प्रकार बिंब की दूरी 30 cm है।

आवर्धन,
$$m = \frac{v}{u}$$

$$m = \frac{-10 \,\mathrm{cm}}{-30 \,\mathrm{cm}} = \frac{1}{3} \approx +0.33$$

यहाँ धनात्मक चिह्न यह दर्शाता है कि प्रतिबिंब सीधा तथा आभासी है। प्रतिबिंब का साइज बिंब के साइज का एक-तिहाई है।

उदाहरण 10.4

कोई 2.0 cm लंबा बिंब 10 cm फोकस दूरी के किसी उत्तल लेंस के मुख्य अक्ष के लंबवत रखा है। बिंब की लेंस से दूरी 15 cm है। प्रतिबिंब की प्रकृति, स्थिति तथा साइज ज्ञात कीजिए। इसका आवर्धन भी ज्ञात कीजिए।

हल

बिंब की ऊँचाई h = +2.0 cm

फोकस दूरी f = +10 cm

बिंब-दूरी u = -15 cm

प्रतिबिंब-दूरी v=?

प्रतिबिंब की ऊँचाई h'=?

क्योंकि
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

या
$$\frac{1}{v} = \frac{1}{u} + \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{(-15)} + \frac{1}{10} = -\frac{1}{15} + \frac{1}{10}$$

$$\frac{1}{v} = \frac{-2+3}{30} = \frac{1}{30}$$

या *u =* + 30 cm

u का धनात्मक चिह्न यह दर्शाता है कि प्रतिबिंब लेंस के प्रकाशिक केंद्र के दाईं ओर 30 cm दुरी पर बनता है। प्रतिबिंब वास्तविक तथा उलटा है।

आवर्धन,
$$m = \frac{h'}{h} = \frac{v}{u}$$

अथवा
$$h' = h\left(\frac{v}{u}\right)$$

प्रतिबिंब की ऊँचाई
$$h' = (2.0) \left(+ \frac{30}{-15} \right) = -4.0 \, \mathrm{cm}$$
 आवर्धन $m = \frac{+30 \, \mathrm{cm}}{-15 \, \mathrm{cm}} = -2$

आवर्धन
$$m = \frac{+30 \,\mathrm{cm}}{-15 \,\mathrm{cm}} = -2$$

m तथा h^\prime के ऋणात्मक चिह्न यह दर्शाते हैं कि उपरोक्त वर्णन के अनुसार प्रतिबिंब उलटा तथा वास्तविक है। यह मुख्य अक्ष के नीचे बनता है। इस प्रकार एक वास्तिविक उलटा तथा 4.0 cm लंबा प्रतिबिंब लेंस के दाईं ओर लेंस से 30 cm दुरी पर बनता है। यह प्रतिबिंब दोगुना विवर्धित है।

10.3.8 लेंस की क्षमता

आप जानते हैं कि किसी लेंस की प्रकाश किरणों को अभिसरित अथवा अपसरित करने की क्षमता उसकी फोकस दूरी पर निर्भर करती है। उदाहरण के लिए, कम फोकस दूरी का एक उत्तल लेंस प्रकाश किरणों को बड़े कोण से मोडकर उन्हें प्रकाशिक केंद्र के निकट फोकसित कर देता है। इसी प्रकार, कम फोकस दूरी का एक अवतल लेंस अधिक फोकस दूरी के लेंस की अपेक्षा प्रकाश किरणों को अधिक अपसरित करता है। किसी लेंस द्वारा प्रकाश किरणों को अभिसरण या अपसरण करने की मात्रा (degree) को उसकी क्षमता के रूप में व्यक्त किया जाता है। इसे अक्षर P द्वारा निरूपित करते हैं। किसी ƒ फोकस दूरी के लेंस की क्षमता,

$$P = \frac{1}{f} \tag{10.11}$$

लेंस की क्षमता का SI मात्रक 'डाइऑप्टर' (Dioptre) है। इसे अक्षर D द्वारा दर्शाया जाता है। यदि 1 को मीटर में व्यक्त करें तो क्षमता को डाइऑप्टर में व्यक्त किया जाता है। इस प्रकार, 1 डाइऑप्टर उस लेंस की क्षमता है जिसकी फोकस दूरी 1 मीटर हो। $1D = 1m^{-1}$ । आप नोट कर सकते हैं कि उत्तल लेंस की क्षमता धनात्मक तथा अवतल लेंस की क्षमता ऋणात्मक होती है।

चश्मा बनाने वाले जब संशोधी लेंस निर्धारित करते हैं तो उनकी क्षमता का उल्लेख करते हैं। मान लीजिए निर्धारित लेंस की क्षमता $+2.0\,\mathrm{D}$ है। इसका अर्थ है कि निर्धारित लेंस उत्तल है और उसकी फोकस दूरी $+0.50\,\mathrm{m}$ है। इसी प्रकार, $-2.5\,\mathrm{D}$ क्षमता के लेंस की फोकस दूरी $-0.40\,\mathrm{m}$ होती है। यह लेंस अवतल होता है।

֏֏֏֏֏֏֏֏֏֏֏֏֏

अनेक प्रकाशिक यंत्रों में कई लेंस लगे होते हैं। उन्हें प्रतिबिंब को अधिक आवर्धित तथा सुस्पष्ट बनाने के लिए संयोजित किया जाता है। इस प्रकार संपर्क में रखे लेंसों की कुल क्षमता (P) उन लेंसों की पृथक-पृथक क्षमताओं (P_1 , P_2 , P_3 आदि), का बीजगणितीय योग होती है। जैसे P_1 , P_2 , P_3 , P_4 , P_4 , P_4 , P_5 , P_6 , P_7 , P_8

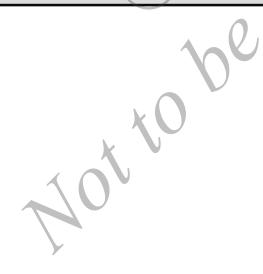
 $P = P_1 + P_2 + P_3 + \dots$ चश्मा बनाने वालों के लिए, लेंसों की फोकस दूरी के स्थान पर क्षमताओं का उपयोग करना काफ़ी सुविधाजनक है। आँखें टैस्ट करते समय चश्मा बनाने वाला ज्ञात क्षमता वाले संशोधी लेंसों के अनेक अलग-अलग संयोजनों को संपर्क में रख कर, चश्मों को टैस्ट करने वाले फ्रेम के अंदर रखता है। चश्मा बनानेवाला आवश्यक लेंस की क्षमता की गणना सरल बीजगणितीय योग के द्वारा कर लेता है। उदाहरण के लिए, +2.0~D तथा +0.25~D क्षमता वाले दो लेंसों का संयोजन +2.25~D क्षमता के एकल लेंस के तुल्य है। लेंसों की क्षमताओं की योज्यता के इस गुणधर्म का उपयोग, एकल लेंस द्वारा बने प्रतिबिंबों में कुछ दोषों को कम करने में किया जा सकता है। कई लेंसों को एक-दूसरे के संपर्क में रखकर बनाए गए लेंस निकायों का उपयोग सामान्यत: कैमरों के लेंस तथा सूक्ष्मदर्शियों एवं दूरदर्शकों के लेंसों के डिज़ाइन में किया जाता है।

प्रश्न

- 1. किसी लेंस की 1 डाइऑप्टर क्षमता को परिभाषित कीजिए।
- 2. कोई उत्तल लेंस किसी सुई का वास्तविक तथा उलटा प्रतिबिंब उस लेंस से 50 cm दूर बनाता है। यह सुई, उत्तल लेंस के समर्ने कहाँ रखी है, यदि इसका प्रतिबिंब उसी साइज का बन रहा है जिस साइज का बिंब है। लेंस की क्षमता भी ज्ञात कीजिए।
- 3. 2 m फोकस दूरी वाले किसी अवतल लेंस की क्षमता ज्ञात कीजिए।

आएने क्या सीखा

- प्रकाश सरल रेखाओं में गमन करता प्रतीत होता है।
- दर्पण तथा लेंस वस्तुओं के प्रतिबिंब बनाते हैं। बिंब की स्थिति के अनुसार प्रतिबिंब वास्तिवक अथवा आभासी हो सकते हैं।
- सभी प्रकार के परावर्ती पृष्ठ परावर्तन के नियमों का पालन करते हैं। अपवर्ती पृष्ठ अपवर्तन के नियमों का पालन करते हैं।

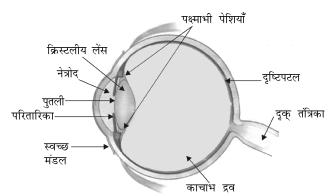

- गोलीय दर्पणों तथा लेंसों के लिए नयी कार्तीय चिह्न-परिपाटी अपनाई जाती है।
- दर्पण सूत्र $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$, बिंब-दूरी (u), प्रतिबिंब-दूरी (v) तथा गोलीय दर्पण की फोकस दूरी (f) में संबंध दर्शाता है।
- किसी गोलीय दर्पण की फोकस दूरी उसकी वक्रता त्रिज्या की आधी होती है।
- किसी गोलीय दर्पण द्वारा उत्पन्न आवर्धन, प्रतिबिंब की ऊँचाई तथा बिंब की ऊँचाई का अनुपात होता है।
- सघन माध्यम से विरल माध्यम में तिरछी गमन करने वाली कोई प्रकाश किरण अभिलंब से परे झुक जाती है। विरल माध्यम से सघन माध्यम में तिरछी गमन करने वाली प्रकाश किरण अभिलंब की ओर झुक जाती है।
- निर्वात में प्रकाश 3 10⁸m s⁻¹ की अत्यधिक चाल से गमन करता है। विभिन्न माध्यमों में प्रकाश की चाल भिन्न-भिन्न होती है।
- किसी पारदर्शी माध्यम का अपवर्तनांक प्रकाश की निर्वात में चाल तथा प्रकाश की माध्यम में चाल का अनुपात होता है।
- किसी आयताकार काँच के स्लैब के प्रकरण में, अपवर्तन वायु-काँच अंतरापृष्ठ एवं काँच-वायु
 अंतरापृष्ठ दोनों पर होता है। निर्गत किरण आपितत किरण की दिशा के समांतर होती है।
- लेंस सूत्र : $\frac{1}{v} \frac{1}{u} = \frac{1}{f}$, बिंब-दूरी (u), प्रतिबिंब-दूरी (v) तथा गोलीय लेंस की फोकस दूरी (f) में संबंध दर्शाता है।
- किसी लेंस की क्षमता उसकी फोकस दूरी का व्युत्क्रम होती है। लेंस की क्षमता का SI मात्रक डाइऑप्टर है।

अभ्यास

- 1. निम्न में से कौन-सा पदार्थ लेंस बनाने के लिए प्रयुक्त नहीं किया जा सकता?
 - (a) जल
- (b) काँच
- (c) प्लास्टिक
- (d) मिट्टी
- 2. किसी बिंब का अवतल दर्पण द्वारा बना प्रतिबिंब आभासी, सीधा तथा बिंब से बड़ा पाया गया। वस्तु की स्थिति कहाँ होनी चाहिए?
 - (a) मुख्य फोकस तथा वक्रता केंद्र के बीच
 - (b) वक्रता केंद्र पर
 - (c) वक्रता केंद्र से परे
 - (d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच

- 3. किसी बिंब का वास्तविक तथा समान साइज़ का प्रतिबिंब प्राप्त करने के लिए बिंब को उत्तल लेंस के सामने कहाँ रखें?
 - (a) लेंस के मुख्य फोकस पर
 - (b) फोकस दूरी की दोगुनी दूरी पर
 - (c) अनंत पर
 - (d) लेंस के प्रकाशिक केंद्र तथा मुख्य फोकस के बीच
- 4. किसी गोलीय दर्पण तथा किसी पतले गोलीय लेंस दोनों की फोकस दूरियाँ –15 cm हैं। दर्पण तथा लेंस संभवत: हैं–
 - (a) दोनों अवतल
 - (b) दोनों उत्तल
 - (c) दर्पण अवतल तथा लेंस उत्तल
 - (d) दर्पण उत्तल तथा लेंस अवतल
- 5. किसी दर्पण से आप चाहे कितनी ही दूरी पर खड़े हों, आपका प्रतिबिंब सदैव सीधा प्रतीत होता है। संभवत: दर्पण है—
 - (a) केवल समतल
 - (b) केवल अवतल
 - (c) केवल उत्तल
 - (d) या तो समतल अथवा उत्तल
- 6. किसी शब्दकोष (dictionary) में पाए गए छोटे अक्षरों को पढ़ते समय आप निम्न में से कौन-सा लेंस पसंद करेंगे?
 - (a) 50 cm फोकस दूरी का एक उत्तल लेंस
 - (b) 50 cm फोकस दूरी का एक अवतल लेंस
 - (c) 5 cm फोकस दूरी का एक उत्तल लेंस
 - (d) 5 cm फोकस दूरी का एक अवतल लेंस
- 7. 15 cm फोकस दूरी के एक अवतल दर्पण का उपयोग करके हम किसी बिंब का सीधा प्रतिबिंब बनाना चाहते हैं। बिंब का दर्पण से दूरी का परिसर (range) क्या होना चाहिए? प्रतिबिंब की प्रकृति कैसी है? प्रतिबिंब बिंब से बड़ा है अथवा छोटा? इस स्थिति में प्रतिबिंब बनने का एक किरण आरेख बनाइए।
- 8. निम्न स्थितियों में प्रयुक्त दर्पण का प्रकार बताइए-
 - (a) किसी कार का अग्र-दीप (हैड-लाइट)
 - (b) किसी वाहन का पार्श्व/पश्च-द्रश्य दर्पण
 - (c) सौर भट्टी अपने उत्तर की कारण सहित पुष्टि कीजिए।

- 9. किसी उत्तल लेंस का आधा भाग काले कागज़ से ढक दिया गया है। क्या यह लेंस किसी बिंब का पूरा प्रतिबिंब बना पाएगा? अपने उत्तर की प्रयोग द्वारा जाँच कीजिए। अपने प्रेक्षणों की व्याख्या कीजिए।
- 10. 5 cm लंबा कोई बिंब 10 cm फोकस दूरी के किसी अभिसारी लेंस से 25 cm दूरी पर रखा जाता है। प्रकाश किरण-आरेख खींचकर बनने वाले प्रतिबिंब की स्थिति, साइज तथा प्रकृति ज्ञात कीजिए।
- 11. 15 cm फोकस दूरी का कोई अवतल लेंस किसी बिंब का प्रतिबिंब लेंस से 10 cm दूरी पर बनाता है। बिंब लेंस से कितनी दूरी पर स्थित है? किरण आरेख खींचिए।
- 12. 15 cm फोकस दूरी के किसी उत्तल दर्पण से कोई बिंब 10 cm दूरी पर रखा है। प्रतिबिंब की स्थिति तथा प्रकृति ज्ञात कीजिए।
- 13. एक समतल दर्पण द्वारा उत्पन्न आवर्धन +1 है। इसका क्या अर्थ है?
- 14. 5.0 cm लंबाई का कोई बिंब 30 cm वक्रता त्रिज्या के किसी उत्तल दर्पण के सामने 20 cm दूरी पर रखा गया है। प्रतिबिंब की स्थिति, प्रकृति तथा साइज ज्ञात कीजिए।
- 15. 7.0 cm साइज़ का कोई बिंब 18 cm फोकस दूरी के किसी अवतल दर्पण के सामने 27 cm दूरी पर रखा गया है। दर्पण से कितनी दूरी पर किसी परदे को रखें कि उस पर वस्तु का स्पष्ट फोकसित प्रतिबिंब प्राप्त किया जा सके। प्रतिबिंब का साइज़ तथा प्रकृति ज्ञात कीजिए।
- 16. उस लेंस की फोकस दूरी ज्ञात कीजिए जिसकी क्षमता -2.0 D है। यह किस प्रकार का लेंस है?
- 17. कोई डॉक्टर +1.5 D क्षमता का संशोधक लेंस निर्धारित करता है। लेंस की फोकस दूरी ज्ञात कीजिए। क्या निर्धारित लेंस अभिसारी है अथवा अपसारी?


अध्याय 11 मानव नेत्र तथा रंगबिरंगा संसार

छले अध्याय में आपने लेंसों द्वारा प्रकाश के अपवर्तन के बारे में अध्ययन किया है। आप लेंसों द्वारा बनाए गए प्रतिबिंबों की प्रकृति, स्थिति तथा उनके आपेक्षिक साइज़ के बारे में भी अध्ययन कर चुके हैं। यह ज्ञान मानव नेत्र के अध्ययन में हमारी किस प्रकार सहायता कर सकता है? मानव नेत्र प्रकाश का उपयोग करता है तथा हमारे चारों ओर की वस्तुओं को देखने के लिए हमें समर्थ बनाता है। इसकी संरचना में एक लेंस होता है। मानव नेत्र में लेंस का क्या प्रकार्य है? चश्मों में प्रयोग किए जाने वाले लेंस दृष्टि दोषों को किस प्रकार संशोधित करते हैं? इस अध्याय में हम इन्हीं प्रश्नों पर विचार करेंगे।

पिछले अध्याय में हमने प्रकाश तथा इसके कुछ गुणों के बारे में अध्ययन किया था। इस अध्याय में हम इन धारणाओं का प्रकृति में कुछ प्रकाशीय परिघटनाओं के अध्ययन में उपयोग करेंगे। हम इंद्रधनुष बनने, श्वेत प्रकाश के वर्णों (रंगों) में परिक्षेपित (विभक्त) होने तथा आकाश के नीले रंग के बारे में भी चर्चा करेंगे।

11.1 मानव नेत्र

मानव नेत्र एक अत्यंत मूल्यवान एवं सुग्राही ज्ञानेंद्रिय है। यह हमें इस अद्भुत संसार तथा हमारे चारों ओर के रंगों को देखने योग्य बनाता है। आँखें बंद करके हम वस्तुओं को उनकी गंध, स्वाद, उनके द्वारा उत्पन्न ध्विन या उनको स्पर्श करके, कुछ सीमा तक पहचान सकते हैं। तथापि आँखों को बंद करके रंगों को पहचान पाना असंभव है। इस प्रकार समस्त ज्ञानेंद्रियों में मानव नेत्र सबसे अधिक महत्वपूर्ण है, क्योंकि यह हमें हमारे चारों ओर के रंगबिंरगे संसार को देखने योग्य बनाता है।

चित्र 11.1 मानव नेत्र

मानव नेत्र एक कैमरे की भाँति है। इसका लेंस-निकाय एक प्रकाश-सुग्राही परदे, जिसे रेटिना या दृष्टिपटल कहते हैं, पर प्रतिबिंब बनाता है। प्रकाश एक पतली झिल्ली से होकर नेत्र में प्रवेश करता है। इस झिल्ली को कॉर्निया या स्वच्छ मंडल कहते हैं। चित्र 11.1 में दर्शाए अनुसार यह झिल्ली नेत्र गोलक के अग्र पृष्ठ पर एक पारदर्शी

उभार बनाती है। नेत्र गोलक की आकृति लगभग गोलाकार होती है तथा इसका व्यास लगभग 2.3 cm होता है। नेत्र में प्रवेश करने वाली प्रकाश किरणों का अधिकांश अपवर्तन कॉर्निया के बाहरी पृष्ठ पर होता है। क्रिस्टलीय लेंस केवल विभिन्न दूरियों पर रखी वस्तुओं को रेटिना पर फोकिसत करने के लिए आवश्यक फोकस दूरी में सूक्ष्म समायोजन करता है। कॉर्निया के पीछे एक संरचना होती है जिसे परितारिका कहते हैं। परितारिका गहरा पेशीय डायफ्राम होता है जो पुतली के साइज को नियंत्रित करता है। पुतली नेत्र में प्रवेश करने वाले प्रकाश की मात्रा को नियंत्रित करती है। अभिनेत्र लेंस रेटिना पर किसी वस्तु का उलटा तथा वास्तिवक प्रतिबिंब बनाता है। रेटिना एक कोमल सूक्ष्म झिल्ली होती है जिसमें बृहत् संख्या में प्रकाश-सुग्राही कोशिकाएँ होती हैं। प्रदीप्ति होने पर प्रकाश-सुग्राही कोशिकाएँ सिक्रय हो जाती हैं तथा विद्युत सिग्नल उत्पन्न करती हैं। ये सिग्नल दृक् तंत्रिकाओं द्वारा मिस्तिष्क तक पहुँचा दिए जाते हैं। मिस्तिष्क इन सिग्नलों की व्याख्या करता है तथा अंतत: इस सूचना को संसाधित करता है जिससे कि हम किसी वस्तु को जैसा है, वैसा ही देख लेते हैं।

दृष्टि तंत्र के किसी भी भाग के क्षतिग्रस्त होने अथवा कुसंक्रियाओं (Malfunctioning) से दृष्टि प्रकार्यों में सार्थक क्षति हो सकती है। उदाहरण के लिए, प्रकाश संचरण में सिम्मिलत कोई भी संरचना (जैसे कॉर्निया, पुतली, अभिनेत्र लेंस, नेत्रोद तथा काचाभ द्रव) अथवा रेटिना जैसी संरचना (जो प्रकाश को विद्युत सिग्नल में परिवर्तित करने के लिए उत्तरदायी हैं), या दृक् तंत्रिका (जो इन सिग्नलों को मिस्तिष्क तक पहुँचाती है), भी क्षतिग्रस्त होने पर चाक्षुष-विकृति उत्पन्न करती हैं। आपने अनुभव किया होगा कि जब आप तीव्र प्रकाश से किसी मंद प्रकाशित कमरे में प्रवेश करते हैं, तो आरंभ में कुछ देर तक आप उस कमरे की वस्तुओं को नहीं देख पाते। तथापि, कुछ समय पश्चात् आप उसी मंद प्रकाशित कमरे की वस्तुओं को देख पाते हैं। आँख की पुतली परिवर्ती द्वारक की भाँति कार्य करती है जिसके साइज को परितारिका की सहायता से बदला जा सकता है। जब प्रकाश अत्यधिक चमकीला होता है तो परितारिका सिकुड़ कर पुतली को छोटा बना देती है जिससे आँख में कम प्रकाश प्रवेश कर सके। परंतु जब प्रकाश मंद होता है तो परितारिका फैलकर पुतली को बड़ा बना देती है जिससे आँख में अधिक प्रकाश प्रवेश कर सके। इस प्रकार मंद प्रकाश में परितारिका की शिथिलता से पुतली पूर्ण रूप से खुल जाती है।

11.1.1 समंजन क्षमता

अभिनेत्र लेंस रेशेदार जेलीवत पदार्थ का बना होता है। इसकी वक्रता में कुछ सीमाओं तक पक्ष्माभी पेशियों द्वारा रूपांतरण किया जा सकता है। अभिनेत्र लेंस की वक्रता में परिवर्तन होने पर इसकी फोकस दूरी भी परिवर्तित हो जाती है। जब पेशियाँ शिथिल होती हैं तो अभिनेत्र लेंस पतला हो जाता है। इस प्रकार इसकी फोकस दूरी बढ़ जाती है। इस स्थिति में हम दूर रखी वस्तुओं को स्पष्ट देख पाने में समर्थ होते हैं। जब आप आँख के निकट की वस्तुओं को देखते हैं तब पक्ष्माभी पेशियाँ सिकुड़ जाती हैं। इससे अभिनेत्र लेंस की वक्रता बढ़ जाती है। अभिनेत्र लेंस अब मोटा हो जाता है। परिणामस्वरूप, अभिनेत्र लेंस की फोकस दूरी घट जाती है। इससे हम निकट रखी वस्तुओं को स्पष्ट देख सकते हैं।

विज्ञान

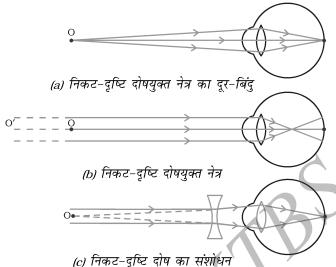
अभिनेत्र लेंस की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित कर लेता है समंजन कहलाती है। तथापि अभिनेत्र लेंस की फोकस दूरी एक निश्चित न्यूनतम सीमा से कम नहीं होती। किसी छपे हुए पृष्ठ को आँख के अत्यंत निकट रख कर उसे पढ़ने का प्रयास कीजिए। आप अनुभव करेंगे कि प्रतिबिंब धुँधला है या इससे आपके नेत्रों पर तनाव पड़ता है। किसी वस्तु को आराम से सुस्पष्ट देखने के लिए आपको इसे अपने नेत्रों से कम से कम 25 cm दूर रखना होगा। वह न्यूनतम दूरी जिस पर रखी कोई वस्तु बिना किसी तनाव के अत्यधिक स्पष्ट देखी जा सकती है, उसे सुस्पष्ट दर्शन की अल्पतम दूरी कहते हैं। इसे नेत्र का निकट-बिंदु भी कहते हैं। किसी सामान्य दृष्टि के तरुण वयस्क के लिए निकट बिंदु की आँख से दूरी लगभग 25 cm होती है। वह दूरतम बिंदु जिस तक कोई नेत्र वस्तुओं को सुस्पष्ट देख सकता है, नेत्र का दूर-बिंदु (far Point) कहलाता है। सामान्य नेत्र के लिए यह अनंत दूरी पर होता है। इस प्रकार, आप नोट कर सकते हैं कि एक सामान्य नेत्र 25 cm से अनंत दूरी तक रखी सभी वस्तुओं को सुस्पष्ट देख सकता है।

कभी-कभी अधिक आयु के कुछ व्यक्तियों के नेत्र का क्रिस्टलीय लेंस दूधिया तथा धुँधला हो जाता है। इस स्थिति को **मोतियाबिंद** (cataract) कहते हैं। इसके कारण नेत्र की दृष्टि में कमी या पूर्ण रूप से दृष्टि क्षय हो जाता है। मोतियाबिंद की शल्य चिकित्सा के पश्चात दृष्टि का वापस लौटना संभव होता है।

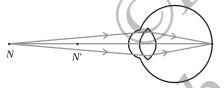
दृष्टि के लिए हमारे दो नेत्र क्यों हैं, केवल एक ही क्यों नहीं?

एक नेत्र की बजाय दो नेत्र होने के हमें अनेक लाभ हैं। इससे हमारा दृष्टि-क्षेत्र विस्तृत हो जाता है। मानव के एक नेत्र का क्षैतिज दृष्टि क्षेत्र लगभग 150 होता है जबिक दो नेत्रों द्वारा यह लगभग 180 जाता है। वास्तव में, किसी मंद प्रकाशित वस्तु के संसूचन की सामर्थ्य एक की बजाय दो संसूचकों से बढ़ जाती है।

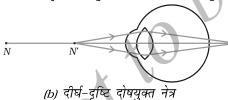
शिकार करने वाले जंतुओं के दो नेत्र प्राय: उनके सिर पर विपरीत दिशाओं में स्थित होते हैं जिससे कि उन्हें अधिकतम विस्तृत दृष्टि-क्षेत्र प्राप्त हो सके। परंतु हमारे दोनों नेत्र सिर पर सामने की ओर स्थित होते हैं। इस प्रकार हमारा दृष्टि क्षेत्र तो कम हो जाता है परंतु हमें त्रिविम चाक्षुकी का लाभ मिल जाता है। एक नेत्र बंद कीजिए, आपको संसार चपटा—केवल द्विविम लगेगा। दोनों नेत्र खोलिए, आपको संसार की वस्तुओं में गहराई की तीसरी विमा दिखाई देगी। क्योंकि हमारे नेत्रों के बीच कुछ सेंटीमीटर का पृथकन होता है, इसलिए प्रत्येक नेत्र किसी वस्तु का थोड़ा–सा भिन्न प्रतिबिंब देखता है। हमारा मस्तिष्क दोनों प्रतिबिंबों का संयोजन करके एक प्रतिबिंब बना देता है। इस प्रकार अतिरिक्त सूचना का उपयोग करके हम यह बता देते हैं कि कोई वस्तु हमारे कितनी पास या दूर है।

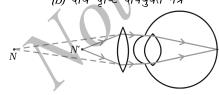

11.2 दृष्टि दोष तथा उनका संशोधन

कभी-कभी नेत्र धीरे-धीरे अपनी समंजन क्षमता खो सकते हैं। ऐसी स्थितियों में, व्यक्ति वस्तुओं को आराम से सुस्पष्ट नहीं देख पाते। नेत्र में अपवर्तन दोषों के कारण दृष्टि धुँधली हो जाती है।


मानव नेत्र तथा रंगबिरंगा संसार

和


प्रमुख रूप से दृष्टि के तीन सामान्य अपवर्तन दोष होते हैं। ये दोष हैं (i) निकट-दृष्टि (Myopia), (ii) दीर्घ-दृष्टि (Hypermetropia) तथा (iii) जरा-दूरदृष्टिता (Presbyopia)। इन दोषों को उपयुक्त गोलीय लेंस के उपयोग से संशोधित किया जा सकता है। हम इन दोषों तथा उनके संशोधन के बारे में संक्षेप में नीचे चर्चा करेंगे।



चित्र 11.2 (a), (b) निकट-दृष्टि दोषयुक्त नेत्र (c) अवतल लेंस के उपयोग द्वारा निकट-दृष्टि का संशोधन

(a) दीर्घ-दृष्टि दोषयुक्त नेत्र का निकट बिंदु

(c) दीर्घ-दृष्टि दोष का संशोधन
चित्र 11.3 (a), (b) दीर्घ दृष्टि दोषयुक्त नेत्र, तथा
(c) दीर्घ-दृष्टि दोष का संशोधन N = दीर्घ-दृष्टि दोषयुक्त नेत्र का निकट बिंदु
<math>N' = सामान्य नेत्र का निकट बिंदु

(a) निकट-दृष्टि दोष

निकट-दृष्टि दोष को निकटदृष्टिता (Nearsightedness) भी कहते हैं। निकट दृष्टि दोषयुक्त कोई व्यक्ति निकट रखी वस्तुओं को तो स्पष्ट देख सकता है, परंतु दूर रखी वस्तुओं को वह सुस्पष्ट नहीं देख पाता। ऐसे दोषयुक्त व्यक्ति का दूर-बिंदु अनंत पर न होकर नेत्र के पास आ जाता है। ऐसा व्यक्ति कुछ मीटर दूर रखी वस्तुओं को ही सुस्पष्ट देख पाता है। निकट-दृष्टि दोषयुक्त नेत्र में, किसी दूर रखी वस्तु का प्रतिबिंब दृष्टिपटल (रेटिना) पर न बनकर [चित्र 11.2(b)], दृष्टिपटल के सामने बनता है। इस दोष के उत्पन्न होने के कारण हैं (i) अभिनेत्र लेंस की वक्रता का अत्यधिक होना अथवा (ii) नेत्र गोलक का लंबा हो जाना। इस दोष को किसी उपयुक्त क्षमता के अवतल लेंस (अपसारी उपयोग द्वारा संशोधित किया जा सकता है। इसे

लेंस) के उपयोग द्वारा संशोधित किया जा सकता है। इसे चित्र 11.2(c) में दर्शाया गया है। उपयुक्त क्षमता का अवतल लेंस वस्तु के प्रतिबिंब को वापस दृष्टिपटल (रेटिना) पर ले आता है, तथा इस प्रकार इस दोष का संशोधन हो जाता है।

(b) दीर्घ-दृष्टि दोष

दीर्घ-दृष्टि दोष को दूर-दृष्टिता (Far-sightedness) भी कहते हैं। दीर्घ-दृष्टि दोषयुक्त कोई व्यक्ति दूर की वस्तुओं को तो स्पष्ट देख सकता है, परंतु निकट रखी वस्तुओं को सुस्पष्ट नहीं देख पाता। ऐसे दोषयुक्त व्यक्ति का निकट-बिंदु सामान्य निकट बिंदु (25 cm) से दूर हट जाता है। ऐसे व्यक्ति को आराम से सुस्पष्ट पढ़ने के लिए पठन सामग्री को नेत्र से 25 cm से काफ़ी अधिक दूरी पर रखना पड़ता है। इसका कारण यह है कि पास रखी वस्तु से आने वाली प्रकाश किरणें दृष्टिपटल (रेटिना) के पीछे फोकसित होती हैं, जैसा कि चित्र 11.3 (b) में दर्शाया गया है। इस दोष के उत्पन्न होने के कारण हैं: (i) अभिनेत्र लेंस की फोकस दूरी का अत्यधिक हो जाना अथवा (ii) नेत्र गोलक का छोटा हो

विज्ञान

जाना। इस दोष को उपयुक्त क्षमता के अभिसारी लेंस (उत्तल लेंस) का उपयोग करके संशोधित किया जा सकता है। इसे चित्र 11.3(c) में दर्शाया गया है। उत्तल लेंस युक्त चश्मे दृष्टिपटल पर वस्तु का प्रतिबिंब फोकसित करने के लिए आवश्यक अतिरिक्त क्षमता प्रदान करते हैं।

(c) जरा-दूरदृष्टिता

आयु में वृद्धि होने के साथ-साथ मानव नेत्र की समंजन-क्षमता घट जाती है। अधिकांश व्यक्तियों का निकट-बिंदु दूर हट जाता है। संशोधक चश्मों के बिना उन्हें पास की वस्तुओं को आराम से सुस्पष्ट देखने में किठनाई होती है। इस दोष को जरा-दूरदृष्टिता कहते हैं। यह पक्ष्माभी पेशियों के धीरे-धीरे दुर्बल होने तथा क्रिस्टलीय लेंस के लचीलेपन में कमी आने के कारण उत्पन्न होता है। कभी-कभी किसी व्यक्ति के नेत्र में दोनों ही प्रकार के दोष निकट-दृष्टि तथा दूर-दृष्टि दोष हो सकते हैं। ऐसे व्यक्तियों को वस्तुओं को सुस्पष्ट देख सकने के लिए प्राय: द्विफोकसी लेंसों (Bi-focal lens) की आवश्यकता होती है। सामान्य प्रकार के द्विफोकसी लेंसों में अवतल तथा उत्तल दोनों लेंस होते हैं। ऊपरी भाग अवतल लेंस होता है। यह दूर की वस्तुओं को सुस्पष्ट देखने में सहायता करता है। निचला भाग उत्तल लेंस होता है। यह पास की वस्तुओं को सुस्पष्ट देखने में सहायक होता है।

आजकल संस्पर्श लेंस (Contact lens) अथवा शल्य हस्तक्षेप द्वारा दृष्टि दोषों का संशोधन संभव है।

प्रश्न

- 1. नेत्र की समंजन क्षमता से क्या अभिप्राय है?
- निकट दृष्टिदोष का कोई व्यक्ति 1.2 m से अधिक दूरी पर रखी वस्तुओं को सुस्पष्ट नहीं देख सकता। इस दोष को दूर करने के लिए प्रयुक्त संशोधक लेंस किस प्रकार का होना चाहिए?
- मानव नेत्र की सामान्य दृष्टि के लिए दूर बिंदु तथा निकट बिंदु नेत्र से कितनी दूरी पर होते हैं?
- 4. अंतिम पंक्ति में बैठे किसी विद्यार्थी को श्यामपट्ट पढ़ने में कठिनाई होती है। यह विद्यार्थी किस दृष्टि दोष से पीडित है? इसे किस प्रकार संशोधित किया जा सकता है?

11.3 प्रिज्म से प्रकाश का अपवर्तन

आप अध्ययन कर चुके हैं कि एक आयताकार काँच के स्लैब से गुज़रने पर प्रकाश किस प्रकार अपवर्तित होता है। समांतर अपवर्तक पृष्ठों के लिए, जैसा कि काँच के स्लैब में होता है, अपवर्तित किरण आपितत किरण के समांतर होती है। तथापि, पार्श्व में यह कुछ विस्थापित हो जाती है। किसी पारदर्शी प्रिज़्म से गुज़रने पर प्रकाश किस प्रकार अपवर्तित होगा? काँच के एक त्रिभुज प्रिज़्म पर विचार कीजिए। इसके दो त्रिभुजाकार आधार तथा तीन आयताकार पार्श्व-पृष्ठ होते हैं। ये पृष्ठ एक दूसरे पर झुके होते हैं। इसके दो पार्श्व फलकों के बीच के कोण को प्रिज़्म कोण कहते हैं। आइए अब एक क्रियाकलाप के द्वारा अध्ययन करें कि काँच के त्रिभुज प्रिज़म से गुज़रने पर प्रकाश किस प्रकार अपवर्तित होता है।

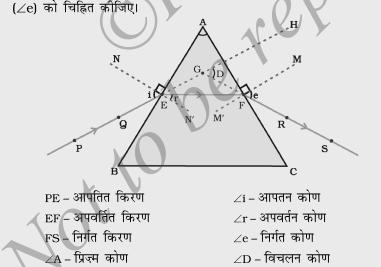
मानव नेत्र तथा रंगबिरंगा संसार

ज़रा सोचिए

अद्भुत वस्तुओं का वर्णन करते आप जिन्हें देख सकते हैं आप चमकीला है दीप्त सूर्य, कहते हैं यह आप; अनुभव मैं भी करता दीप्त सूर्य का ताप पर समझ न पाया अब तक यह मैं बनाता कैसे वह दिन और रात?

(सी. सिब्बेर द्वारा अंग्रेज़ी भाषा में रचित किवता की कुछ पंक्तियों का हिंदी रूपांतर) क्या आप जानते हैं कि हमारे नेत्र हमारी मृत्यु के पश्चात भी जीवित रहते हैं? अपनी मृत्यु के पश्चात नेत्र दान करके हम किसी नेत्रहीन व्यक्ति के जीवन को प्रकाश से भर सकते हैं। विकासशील देशों के लगभग 3.5 करोड़ व्यक्ति दृष्टिहीन हैं तथा उनमें से अधिकांश की दृष्टि ठीक की जा सकती है। कॉर्निया-अंधता से पीड़ित लगभग 45 लाख व्यक्तियों को नेत्रदान द्वारा प्राप्त कॉर्निया के प्रत्यारोपण से ठीक किया जा सकता है। इन 45 लाख व्यक्तियों में 60% बच्चे 12 वर्ष से कम आयु के हैं। अत:, यदि हमें दृष्टि का वरदान प्राप्त है तो क्यों न इसे हम उन्हें अपने नेत्र देकर जाएँ जिनके पास दृष्टि नहीं है? नेत्रदान करते समय हमें किन-किन बातों को ध्यान में रखना चाहिए?

- नेत्रदान करने वाला व्यक्ति किसी भी आयु वर्ग अथवा लिंग का हो सकता है। चश्मा पहनने वाले या मोतियाबिंद का ऑपरेशन करा चुके व्यक्ति भी नेत्रदान कर सकते हैं। मधुमेह अथवा उच्च रक्तचाप से पीड़ित व्यक्ति, दमे के रोगी तथा वे व्यक्ति जिन्हें कोई संक्रामक रोग नहीं है, भी नेत्रदान कर सकते हैं।
- मृत्यु के पश्चात 4-6 घंटे के भीतर नेत्र निकाल लिए जाने चाहिए। अत: समीप के नेत्र बैंक को तुरंत सूचित करें।
- नेत्र बैंक की टीम दिवंगत व्यक्ति के घर पर या अस्पताल में नेत्र निकाल लेगी।
- नेत्र निकालने में मात्र 10−15 मिनट का समय लगता है। यह एक सरल प्रक्रिया है तथा इसमें किसी
 प्रकार का विरूपण नहीं होता।
- ऐसे व्यक्ति जो एड्स (AIDS), हेपेटाइटिस B या C (Hepatitis B or C), जलभीति (Rabies), तीव्र लूकीमिया (Acute leukaemia), धनुस्तंभ (Tetanus), हैजा, तानिका शोध (Meningitis) या मस्तिष्क शोध (Encephalitis) से संक्रमित हैं या जिनकी इनके कारण मृत्यु हुई हो, नेत्रदान नहीं कर सकते।


नेत्र बैंक दान किए गए नेत्रों को एकत्रित करता है, उनका मूल्यांकन करता है, तथा उन्हें वितरित करता है। सभी दान किए गए नेत्रों का चिकित्सा के उच्च मानदंडों द्वारा मूल्यांकन किया जाता है। प्रत्यारोपण के मानकों पर खरे न उतरने वाले नेत्रों को महत्वपूर्ण अनुसंधान एवं चिकित्सा-शिक्षा के लिए प्रयोग किया जाता है। दानकर्ता तथा नेत्र लेने वाले दोनों की पहचान को गुप्त रखा जाता है।

नेत्रों का एक युगल, कॉर्निया अंधता से पीड़ित चार व्यक्तियों तक को दृष्टि प्रदान कर सकता है।

विज्ञान

क्रिया कलाप 11.1

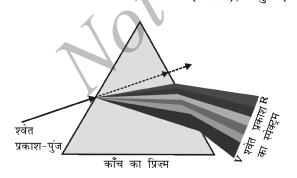
- एक ड्राइंग बोर्ड पर ड्राइंग पिनों की सहायता से सफ़ेद कागज़ की एक शीट लगाइए।
- इस शीट पर काँच का प्रिज्म इस प्रकार रखिए कि इसका त्रिभुजाकार फलक आधार
 बन जाए। एक पेंसिल का प्रयोग करके प्रिज्म की सीमा रेखा खींचिए।
- प्रिज्म के किसी एक अपवर्तक पृष्ठ AB से कोई कोण बनाती हुई एक सरल रेखा
 PE खींचिए।
- रेखा PE पर दो पिनें, बिंदु P तथा Q पर गाड़िए जैसा कि चित्र 11.4 में दर्शाया गया है।
- फलक AC की ओर से P तथा Q पिनों के प्रतिबिंबों को देखिए।
- R तथा S बिंदुओं पर दो और पिनें इस प्रकार गाडिए कि पिन R तथा S एवं पिन
 P तथा Q के प्रतिबिंब एक सीधी रेखा में दिखाई दें।
- पिनों तथा काँच के प्रिज्म को हटाइए।
- रेखा PE प्रिज्म की सीमा रेखा के बिंदु E पर मिलती है (चित्र 11.4 देखिए)। इसी प्रकार, बिंदुओं, R तथा S को एक रेखा से जोड़िए तथा इस रेखा को इस प्रकार आगे बढ़ाइए कि यह प्रिज्म के फलक AC से F पर मिले। हम पहले ही देख चुके हैं कि पिनों P तथा Q को मिलाने वाली रेखा फलक AB से E पर मिलती है। E तथा F को मिलाइए।
- प्रिज्म के अपवर्तक पृष्ठों AB तथा AC पर क्रमश: बिंदुओं E तथा F पर अभिलंब खींचिए।
- चित्र 11.4 में दर्शाए अनुसार आपतन कोण (∠i) अपवर्तन कोण (∠r) तथा निर्गत कोण
 (∠e) को चिह्नित कीजिए।

चित्र 11.4 काँच के त्रिभुज प्रिज़्म से प्रकाश का अपवर्तन

यहाँ PE आपितत किरण है, EF अपवर्तित किरण है तथा FS निर्गत किरण है। आप देख सकते हैं कि पहले पृष्ठ AB पर प्रकाश की किरण वायु से काँच में प्रवेश कर रही है। अपवर्तन के पश्चात प्रकाश की किरण अभिलंब की ओर मुड़ जाती है। दूसरे पृष्ठ AC पर, प्रकाश की किरण काँच से वायु में प्रवेश करती है। अत:, यह अभिलंब

मानव नेत्र तथा रंगबिरंगा संसार

से दूर मुड़ती है। प्रिज़्म के प्रत्येक अपवर्तक पृष्ठ पर आपतन कोण तथा अपवर्तन कोण की तुलना कीजिए। क्या यह काँच के स्लैब में हुए झुकाव के समान ही है? प्रिज़्म की विशेष आकृति के कारण निर्गत किरण, आपतित किरण की दिशा से एक कोण बनाती है। इस कोण को विचलन कोण कहते हैं। इस स्थिति में ∠D विचलन कोण है। उपरोक्त क्रियाकलाप में विचलन कोण को चिह्नित कीजिए तथा इसे मापिए।

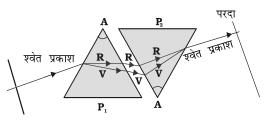

11.4 काँच के प्रिज्म द्वारा श्वेत प्रकाश का विक्षेपण

आपने किसी इंद्रधनुष में भव्य वर्णों (रंगों) को देखा और सराहा होगा। सूर्य के श्वेत प्रकाश से हमें इंद्रधनुष के विभिन्न वर्ण (रंग) किस प्रकार प्राप्त हो जाते हैं? इस प्रश्न पर विचार करने से पहले हम फिर से प्रिज़्म से होने वाले प्रकाश के अपवर्तन को देखते हैं। काँच के प्रिज़्म के झुके हुए अपवर्तक पृष्ठ एक रोचक परिघटना दर्शाते हैं। आइए इसे एक क्रियाकलाप द्वारा देखें।

क्रियाकलाप 11.2

- गत्ते की एक मोटी शीट लीजिए तथा इसके मध्य में एक छोटा छिद्र या एक पतली झिरी बनाइए।
- पतली झिरी पर सूर्य का प्रकाश पड़ने दीजिए। इससे श्वेत प्रकाश का एक पतला किरण पंज प्राप्त होता है।
- अब काँच का एक प्रिज़्म लीजिए तथा चित्र 11.5 में दर्शाए अनुसार झिरी से प्रकाश को इसके एक फलक पर डालिए।
- प्रिज्म को धीरे से इतना घुमाइए कि इससे बाहर निकलने वाला प्रकाश पास रखे किसी परदे पर दिखाई देने लगे।
- आप क्या देखते हैं? आप वर्णों की एक आकर्षक पट्टी देखेंगे। ऐसा क्यों होता है?

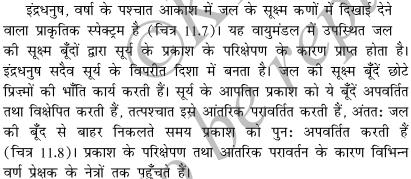
संभवत: प्रिज़्म ने आपितत श्वेत प्रकाश को रंगों (वर्णों) की पट्टी में विभक्त कर दिया है। इस रंगीन पट्टी के दोनों सिरों पर दिखाई देने वाले वर्णों को नोट कीजिए। परदे पर दिखाई देने वाले वर्णों का क्रम क्या है? दिखाई देने वाले विभिन्न वर्णों का क्रम है, बैंगनी (violet), जामुनी (indigo), नीला (blue), हरा (green), पीला (yellow), नारंगी



चित्र 11.5 काँच के प्रिज़्म द्वारा श्वेत प्रकाश का विक्षेपण

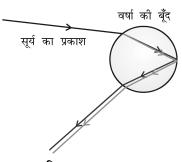
(orange) तथा लाल (red) जैसा कि चित्र 11.5 में दर्शाया गया है। प्रसिद्ध परिवर्णी शब्द VIBGYOR आपको वर्णों के क्रम याद रखने में सहायता करेगा। प्रकाश के अवयवी वर्णों के इस बैंड को स्पेक्ट्रम कहते हैं। हो सकता है कि आप सभी वर्णों को अलग-अलग न देख पाएँ। फिर भी कुछ ऐसा अवश्य है जो प्रत्येक वर्ण को एक-दूसरे से अलग करता है। प्रकाश के अवयवी वर्णों में विभाजन को विश्लेपण कहते हैं।

विज्ञान


आपने देखा कि श्वेत प्रकाश प्रिज्म द्वारा इसके सात अवयवी वर्णों में विक्षेपित हो जाता है। हमें ये वर्ण क्यों प्राप्त होते हैं? किसी प्रिज्म से गुजरने के पश्चात, प्रकाश के विभिन्न वर्ण, आपितत किरण के सापेक्ष अलग-अलग कोणों पर झुकते (मुड़ते) हैं। लाल प्रकाश सबसे कम झुकता है जबिक बैंगनी सबसे अधिक झुकता है। इसलिए प्रत्येक वर्ण की किरणें अलग-अलग पथों के अनुदिश निर्गत होती हैं तथा सुस्पष्ट दिखाई देती हैं। यह सुस्पष्ट वर्णों का बैंड ही हमें स्पेक्ट्म के रूप में दिखाई देता है।

चित्र 11.6 श्वेत प्रकाश के स्पेक्ट्रम का पुनर्योजन

आइज़क न्यूटन ने सर्वप्रथम सूर्य का स्पेक्ट्रम प्राप्त करने के लिए काँच के प्रिज़्म का उपयोग किया। एक दूसरा समान प्रिज़्म उपयोग करके उन्होंने श्वेत प्रकाश के


स्पेक्ट्रम के वर्णों को और अधिक विभक्त करने का प्रयत्न किया। किंतु उन्हों और अधिक वर्ण नहीं मिल पाए। फिर उन्होंने चित्र 11.6 की भाँति एक दूसरा सर्व सम प्रिज़्म पहले प्रिज़्म के सापेक्ष उलटी स्थिति में रखा। इससे स्पेक्ट्रम के सभी वर्ण दूसरे प्रिज़्म से होकर गुजरे। उन्होंने देखा कि दूसरे प्रिज़्म से श्वेत प्रकाश का किरण पुंज निर्गत हो रहा है। इस प्रेक्षण से न्यूटन को यह विचार आया कि सूर्य का प्रकाश सात वर्णों से मिलकर बना है। कोई भी प्रकाश जो सूर्य के प्रकाश के सदृश स्पेक्ट्रम बनाता है, प्रायः श्वेत प्रकाश कहलाता है।

यदि सूर्य आपकी पीठ की ओर हो, और आप आकाश की ओर धूप वाले किसी दिन किसी जल प्रपात अथवा जल के फव्वारे से देखें तो आप इंद्रधनुष का दृश्य देख सकते हैं।

चित्र 11.7 आकाश में इंद्रधनुष

चित्र 11.8 इंद्रधनुष का बनना

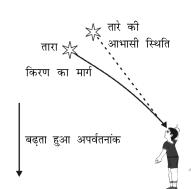
11.5 वायुमंडलीय अपवर्तन

आपने संभवत: कभी आग या भट्टी अथवा किसी ऊष्मीय विकिरक के ऊपर उठती गरम वायु के विक्षुब्ध प्रवाह में धूल के कणों की आभासी, अनियमित, अस्थिर गित अथवा झिलमिलाहट देखी होगी। आग के तुरंत ऊपर की वायु अपने ऊपर की वायु की तुलना में अधिक गरम हो जाती है। गरम वायु अपने ऊपर की ठंडी वायु की तुलना में हलकी (कम सघन) होती है तथा इसका अपवर्तनांक ठंडी वायु की अपेक्षा थोड़ा कम होता है। क्योंकि अपवर्तक माध्यम (वायु) की भौतिक अवस्थाएँ स्थिर नहीं हैं, इसलिए

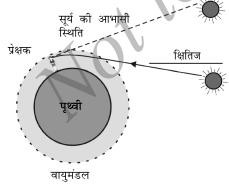
मानव नेत्र तथा रंगबिरंगा संसार

गरम वायु में से होकर देखने पर वस्तु की आभासी स्थिति परिवर्तित होती रहती है। इस प्रकार यह अस्थिरता हमारे स्थानीय पर्यावरण में लघु स्तर पर वायुमंडलीय अपवर्तन (पृथ्वी के वायुमंडल के कारण प्रकाश का अपवर्तन) का ही एक प्रभाव है। तारों का टिमटिमाना बृहत् स्तर की एक ऐसी ही परिघटना है। आइए देखें इसकी व्याख्या हम किस प्रकार कर सकते हैं।

तारों का टिमटिमाना


तारों के प्रकाश के वायुमंडलीय अपवर्तन के कारण ही तारे टिमटिमाते प्रतीत होते हैं। पृथ्वी के वायुमंडल में प्रवेश करने के पश्चात पृथ्वी के पृष्ठ पर पहुँचने तक तारे का प्रकाश निरंतर अपवर्तित होता जाता है। वायुमंडलीय अपवर्तन उसी माध्यम में होता

> है जिसका क्रमिक परिवर्ती अपवर्तनांक हो। क्योंकि वायुमंडल तारे के प्रकाश को अभिलंब की ओर झुका देता है, अत: तारे की आभासी स्थिति उसकी वास्तविक स्थिति से कुछ भिन्न प्रतीत होती है। क्षितिज के निकट देखने पर (चित्र 11.9) कोई तारा अपनी वास्तविक स्थिति से कुछ ऊँचाई पर प्रतीत होता है। इसके अतिरिक्त जैसा कि ऐसी ही परिस्थिति में पिछले अनुभाग में वर्णन किया जा चुका है, तारे की यह आभासी स्थिति भी स्थायी न होकर धीरे-धीरे थोड़ी बदलती भी रहती है क्योंकि पृथ्वी के वायुमंडल की भौतिक अवस्थाएँ स्थायी नहीं हैं। चूँकि तारे बहुत दूर हैं, अत: वे प्रकाश के बिंदु-स्रोत के सन्निकट हैं। क्योंकि, तारों से आने वाली प्रकाश किरणों का पथ थोड़ा-थोड़ा परिवर्तित होता रहता है, अत: तारे की आभासी स्थिति विचलित होती रहती है तथा आँखों में प्रवेश करने वाले तारों के प्रकाश की मात्रा झिलमिलाती रहती है – जिसके कारण कोई तारा कभी चमकीला प्रतीत



ग्रह क्यों नहीं टिमटिमाते? ग्रह तारों की अपेक्षा पृथ्वी के बहुत पास हैं और इसीलिए उन्हें विस्तृत स्रोत की भाँति माना जा सकता है। यदि हम ग्रह को बिंदु-साइज के अनेक प्रकाश स्रोतों का संग्रह मान लें तो सभी बिंदु साइज के प्रकाश-स्रोतों से हमारे नेत्रों में प्रवेश करने वाले प्रकाश की मात्रा में कुल परिवर्तन का औसत मान शून्य होगा, इसी

कारण टिमटिमाने का प्रभाव निष्प्रभावित हो जाएगा।

चित्र 11.9 वायुमंडलीय अपवर्तन के कारण तारे की आभासी स्थिति

चित्र 11.10 वायुमंडलीय अपवर्तन का सूर्योदय तथा सूर्यास्त पर प्रभाव

अग्रिम सूर्योदय तथा विलंबित सूर्यास्त

वायुमंडलीय अपवर्तन के कारण सूर्य हमें वास्तविक सूर्योदय से लगभग 2 मिनट पूर्व दिखाई देने लगता है तथा वास्तविक सूर्यास्त के लगभग 2 मिनट पश्चात तक दिखाई देता रहता है। वास्तविक सूर्योदय से हमारा अर्थ है, सूर्य द्वारा वास्तव में क्षितिज को पार करना। चित्र 11.10 में सूर्य की क्षितिज के सापेक्ष वास्तविक तथा आभासी स्थितियाँ दर्शायी गयी हैं। वास्तविक सूर्यास्त तथा आभासी सूर्यास्त के बीच समय का अंतर लगभग 2 मिनट है। इसी परिघटना के कारण ही सूर्योदय तथा सूर्यास्त के समय सूर्य की चक्रिका चपटी प्रतीत होती है।

विज्ञान

11.6 प्रकाश का प्रकीर्णन

प्रकाश तथा हमारे चारों ओर की वस्तुओं के बीच अन्योन्यक्रिया के कारण ही हमें प्रकृति में अनेक आश्चर्यजनक परिघटनाएँ देखने को मिलती हैं। आकाश का नीला रंग, गहरे समुद्र के जल का रंग, सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ दिखाई देना, कुछ ऐसी अदभुत परिघटनाएँ हैं; जिनसे हम परिचित हैं। पिछली कक्षा में आपने कोलॉइडी कणों द्वारा प्रकाश के प्रकीर्णन के विषय में अध्ययन किया है। किसी वास्तविक विलयन से गुजरने वाले प्रकाश किरण पुंज का मार्ग हमें दिखाई नहीं देता। तथापि, किसी कोलॉइडी विलयन में जहाँ कणों का साइज अपेक्षाकृत बड़ा होता है, यह मार्ग दृश्य होता है।

11.6.1 टिंडल प्रभाव

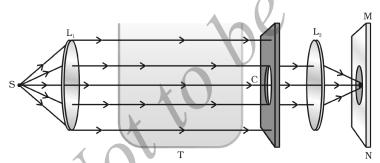
पृथ्वी का वायुमंडल सूक्ष्म कणों का एक विषमांगी मिश्रण है। इन कणों में धुआँ, जल की सूक्ष्म बूँदें, धूल के निलंबित कण तथा वायु के अणु सम्मिलत होते हैं। जब कोई प्रकाश किरण पुंज ऐसे महीन कणों से टकराता है तो उस किरण पुंज का मार्ग दिखाई देने लगता है। इन कणों से विसरित प्रकाश परावर्तित होकर हमारे पास तक पहुँचता है। कोलाँइडी कणों द्वारा प्रकाश के प्रकीर्णन की परिघटना टिंडल प्रभाव उत्पन्न करती है, जिसके विषय में आप कक्षा 9 में पढ़ चुके हैं। जब धुएँ से भरे किसी कमरे में किसी सूक्ष्म छिद्र से कोई पतला प्रकाश किरण पुंज प्रवेश करता है तो इस परिघटना को देखा जा सकता है। इस प्रकार, प्रकाश का प्रकीर्णन कणों को दृश्य बनाता है। जब किसी घने जंगल के वितान (canopy) से सूर्य का प्रकाश गुजरता है तो टिंडल प्रभाव को देखा जा सकता है। जंगल के कुहासे में जल की सूक्ष्म बूँदें प्रकाश का प्रकीर्णन कर देती हैं।

प्रकीर्णित प्रकाश का वर्ण, प्रकीर्णन करने वाले कणों के साइज पर निर्भर करता है। अत्यंत सूक्ष्म कण मुख्य रूप से नीले प्रकाश को प्रकीर्ण करते हैं जबिक बड़े साइज के कण अधिक तंरगदैर्घ्य के प्रकाश को प्रकीर्ण करते हैं। यदि प्रकीर्णन करने वाले कणों का साइज बहुत अधिक है तो प्रकीर्णित प्रकाश श्वेत भी प्रतीत हो सकता है।

11.6.2 स्वच्छ आकाश का रंग नीला क्यों होता है?

वायुमंडल में वायु के अणु तथा अन्य सूक्ष्म कणों का साइज दृश्य प्रकाश की तरंगदैर्घ्य के प्रकाश की अपेक्षा नीले वर्ण की ओर के कम तरंगदैर्घ्य के प्रकाश को प्रकीणिंत करने में अधिक प्रभावी है। लाल वर्ण के प्रकाश की तरंगदैर्घ्य नीले प्रकाश की अपेक्षा लगभग 1.8 गुनी है। अत:, जब सूर्य का प्रकाश वायुमंडल से गुजरता है, वायु के सूक्ष्म कण लाल रंग की अपेक्षा नीले रंग (छोटी तरंगदैर्घ्य) को अधिक प्रबलता से प्रकीण करते हैं। प्रकीणिंत हुआ नीला प्रकाश हमारे नेत्रों में प्रवेश करता है। यदि पृथ्वी पर वायुमंडल न होता तो कोई प्रकीणिन न हो पाता। तब, आकाश काला प्रतीत होता। अत्यधि क ऊँचाई पर उड़ते हुए यात्रियों को आकाश काला प्रतीत होता है, क्योंकि इतनी ऊँचाई पर प्रकीणिन सुस्पष्ट नहीं होता।

मानव नेत्र तथा रंगबिरंगा संसार


संभवत: आपने देखा होगा कि 'खतरे' के संकेत (सिग्नल) का प्रकाश लाल रंग का होता है। क्या आप इसका कारण जानते हैं? लाल रंग कुहरे या धुएँ से सबसे कम प्रकीर्ण होता है। इसीलिए, यह दूर से देखने पर भी लाल रंग का ही दिखलाई देता है।

11.6.3 सूर्योदय तथा सूर्यास्त के समय सूर्य का रंग

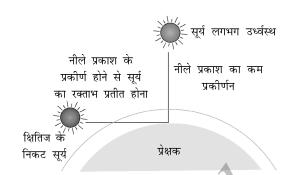
क्या आपने सूर्योदय अथवा सूर्यास्त के समय आकाश तथा सूर्य को देखा है? क्या आपने सोचा है कि सूर्य तथा उसके आसपास का आकाश रक्ताभ क्यों प्रतीत होता है? आकाश के नीले रंग तथा सूर्योदय या सूर्यास्त के समय सूर्य का रक्ताभ प्रतीत होने को समझने के लिए आइए एक क्रियाकलाप करें।

क्रियाकलाप 11.3

- कोई अभिसारी लेंस L₁(उत्तल लेंस) लेकर इसके फोकस पर श्वेत प्रकाश का तीव्र स्रोत
 (S) रखिए। लेंस, प्रकाश का एक समांतर किरण पुंज प्रदान करता है।
- प्रकाश के समांतर किरण पुंज को स्वच्छ जल से भरे एक पारदर्शी काँच के टैंक (T)
 से गुजारिए।
- िकसी एक गत्ते में बने एक वृत्ताकार छिद्र (C) से इस प्रकाश किरण पुंज को गुज़रने दीजिए। चित्र 11.11 में दर्शाए अनुसार एक-दूसरे अभिसारी लेंस (L₂) का प्रयोग करके वृत्ताकार छिद्र का स्पष्ट प्रतिबिंब परदे (MN) पर बनाइए।
 - टैंक में लगभग 2 L स्वच्छ जल लेकर 200 g सोडियम थायोसल्फेट (हाइपो) घोलिए। जल में लगभग 1 से 2 mL सांद्र सल्फ्यूरिक अम्ल डालिए। आप क्या देखते हैं?

चित्र 11.11 कोलॉइडल विलयन में प्रकाश के प्रकीर्णन का प्रेक्षण करने लिए एक प्रबंध

लगभग 2-3 मिनट के पश्चात आप सल्फर के सूक्ष्म कणों को अवक्षेपित होते देखेंगे। जैसे ही सल्फर के कण बनना प्रारंभ होते हैं, आप काँच के टैंक के तीन पार्श्वों (sides) से नीला प्रकाश देख पाएँगे। यह सल्फर के सूक्ष्म कोलॉइडी कणों द्वारा कम तरंगदैर्घ्य के प्रकाश के प्रकीर्णन के कारण है। काँच के टैंक के चौथे पार्श्व से, वृत्ताकार छिद्र की ओर से पारगत प्रकाश के रंग का प्रेक्षण कीजिए।


यह प्रेक्षण अति रोचक है, क्योंकि परदे पर पहले नारंगी-लाल और फिर चमकीला किरमिजी-लाल रंग दिखाई देता है।

यह क्रियाकलाप प्रकाश के प्रकीर्णन को निदर्शित करता है जिससे आपको आकाश के नीले रंग तथा सूर्योदय तथा सूर्यास्त के समय सूर्य के रक्ताभ प्रतीत होने को समझने में सहायता मिलती है।

विज्ञान

क्षितिज के समीप स्थित सूर्य से आने वाला प्रकाश हमारे नेत्रों तक पहुँचने से पहले पृथ्वी के वायुमंडल में वायु की मोटी परतों से होकर गुज़रता है (चित्र11.12)।

तथापि, जब सूर्य सिर से ठीक ऊपर (ऊर्ध्वस्थ) हो तो सूर्य से आने वाला प्रकाश, अपेक्षाकृत कम दूरी चलेगा। दोपहर के समय सूर्य श्वेत प्रतीत होता है क्योंकि नीले तथा बैंगनी वर्ण का बहुत थोड़ा भाग ही प्रकीर्ण हो पाता है। क्षितिज के समीप नीले तथा कम तरंगदैष्य्य के प्रकाश का अधिकांश भाग कणों द्वारा प्रकीर्ण हो जाता है। इसीलिए, हमारे नेत्रों तक पहुँचने वाला प्रकाश अधिक तरंगदैष्य्य का होता है। इससे सूर्योदय या सूर्यास्त के समय सूर्य रक्ताभ प्रतीत होता है।

चित्र 11.12 सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ प्रतीत होना

आपने क्या सीखा

- नेत्र की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित करके निकट तथा दूरस्थ वस्तुओं को फोकसित कर लेता है, नेत्र की समंजन क्षमता कहलाती है।
- वह अल्पतम दूरी जिस पर रखी वस्तु को नेत्र बिना किसी तनाव के सुस्पष्ट देख सकता है उसे नेत्र का निकट बिंदु अथवा सुस्पष्ट दर्शन की अल्पतम दूरी कहते हैं। सामान्य दृष्टि के वयस्क के लिए यह दूरी लगभग 25 cm होती है।
- दृष्टि के सामान्य अपवर्तक दोष हैं निकट-दृष्टि, दीर्घ-दृष्टि तथा जरा-दूरदृष्टिता। निकट-दृष्टि (निकट दृष्टिता दूर रखी वस्तु का प्रतिबिंब दृष्टिपटल के सामने बनता है) को उचित क्षमता के अवतल लेंस द्वारा संशोधित किया जाता है। दीर्घ-दृष्टि (दूरदृष्टिता पास रखी वस्तुओं के प्रतिबिंब दृष्टिपटल के पीछे बनते हैं) को उचित क्षमता के उत्तल लेंस द्वारा संशोधित किया जाता है। वृद्धावस्था में नेत्र की समंजन क्षमता घट जाती है।
- श्वेत प्रकाश का इसके अवयवी वर्णों में विभाजन विक्षेपण कहलाता हैं।
- प्रकाश के प्रकीर्णन के कारण आकाश का रंग नीला तथा सूर्योदय एवं सूर्यास्त के समय सूर्य रक्ताभ
 प्रतीत होता है।

अभ्यास

- 1. मानव नेत्र अभिनेत्र लेंस की फोकस दूरी को समायोजित करके विभिन्न दूरियों पर रखी वस्तुओं को फोकिसत कर सकता है। ऐसा हो पाने का कारण है—
 - (a) जरा-दूरदृष्टिता
 - (b) समंजन
 - (c) निकट-दृष्टि
 - (d) दीर्घ-दृष्टि

मानव नेत्र तथा रंगबिरंगा संसार

- 2. मानव नेत्र जिस भाग पर किसी वस्तु का प्रतिबिंब बनाते हैं वह है—
 - (a) कॉर्निया
 - (b) परितारिका
 - (c) पुतली
 - (d) दृष्टिपटल
- 3. सामान्य दृष्टि के वयस्क के लिए सुस्पष्ट दर्शन की अल्पतम दूरी होती है, लगभग-
 - (a) 25 m
 - (b) 2.5 cm
 - (c) 25 cm
 - (d) 2.5 m
- 4. अभिनेत्र लेंस की फोकस दूरी में परिवर्तन किया जाता है-
 - (a) पुतली द्वारा
 - (b) दृष्टिपटल द्वारा
 - (c) पक्ष्माभी द्वारा
 - (d) परितारिका द्वारा
- 5. किसी व्यक्ति को अपनी दूर की दृष्टि को संशोधित करने के लिए 5.5 डाइऑप्टर क्षमता के लेंस की आवश्यकता है। अपनी निकट की दृष्टि को संशोधित करने के लिए उसे +1.5 डाइऑप्टर क्षमता के लेंस की आवश्यकता है। संशोधित करने के लिए आवश्यक लेंस की फोकस दूरी क्या होगी—
 - (i) दूर की दृष्टि के लिए (ii) निकट की दृष्टि के लिए।
- 6. किसी निकट-दृष्टि दोष से पीड़ित व्यक्ति का दूर बिंदु नेत्र के सामने 80 cm दूरी पर है। इस दोष को संशोधित करने के लिए आवश्यक लेंस की प्रकृति तथा क्षमता क्या होगी?
- 7. चित्र बनाकर दर्शाइए कि दीर्घ-दृष्टि दोष कैसे संशोधित किया जाता है। एक दीर्घ-दृष्टि दोषयुक्त नेत्र का निकट बिंदु 1 m है। इस दोष को संशोधित करने के लिए आवश्यक लेंस की क्षमता क्या होगी? यह मान लीजिए कि सामान्य नेत्र का निकट बिंदु 25 cm है।
- 8. सामान्य नेत्र 25 cm से निकट रखी वस्तुओं को सुस्पष्ट क्यों नहीं देख पाते?
- 9. जब हम नेत्र से किसी वस्तु की दूरी को बढ़ा देते हैं तो नेत्र में प्रतिबिंब-दूरी का क्या होता है?
- 10. तारे क्यों टिमटिमाते हैं?
- 11. व्याख्या कीजिए कि ग्रह क्यों नहीं टिमटिमाते।
- 12. सूर्योदय के समय सूर्य रक्ताभ क्यों प्रतीत होता है?
- 13. किसी अतंरिक्षयात्री को आकाश नीले की अपेक्षा काला क्यों प्रतीत होता है?

विज्ञान

अध्याय 14 अर्जा के स्रोत

क्षा 9 में हमने यह सीखा था कि किसी भौतिक अथवा रासायनिक प्रक्रम के समय कुल ऊर्जा संरक्षित रहती है। तब फिर हम क्यों ऊर्जा संकट के विषय में इतना कुछ सुनते रहते हैं? ऊर्जा को यदि न तो उत्पन्न किया जा सकता है और न ही वह नष्ट होती है तो हमें कोई चिंता नहीं होनी चाहिए। हमें ऊर्जा के साधनों की चिंता किए बिना असीमित क्रियाकलाप करने में सक्षम होना चाहिए।

यदि हम याद करें कि हमने ऊर्जा के विषय में इसके अतिरिक्त और क्या-क्या सीखा है तो इस पहेली को हल किया जा सकता हैं। ऊर्जा के विविध रूप हैं तथा ऊर्जा के एक रूप को दूसरे रूप में परिवर्तित किया जा सकता है। उदाहरण के लिए, यदि हम किसी प्लेट को किसी ऊँचाई से गिराएँ तो प्लेट की स्थितिज ऊर्जा का अधिकांश भाग फर्श से टकराते समय ध्विन ऊर्जा में परिवर्तित हो जाता है। यदि हम किसी मोमबत्ती को जलाते हैं तो प्रक्रम अत्यधिक ऊष्माक्षेपी होती हैं और इस प्रकार जलने पर मोम की रासायिनक ऊर्जा, ऊष्मीय ऊर्जा तथा प्रकाश ऊर्जा में परिवर्तित हो जाती है। मोमबत्ती को जलाने पर, इन ऊर्जाओं के अतिरिक्त और क्या अन्य उत्पाद प्राप्त होते हैं?

किसी भी भौतिक अथवा रासायनिक प्रक्रम में कुल ऊर्जा अपरिवर्तित रहती है। परंतु यदि हम जलती हुई मोमबत्ती पर पुन: विचार करें तो क्या हम किसी भी प्रकार से अभिक्रिया में उत्पन्न ऊष्मा और प्रकाश को अन्य उत्पादों के साथ मिलाकर मोम के रूप में रासायनिक ऊर्जा को वापस प्राप्त कर सकते हैं?

आइए, अब एक अन्य उदाहरण लेते हैं। मान लीजिए हम 100 mL जल लेते हैं, जिसका ताप 348K (75 °C) है, और इसे किसी कमरे में रखा रहने देते हैं जिसका ताप 298 K (25 °C) है। कुछ समय पश्चात क्या होगा? क्या ऐसा कोई उपाय है जिसके द्वारा पर्यावरण में लुप्त हुई समस्त ऊष्मा को एकत्र करके जो जल एक बार ठंडा हो गया है उसे गरम किया जा सके?

ऐसे प्रत्येक उदाहरण के बारे में विचार करने पर हम यह पाएँगे कि प्रयोज्य रूप में उपलब्ध ऊर्जा चारों ओर के वातावरण में अपेक्षाकृत कम प्रयोज्य रूप में क्षयित हो जाती है। अत: कार्य करने के लिए जिस किसी ऊर्जा के स्रोत का उपयोग करते हैं वह उपभुक्त हो जाता है और उसका पुन: उपयोग नहीं किया जा सकता।

14.1 ऊर्जा का उत्तम स्रोत क्या है?

तब फिर किसे ऊर्जा का अच्छा स्रोत माना जाए? दैनिक जीवन में कार्य करने के लिए हम ऊर्जा के विविध स्रोतों का उपयोग करते हैं। रेलगाड़ियों को चलाने में हम डीज़ल उपयोग करते हैं। सड़कों के लैम्पों को दीप्तिमान बनाने में विद्युत का उपयोग करते हैं। साइकिल से विद्यालय जाने में पेशियों की ऊर्जा का उपयोग किया जाता हैं।

क्रियाकलाप 14.1

- प्रात:काल सोकर उठने से विद्यालय पहुँचने तक आप जिन ऊर्जाओं का उपयोग करते
 हैं, उनमें से ऊर्जा के किन्हीं चार रूपों की सुची बनाइए।
- इन विभिन्न रूपों की ऊर्जाओं को हम कहाँ से प्राप्त करते हैं?
- क्या हम इन्हें "ऊर्जा के म्रोत" कह सकते हैं? क्यों अथवा क्यों नहीं?

शारीरिक कार्यों को करने के लिए पेशीय ऊर्जा, विविध वैद्युत साधित्रों को चलाने के लिए विद्युत ऊर्जा, भोजन पकाने अथवा वाहनों को दौड़ाने के लिए रासायनिक ऊर्जा, ये सभी ऊर्जाएँ किसी न किसी ऊर्जा स्रोत से प्राप्त होती हैं। हमें यह जानना आवश्यक है कि ऊर्जा को उसके प्रयोज्य रूप में प्राप्त करने के लिए आवश्यक स्रोत का चयन किस प्रकार किया जाता है।

क्रियाकलाप 14.2

- उन विविध विकल्पों पर विचार कीजिए जो भोजन पकाने के लिए ईंधन का चयन करते समय हमारे पास होते हैं।
- किसी ईंधन को अच्छे ईंधन की श्रेणी में रखने का प्रयास करते समय आप किन मानदंडों पर विचार करेंगे?
- क्या तब आपकी पसंद भिन्न होती जब आप-
 - (a) वन में जीवन निर्वाह कर रहे होते?
 - (b) किसी सुदूर पर्वतीय ग्राम अथवा छोटे द्वीप पर जीवन निर्वाह कर रहे होते?
 - (c) नयी दिल्ली में जीवन निर्वाह कर रहे होते?
 - (d) पाँच शताब्दियों पहले जीवन निर्वाह कर रहे होते?
- उपरोक्त प्रत्येक परिस्थिति ईंधन की उपलब्धता की दृष्टि से किस प्रकार भिन्न थी?

उपरोक्त दोनों क्रियाकलापों को करने के पश्चात हमें यह ज्ञात होता है कि कुछ कार्यों को करने के लिए किसी विशेष ऊर्जा स्त्रोत अथवा ईंधन का चयन अनेक कारकों पर निर्भर करता है। उदाहरण के लिए, किसी ईंधन का चयन करते समय हमें स्वयं से इन प्रश्नों को पूछना चाहिए-

- (i) यह दहन में कितनी ऊष्मा मुक्त करता है?
- (ii) क्या यह अत्यधिक धुआँ उत्पन्न करता है?
- (iii) क्या यह आसानी से उपलब्ध है?

विज्ञान

क्या आप ईंधन के विषय में तीन और प्रासंगिक प्रश्न सोच सकते हैं? जितने भी वर्गों के ईंधन आज उपलब्ध हैं, यदि हमें उनका चयन करना हो तो वे कौन से कारक हैं जो किसी विशेष कार्य जैसे भोजन पकाने के लिए ईंधन का चयन करते समय, हमारे चयन के विकल्पों को सीमित कर देते हैं? क्या जिस ईंधन का चयन किया गया है वह किए जाने वाले कार्य पर भी निर्भर करता है? उदाहरण के लिए, क्या हम सर्दियों में भोजन पकाने के लिए एक ईंधन तथा कमरे को गरम करने के लिए कोई दूसरा ईंधन चुनेंगे?

इस प्रकार अब हम यह कह सकते हैं कि एक उत्तम ऊर्जा का स्रोत वह है, जो-

- प्रति एकांक आयतन अथवा प्रति एकांक द्रव्यमान अधिक कार्य करे।
- सरलता से सुलभ हो सके।
- भंडारण तथा परिवहन में आसान हो।
- कदाचित सबसे अधिक महत्वपूर्ण यह है कि वह सस्ता भी हो।

प्रश्न

- ऊर्जा का उत्तम स्रोत किसे कहते हैं:
- 2. उत्तम ईंधन किसे कहते हैं?
- 3. यदि आप अपने भोजन को गरम करने के लिए किसी भी ऊर्जा-स्रोत के उपयोग कर सकते हैं तो आप किसका उपयोग करेंगे और क्यों?

14.2 ऊर्जा के पारंपरिक स्रोत

14.2.1 जीवाश्मी ईंधन

प्राचीन काल में ऊष्मीय ऊर्जा का सबसे अधिक सामान्य म्रोत लकड़ी था। कुछ सीमित क्रियाकलापों के लिए पवन तथा बहते जल की ऊर्जा का भी उपयोग किया जाता था। क्या आप इनमें से कुछ उपयोग बता सकते हैं? ऊर्जा म्रोत के रूप में कोयले के उपयोग

ने औद्योगिक क्रांति को संभव बनाया। बढ़ते हुए उद्योगों ने समस्त विश्व में जीवन की गुणवत्ता में वृद्धि कर दी है। इसके कारण समस्त विश्व में ऊर्जा की माँग में भी आश्चर्यजनक दर से वृद्धि हो रही है। ऊर्जा की बढ़ती माँग की अधिकांश पूर्ति जीवाश्मी ईंधन-कोयला तथा पेट्रोलियम से की जाती थी। माँग में

वृद्धि के साथ-साथ इन ऊर्जा स्रोतों का उपयोग करने के लिए प्रौद्योगिकियों में भी विकास किए गए। परंतु ये ईंधन करोड़ों वर्षों में बने हैं तथा अब केवल इनके सीमित भंडार ही शेष हैं। जीवाश्मी ईंधन ऊर्जा के अनवीकरणीय स्रोत हैं, अत: इन्हें संरक्षित करने की आवश्यकता है। यदि हम इन ऊर्जा स्रोतों का उपयोग इसी चिंताजनक दर से करते रहेंगे तो हमारे ये भंडार शीघ्र ही रिक्त हो जाएँगे। ऐसी स्थिति को टालने के उद्देश्य से ऊर्जा के वैकल्पिक स्रोतों की खोज की गई। परंतु आज भी हम अपनी ऊर्जा की

चित्र 14.1 भारत में हमारी ऊर्जा की आवश्यकताओं के लिए ऊर्जा के प्रमुख स्रोतों को दर्शाने वाला वृत्तारेख

ऊर्जा के स्रोत

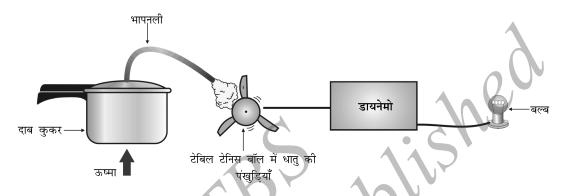
अधिकांश आवश्यकताओं की पूर्ति के लिए जीवाश्मी ईंधनों पर बहुत कुछ निर्भरता बनाए हुए हैं (चित्र 14.1)

जीवाश्मी ईंधन को जलाने की अन्य हानियाँ भी हैं। हमने कक्षा 9 में कोयले तथा पेट्रोलियम-उत्पादों को जलाने से होने वाले वायु प्रदूषण के बारे में सीखा था। जीवाश्मी ईंधन के जलने पर मुक्त होने वाले कार्बन, नाइट्रोजन तथा सल्फर के ऑक्साइड, अम्लीय ऑक्साइड होते हैं। इनसे अम्लीय वर्षा होती है जो हमारे जल तथा मृदा के संसाधनों को प्रभावित करती है। वायु प्रदूषण की समस्या के अतिरिक्त कार्बन डाइऑक्साइड जैसी गैसों के ग्रीन हाउस (पौधघर) प्रभाव को याद कीजिए।

इस पर विचार कीजिए!

यदि हमें विद्युत आपूर्ति न मिले तो हमारे जीवन में क्या परिवर्तन आ जाएगा। किसी भी देश में प्रत्येक व्यक्ति की विद्युत ऊर्जा की उपलब्धता उस देश के विकास के माप का एक प्राचल है।

जीवाश्मी ईंधन के जलाने के कारण उत्पन्न होने वाले प्रदूषण को कुछ सीमाओं तक दहन प्रक्रम की दक्षता में वृद्धि करके कम किया जा सकता है। इसी के साथ दहन के फलस्वरूप निकलने वाली हानिकर गैसों तथा राखों के वातावरण में पलायन को कम करने वाली विविध तकनीकों द्वारा घटाया जा सकता है। क्या आप यह जानते हैं कि जीवाश्मी ईंधन का गैस स्टोवों (चूल्हों) तथा वाहनों में प्रत्यक्ष रूप से उपयोग होने के अतिरिक्त विद्युत उत्पन्न करने के लिए भी प्रमुख ईंधन के रूप में उपयोग होता है। आइए, अब हम एक छोटा-सा संयंत्र बनाकर इससे कुछ विद्युत उत्पन्न करें और यह देखें कि ऊर्जा के इस सरल एवं उपयोगी रूप को उत्पन्न करने के लिए क्या-क्या करना होता है।


क्रियाकलाप 14/3

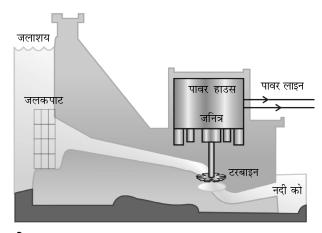
- एक टेबिल टेनिस की बॉल लीजिए और उसमें तीन झिरियाँ बनाइए।
- धातु की चादर से अर्धवृत्ताकार पंखुड़ियाँ काटिए और इन्हें बॉल की झिरियों में लगाइए।
 धातु का एक सीधा तार लेकर इसे बॉल के केंद्र से होकर गुजारिए तथा तार को धुरी की भाँति प्रयोग करके बॉल को कीलिकत कीजिए। यह सुनिश्चित कीजिए कि बॉल धुरी पर मुक्त रूप से घूर्णन करे।
- अब इसके साथ कोई साइकिल डायनेमो जोडिए।
- डायनेमो के साथ एक टॉर्च-बल्ब संयोजित कीजिए।
- पंखुड़ियों पर जल की धारा अथवा दाब कुकर में उत्पन्न भाप डालिए (चित्र 14.2)।
 आप क्या देखते हैं?

विद्युत उत्पन्न करने के लिए यह हमारा टरबाइन है। सरलतम टरबाइनों का गतिशील भाग रोटर-ब्लेड संयोजन है। गतिशील तरल, ब्लेडों (पंखुडियों) पर उन्हें घुमाने के लिए क्रिया करता है और रोटर को ऊर्जा प्रदान करता है। इस प्रकार हम देखते हैं कि मूल रूप से हमें रोटर की पंखुडियों को एक गित देनी होती है तािक वह यािंत्रक ऊर्जा को

विज्ञान

विद्युत ऊर्जा में रूपांतिरत करने के लिए डायनेमो के शैफ्ट को घुमा दे। विद्युत ऊर्जा, ऊर्जा का वह रूप है जो आज के परिदृश्य में एक आवश्यकता बन गई है। डायनेमो के शैफ्ट को घुमाने के विविध ढंग हो सकते हैं, परंतु किस ढंग को अपनाया जाए यह संसाधनों की उपलब्धता पर निर्भर करता है। निम्नलिखित अनुभागों में हम यह देखेंगे कि टरबाइन को घुमाकर विद्युत उत्पन्न करने के लिए ऊर्जा के विविध स्रोतों का किस प्रकार उपयोग किया जा सकता है।

चित्र 14.2 ताप विद्युत उत्पादन की प्रक्रिया को निदर्शित करने के लिए मॉडल


14.2.2 तापीय विद्युत संयंत्र

विद्युत संयंत्रों में प्रतिदिन विशाल मात्रा में जीवाश्मी ईंधन का दहन करके जल उबालकर भाप बनाई जाती है जो टरबाइनों को घुमाकर विद्युत उत्पन्न करती है। समान दूरियों तक कोयले तथा पेट्रोलियम के परिवहन की तुलना में विद्युत संचरण अधिक दक्ष होता है। यही कारण है कि बहुत से तापीय विद्युत संयंत्र कोयले तथा तेल के क्षेत्रों के निकट स्थापित किए गए हैं। इन संयंत्रों को तापीय विद्युत संयंत्र कहने का कारण यह है कि इन संयंत्रों में ईंधन के दहन द्वारा ऊष्मीय ऊर्जा उत्पन्न की जाती है जिसे विद्युत ऊर्जा में रूपांतरित किया जाता है।

14.2.3 जल विद्युत संयंत्र

ऊर्जा का एक अन्य पारंपिरक स्रोत बहते जल की गितज ऊर्जा अथवा किसी ऊँचाई पर स्थित जल की स्थितिज ऊर्जा है। जल विद्युत संयंत्रों में गिरते जल की स्थितिज ऊर्जा को विद्युत में रूपांतिरत किया जाता है। चूँिक ऐसे जल-प्रपातों की संख्या बहुत कम है जिनका उपयोग स्थितिज ऊर्जा के स्रोत के रूप में किया जा सके, अत: जल विद्युत संयंत्रों को बाँधों से संबद्ध किया गया है। पिछली शताब्दी में सारे विश्व में बहुत बड़ी संख्या में बाँध बनाए गए हैं जैसा कि हम चित्र 14.1 में देख सकते हैं। भारत में हमारी ऊर्जा की माँग के चौथाई भाग की पूर्ति जल विद्युत संयंत्रों द्वारा होती है।

जल विद्युत उत्पन्न करने के लिए निदयों के बहाव को रोककर बड़े जलाशयों (कृत्रिम झीलों) में जल एकत्र करने के लिए ऊँचे-ऊँचे बाँध बनाए जाते हैं। इन ऊर्ज के स्रोत

चित्र 14.3 जलवैद्युत संयंत्र का व्यवस्था दृश्य

जलाशयों में जल संचित होता रहता है जिसके फलस्वरूप इनमें भरे जल का तल ऊँचा हो जाता है। बाँध के ऊपरी भाग से पाइपों द्वारा जल, बाँध के आधार के पास स्थापित टरबाइन के ब्लेडों पर मुक्त रूप से गिरता है फलस्वरूप टरबाइन के ब्लेड घूर्णन गित करते हैं और जिनत्र द्वारा विद्युत उत्पादन होता है (देखिए चित्र 14.3)।

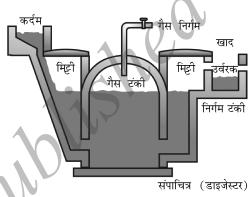
चूँकि हर बार जब भी वर्षा होती है, जलाशय पुन: जल से भर जाते हैं, इसीलिए जल विद्युत ऊर्जा एक नवीकरणीय ऊर्जा स्नोत है। अत: हमें जीवाश्मी ईंधन की भाँति, जो किसी न किसी दिन अवश्य समाप्त हो

जाएँगे, जल विद्युत स्रोतों के समाप्त होने की कोई चिंता नहीं होती।

परंतु, बड़े-बड़े बाँधों के निर्माण के साथ कुछ समस्याएँ भी जुड़ी हैं। बाँधों का केवल कुछ सीमित क्षेत्रों में ही निर्माण किया जा सकता है तथा इनके लिए पर्वतीय क्षेत्र अच्छे माने जाते हैं। बाँधों के निर्माण से बहुत-सी कृषियोग्य भूमि तथा मानव आवास इबने के कारण, नष्ट हो जाते हैं। बाँध के जल में डूबने के कारण बड़े-बड़े पारिस्थितिक तंत्र नष्ट हो जाते हैं। जो पेड़-पौधे, वनस्पित आदि जल में डूब जाते हैं वे अवायवीय परिस्थितियों में सड़ने लगते हैं और विघटित होकर विशाल मात्रा में मेथेन गैस उत्पन्न करते हैं जो कि एक ग्रीन हाउस गैस है। बाँधों के निर्माण से विस्थापित लोगों के संतोषजनक पुनर्वास व क्षतिपूर्ति की समस्या भी उत्पन्न हो जाती है। गंगा नदी पर टिहरी बाँध के निर्माण तथा नर्मदा नदी पर सरदार सरोवर बाँध के निर्माण की परियोजनाओं का विरोध इसी प्रकार की समस्याओं के कारण ही हुआ था।

14.2.4 ऊर्जा के पारंपरिक स्रोतों के उपयोग के लिए प्रौद्योगिकी में सुधार जैव-मात्रा (बायो-मास)

हम यह वर्णन कर ही चुके हैं कि प्राचीन काल से ही लकड़ी का ईंधन के रूप में उपयोग किया जाता रहा है। यदि हम यह सुनिश्चित कर लें कि पर्याप्त वृक्ष लगाए जाते रहेंगे तो जलाने की लकड़ी की निरंतर आपूर्ति संभव हो सकती है। ईंधन के रूप में उपलों के दहन से आप भलीभाँति परिचित हैं। भारत में पशुधन की विशाल संख्या भी हमें ईंधन के स्थायी स्रोत की उपलब्धता के बारे में आश्वस्त कर सकती है। चूँिक ये ईंधन पादप एवं जंतु उत्पाद हैं, अत: इन ईंधनों के स्रोत को हम जैव-मान्ना कहते हैं। परंतु ये ईंधन अधिक ऊष्मा उत्पन्न नहीं करते तथा इन्हें जलाने पर अत्यधिक धुआँ निकलता है इसीलिए, इन ईंधनों को दक्षता में वृद्धि के लिए प्रौद्योगिकी का सहारा आवश्यक है। जब लकड़ी को वायु की सीमित आपूर्ति में जलाते हैं तो उसमें उपस्थित जल तथा वाष्पशील पदार्थ बाहर निकल जाते हैं तथा अवशेष के रूप में चारकोल रह जाता है। चारकोल बिना ज्वाला के जलता है, इससे अपेक्षाकृत कम धुआँ निकलता है तथा इसकी ऊष्मा उत्पन्न करने की दक्षता भी अधिक होती है।



विज्ञान

इसी प्रकार गोबर, फसलों के कटने के पश्चात बचे अवशिष्ट, सब्ज़ियों के अपशिष्ट जैसे विविध पादप तथा वाहित मल जब ऑक्सीजन की अनुपस्थिति में अपघटित होते हैं तो बायो गैस (जैव गैस) निकलती है। चूँिक इस गैस को बनाने में उपयोग होने वाला आरंभिक पदार्थ मुख्यत: गोबर है, इसलिए इसका प्रचलित नाम "गोबर गैस" है। जैव गैस को एक संयंत्र में उत्पन्न किया जाता है जिसे चित्र 14.4 में दर्शाया गया है।

इस संयंत्र में ईंटों से बनी गुबंद जैसी संरचना होती है। जैव गैस बनाने के लिए मिश्रण टंकी में गोबर तथा जल का एक गाढ़ा घोल, जिसे कर्दम (slurry) कहते हैं,

बनाया जाता है जहाँ से इसे संपाचित्र (digester) में डाल देते हैं। संपाचित्र चारों ओर से बंद एक कक्ष होता है जिसमें ऑक्सीजन नहीं होती। अवायवीय सुक्ष्मजीव जिन्हें जीवित रहने के लिए ऑक्सीजन की आवश्यकता नहीं होती, गोबर की स्लरी के जटिल यौगिकों का अपघटन कर देते हैं। अपघटन-प्रक्रम पूरा होने तथा इसके फलस्वरूप मेथैन, कार्बन डाइऑक्साइड, हाइड्रोजन तथा हाइड्रोजन सल्फाइड जैसी गैसें उत्पन्न होने में कुछ दिन लगते हैं। जैव गैस को संपाचित्र के ऊपर बनी गैस टंकी में संचित किया जाता है। जैव गैस को गैस टंकी से उपयोग के लिए पाइपों द्वारा बाहर निकाल लिया जाता है।

चित्र 14.4

जैव गैस एक उत्तम ईंधन है क्योंकि इसमें 75 प्रतिशत तक मेथेन गैस होती है। यह *जैव गैस संयंत्र का व्यवस्था आरेख* धुआँ उत्पन्न किए बिना जलती है। लकडी, चारकोल तथा कोयले के विपरीत जैव गैस के जलने के पश्चात राख जैसा कोई अपशिष्ट शेष नहीं बचता। इसकी तापन क्षमता उच्च होती है। जैव गैस का उपयोग प्रकाश के स्रोत के रूप में भी किया जाता है।

जैवगैस संयंत्र में शेष बची स्लरी को समय-समय पर संयंत्र से बाहर निकालते हैं। इस स्लरी में नाइट्रोजन तथा फॉस्फोरस प्रचुर मात्रा में होते हैं, अत: यह एक उत्तम खाद के रूप में काम आती है। इस प्रकार जैव अपशिष्टों व वाहित मल के उपयोग द्वारा जैव गैस निर्मित करने से हमारे कई उद्देश्यों की पूर्ति हो जाती है। इससे हमें ऊर्जा का सुविधाजनक दक्ष स्रोत मिलता है, उत्तम खाद मिलती है और साथ ही अपशिष्ट पदार्थों के निपटारे का सुरक्षित उपाय भी मिल जाता है। जैव-मात्रा ऊर्जा का नवीकरणीय स्रोत है। क्या आप भी यही सोचते हैं?

पवन ऊर्जा

कक्षा 9 में हमने यह देखा कि किस प्रकार सुर्य के विकिरणों द्वारा भुखंडों तथा जलाशयों के असमान तप्त होने के कारण वायु में गित उत्पन्न होती है तथा पवनों का प्रवाह होता है। पवनों की गतिज ऊर्जा का उपयोग कार्यों को करने में किया जा सकता है। पवन ऊर्जा का उपयोग शताब्दियों से पवन-चिक्कयों द्वारा यांत्रिक कार्यों को करने में होता रहा है। उदाहरण के

चित्र 14.5 पवन-चक्की

ऊर्जा के स्रोत

लिए, किसी पवन-चक्की द्वारा प्रचालित जलपंप (पानी को ऊपर उठाने वाले पंपों) में पवन-चक्की की पंखुड़ियों की घूणीं गित का उपयोग कुओं से जल खींचने के लिए होता है। आजकल पवन ऊर्जा का उपयोग विद्युत उत्पन्न करने में भी किया जा रहा है। पवन-चक्की की संरचना वस्तुत: किसी ऐसे विशाल विद्युत पंखे के समान होती है जिसे किसी दृढ़ आधार पर कुछ ऊँचाई पर खड़ा कर दिया जाता है (चित्र 14.5)।

पवन-चक्की की घूर्णी गित का उपयोग विद्युत उत्पन्न करने के लिए विद्युत जिनत्र के टरबाइन को घुमाने के लिए किया जाता है। किसी एकल पवन चक्की का निर्गत (अर्थात उत्पन्न विद्युत) बहुत कम होता है जिसका व्यापारिक उपयोग संभव नहीं होता। अत: किसी विशाल क्षेत्र में बहुत-सी पवन-चिक्कयाँ लगाई जाती हैं तथा इस क्षेत्र को पवन ऊर्जा फार्म कहते हैं। व्यापारिक स्तर पर विद्युत प्राप्त करने के लिए किसी ऊर्जा फार्म की सभी पवन-चिक्कयों को परस्पर युग्मित कर लिया जाता है जिसके फलस्वरूप प्राप्त नेट ऊर्जा सभी पवन-चिक्कयों द्वारा उत्पन्न विद्युत ऊर्जाओं के योग के बराबर होती है।

डेनमार्क को "पवनों का देश" कहते हैं। देश की 25 प्रतिशत से भी अधिक विद्युत की पूर्ति पवन-चिक्कियों के विशाल नेटवर्क द्वारा विद्युत उत्पन्न करके की जाती है। जर्मनी भी इस क्षेत्र में अग्रणी है जबिक भारत का पवन ऊर्जा द्वारा विद्युत उत्पादन करने वाले देशों में पाँचवाँ स्थान है। यदि हम पवनों द्वारा विद्युत उत्पादन की अपनी क्षमता का पूरा उपयोग करें तो अनुमानों के अनुसार लगभग 45,000 MW विद्युत शिक्त का उत्पादन कर सकते हैं। तिमलनाडु में कन्याकुमारी के समीप भारत का विशालतम पवन ऊर्जा फार्म स्थापित किया गया है। यह 380 MW विद्युत उत्पन्न करता है।

पवन ऊर्जा नवीकरणीय ऊर्जा का एक पर्यावरणीय-हितैषी एवं दक्ष स्रोत है। इसके द्वारा विद्युत उत्पादन के लिए बार-बार धन खर्च करने की आवश्यकता नहीं होती। परंतु पवन ऊर्जा के उपयोग करने की बहुत-सी सीमाएँ हैं। पहली सीमा यह है कि पवन ऊर्जा फार्म केवल उन्हीं क्षेत्रों में स्थापित किए जा सकते हैं जहाँ वर्ष के अधिकांश दिनों में तीव्र पवन चलती हों। टरबाइन की आवश्यक चाल को बनाए रखने के लिए पवन की चाल भी 15 km/h से अधिक होनी चाहिए। इसके साथ ही संचायक सेलों जैसी कोई पूर्तिकर सुविधा भी होनी चाहिए जिसका उपयोग ऊर्जा की आवश्यकताओं की पूर्ति के लिए उस समय किया जा सके जब पवन नहीं चलती हों। ऊर्जा फार्म स्थापित करने के लिए एक विशाल भूखंड की आवश्यकता होती है। 1MW के जिनत्र के लिए पवन फार्म को लगभग 2 हेक्टेयर भूमि चाहिए। पवन ऊर्जा फार्म स्थापित करने की आरंभिक लागत अत्यधिक है। इसके अतिरिक्त पवन-चिक्कयों के दृढ़ आधार तथा पंखुड़ियाँ वायुमंडल में खुले होने के कारण अंधड़, चक्रवात, धूप, वर्षा आदि प्राकृतिक थपेड़ों को सहन करते हैं, अतः उनके लिए उच्च स्तर के रखरखाव की आवश्यकता होती है।

प्रश्न

- 1. जीवाश्मी ईंधन की क्या हानियाँ हैं?
- 2. हम ऊर्जा के वैकल्पिक स्रोतों की ओर क्यों ध्यान दे रहे हैं?
- हमारी सुविधा के लिए पवनों तथा जल ऊर्जा के पारंपिरक उपयोग में किस प्रकार के सुधार किए गए हैं?

14.3 वैकल्पिक अथवा गैर-परंपरागत ऊर्जा स्रोत

प्रौद्योगिकी में उन्नित के साथ ही हमारी ऊर्जा की माँग में दिन प्रतिदिन वृद्धि हो रही है। हमारी जीवन शैली में भी निरंतर परिवर्तन हो रहा है। हम अपने कार्यों को करने के लिए अधिकाधिक मशीनों का उपयोग करते हैं। जैसे-जैसे औद्योगीकरण से हमारा जीवन स्तर उन्नित हो रहा है हमारी मूल आवश्यकताओं में भी निरंतर वृद्धि हो रही है।

क्रियाकलाप 14.4

- अपने दादा-दादी अथवा अन्य वयोवृद्धों से यह पता लगाइए कि वे -
 - (a) अपने विद्यालय कैसे जाते थे?
 - (b) अपने बचपन में दैनिक आवश्यकताओं के लिए जल कैसे प्राप्त करते थे?
 - (c) मनोरंजन कैसे करते थे?
- उपरोक्त उत्तरों की तुलना इस प्रश्न के उत्तरों से कीजिए कि "अब आप इन कार्यों को कैसे करते हैं?"
- क्या इन उत्तरों में कोई अंतर है? यदि हाँ, तो किस स्थिति में बाह्य स्रोतों से अधिक ऊर्जा उपभुक्त हुई।

जैसे-जैसे हमारी ऊर्जा की माँग में वृद्धि होती जाती है, वैसे-वैसे ही हमें अधिक ऊर्जा म्रोतों की आवश्यकता होती है। हम उपलब्ध एवं ज्ञात ऊर्जा म्रोतों के अधिक दक्ष उपयोग के लिए प्रौद्योगिकी विकसित करते हैं तथा ऊर्जा के नए म्रोतों की खोज करते हैं। जिस किसी भी ऊर्जा के नए म्रोत को हम खोजते हैं उसी के उपयोग को मस्तिष्क में रखकर विशिष्ट युक्तियाँ विकसित की जाती हैं। अब हम ऊर्जा के उन नवीनतम म्रोतों पर जिनका हम उपयोग करना चाहते हैं तथा उस प्रौद्योगिकी की ओर जिसे इन म्रोतों से संचित ऊर्जा का दोहन करने के लिए डिज़ाइन किया गया है, अपनी दृष्टि डालेंगे।

इस पर विचार कीजिए!

कुछ लोग यह कहते हैं कि यदि हम अपने पूर्वजों की भाँति जीवनयापन करना आरंभ कर दें तो इससे हमारे ऊर्जा स्रोत तथा हमारा पारितंत्र संरक्षित रहेंगे। आपके विचार से क्या यह धारणा उचित है?

ऊर्जा के स्रोत

14.3.1 सौर ऊर्जा

सूर्य लगभग 5 करोड़ वर्ष से निरंतर वर्तमान दर पर विशाल मात्रा में ऊर्जा विकरित कर रहा है तथा इस दर से भविष्य में भी लगभग 5 करोड़ वर्ष तक ऊर्जा विकरित करता रहेगा। सौर ऊर्जा का केवल एक लघु भाग ही पृथ्वी के वायुमंडल की बाह्य परतों पर पहुँच पाता है। इसका लगभग आधा भाग वायुमंडल से गुजरते समय अवशोषित हो जाता है तथा शेष भाग पृथ्वी के पृष्ठ पर पहुँचता है।

भारत एक भाग्यशाली देश है क्योंकि वर्ष के अधिकांश दिनों में हमें सौर ऊर्जा प्राप्त होती है। लगाए गए अनुमानों के अनुसार हमारा देश प्रति वर्ष 500,000,000 करोड़ किलोवाट घंटा (अर्थात 5000 ट्रिलियन किलोवाट घंटा) सौर ऊर्जा प्राप्त करता है। स्वच्छ आकाश (बादल रहित) की स्थिति होने पर पृथ्वी के किसी क्षेत्र में प्रतिदिन प्राप्त होने वाली सौर ऊर्जा का औसत परिमाण 4 से 7 kWh/m² के बीच होता है। पृथ्वी के वायुमंडल की परिरेखा पर सूर्य की किरणों के लंबवत स्थित खुले क्षेत्र के प्रति एकांक क्षेत्रफल पर प्रति सेकंड पहुँचने वाली सौर ऊर्जा को सौर–स्थिरांक कहते हैं, जबिक इस क्षेत्र को सूर्य से पृथ्वी के बीच की औसत दूरी पर माना गया है। अनुमानत: इसका सिन्नकट मान 1.4 kJ प्रति सेकंड प्रति वर्गमीटर अथवा 1.4 kW/m² है।

क्रियाकलाप 14.5

- दो शंक्वाकर फ्लास्क लीजिए। इनमें से एक को काला तथा दूसरे को सफ़ेद पेंट से पोतिए। दोनों में जल भिरए।
- इन शंक्वाकार फ्लास्कों को एक से डेढ़ घंटे तक सीधे धूप में रिखए।
- दोनों फ्लास्कों को स्पर्श कीजिए। इनमें कौन तप्त है? आप इन दोनों फ्लास्कों के जल के ताप तापमापी द्वारा भी माप सकते हैं।
- क्या आप कोई ऐसा उपाय सोच सकते हैं जिसके द्वारा इस ज्ञान का उपयोग आप अपने दैनिक जीवन में कर सकें।

चित्र 14.6 सौर कुकर

सर्वसम परिस्थितियों में परावर्तक पृष्ठ अथवा श्वेत (सफ़ेद) पृष्ठ की तुलना में कृष्ण (काला) पृष्ठ अधिक ऊष्मा अवशोषित करता है। सौर कुकरों (चित्र 14.6) तथा सौर जल तापकों की कार्य विधि में इसी गुण का उपयोग किया जाता है। कुछ सौर कुकरों में सूर्य की किरणों को फोकसित करने के लिए दर्पणों का उपयोग किया जाता है जिससे इनका ताप और उच्च हो जाता है। सौर कुकरों में काँच की शीट का ढक्कन होता है। याद कीजिए पौध्यर प्रभाव के विषय में हमने क्या सीखा था। क्या इससे काँच के ढक्कन को उपयोग करने का कारण स्पष्ट होता है?

विज्ञान

130

和

जानते

ठुदा

क्रियाकलाप 14.6

- िकसी सौर कुकर और/अथवा सौर जल तापक की संरचना तथा कार्य प्रणाली का विशेषकर इस दृष्टि से अध्ययन कीजिए कि उसमें ऊष्मारोधन कैसे किया जाता है तथा अधिकतम ऊष्मा अवशोषण कैसे सुनिश्चित करते हैं।
- सस्ती सुलभ सामग्री का उपयोग करके किसी सौर कुकर अथवा सौर जल तापक का डिजाइन बनाकर उसकी संरचना कीजिए और यह जाँच किरए कि आपके इस निकाय में अधिकतम ताप कितना प्राप्त किया जा सकता है।
- सौर कुकरों अथवा सौर जल तापकों के उपयोग की सीमाओं एवं विशेषताओं पर चर्चा कीजिए।

यह सरलता से देखा जा सकता है कि ये युक्तियाँ दिन के कुछ निश्चित समयों पर ही उपयोगी होती हैं। सौर ऊर्जा के उपयोग की इस सीमा पर सौर सेलों का उपयोग करके पार पाया जाता है। सौर सेल सौर ऊर्जा को विद्युत ऊर्जा में रूपांतरित करते हैं। धूप में रखे जाने पर किसी प्ररूपी सौर सेल से 0.5-1.0 V तक वोल्टता विकसित होती है तथा लगभग 0.7 W विद्युत उत्पन्न कर सकते हैं। जब बहुत अधिक संख्या में सौर सेलों को संयोजित करते हैं तो यह व्यवस्था सौर पैनल कहलाती है (चित्र 14.7) जिनसे व्यावहारिक उपयोग के लिए पर्याप्त विद्युत प्राप्त हो जाती है।

सौर सेलों के साथ संबद्ध प्रमुख लाभ यह है कि इनमें कोई भी गितमान पुरजा नहीं होता, इनका रखरखाव सस्ता है तथा ये बिना किसी फोकसन युक्ति के काफी संतोषजनक कार्य करते हैं। सौर सेलों के उपयोग करने का एक अन्य लाभ यह है कि इन्हें सुदूर तथा अगम्य स्थानों में स्थापित किया जा सकता है। इन्हें ऐसे छितरे बसे हुए क्षेत्रों में भी स्थापित किया जा सकता है जहाँ शिक्त संचरण के लिए केबल बिछाना अत्यंत खर्चीला तथा व्यापारिक दृष्टि से व्यावहारिक नहीं होता।

सौर सेल बनाने के लिए सिलिकॉन का उपयोग किया जाता है जो प्रकृति में प्रचुर मात्रा में उपलब्ध हैं, परंतु सौर सेलों को बनाने में उपयोग होने वाले विशिष्ट श्रेणी के सिलिकॉन की उपलब्धता सीमित है। सौर सेलों के उत्पादन की समस्त प्रक्रिया अभी भी बहुत महँगी है। सौर सेलों को परस्पर संयोजित करके सौर पैनल बनाने में सिल्वर (चाँदी) का उपयोग होता है जिसके कारण लागत में और वृद्धि हो जाती है। उच्च लागत तथा कम दक्षता होने पर भी सौर सेलों का उपयोग बहुत से वैज्ञानिक तथा प्रौद्योगिक अनुप्रयोगों के लिए किया जाता है। मानव-निर्मित उपग्रहों तथा अंतरिक्ष अन्वेषक युक्तियों जैसे मार्स ऑबिंटरों में सौर सेलों का उपयोग प्रमुख ऊर्जा म्रोत के रूप में किया जाता है। रेडियो अथवा बेतार संचार तंत्रों अथवा सुदूर क्षेत्रों के टी.वी. रिले केंद्रों में सौर सेल पैनल उपयोग किए जाते हैं। ट्रैफिक सिग्नलों, परिकलकों तथा बहुत से खिलौनों में सौर सेल लगे होते हैं। सौर सेल पैनल विशिष्ट रूप से डिजाइन की गई आनत छतों पर स्थापित किए जाते हैं तािक इन पर अधिक से अधिक सौर ऊर्जा आपितत हो। तथािप अत्यधिक महँगा होने के कारण सौर सेलों का घरेलू उपयोग अभी तक सीिमत है।

चित्र 14.7 सौर पैनल

ऊर्जा के स्रोत

14.3.2 समुद्रों से ऊर्जा

ज्वारीय ऊर्जा

घूर्णन गित करती पृथ्वी पर मुख्य रूप से चंद्रमा के गुरुत्वीय खिंचाव के कारण सागरों में जल का स्तर चढ़ता व गिरता रहता है। यदि आप समुद्र के निकट रहते हैं अथवा कभी समुद्र के निकट किसी स्थान पर जाते हैं तो प्रयास कीजिए कि आप यह प्रेक्षण कर सकें कि समुद्र में जल का स्तर दिन में किस प्रकार परिवर्तित होता है। इस परिघटना को ज्वार-भाटा कहते हैं। ज्वार-भाटे में जल के स्तर के चढ़ने तथा गिरने से हमें ज्वारीय ऊर्जा प्राप्त होती है। ज्वारीय ऊर्जा का दोहन सागर के किसी संकीर्ण क्षेत्र पर बाँध का निर्माण करके किया जाता है। बाँध के द्वार पर स्थापित टरबाइन ज्वारीय ऊर्जा को विद्युत ऊर्जा में रूपांतरित कर देती है। आप स्वयं यह अनुमान लगा सकते हैं कि इस प्रकार के बाँध निर्मित किए जा सकने वाले स्थान सीमित हैं।

तरंग ऊर्जा

इसी प्रकार, समुद्र तट के निकट विशाल तरंगों की गतिज ऊर्जा को भी विद्युत उत्पन्न करने के लिए इसी ढंग से ट्रेप किया जा सकता है। महासागरों के पृष्ठ पर आर-पार बहने वाली प्रबल पवन तरंगें उत्पन्न करती है। तरंग ऊर्जा का वहीं पर व्यावहारिक उपयोग हो सकता है जहाँ तरंगें अत्यंत प्रबल हों। तरंग ऊर्जा को ट्रेप करने के लिए विविध युक्तियाँ विकसित की गई हैं तािक टरबाइन को घुमाकर विद्युत उत्पन्न करने के लिए इनका उपयोग किया जा सके।

महासागरीय तापीय ऊर्जा

समुद्रों अथवा महासागरों के पृष्ठ का जल सूर्य द्वारा तप्त हो जाता है जबिक इनके गहराई वाले भाग का जल अपेक्षाकृत ठंडा होता है। ताप में इस अंतर का उपयोग सागरीय तापीय ऊर्जा रूपांतरण विद्युत संयंत्र (Ocean Thermal Energy Conversion Plant या OTEC विद्युत संयंत्र) में ऊर्जा प्राप्त करने के लिए किया जाता है। OTEC विद्युत संयंत्र केवल तभी प्रचालित होते हैं जब महासागर के पृष्ठ पर जल का ताप तथा 2 km तक की गहराई पर जल के ताप में 20 °C का अंतर हो। पृष्ठ के तप्त जल का उपयोग अमोनिया जैसे वाष्पशील द्रवों को उबालने में किया जाता है। इस प्रकार बनी द्रवों की वाष्प फिर जितत्र के टरबाइन को घुमाती है। महासागर की गहराइयों से ठंडे जल को पंपों से खींचकर वाष्प को ठंडा करके फिर से द्रव में संघिनत किया जाता है।

महासागरों की ऊर्जा की क्षमता (ज्वारीय-ऊर्जा, तरंग-ऊर्जा तथा महासागरीय-तापीय ऊर्जा) अति विशाल है परंतु इसके दक्षतापूर्ण व्यापारिक दोहन में कठिनाइयाँ हैं।

14.3.3 भूतापीय ऊर्जा

भौमिकीय परिवर्तनों के कारण भूपर्पटी में गहराइयों पर तप्त क्षेत्रों में पिघली चट्टानें ऊपर धकेल दी जाती हैं जो कुछ क्षेत्रों में एकत्र हो जाती हैं। इन क्षेत्रों को **तप्त स्थल** कहते हैं। जब भूमिगत जल इन तप्त स्थलों के संपर्क में आता है तो भाप उत्पन्न होती है।

विज्ञान

कभी-कभी इस तप्त जल को पृथ्वी के पृष्ठ से बाहर निकलने के लिए निकास मार्ग मिल जाता है। इन निकास मार्गों को गरम चश्मा अथवा ऊष्ण स्रोत कहते हैं। कभी-कभी यह भाप चट्टानों के बीच में फँस जाती है जहाँ इसका दाब अत्यधिक हो जाता है। तप्त स्थलों तक पाइप डालकर इस भाप को बाहर निकाल लिया जाता है। उच्च दाब पर निकली यह भाप विद्युत जिनत्र की टरबाइन को घुमाती है जिससे विद्युत उत्पादन करते हैं। इसके द्वारा विद्युत उत्पादन की लागत अधिक नहीं है परंतु ऐसे बहुत कम क्षेत्र हैं जहाँ व्यापारिक दृष्टिकोण से इस ऊर्जा का दोहन करना व्यावहारिक है। न्यूजीलैंड तथा संयुक्त राज्य अमेरिका में भूतापीय ऊर्जा पर आधारित कई विद्युत शिक्त संयंत्र कार्य कर रहे हैं।

14.3.4 नाभिकीय ऊर्जा

10

जानप

आप

ठुदा

नाभिकीय ऊर्जा कैसे उत्पन्न होती है? नाभिकीय विखंडन अभिक्रिया एक ऐसी प्रक्रिया है जिसमें किसी भारी परमाणु (जैसे यूरेनियम, प्लूटोनियम अथवा थोरियम) के नाभिक को निम्न ऊर्जा न्यूट्रॉन से बमवारी कराकर हलके नाभिकों में तोड़ा जा सकता है। जब ऐसा किया जाता है तो विशाल मात्रा में ऊर्जा मुक्त होती है। यह तब होता है जब मूल नाभिक का द्रव्यमान व्यष्टिगत उत्पादों के द्रव्यमानों के योग से कुछ ही अधिक होता है। उदाहरण के लिए यूरेनियम, के एक परमाणु के विखंडन में जो ऊर्जा मुक्त होती है वह कोयले के किसी कार्बन परमाणु के दहन से उत्पन्न ऊर्जा की तुलना में । करोड़ गुनी अधिक होती है। विद्युत उत्पादन के लिए डिज़ाइन किए जाने वाले नाभिकीय संयंत्रों में इस प्रकार के नाभिकीय ईंधन स्वपोषी विखंडन शृखंला अभिक्रिया का एक भाग होते हैं जिनमें नियंत्रित दर पर ऊर्जा मुक्त होती है। इस मुक्त ऊर्जा का उपयोग भाप बनाकर विद्युत उत्पन्न करने में किया जा सकता है।

}^^^^^^

नाभिकीय विखंडन अभिक्रिया में मूल नाभिक तथा उत्पाद नाभिकों के द्रव्यमानों का अंतर Δm , ऊर्जा E में परिवर्तित हो जाता है। इस ऊर्जा E की दर सन् 1905 में अलबर्ट आइंस्टीन द्वारा सर्वप्रथम व्युत्पन्न विख्यात समीकरण $E=\Delta m \, c^2$; द्वारा नियंत्रित की जाती है, यहाँ c प्रकाश की निर्वात में चाल है। नाभिकीय विज्ञान में ऊर्जा को प्राय: इलेक्ट्रॉन वोल्ट (eV) के मात्रकों में व्यक्त किया जाता है : $1 \, \text{eV} = 1.602 \, 10^{-19} \, \text{J}$ । उपरोक्त समीकरण द्वारा यह आसानी से जाँचा जा सकता है कि 1 (एकीकृत) परमाणु द्रव्यमान मात्रक (u) लगभग 931 मेगा इलेक्ट्रॉन वोल्ट (MeV) ऊर्जा के तुल्य होता है। तारापुर (महाराष्ट्र), राणा प्रताप सागर (राजस्थान), कलपक्कम (तिमलनाडु) नरौरा (उत्तर प्रदेश), काकरापार (गुजरात) तथा कैगा (कर्नाटक) पर स्थित नाभिकीय विद्युत संयंत्रों की प्रतिष्ठापित क्षमता हमारे देश की कुल विद्युत उत्पादन क्षमता की मात्रा 3% से भी कम है। तथापि, बहुत से औद्योगीकृत देश अपनी कुल विद्युत शक्ति की आवश्यकता की 30% से भी अधिक की पूर्ति नाभिकीय विद्युत संयंत्रों से कर रहे हैं।

नाभिकीय विद्युत शक्ति संयंत्रों का प्रमुख संकट पूर्णत: उपयोग होने के पश्चात शेष बचे नाभिकीय ईंधन का भंडारण तथा निपटारा करना है क्योंकि शेष बचे ईंधन का यूरेनियम अब भी हानिकारक (घातक) कणों (विकिरणों) में क्षयित होता है। यदि

ऊर्जा के स्रोत

नाभिकीय अपशिष्टों का भंडारण तथा निपटारा उचित प्रकार से नहीं होता तो इससे पर्यावरण संदूषित हो सकता है। इसके अतिरिक्त नाभिकीय विकिरणों के आकस्मिक रिसाव का खतरा भी बना रहता है। नाभिकीय विद्युत शिक्त संयंत्रों के प्रतिष्ठापन की अत्यधिक लागत, पर्यावरणीय संदूषण का प्रबल खतरा तथा यूरेनियम की सीमित उपलब्धता बृहत स्तर पर नाभिकीय ऊर्जा के उपयोग को निषेधक बना देते हैं।

नाभिकीय विद्युत शक्ति संयंत्रों के निर्माण से पूर्व नाभिकीय ऊर्जा का उपयोग पहले विनाश के लिए किया गया। किसी नाभिकीय हथियार में होने वाली शृंखला विखंडन अभिक्रिया का मूल सिद्धांत नियंत्रित नाभिकीय रिएक्टर के सिद्धांत के समान है, परंतु दोनों प्रकार की युक्तियों का निर्माण एक-दूसरे से पूर्णत: भिन्न होता है।

नाभिकीय संलयन

आजकल के सभी व्यापारिक नाभिकीय रिएक्टर नाभिकीय विखंडन पर आधारित हैं। परंतु एक अन्य अपेक्षाकृत सुरक्षित प्रक्रिया जिसे नाभिकीय संलयन कहते हैं, द्वारा भी नाभिकीय ऊर्जा उत्पन्न करने की संभावना व्यक्त की जा रही है। संलयन का अर्थ है दो हलके नाभिकों को जोड़कर एक भारी नाभिक बनाना जिसमें सामान्यत: हाइड्रोजन अथवा हाइड्रोजन समस्थानिकों से हीलियम उत्पन्न की जाती है। ²H+²H→ ³He (+ n)

इसमें भी आइंस्टीन समीकरण के अनुसार विशाल परिमाण की ऊर्जा निकलती है। ऊर्जा निकलने का कारण यह है कि अभिक्रिया में उत्पन्न उत्पाद का द्रव्यमान, अभिक्रिया में भाग लेने वाले मूल नाभिकों के व्यष्टिगत द्रव्यमानों के योग से कुछ कम होता है।

इस प्रकार की नाभिकीय संलयन अभिक्रियाएँ सूर्य तथा अन्य तारों की विशाल ऊर्जा का स्रोत हैं। नाभिकीय संलयन अभिक्रियाओं में नाभिकों को परस्पर संलयित होने को बाध्य करने के लिए अत्यधिक ऊर्जा चाहिए। नाभिकीय संलयन प्रक्रिया के होने के लिए आवश्यक शर्तें चरम कोटि की हैं- मिलियन कोटि केल्विन ताप तथा मिलियन कोटि पास्कल दाब।

हाइड्रोजन बम "ताप नाभिकीय अभिक्रिया" पर आधारित होता है। हाइड्रोजन बम के क्रोड में यूरेनियम अथवा प्लूटोनियम के विखंडन पर आधारित किसी नाभिकीय बम को रख देते हैं। यह नाभिकीय बम ऐसे पदार्थ में अंत:स्थापित किया जाता है जिनमें ड्यूटीरियम तथा लीथियम होते हैं। जब इस नाभिकीय बम (जो विखंडन पर आधारित है) को अधिविस्फोटित करते हैं तो इस पदार्थ का ताप कुछ ही माइक्रोसेकंड में $10^7 \mathrm{K}$ तक बढ़ जाता है। यह अति उच्च ताप हलके नाभिकों को संलयित होने के लिए पर्याप्त ऊर्जा उत्पन्न कर देता है जिसके फलस्वरूप अति विशाल परिमाण की ऊर्जा मुक्त होती है।

क्रियाकलाप 14.7

- कक्षा में इस प्रश्न पर चर्चा कीजिए कि महासागरीय तापीय ऊर्जा, पवनों तथा जैव मात्रा की ऊर्जाओं का अंतिम स्रोत क्या है?
- क्या इस संदर्भ में भूतापीय ऊर्जा तथा नाभिकीय ऊर्जा भिन्न हैं? क्यों?
- आप जल विद्युत ऊर्जा तथा तरंग ऊर्जा को किस श्रेणी में रखेंगे?

विज्ञान

प्रश्न

- सौर कुकर के लिए कौन-सा दर्पण-अवतल, उत्तल अथवा समतल-सर्वाधिक उपयुक्त होता है? क्यों?
- 2. महासागरों से प्राप्त हो सकने वाली ऊर्जाओं की क्या सीमाएँ हैं?
- 3. भूतापीय ऊर्जा क्या होती है?
- 4. नाभिकीय ऊर्जा का क्या महत्व है?

14.4 पर्यावरण विषयक सरोकार

पिछले अनुभाग में हमने ऊर्जा के विविध स्रोतों के विषय में अध्ययन किया था। इनमें से किसी भी प्रकार की ऊर्जा का दोहन पर्यावरण में किसी न किसी रूप में विक्षोभ उत्पन्न करता है। किसी भी परिस्थिति में जब हम किसी ऊर्जा स्रोत का चयन करते हैं तो वह निम्नलिखित कारकों पर निर्भर करता है–

- -उस ऊर्जा स्रोत से ऊर्जा प्राप्त करने में सरलता,
- -उस ऊर्जा स्रोत से ऊर्जा प्राप्त करने में मितव्ययता,
- -उस ऊर्जा स्रोत से ऊर्जा प्राप्त करने की उपलब्ध प्रौद्योगिकी की दक्षता, तथा
- -उस ऊर्जा स्रोत को उपयोग करने से पर्यावरण को होने वाली क्षति।

यद्यपि हम CNG (संपीडित प्राकृतिक गैस) जैसे "स्वच्छ" ईंधन के विषय में बात करते हैं, परंतु यह कहना अधिक सही होता है कि कौन-सा म्रोत किस म्रोत की अपेक्षा अधिक स्वच्छ है। हम यह पहले ही देख चुके हैं कि जीवाश्मी ईंधन जलाने से वायु प्रदूषित होती है। कुछ प्रकरणों में जैसे सौर-सेल जैसी कुछ युक्तियों का वास्तविक प्रचालन प्रदूषण मुक्त हो सकता है। परंतु यह हो सकता है कि उस युक्ति के संयोजन में पर्यावरणीय क्षित हुई हो। इस क्षेत्र में निरंतर अनुसंधान हो रहे हैं और इस प्रकार की युक्तियों के निर्माण के लिए प्रयास किए जा रहे हैं जो अधिक समय तक कार्य कर सकें तथा अपने समस्त कार्यकाल में कम से कम क्षित पहुँचाएँ।

क्रियाकलाप 14.8

- विविध ऊर्जा स्रोतों के विषय में जानकारी एकत्र कीजिए तथा ज्ञात कीजिए कि उनमें से प्रत्येक पर्यावरण को किस प्रकार प्रभावित करता है?
- प्रत्येक ऊर्जा स्रोत के लाभ तथा हानियों पर वाद-विवाद कीजिए तथा इस आधार पर ऊर्जा का सर्वोत्तम स्रोत चुनिए।

प्रश्न

- 1. क्या कोई ऊर्जा स्रोत प्रदूषण मुक्त हो सकता है? क्यों अथवा क्यों नहीं?
- रॉकेट ईंधन के रूप में हाइड्रोजन का उपयोग किया जाता रहा है? क्या आप इसे CNG की तुलना में अधिक स्वच्छ ईंधन मानते हैं? क्यों अथवा क्यों नहीं?

?

135

ऊर्जा के स्रोत

14.5 कोई ऊर्जा स्रोत हमारे लिए कब तक बना रह सकता है?

हमने पहले यह देख लिया है कि हम अधिक समय तक जीवाश्मी ईंधन पर निर्भर नहीं रह सकते। इस प्रकार के स्रोतों को जो किसी न किसी दिन समाप्त हो जाएँगे, उन्हें ऊर्जा के समाप्य स्रोत अथवा अनवीकरणीय स्रोत कहते हैं। इसके विपरीत, यदि हम लकड़ी जलाने में उपयोग होने वाले वृक्षों को प्रतिस्थापित करके जैवमात्रा का प्रबंधन उचित प्रकार से करें, तो हम किसी निश्चित दर पर ऊर्जा की नियत आपूर्ति सुनिश्चित कर सकते हैं। इस प्रकार के ऊर्जा स्रोत जिनका पुनर्जनन हो सकता है, उन्हें ऊर्जा के नवीकरणीय स्रोत कहते हैं।

हमारे प्राकृतिक पर्यावरण में नवीकरणीय ऊर्जा उपलब्ध है। यह ऊर्जा, ऊर्जा की संतत अथवा आवर्ती धाराओं के रूप में, अथवा भूमिगत भंडारों में इतनी विशाल मात्रा में संचित है कि इन भंडारों के खाली होने की दर व्यावहारिक दृष्टि से नगण्य है।

क्रियाकलाप 14.9

- कक्षा में इन समस्याओं पर वाद-विवाद कीजिए-
 - (a) यह कहा जाता है कि अनुमानत: कोयले के भंडार आने वाले दो सौ वर्ष के लिए पर्याप्त हैं। क्या इस प्रकरण में हमें चिंता करने की आवश्यकता है कि हमारे कोयले के भंडार रिक्त होते जा रहे हैं? क्यों अथवा क्यों नहीं?
- (b) ऐसा अनुमान है कि सूर्य आगामी 5 करोड़ वर्ष तक जीवित रहेगा। क्या हमें यह चिंता करनी चाहिए कि सौर ऊर्जा समाप्त हो रही है? क्यों अथवा क्यों नहीं?
 वाद-विवाद के आधार पर यह निर्णय लीजिए कि कौन-सा ऊर्जा म्रोत (a) समाप्य
 (b) अक्षय (c) नवीकरणीय तथा (d) अनवीकरणीय है। प्रत्येक चयन के लिए अपना तर्क दीजिए।

प्रश्न

- ऐसे दो ऊर्जा स्रोतों के नाम लिखिए जिन्हें आप नवीकरणीय मानते हैं। अपने चयन के लिए तर्क दीजिए।
- 2. ऐसे दो ऊर्जा स्रोतों के नाम लिखिए जिन्हें आप समाप्य मानते हैं। अपने चयन के लिए तर्क दीजिए।

आपने क्या सीखा

- हमारी जीवन शैली के स्तर में वृद्धि के साथ हमारी ऊर्जा की आवश्यकताओं में वृद्धि होती है।
- हमारी ऊर्जा की आवश्यकताओं की पूर्ति करने के लिए हमें ऊर्जा के उपयोग की दक्षता में सुधार का
 प्रयास करना चाहिए। साथ ही हमें ऊर्जा के नए स्रोतों को परखना एवं उनका दोहन भी करना चाहिए।

विज्ञान

- हमें ऊर्जा के नवीन स्रोतों की ओर ध्यान देने की आवश्यकता है क्योंकि, हमारे पारंपिरक ऊर्जा स्रोत जैसे जीवाश्मी ईंधन संकटग्रस्त हैं और शीघ्र ही समाप्त हो जाएँगे।
- हमारा ऊर्जा स्रोत का चयन उपलब्धता में सरलता, ऊर्जा निष्कर्षण की लागत, ऊर्जा स्रोत के उपयोग की उपलब्ध प्रौद्योगिकी की दक्षता, ऊर्जा स्रोत के उपयोग का पर्यावरण पर प्रभाव जैसे कारकों पर निर्भर करता है।
- हमारे अधिकांश ऊर्जा स्रोत अंततः सूर्य से प्राप्त ऊर्जा से व्युत्पन्न होते हैं।

अभ्यास

1. गर्म जल प्राप्त करने के लिए हम सौर जल तापक का उपयोग किस दिन नहीं कर सकते-

(a) धूप वाले दिन

(b) बादलों वाले दिन

(c) गरम दिन

(d) पवनों (वायु) वाले दिन

2. निम्नलिखित में से कौन जैवमात्रा ऊर्जा स्रोत का उदाहरण नहीं है-

(a) लकड़ी

(b) गोबर गैस

(c) नाभिकीय ऊर्जा

(d) कोयला

3. जितने ऊर्जा स्रोत हम उपयोग में लाते हैं उनमें से अधिकाश सौर ऊर्जा को निरूपित करते हैं। निम्नलिखित में से कौन-सा ऊर्जा स्रोत अंतत: सौर ऊर्जा से व्युत्पन्न नहीं है–

(a) भूतापीय ऊर्जा

(b) पवन ऊर्जा

(c) नाभिकीय ऊर्जा

(d) जैवमात्रा

4. ऊर्जा स्रोत के रूप में जीवाश्मी ईंधनों तथा सूर्य की तुलना कीजिए और उनमें अंतर लिखिए।

5. जैवमात्रा तथा ऊर्जा स्रोत के रूप में जल वैद्युत की तुलना कीजिए और उनमें अंतर लिखिए।

6. निम्नलिखित से ऊर्जा निष्कर्षित करने की सीमाएँ लिखिए–

(a) पवनें

(b) तरंगें

(c) ज्वार-भाटा

7. ऊर्जा स्रोतों का वर्गीकरण निम्नलिखित वर्गों में किस आधार पर करेंगे-

(a) नवीकरणीय तथा अनवीकरणीय

(b) समाप्य तथा अक्षय

क्या (a) तथा (b) के विकल्प समान हैं?

8. ऊर्जा के आदर्श स्रोत में क्या गुण होते हैं?

9. सौर कुकर का उपयोग करने के क्या लाभ तथा हानियाँ हैं? क्या ऐसे भी क्षेत्र हैं जहाँ सौर कुकरों की सीमित उपयोगिता है?

10. ऊर्जा की बढ़ती माँग के पर्यावरणीय परिणाम क्या हैं? ऊर्जा की खपत को कम करने के उपाय लिखिए।

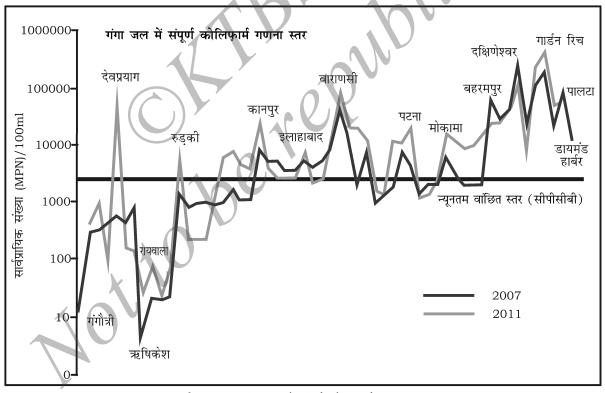
ऊर्जा के स्रोत

अध्याय 16 प्राकृतिक संसाधनों का संपोषित प्रबंधन 🔨

कृति के साथ सद्भाव में रहना हमारे लिए नया नहीं है। जीवन हमेशा भारत की परंपरा और संस्कृति का अभिन्न अंग रहा है। यह हमारी संपोषित लंबी परंपराओं और प्रथाओं, रीति-रिवाजों, कला व शिल्प, त्यौहार, भोजन, आस्थाओं, अनुष्ठान व लोकगीत के साथ एकीकृत है। हमें यह दर्शन है कि "संपूर्ण प्राकृतिक संसार सद्भाव में रहे" जो संस्कृत के प्रसिद्ध वाक्यांश "वसुधैव कुटुम्बकम" में परिलक्षित होता है जिसका अर्थ है "संपूर्ण पृथ्वी एक परिवार है।" इस वाक्यांश का उल्लेख महाउपनिषद् में मिलता है जो शायद प्राचीन भारतीय साहित्य "अथवं वेद" का ही एक हिस्सा है।

कक्षा 9 में हमने प्राकृतिक संसाधनों जैसे कि मृदा, वायु एवं जल के बारे में पढ़ा तथा यह भी जाना कि विभिन्न संघटकों का प्रकृति में बार-बार चक्रण किस प्रकार होता है? पिछले अध्याय में हमने यह भी पढ़ा कि हमारे क्रियाकलापों से इन संसाधनों का प्रदूषण हो रहा है। इस अध्याय में हम कुछ संसाधनों के बारे में जानेंगे तथा यह भी जानेंगे कि हम किस प्रकार उनका उपयोग कर रहे हैं? हो सकता है हम यह भी सोचें कि हमें अपने संसाधनों का उपयोग इस प्रकार करना चाहिए जिससे संसाधनों का संपोषण हो सके और हम अपने पर्यावरण का संरक्षण भी कर सकें। हम वन, वन्य जीवन, जल, कोयला तथा पेट्रोलियम जैसे प्राकृतिक संसाधनों की चर्चा करेंगे तथा उन समस्याओं पर भी विचार करेंगे कि संपोषित विकास हेतु इन संसाधनों का प्रबंधन किस प्रकार किया जाए?

हम अक्सर ही पर्यावरणीय समस्याओं के बारे में सुनते या पढ़ते हैं। यह अधिकतर वैश्विक समस्याएँ हैं तथा इनके समाधान अथवा परिवर्तन में हम अपने आपको असहाय पाते हैं। इनके लिए अनेक अंतर्राष्ट्रीय कानून एवं विनियमन हैं तथा हमारे देश में भी पर्यावरण संरक्षण हेतु अनेक कानून हैं। अनेक राष्ट्रीय एवं अंतर्राष्ट्रीय संगठन भी पर्यावरण संरक्षण हेतु कार्य कर रहे हैं।


क्रियाकलाप 16.1

- कार्बन डाइऑक्साइड के उत्सर्जन के विनियमन के लिए अंतर्राष्ट्रीय मानक का पता लगाइए।
- इस विषय पर कक्षा में चर्चा कीजिए कि हम इन मानकों को प्राप्त करने हेतु किस प्रकार सहयोग कर सकते हैं?

क्रियाकलाप 16.2

- ऐसे अनेक संगठन हैं जो पर्यावरण के प्रति जागरूकता फैलाने में लगे हैं। वे ऐसे क्रियाकलापों का भी प्रोत्साहन करते हैं जिससे हमारे पर्यावरण एवं प्राकृतिक संरक्षण को बढ़ावा मिलता है। अपने आसपास के क्षेत्र/शहर/कस्बे/गाँव में कार्य करने वाले संगठनों के बारे में जानकारी प्राप्त कीजिए।
- पता लगाइए कि इस उद्देश्य की प्राप्ति के लिए आप क्या योगदान दे सकते हैं।

संसाधनों के अविवेकपूर्ण दोहन (नि:शेषण) से उत्पन्न समस्याओं के विषय में जागरूकता हमारे समाज में अपेक्षाकृत एक नया आयाम है। जब यह जागरूकता बढ़ती है तो कुछ न कुछ कदम भी उठाए जाते हैं। आपने गंगा सफ़ाई योजना के विषय में अवश्य ही सुना होगा। कई करोड़ की यह योजना करीब 1985 में इसलिए प्रारंभ की गई क्योंकि गंगा के जल की गुणवत्ता बहुत कम हो गई थी (चित्र 16.1)। कोलिफार्म जीवाणु का एक वर्ग है जो मानव की आंत्र में पाया जाता है, जल में इसकी उपस्थिति, इस रोगजन्य सूक्ष्म जीवाणु द्वारा जल का संदूषित होना दर्शाता है।

चित्र 16.1 गंगा जल में संपूर्ण कोलिफ़ार्म गणना स्तर

स्रोत: केंद्रीय प्रदूषण नियंत्रण बोर्ड, 2012

गंगा का प्रदूषण

गंगा हिमालय में स्थित अपने उदगम गंगोत्री से बंगाल की खाड़ी में गंगा सागर तक 2500 km तक की यात्रा करती है। इसके किनारे स्थित उत्तर प्रदेश, बिहार तथा बंगाल के 100 से भी अधिक नगरों ने इसे एक नाले में बदल दिया है। इसका मुख्य कारण इन नगरों द्वारा उत्सर्जित कचरा एवं मल का इसमें प्रवाहित किया जाना है। इसके अतिरिक्त मानव के अन्य क्रियाकलाप हैं—नहाना, कपड़े धोना, मृत व्यक्तियों की राख एवं शवों को बहाना। यही नहीं उद्योगों द्वारा उत्पादित रासायनिक उत्सर्जन ने गंगा का प्रदूषण-स्तर इतना बढ़ा दिया है कि इसके विषैले आदि अन्य कारण हैं। इससे जल में मछलियाँ मरने लगीं। नमामि गंगे कार्यक्रम जून 2014 में केंद्र सरकार द्वारा एक प्रमुख कार्यक्रम के रूप में अनुमोदित एक एकीकृत संरक्षण मिशन है। यह प्रदूषण संरक्षण और राष्ट्रीय नदी गंगा के कायाकल्प के प्रभावी न्यूनीकरण के दो उद्देश्यों को पूरा करने के लिए शुरू किया गया था। स्वच्छ गंगा के लिए राष्ट्रीय मिशन कार्यान्वयन विंग है, जिसे अक्तूबर 2016 में स्थापित किया गया था।

जैसा कि आप देख सकते हैं कि मापन योग्य कुछ कारकों का प्रयोग करके प्रयुक्त जल की गुणवत्ता का निर्धारण अथवा प्रदूषण मापन किया जाता है। कुछ प्रदूषक अत्यल्प मात्रा में होते हुए भी हानिकारक हो सकते हैं। इनके मापन के लिए हमें अत्यंत परिष्कृत उपस्करों की आवश्यकता होती है। परंतु अध्याय 2 में हम यह भी पढ़ चुके हैं कि जल का pH सरलता से सार्व सूचक की सहायता से मापा जा सकता है।

क्रियाकलाप 16.3

- सार्व सूचक (universal indicator) की सहायता से अपने घर में आपूर्त पानी का pH ज्ञात कीजिए।
- अपने अड़ोस-पड़ोस के जलाशय (तालाब, झील, नदी, झरने) का pH भी ज्ञात कीजिए।
- 🔳 क्या अपने प्रेक्षणों के आधार पर आप बता सकते हैं कि जल प्रदूषित है अथवा नहीं।

परन्तु हमें समस्या के विशाल रूप को देखकर हताश होने की आवश्यकता नहीं है, क्योंकि ऐसे अनेक कार्य हैं जिनके द्वारा हम स्थिति में अंतर ला सकते हैं। आपने पर्यावरण को बचाने के लिए पाँच प्रकार के 'R' के विषय में तो अवश्य सुना होगा। Refuse (इनकार), Reduce (कम उपयोग), Reuse (पुन: उपयोग), Repurpose (पुन: प्रयोजन) और Recycle (पुन: चक्रण)। ये क्या बताते हैं?

दनकार

: इसका अर्थ है कि जिन वस्तुओं की आपको आवश्यकता नहीं है, उन्हें लेने से इनकार करना। उन उत्पादों को खरीदने से इनकार करें जो आपको, आपके परिवार और पर्यावरण को नुकसान पहुँचा सकते हैं। प्लास्टिक के थैलों को लेने के लिए इनकार करें।

प्लास्टिक के थैलों को लेने के लिए इनकार करें।

कम उपयोग : इसका अर्थ है कि आपको कम से कम वस्तुओं का उपयोग करना चाहिए। आप बिजली के पंखे एवं बल्ब का स्विच बंद करके बिजली बचा सकते हैं। आप टपकने वाले नल की मरम्मत करके जल की बचत कर सकते हैं। आपको आहार व्यर्थ नहीं करना चाहिए। क्या आप

विज्ञान

कुछ अन्य वस्तुओं के विषय में सोच सकते हैं, जिनका उपयोग कम किया जा सकता है?

पुन: उपयोग: यह पुन:चक्रण से भी अच्छा तरीका है क्योंकि पुन:चक्रण में कुछ ऊर्जा व्यय होती है। पुन: उपयोग के तरीके में आप किसी वस्तु का बार-बार उपयोग करते हैं। लिफाफों के फेंकने की अपेक्षा आप फिर से उपयोग में ला सकते हैं। विभिन्न खाद्य पदार्थों के साथ आई प्लास्टिक की बोतलें, डिब्बे इत्यादि का उपयोग में रसोईघर में वस्तुओं को रखने के लिए किया जा सकता हैं। अन्य कौन-सी वस्तुएँ हैं जिन्हें हम पुन: उपयोग में ला सकते हैं?

पुनः प्रयोजन : इसका अर्थ यह है कि जब कोई वस्तु जिस उपयोग के लिए बनी है जब उस उपयोग में नहीं लाई जा सकती है तो उसे किसी अन्य उपयोगी कार्य के लिए प्रयोग करें। उदाहरण के लिए टूटे-फूटे चीनी मिट्टी के बर्तनों में पौधे उगाना।

पुनः चक्रण : इसका अर्थ है कि आपको प्लास्टिक, कागज, काँच, धातु की वस्तुएँ तथा ऐसे ही पदार्थों का पुनःचक्रण करके उपयोगी वस्तुएँ बनानी चाहिए। जब तक अति आवश्यक न हो इनका नया उत्पादन/संश्लेषण विवेकपूर्ण नहीं है। इनके पुनः चक्रण के लिए पहले हमें अपद्रव्यों को अलग करना होगा जिससे कि पुनःचक्रण योग्य वस्तुएँ दूसरे कचरे के साथ भराव क्षेत्र में न फेंक दी जाएँ। क्या आपके गाँव, कस्बे अथवा नगर में ऐसा कोई प्रबंध है जिससे इन पदार्थों का पुनःचक्रण किया जा सके?

यही नहीं अपनी दैनिक आवश्यकताओं और क्रियाकलापों पर निर्णय लेते समय भी हम पर्यावरण संबंधी निर्णय ले सकते हैं। इसके लिए, हमें यह जानने की आवश्यकता है कि हमारे चयन से पर्यावरण पर क्या प्रभाव पड़ सकता है, ये प्रभाव तात्कालिक, दीर्घकालिक अथवा व्यापक हो सकते हैं। संपोषित विकास की संकल्पना मनुष्य की वर्तमान आधारभूत आवश्यकताओं की पूर्ति एवं विकास को प्रोत्साहित तो करती ही है साथ ही साथ भावी संतित के लिए संसाधनों का संरक्षण भी करती है। आर्थिक विकास पर्यावरण संरक्षण से संबंधित है। अत: संपोषित विकास से जीवन के सभी आयाम में परिवर्तन निहित है। यह लोगों के ऊपर निर्भर है कि वे अपने चारों ओर के आर्थिक- सामाजिक एवं पर्यावरणीय स्थितियों के प्रति अपने दृष्टिकोण में परिवर्तन लाएँ तथा प्रत्येक व्यक्ति को प्रकृति के संसाधनों के वर्तमान उपयोग में परिवर्तन के लिए तैयार रहना होगा।

क्रियाकलाप 16.4

- क्या आप कई वर्षों के बाद किसी गाँव अथवा शहर में गए हैं? यदि हाँ, तो क्या पिछली बार की अपेक्षा नए घर एवं सड़कें बन गई हैं? आपके विचार में इन्हें बनाने के लिए आवश्यक वस्तुएँ कहाँ से प्राप्त हुई होंगी?
- उन पदार्थों की सूची बनाइए तथा उनके स्रोतों का भी पता लगाइए।
- अपने द्वारा बनाई गई सूची को अपने सहपाठियों के साथ चर्चा कीजिए। क्या आप ऐसे उपाय सुझा सकते हैं जिनसे इन वस्तुओं के उपयोग में कमी लाई जा सके।

16.1 हमें संसाधनों के प्रबंधन की क्यों आवश्यकता है?

केवल सड़कें एवं इमारतें ही नहीं परंतु वे सारी वस्तुएँ जिनका हम उपयोग करते हैं; जैसे—भोजन, कपड़े, पुस्तकें, खिलौने, फर्नीचर, औजार तथा वाहन इत्यादि सभी हमें पृथ्वी पर उपलब्ध प्राकृतिक संसाधनों से प्राप्त होती हैं। हमें केवल एक ही वस्तु पृथ्वी के बाहर से प्राप्त होती है, वह है ऊर्जा जो हमें सूर्य से प्राप्त होती है। परंतु यह ऊर्जा भी हमें पृथ्वी पर उपस्थित जीवों के द्वारा प्रक्रमों से, तथा विभिन्न भौतिक एवं रासायनिक प्रक्रमों द्वारा ही प्राप्त होती है।

हमें अपने संसाधनों की सावधानीपूर्वक (विवेकपूर्ण ढंग से) उपयोग की क्यों आवश्यकता है? क्योंकि यह संसाधन असीमित नहीं हैं। स्वास्थ्य-सेवाओं में सुधार के कारण हमारी जनसंख्या में तीव्र गित से वृद्धि हो रही है। जनसंख्या में वृद्धि के कारण सभी संसाधनों की माँग भी कई गुना तेजी से बढ़ी है। प्राकृतिक संसाधनों का प्रबंधन करते समय दीर्घकालिक दृष्टिकोण को ध्यान में रखना होगा कि ये अगली कई पीढ़ियों तक उपलब्ध हो सकें। संसाधनों का अर्थ उनका दोहन अथवा शोषण नहीं है। इस प्रबंधन में इस बात को भी सुनिश्चित करने की आवश्यकता है कि इनका वितरण सभी वर्गों में समान रूप से हो, न कि मात्र मुट्ठी भर अमीर और शक्तिशाली लोगों को इनका लाभ मिले।

एक बात पर और ध्यान देने की आवश्यकता है कि जब हम इन संसाधनों का दोहन करते हैं तो हम पर्यावरण को क्षिति पहुँचाते हैं। उदाहरण के लिए, खनन से प्रदूषण होता है क्योंकि धातु के निष्कर्षण के साथ-साथ बड़ी मात्रा में धातुमल भी निकलता है। अत: संपोषित प्राकृतिक संसाधनों के प्रबंधन में अपशिष्टों के सुरक्षित निपटान की भी व्यवस्था होनी चाहिए।

संपोषित विकास व प्राकृतिक संसाधनों के संरक्षण की वर्तमान वैश्विक चिंताएँ हमारे देश में प्राकृतिक संरक्षण की लंबी परंपरा व संस्कृति की तुलना में हाल ही की हैं। पूर्व ऐतिहासिक भारत में प्रकृति संरक्षण व संपोषित विकास के सिद्धांत की स्थिरता अपने सबसे अच्छे रूप में स्थापित की गई थी।

हमारा प्राचीन साहित्य ऐसे उदाहरणों से भरा है जहाँ मूल्य और प्रकृति के प्रति मनुष्य की संवेदनशीलता की महिमा और सिद्धांत की स्थिरता अपने सबसे अच्छे रूप में स्थापित की गई थी।

क्रियाकलाप 16.5

 अपनी रोज़मर्रा की ज़िंदगी में उपयोगी व प्रकृति संरक्षण के लिए परंपरागत तरीकों का अवलोकन करें। अपना अनुभव सभी सहपाठियों को बताएँ। एक रिपोर्ट/विवरणी बनाकर जमा करें।

भारतीय साहित्य जैसे उपनिषद व स्मृतियों में जंगलों के उपयोग व प्रबंधन तथा संपोषितता को एक अंतर्निहित विषय के रूप में ज़ोर दिया गया है। संस्कृत साहित्य ''अथर्व वेद'' की एक ऋचा (12.1.11) के अनुसार

विज्ञान

गिरयेस्ते पर्वता हिमवन्तोरेण्य ते पृथिवि स्योनमस्तु।
बम्नुं कृष्णा रोहिणी विश्वरूपा ध्रुवा भूमि पृथिवीमिन्द्रगुप्ताम्।
अजीतोहतो अक्षतोध्येष्ठा पृथिवीमहम् ॥12.1.11॥ (अथवेवेद)
हे पृथिवि देवी! तुम्हारे बिना बर्फ वाले और बर्फ वाले पर्वत और जंगल कलयाणकारी हों।
हे विभिन्न रंगों वाली स्थिर एवं रक्षित पृथ्वी जिस पर मैं अजेय, अनाहत, अक्षत होकर रहूँ।
एक अन्य ऋचा के अनुसार
यत्ते भूमे विस्वनीमि क्षिप्र तदिष रोहतु।
मा ते मर्म विस्वनिम हिष्र तदिष रोहतु।
मा ते मर्म विस्वनिम से खड्डा (गर्त) खोदता हूँ, वह शीघ्र ही भर जावे। मैं तुम्हारे मर्म (चराचर जगत)
को और हृदय को हत करने वाला न बनूँ।
बाद में देवी चंद द्वारा लिखित पुस्तक ''अथर्व वेद-संस्कृत टेक्स्ट विद् इंग्लिश ट्रांसलेशन'' में अंग्रेजी अनुवाद किया गया है।

वैदिक काल के दौरान जंगल वनस्पित के उत्पादक व साथ ही सुरक्षात्मक पहलू, दोनों पर बल दिया गया। वैदिक काल के अंत में कृषि एक प्रमुख आर्थिक गतिविधि के रूप में उभरी। यह वह समय था जब पिवत्र जंगलों व गुफ़ाओं, पिवत्र गिलयारों व विभिन्न प्रकार की जातीय-वानिको प्रथाओं जैसी सांस्कृतिक पिरदृश्य की अवधारणाएँ विकसित हुईं। जो वैदिक काल के बाद भी लगातार चलती रहीं। साथ ही, व्यापक श्रेणी की जातीय-वानिकी प्रथाओं को परंपराओं, प्रथाओं व अनुष्ठानों के साथ एकीकृत करते हुए, प्राकृतिक संसाधनों की सुरक्षा की जाती रही।

प्रश्न

- पर्यावरण-मित्र बनने के लिए आप अपनी आदतों में कौन-से परिवर्तन ला सकते हैं?
- 2. संसाधनों के दोहन के लिए कम अविध के उद्देश्य के परियोजना के क्या लाभ हो सकते हैं?
- 3. यह लाभ, लंबी अवधि को ध्यान में रखकर बनाई गई परियोजनाओं के लाभ से किस प्रकार भिन्न हैं।
- 4. क्या आपके विचार में संसाधनों का समान वितरण होना चाहिए? संसाधनों के समान वितरण के विरुद्ध कौन-कौन सी ताकतें कार्य कर सकती हैं?

16.2 वन एवं वन्य जीवन

वन 'जैव विविधता के विशिष्ट (Hotspots) स्थल' हैं। जैव विविधता का एक आधार उस क्षेत्र में पाई जाने वाली विभिन्न स्पीशीज़ की संख्या है। परंतु, जीवों के विभिन्न स्वरूप (जीवाणु, कवक, फर्न, पुष्पी पादप, सूत्रकृमि, कीट, पक्षी, सरीसृप इत्यादि) भी महत्वपूर्ण हैं। वंशागत जैव विविधता को संरक्षित करने का प्रयास प्राकृतिक संरक्षण के मुख्य उद्देश्यों में से एक है। प्रयोगों और वस्तुस्थिति के अध्ययन से हमें पता चलता है कि विविधता के नष्ट होने से पारिस्थितिक स्थायत्व भी नष्ट हो सकता है।

143

क्रियाकलाप 16.6

- जिन वन उत्पाद का आप प्रयोग करते हैं उनकी एक सूची बनाइए।
- आपके विचार में वन के निकट रहनेवाला व्यक्ति किन वस्तुओं का उपयोग करता होगा?
- वन के अंदर रहने वाला व्यक्ति किन वस्तुओं का उपयोग करता होगा?
- अपने सहपाठियों के साथ चर्चा कीजिए कि उपरोक्त व्यक्तियों की आवश्यकताओं में क्या कोई अंतर है अथवा कोई अंतर नहीं है एवं इनके कारण का भी पता लगाइए।

16.2.1 स्टेकहोल्डर (दावेदार)

हम सभी विभिन्न वन उत्पादों का उपयोग करते हैं। परंतु वन संसाधनों पर हमारी निर्भरता में अंतर है। हममें से कुछ लोगों के पास कुछ विकल्प हैं, परंतु कुछ के पास नहीं। जब हम वन संरक्षण की बात सोचते हैं तो हमें यह भी सोचना होगा कि इसके दावेदार कौन हैं-

- (i) वन के अंदर एवं इसके निकट रहने वाले लोग अपनी अनेक आवश्यकताओं के लिए वन पर निर्भर रहते हैं।
- (ii) सरकार का वन विभाग जिनके पास वनों का स्वामित्व है तथा वे वनों से प्राप्त संसाधनों का नियंत्रण करते हैं।
- (iii) उद्योगपित जो तेंदु पत्ती का उपयोग बीड़ी बनाने से लेकर कागज़ मिल तक विभिन्न वन उत्पादों का उपयोग करते हैं, परंतु वे वनों के किसी भी एक क्षेत्र पर निर्भर नहीं करते।
- (iv) वन्य जीवन एवं प्रकृति प्रेमी जो प्रकृति का संरक्षण इसकी आद्य अवस्था में करना चाहते हैं।

आइए, देखें कि प्रत्येक समूह की वन आवश्यकताएँ क्या हैं अथवा वन से उन्हें क्या प्राप्त होता है। स्थानीय लोगों को ईंधन के लिए जलाऊ (लकड़ी) छोटी लकड़ियाँ एवं छाजन की काफी मात्रा में आवश्यकता होती है। बाँस का उपयोग झोपड़ी बनाने, भोजन एकत्र करने एवं भंडारण के लिए होता है। खेती के औजार, मछली पकड़ने एवं शिकार के औजार मुख्यत: लकड़ी के बने होते हैं इसके अतिरिक्त वन, मछली पकड़ने एवं शिकार-स्थल भी होते हैं। विभिन्न व्यक्ति फल, नट्स तथा औषिध एकत्र करने के साथ-साथ अपने पशुओं को वन में चराते हैं अथवा उनका चारा वनों से एकत्र करते हैं।

क्या आप सोचते हैं कि वन संपदा का इस प्रकार उपयोग करने से इन संसाधनों का हास हो जाएगा? यह मत भूलिए कि अंग्रेजों के भारत आने से पहले लोग इन्हीं वनों में शताब्दियों से रह रहे थे। अंग्रेजों ने वनों का नियंत्रण अपने हाथ में ले लिया। उनसे पहले यहाँ के मूल निवासियों ने ऐसी विधियों का विकास किया जिससे संपोषण भी होता रहे। अंग्रेजों ने न केवल वनों पर आधिपत्य जमाया वरन् अपने स्वार्थ के लिए उनका निर्ममता से दोहन भी किया। यहाँ के मूलनिवासियों को एक सीमित क्षेत्र में रहने के लिए मजबूर किया गया तथा वन संसाधनों का किसी सीमा तक अत्यधिक दोहन भी प्रारंभ हो गया। स्वतंत्रता के बाद वन विभाग ने अंग्रेजों से वनों का नियंत्रण तो अपने

हाथ में ले लिया, परंतु प्रबंधन व्यवहार में स्थानीय लोगों की आवश्यकताओं एवं ज्ञान की उपेक्षा होती रही। अत: वनों के बहुत बड़े क्षेत्र एक ही प्रकार के वृक्षों जैसे कि पाइन (चीड़), टीक अथवा यूक्लिप्टस के वनों में परिवर्तित हो गए। इन वृक्षों को उगाने के लिए सर्वप्रथम सारे क्षेत्र से अन्य सभी पौधों को हटा दिया गया जिससे क्षेत्र की जैव विविधता बड़े स्तर पर नष्ट हो गई। यही नहीं स्थानीय लोगों की विभिन्न आवश्यकताओं जैसे कि पशुओं के लिए चारा, औषिध हेतु वनस्पित, फल एवं नट इत्यादि की आपूर्ति भी नहीं हो सकी। इस प्रकार के रोपण से उद्योगों को लाभ मिला जो वन विभाग के लिए भी राजस्व का मुख्य स्रोत बन गया।

क्या आप जानते हैं कि कितने उद्योग वन उत्पादों पर निर्भर करते हैं? टिम्बर (इमारती लकड़ी), कागज़, लाख तथा खेल के समान इसके कुछ उदाहरण हैं।

उद्योग इन वनों को अपनी फैक्टरी के लिए कच्चे माल का म्रोत मात्र ही मानते हैं। निहित स्वार्थ से लोगों का एक बड़ा वर्ग सरकार से उद्योगों के लिए कच्चे माल को बहुत कम मूल्य पर प्राप्त करने में लगा रहता है। क्योंकि स्थानीय निवासियों की अपेक्षा इन व्यक्तियों की पहुँच सरकार में

चित्र 16.2 वन्यजीवन का एक दृश्य

काफ़ी ऊपर तक होती है, अत: उन्हें उस क्षेत्र के संपोषित विकास में कोई रुचि नहीं होती। उदाहरण के लिए, किसी वन के टीक के सभी वृक्षों को काटने के बाद, वे दूरस्थ वनों से टीक प्राप्त करने लगेंगे। उन्हें इस बात से कोई मतलब नहीं है कि वे इनका इष्टतम उपयोग सुनिश्चित करें जिससे कि वह आगे आने वाली पीढ़ियों को भी उपलब्ध हो सके। आपके विचार में लोगों को इस प्रकार व्यवहार करने से कैसे रोका जा सकता है?

क्रियाकलाप 16.7

- किन्हीं दो वन उत्पादों का पता लगाइए जो किसी उद्योग के आधार हैं।
- चर्चा कीजिए कि यह उद्योग लंबे समय तक संपोषित हो सकता है। अथवा क्या हमें
 इन उत्पादों की खपत को नियंत्रित करने की आवश्यकता है?

अंत में हम चर्चा करते हैं प्रकृति एवं वन्य-जीवन प्रेमियों की जो वन पर निर्भर तो नहीं हैं, परंतु वनों के प्रबंधन में उनकी बात को बहुत महत्त्व दिया जाता है। संरक्षण का प्रारंभ बड़े जंतुओं जैसे कि शेर, चीता, हाथी एवं गैंडा से हुआ था अब उन्होंने संपूर्ण जैव विविधता को पूर्ण रूप से संरक्षित रखने के महत्त्व को समझ लिया है। परंतु क्या हमें ऐसे व्यक्तियों को पर्याप्त महत्त्व नहीं देना चाहिए जो वन तंत्र का भाग बन गए हैं इस बात के पर्याप्त प्रमाण हैं कि स्थानीय निवासी परंपरानुसार वनों के संरक्षण का प्रयास कर रहे हैं। उदाहरण के लिए, राजस्थान के विश्नोई समुदाय के लिए वन एवं वन्य प्राणि संरक्षण उनके धार्मिक अनुष्ठान का भाग बन गया है। भारत सरकार ने पिछले दिनों जीव संरक्षण हेतु अमृता देवी विश्नोई राष्ट्रीय पुरस्कार की व्यवस्था की है। यह पुरस्कार अमृता देवी विश्नोई की स्मृति में दिया जाता है जिन्होंने 1731 में राजस्थान के जोधपुर

के पास खेजराली गाँव में 'खेज़री वृक्षों' को बचाने हेतु 363 लोगों के साथ अपने आपको बलिदान कर दिया था।

अध्ययनों ने इस बात को स्थापित कर दिया है कि वनों के परंपरागत उपयोग के तरीकों के विरुद्ध पूर्वाग्रह का कोई ठोस आधार नहीं हैं। उदाहरणत:, विशाल हिमालय राष्ट्रीय उद्यान के सुरक्षित क्षेत्र में एल्पाइन के वन हैं जो भेड़ों के चरागाह थे। घुमंतु (खानाबदोश) चरवाहे प्रत्येक वर्ष ग्रीष्मकाल में अपनी भेड़ें घाटी से इस क्षेत्र में चराने के लिए ले जाते थे। परंतु इस राष्ट्रीय उद्यान की स्थापना के बाद इस परंपरा को रोक दिया गया। अब यह देखा गया है कि पहले तो यह घास बहुत लंबी हो जाती है, फिर लंबाई के कारण जमीन पर गिर जाती है जिससे नयी घास की वृद्धि रुक जाती है। संरक्षित क्षेत्रों में स्थानीय निवासियों को बलपूर्वक रोकने की प्रबंधन नीति सभवत: लंबे समय तक सफ़ल नहीं हो पाई। किसी भी प्रकार से वनों को होने वाली क्षित के लिए केवल स्थानीय निवासियों को ही उत्तरदायी ठहराना ठीक नहीं है। हम औद्योगिक आवश्यकताओं एवं विकास परियोजनाओं जैसे कि सड़क एवं बाँध निर्माण से वनों के विनाश अथवा इसको होने वाली क्षित से आँखें नहीं मूँद सकते। इन संरक्षित क्षेत्रों में पर्यटकों के द्वारा अथवा उनकी सुविधा के लिए की गई व्यवस्था से होने वाली क्षित के बारे भी विचार करना होगा।

चित्र 16.3 खेज़री वृक्ष

हमें मानना होगा कि वनों की प्राकृतिक छिव में मनुष्य का हस्तक्षेप बहुत अधिक है। हमें इस हस्तक्षेप की प्रकृति एवं सीमा को नियंत्रित करना होगा। वन संसाधनों का उपयोग इस प्रकार करना होगा जो पर्यावरण एवं विकास दोनों के हित में हो। दूसरे शब्दों में, जब पर्यावरण अथवा वन संरक्षित किए जाएँ, उसके सुनियोजित उपयोग का लाभ स्थानीय निवासियों को मिलना चाहिए। यह विकेंद्रीकरण की एक ऐसी व्यवस्था है जिसमें आर्थिक विकास एवं पारिस्थितिक संरक्षण दोनों साथ-साथ चल सकते हैं। जिस प्रकार का आर्थिक एवं सामाजिक विकास हम चाहते हैं, उससे ही अंतत: यह निर्णय होगा कि उससे पर्यावरण का संरक्षण हो रहा है अथवा इसका और विनाश हो रहा है। पर्यावरण को पौधों और जंतुओं का सजावटी संग्रह मात्र नहीं माना जा सकता। यह एक जिटल व्यवस्था है जिससे हमें उपयोग हेतु अनेक प्रकार के प्राकृतिक संसाधन प्राप्त होते हैं। हमें अपने आर्थिक एवं सामाजिक विकास की आपूर्ति हेतु इन संसाधनों का सावधानीपूर्वक उपयोग करना होगा।

16.2.2 संपोषित प्रबंधन

हमें इस पर विचार करना होगा कि क्या उपरोक्त सभी दावेदारों के लक्ष्य वन प्रबंधन के संदर्भ में समान हैं। उद्योगों को वन संपदा अधिकतर बाजार के मूल्य से बहुत कम मूल्य पर उपलब्ध कराई जाती है, जबिक स्थानीय निवासियों को उनसे वंचित रखा जाता है। 'चिपको आंदोलन' स्थानीय निवासियों को वनों से अलग करने की नीति का ही परिणाम है। यह आंदोलन हिमालय की ऊँची पर्वत शृंखला में गढ़वाल के 'रेनी' नामक गाँव में एक घटना से 1970 के प्रारंभिक दशक में हुआ था। यह विवाद लकडी के

ठेकेदार एवं स्थानीय लोगों के बीच प्रारंभ हुआ क्योंकि गाँव के समीप के वृक्ष काटने का अधिकार उसे दे दिया गया था। एक निश्चित दिन ठेकेदार के आदमी वृक्ष काटने के लिए आए जबिक वहाँ के निवासी पुरुष वहाँ नहीं थे। बिना किसी डर के वहाँ की मिहलाएँ फौरन वहाँ पहुँच गईं तथा उन्होंने पेड़ों को अपनी बाँहों में भर कर (चिपक कर) ठेकेदार के आदिमयों को वृक्ष काटने से रोका। अंतत: ठेकेदार को अपना काम बंद करना पड़ा।

प्राकृतिक संसाधनों के नियंत्रण की इस प्रतियोगिता में पुन: पूर्ति होने वाले इन संसाधनों का संरक्षण अंतर्निहित है। इसी उद्देश्य से उनके उपयोग के तरीके पर प्रश्न उठाए गए। लकड़ी के ठेकेदार ने उस क्षेत्र के सारे वृक्षों को काट कर गिरा दिया होता और क्षेत्र सदा के लिए वृक्षहीन हो जाता। स्थानीय समुदाय, वृक्षों के ऊपर चढ़कर कुछ शाखाएँ एवं पित्तयाँ ही काटता है जिससे समय के साथ-साथ उनका पुन: पूरण भी होता रहता है। 'चिपको आंदोलन' बहुत तेज़ी से बहुत से समुदायों में फैल गया एवं जन संचार ने भी इसमें योगदान दिया तथा सरकार को यह सोचने पर मज़बूर कर दिया कि वन किसके हैं तथा वन संसाधनों के समुचित उपयोग के लिए प्राथमिकता तय करने के लिए पुनर्विचार पर मज़बूर कर दिया। अनुभव ने लोगों को सिखा दिया है कि वनों के विनाश से केवल वन की उपलब्धता ही प्रभावित नहीं होती वरन् मिट्टी की गुणवत्ता एवं जल स्रोत भी प्रभावित होते हैं। स्थानीय लोगों की भागीदारी से निश्चित रूप से वनों के प्रबंधन की दक्षता बढ़ेगी।

वन प्रबंधन में लोगों की भागीदारी का एक उदाहरण

1972 में पश्चिम बंगाल वन विभाग को प्रदेश के दक्षिण पश्चिम जिलों में नष्ट हुए साल के वनों को पुन:पूरण करने की अपनी योजना के असफल होने के कारणों का पता लगा। सतर्कता की परंपरागत विधियों और पुलिस की कार्रवाई से स्थानीय लोग और प्रशासन में बहुत दूरी हो गई जिसके फलस्वरूप वन कर्मचारियों और ग्रामवासियों में अक्सर झड़पें होने लगीं। इन झगड़ों ने नक्सली जैसे हिंसक आंदोलनों को और भी हवा दी।

अतः वन विभाग ने अपनी नीति में बदलाव कर दिया तथा मिदनापुर के अराबाड़ी वन क्षेत्र में एक योजना प्रारंभ की। यहाँ वन विभाग के एक दूरदर्शी अधिकारी ए.के. बनर्जी ने ग्रामीणों को अपनी योजना में शामिल किया तथा उनके सहयोग से बुरी तरह से क्षितग्रस्त साल के वन की 1272 हेक्टेयर क्षेत्र का संरक्षण किया। इसके बदले में निवासियों को क्षेत्र की देखभाल की जिम्मेदारी के लिए रोजगार मिला साथ ही उन्हें वहाँ से उपज की 25 प्रतिशत के उपयोग का अधिकार भी मिला और बहुत कम मूल्य पर ईंधन के लिए लकड़ी और पशुओं को चराने की अनुमित भी दी गई। स्थानीय समुदाय की सहमित एवं सिक्रय भागीदारी से 1983 तक अराबाड़ी का सालवन समृद्ध हो गया तथा पहले बेकार कहे जाने वाले वन का मूल्य 12.5 करोड़ आँका गया।

क्रियाकलाप 16.8

निम्न के द्वारा वनों को होने वाली क्षति पर परिचर्चा कीजिए:

- 1. राष्ट्रीय उद्यानों में पर्यटकों के लिए आरामगृह (Rest house) का निर्माण करना।
- 2. राष्ट्रीय उद्यानों में पालतू पशुओं को चराना।
- 3. पर्यटकों द्वारा प्लास्टिक बोतल, थैलियों तथा अन्य कचरों को राष्ट्रीय उद्यान में फेंकना।

147

प्रश्न

- हमें वन एवं वन्य जीवन का संरक्षण क्यों करना चाहिए?
- 2. संरक्षण के लिए कुछ उपाय सुझाइए।

16.3 सभी के लिए जल

क्रियाकलाप 16.9

महाराष्ट्र के एक गाँव में जल की कमी की दीर्घकालीन समस्या से जूझ रहे ग्रामीण एक जल मनोरंजन पार्क का घेराव कर लेते हैं। इस पर परिचर्चा कीजिए कि क्या यह उपलब्ध जल का समुचित उपयोग है?

धरती पर रहने वाले सभी जीवों की मूल आवश्यकता जल है। हम कक्षा 9 में एक संसाधन के रूप में जल के महत्त्व तथा जल के चक्र के बारे में पढ़ चुके हैं। मनुष्य ने किस प्रकार जल स्नोतों को प्रदूषित किया है साथ ही मनुष्य की प्रकृति में दखल से अनेक क्षेत्रों में जल की उपलब्धता भी प्रभावित हुई है।

क्रियोकलाप 16.10

 एक एटलस की सहायता से भारत में वर्षा के पैटर्न का अध्ययन कीजिए।
 ऐसे क्षेत्रों की पहचान कीजिए जहाँ पर जल की प्रचुरता है तथा ऐसे क्षेत्रों की जहाँ इसकी बहुत कमी है।

उपरोक्त क्रियाकलाप के बाद आपको जानकर आश्चर्य होगा कि जल की कमी वाले क्षेत्रों एवं अत्यधिक निर्धनता वाले क्षेत्रों में घनिष्ट संबंध है।

वर्षा के प्रतिरूप के अध्ययन से भारत के विभिन्न क्षेत्रों में जल उपलब्धता का पूर्ण सत्य सामने नहीं आता। भारत में वर्षा मुख्यत: मानसून पर निर्भर करती है। इसका अर्थ है कि वर्षा की अविध वर्ष के कुछ महीनों तक ही सीमित रहती है। प्रकृति में मानसून के अभिदान के बाद भी क्षेत्रों के वनस्पित आच्छादन कम होने के कारण भूजल स्तर की उपलब्धता में काफ़ी कमी आई है; फसलों के लिए जल की अधिक मात्रा की माँग, उद्योगों से प्रवाहित प्रदूषक एवं नगरों के कूड़ा-कचरे ने जल को प्रदूषित कर उसकी उपलब्धता की समस्या को और अधिक जटिल बना दिया है। बाँध, जलाशय एवं नहरों का उपयोग भारत के विभिन्न क्षेत्रों में सिंचाई के लिए प्राचीन समय से किया जाता रहा है। पहले इन तकनीकों का प्रयोग स्थानीय लोगों द्वारा की गई दखल थी तथा स्थानीय निवासी उसका प्रबंधन कृषि एवं दैनिक आवश्यकताओं की पूर्ति के लिए करते थे जिससे जल पूरे वर्ष उपलब्ध रह सके। इस भंडारित जल का नियंत्रण भली प्रकार से किया जाता था तथा जल की उपलब्धता और दशकों एवं सिदयों के अनुभव के आधार पर इष्टतम फसल प्रतिरूप अपनाए जाते थे। सिंचाई के इन संसाधनों का प्रबंधन भी स्थानीय लोगों द्वारा किया जाता था।

अंग्रेजों ने भारत आकर अन्य बातों के साथ-साथ इस पद्धित को भी बदल दिया। बड़ी परियोजनाओं जैसे कि विशाल बाँध तथा दूर तक जाने वाली बड़ी-बड़ी नहरों की सर्वप्रथम संकल्पना कर उन्हें क्रियान्वित करने का कार्य भी अंग्रेजों द्वारा ही किया गया जिसे हमारे स्वतंत्र होने पर हमारी सरकार ने भी पूरे जोश के साथ अपनाया। इन विशाल परियोजनाओं से सिंचाई के स्थानीय तरीके उपेक्षित होते गए तथा सरकार धीरे-धीरे इनका प्रबंधन एवं प्रशासन अपने हाथ में लेती चली गई जिससे जल के स्थानीय स्रोतों पर स्थानीय निवासियों का नियंत्रण समाप्त हो गया।

हिमाचल प्रदेश में कुल्ह

लगभग 400 वर्ष पूर्व हिमाचल प्रदेश के कुछ क्षेत्रों में नहर सिंचाई की स्थानीय प्रणाली (व्यवस्था) का विकास हुआ। इन्हें 'कुल्ह' कहा जाता है। झरनों से बहने वाले जल को मानव-निर्मित छोटी-छोटी नालियों से पहाड़ी पर स्थित निचले गाँवों तक ले जाया जाता है। इन कुल्ह से प्राप्त जल का प्रबंधन क्षेत्र के सभी गाँवों की सहमित से किया जाता था। आपको जानकर सुखद आश्चर्य होगा कि कृषि के मौसम में जल सर्वप्रथम दूरस्थ गाँव को दिया जाता था फिर उत्तरोतर ऊँचाई पर स्थित गाँव उस जल का उपयोग करते थे। कुल्ह की देख-रेख एवं प्रबंधन के लिए दो अथवा तीन लोग रखे जाते थे जिन्हें गाँव वाले वेतन देते थे। सिंचाई के अतिरिक्त इन कुल्ह से जल का भूमि में अंत:स्रवण भी होता रहता था जो विभिन्न स्थानों पर झरने को भी जल प्रदान करता रहता था। सरकार द्वारा इन कुल्ह के अधिग्रहण के बाद इनमें से अधिकतर निष्क्रिय हो गए तथा जल के वितरण की आपस की भागीदारी की पहले

16.3.1 बाँध

जैसी व्यवस्था समाप्त हो गई।

हम बाँध क्यों बनाना चाहते हैं? बड़े बाँध में जल संग्रहण पर्याप्त मात्रा में किया जा सकता है जिसका उपयोग केवल सिंचाई के लिए ही नहीं वरन् विद्युत उत्पादन के लिए भी किया जाता है जिसके विषय में आप पिछले अध्याय में पढ़ चुके हैं। इनसे निकलने वाली नहरें जल की बड़ी मात्रा को दूरस्थ स्थानों तक ले जाती हैं। उदाहरणत:, इंदिरा गांधी नहर से राजस्थान के काफ़ी बड़े क्षेत्र में हरियाली आ गई है। परंतु जल के खराब प्रबंधन के कारण मात्र कुछ व्यक्तियों द्वारा लाभ उठाने के कारण जल प्रबंधन के लाभ से बहुत से लोग वंचित रह गए हैं। जल का समान वितरण नहीं है, अत: जल स्रोत के निकट रहने वाले व्यक्ति गन्ना एवं धान जैसी अधिक जल-खपत वाली फसल उगा लेते हैं जबिक दूर के लोगों को जल मिल ही नहीं पाता। उन व्यक्तियों की व्यथा और भी बढ़ जाती है तथा असंतोष होता है जबिक उन व्यक्तियों को जिन्हें बाँध एवं नहर बनाते समय विस्थापित किया गया और उस समय किए गए वायदे भी पूरे नहीं किए गए।

बड़े बाँधों के बनाने के विरोध में उठ रहे उन कारणों की चर्चा हम पिछले अध्याय में कर चुके हैं। गंगा नदी पर बना टिहरी बाँध इसका एक उदाहरण है। आपने 'नर्मदा बचाओ आंदोलन' के विषय में भी अवश्य ही पढ़ा होगा जिसमें नर्मदा नदी पर बनने

वाले बाँध की ऊँचाई बढ़ाने का विरोध हो रहा है। बड़े बाँध के विरोध में मुख्यत: तीन समस्याओं की चर्चा विशेष रूप से होती है-

- (i) सामाजिक समस्याएँ, क्योंकि इससे बड़ी संख्या में किसान और आदिवासी विस्थापित होते हैं और इन्हें मुआवजा भी नहीं मिलता।
- (ii) आर्थिक समस्याएँ, क्योंकि इनमें जनता का बहुत अधिक धन लगता है और उस अनुपात में लाभ अपेक्षित नहीं है।
- (iii) पर्यावरणीय समस्याएँ, क्योंकि उससे बड़े स्तर पर वनों का विनाश होता है तथा जैव विविधता की क्षति होती है।

विकास की विभिन्न परियोजनाओं में विस्थापित होने वाले अधिकतर व्यक्ति गरीब आदिवासी होते हैं जिन्हें इन परियोजनाओं से कोई लाभ नहीं होता तथा उन्हें अपनी भूमि एवं जंगलों से भी हाथ धोना पड़ता है जिसकी क्षतिपूर्ति भी समुचित नहीं होती। 1970 में बने तावा बाँध के विस्थापितों को अभी भी वह लाभ नहीं मिल सके जिनका उनसे वायदा किया गया था।

16.3.2 जल संग्रहण

एक पारंपरिक प्रौद्योगिकी द्वारा भारत के 'वाटर मैन' देश के सबसे शुष्क क्षेत्र के सूखाग्रस्त गाँवों के हज़ारों ग्रामीणों की ज़िंदगी बदल पाए।

दो दशकों के प्रयास के बाद डॉ. राजेन्द्र सिंह ने राजस्थान में पानी इकट्ठा करने के लिए 8600 जोहेड और अन्य संरचनाओं का निर्माण किया तथा राज्य भर के 1000 गाँवों में पानी वापस लाया गया। 2015 में उन्होंने स्टॉकहोम पुरस्कार जीता। यह बहुत ही प्रतिष्ठित पुरस्कार है जो ग्रह और इसके निवासियों की भलाई के लिए जल संसाधनों के सुरक्षित संरक्षण में योगदान करने वाले व्यक्ति का सम्मान करता है।

जल संभर प्रबंधन में मिट्टी एवं जल संरक्षण पर जोर दिया जाता है जिससे कि 'जैव-मात्रा' उत्पादन में वृद्धि हो सके। इसका प्रमुख उद्देश्य भूमि एवं जल के प्राथमिक स्रोतों का विकास, द्वितीयक संसाधन पौधों एवं जंतुओं का उत्पादन इस प्रकार करना जिससे पारिस्थितिक अंसतुलन पैदा न हो। जल संभर प्रबंधन न केवल जल संभर समुदाय का उत्पादन एवं आय बढ़ता है वरन् सूखे एवं बाढ़ को भी शांत करता है तथा निचले बाँध एवं जलाशयों का सेवा काल भी बढ़ाता है। अनेक संगठन प्राचीनकालीन जल संरक्षण प्रणालियों को पुनर्जीवित करने में लगे हैं जो बाँध जैसी बड़ी परियोजनाओं का विकल्प बन सकते हैं।

इन समुदायों ने जल संरक्षण के ऐसे सैकड़ों तरीके विकसित किए हैं जिनके द्वारा धरती पर पड़ने वाली प्रत्येक बूँद का संरक्षण किया जा सके। यथा छोटे-छोटे गड्ढे खोदना, झीलों का निर्माण, साधारण जल संभर व्यवस्था की स्थापना, मिट्टी के छोटे बाँध बनाना, रेत तथा चूने के पत्थर के संग्रहक बनाना तथा घर की छतों से जल एकत्र करना। इससे भूजल स्तर बढ़ जाता है तथा नदी भी पुन: जीवित हो जाती है।

जल संग्रहण (water harvesting) भारत में बहुत पुरानी संकल्पना है। राजस्थान में खादिन, बड़े पात्र एवं नाड़ी, महाराष्ट्र के बंधारस एवं ताल, मध्यप्रदेश एवं उत्तर प्रदेश में बंधिस, बिहार में अहार तथा पाइन, हिमाचल प्रदेश में कुल्ह, जम्मू के काँदी क्षेत्र में तालाब तथा तिमलनाडु में एरिस (Tank) केरल में सुरंगम, कर्नाटक में कट्टा इत्यादि

प्राचीन जल संग्रहण तथा जल परिवहन संरचनाएँ आज भी उपयोग में हैं। (उदाहरण के लिए चित्र 16.3 देखिए)। जल संग्रहण तकनीक, स्थानीय होती हैं तथा इसका लाभ भी स्थानीय/सीमित क्षेत्र को होता है। स्थानीय निवासियों को जल-संरक्षण का नियंत्रण देने से इन संसाधनों के अकुशल प्रबंधन एवं अतिदोहन कम होते हैं अथवा पूर्णत: समाप्त हो सकते हैं।

बड़े समतल भूभाग में जल संग्रहण स्थल मुख्यत: अर्धचंद्राकार मिट्टी के गड्ढे अथवा निचले स्थान, वर्षा ऋतु में पूरी तरह भर जाने वाली नालियाँ/प्राकृतिक जल मार्ग पर बनाए गए 'चेक डैम' जो कंक्रीट अथवा छोटे कंकड़ पत्थरों द्वारा बनाए जाते हैं। इन छोटे बाँधों के अवरोध के कारण इनके पीछे मानसून का जल तालाबों में भर जाता है। केवल बड़े जलाशयों में जल पूरे वर्ष रहता है। परंतु छोटे जलाशयों में यह जल 6 महीने या उससे भी कम समय तक रहता है उसके बाद यह सूख जाते हैं। इनका मुख्य उद्देश्य जल संग्रहण नहीं है परंतु जल-भौम स्तर में सुधार करना है। जल के भौम जल के रूप में संरक्षण के कई लाभ हैं। भौम जल से अनेक लाभ हैं। यह वाष्प बन कर उड़ता नहीं, परंतु यह आस-पास में फैल जाता है, बड़े क्षेत्र में वनस्पित को नमी प्रदान करता है। इसके अतिरिक्त इससे मच्छरों के जनन की समस्या भी नहीं होती। भौम जल मानव एवं जंतुओं के अपिशष्ट से झीलों तालाबों में ठहरे पानी के विपरीत संदूषित होने से अपेक्षाकृत सुरिक्षत रहता है।

चित्र 16.3 जल संग्रहण की पारंपरिक व्यवस्था-खादिन पद्धति का आदर्श व्यवस्थापन

प्रश्न

- अपने निवास क्षेत्र के आस-पास जल संग्रहण की परंपरागत पद्धित का पता लगाइए।
- इस पद्धित की पेय जल व्यवस्था (पर्वतीय क्षेत्रों में, मैदानी क्षेत्र अथवा पठार क्षेत्र) से तुलना कीजिए।
- अपने क्षेत्र में जल के म्रोत का पता लगाइए। क्या इस म्रोत से प्राप्त जल उस क्षेत्र के सभी निवासियों को उपलब्ध है।

16.4 कोयला एवं पेट्रोलियम

हमने कुछ स्रोत जैसे कि वन, वन्य जीवन तथा जल के संरक्षण एवं संपोषण से संबंधित अनेक समस्याओं की चर्चा की है। यदि हम इनके संपोषण के उपाय अपनाएँ तो इससे हमारी आवश्यकता की पूर्ति भी होती रहेगी। अब हम एक और महत्वपूर्ण संसाधन जीवाशम ईंधन अर्थात कोयला एवं पेट्रोलियम पर चर्चा करेंगे जो ऊर्जा के प्रमुख स्रोत हैं। औद्योगिक क्रांति के समय से हम उत्तरोत्तर अधिक ऊर्जा की खपत कर रहे हैं। इस ऊर्जा का प्रयोग हम दैनिक ऊर्जा आवश्यकता की पूर्ति तथा जीवनोपयोगी पदार्थों के उत्पादन हेतु कर रहे हैं। ऊर्जा संबंधी यह आवश्यकता हमें कोयला तथा पेट्रोलियम से प्राप्त होती है।

इन ऊर्जा स्रोतों का प्रबंधन अन्य संसाधनों की अपेक्षा कुछ भिन्न तरीके से किया जाता है। पेट्रोलियम एवं कोयला लाखों वर्ष पूर्व जीवों की जैव-मात्रा के अपघटन से प्राप्त होते हैं। अत: चाहे हम जितनी भी सावधानी से इनका उपयोग करें फिर भी यह स्रोत भिवष्य में समाप्त हो जाएँगे। अत: तब हमें ऊर्जा के विकल्पी स्रोतों की खोज करने की आवश्यकता होगी। यह संसाधन यदि वर्तमान दर से प्रयोग में आते रहे तो ये कितने समय तक उपलब्ध रहेंगे, इस बारे में विभिन्न आकलनों के आधार पर हम कह सकते हैं कि हमारे पेट्रोलियम के संसाधन लगभग अगले 40 वर्षों में तथा कोयला अगले 200 वर्षों तक उपलब्ध रह सकते हैं।

परंतु जब हम कोयले एवं पेट्रोलियम की खपत के बारे में विचार करते हैं तो ऊर्जा के अन्य म्रोतों के विषय में विचार का एकमात्र आधार नहीं है। क्योंकि कोयला एवं पेट्रोलियम जैव-मात्रा से बनते हैं जिनमें कार्बन के अतिरिक्त हाइड्रोजन, नाइट्रोजन एवं सल्फर (गंधक) भी होते हैं। जब इन्हें जलाया (दहन किया) जाता है तो कार्बन डाइऑक्साइड, जल, नाइट्रोजन के ऑक्साइड तथा सल्फर के ऑक्साइड बनते हैं। अपर्याप्त वायु (ऑक्सीजन) में जलाने पर कार्बन डाइऑक्साइड के स्थान पर कार्बन मोनोऑक्साइड बनाती है। इन उत्पादों में से नाइट्रोजन एवं सल्फर के ऑक्साइड तथा कार्बन मोनोऑक्साइड विषैली गैसें हैं तथा कार्बन डाइऑक्साइड एक ग्रीन हाउस गैस है। कोयला एवं पेट्रोलियम पर विचार करने का एक अन्य दृष्टिकोण यह भी है कि ये कार्बन के विशाल भंडार हैं, यदि इनकी संपूर्ण मात्रा का कार्बन जलाने पर कार्बन डाइऑक्साइड में परिवर्तित हो गया तो वायुमंडल में कार्बन डाइऑक्साइड की मात्रा अत्यधिक हो जाएगी जिससे तीव्र वैश्विक ऊष्मण होने की संभावना है। अतः इन संसाधनों के विवेकपूर्ण उपयोग की आवश्यकता है।

क्रियाकलाप 16.11

कोयले का उपयोग ताप-बिजलीघरों में एवं पेट्रोलियम उत्पाद जैसे कि डीजल एवं पेट्रोल का यातायात के विभिन्न साधनों—मोटरवाहन, जलयान एवं वायुयान—में प्रयोग किया जाता हैं। आज के युग में विद्युत साधित्रों एवं यातायात में विद्युत के प्रयोग के बिना जीवन की कल्पना भी नहीं की जा सकती। अत: क्या आप कुछ ऐसी युक्ति सोच सकते हैं जिससे कोयला एवं पेटोलियम के उपयोग को कम किया जा सके?

कुछ सरल विकल्पों से हमारे ऊर्जा की खपत में अंतर पड़ सकता है। आनुपातिक लाभ-हानि एवं पर्यानुकूलन पर विचार कीजिए:

- (i) बस में यात्रा, अपना वाहन प्रयोग में लाना अथवा पैदल/साइकिल से चलना।
- (ii) अपने घरों में बल्ब, फ्लोरोसेंट ट्यूब का प्रयोग करना।
- (iii) लिफ्ट का प्रयोग करना अथवा सीढ़ियों का उपयोग करना।
- (iv) सर्दी में एक अतिरिक्त स्वेटर पहनना अथवा हीटर या सिगड़ी का प्रयोग करना। कोयला एवं पेट्रोलियम का उपयोग हमारी मशीनों की दक्षता पर भी निर्भर करता हैं। यातायात के साधनों में मुख्यत: आंतरिक दहन-इंजन का उपयोग होता है। आजकल अनुसंधान इस विषय पर केंद्रित है कि इनमें ईंधन का पूर्ण दहन किस प्रकार सुनिश्चित किया जा सकता है जिससे कि इनकी दक्षता भी बढ़े तथा वायु प्रदूषण को भी कम किया जा सके।

क्रियाकलाप 16.12

 आपने वाहनों से निकलने वाली गैसों के यूरो-1 एवं यूरो-11 मानक के विषय में तो अवश्य ही सुना होगा। पता लगाइए कि ये मानक वायु प्रदूषण कम करने में किस प्रकार सहायक हैं?

16.5 प्राकृतिक संसाधन प्रबंधन का दृश्यावलोकन

प्राकृतिक संसाधनों का संपोषित प्रबंधन एक किंठन कार्य है। इस पर विचार करने के लिए हमें खुले दिमाग से सभी पक्षों की आवश्यकताओं का ध्यान रखना होगा। हमें यह तो मानना ही होगा कि लोग अपने हित को प्राथमिकता देने का भरपूर प्रयास करेंगे। परंतु इस वास्तविकता को लोग धीरे-धीरे स्वीकार करने लगे हैं कि कुछ व्यक्तियों के निहित स्वार्थ बहुसंख्यकों के दुख का कारण बन सकते हैं तथा हमारे पर्यावरण का पूर्ण विनाश भी संभव है। कानून, नियम एवं विनियमन से आगे हमें अपनी व्यक्तिगत और सामूहिक आवश्यकताओं को सीमित करना होगा जिससे कि विकास का लाभ सभी को एवं सभी भावी पीढ़ियों को उपलब्ध हो सके।

आपने क्या सीखा

- 🔹 हमारे संसाधनों; जैसे—वन, वन्य जीवन, कोयला एवं पेट्रोलियम का उपयोग संपोषित रूप से करने की आवश्यकता है।
- 'कम उपयोग, पुन: उपयोग एवं पुन: चक्रण' की नीति अपना कर हम पर्यावरण पर पड़ने वाले दबाव को कम कर सकते हैं।
- वन-संपदा का प्रबंधन सभी पक्षों के हितों को ध्यान में रखकर करना चाहिए।
- जल संसाधनों के संग्रहण हेतु बाँध बनाने में सामाजिक-आर्थिक, एवं पर्यावरणीय समस्याएँ आती हैं। बड़े बाँधों का विकल्प उपलब्ध है। यह स्थान/क्षेत्र विशिष्ट हैं तथा इनका विकास किया जा सकता है जिससे स्थानीय लोगों को उनके क्षेत्र के संसाधनों का नियंत्रण सौंपा जा सके।
- जीवाश्म ईंधन, जैसे कि कोयला एवं पेट्रोलियम, अंतत: समाप्त हो जाएँगे। इनकी मात्रा सीमित है और इनके दहन से पर्यावरण प्रदूषित होता है, अत: हमें इन संसाधनों के विवेकपूर्ण उपयोग की आवश्यकता है।

153

अभ्यास

- 1. अपने घर को पर्यावरण-मित्र बनाने के लिए आप उसमें कौन-कौन से परिवर्तन सुझा सकते हैं?
- 2. क्या आप अपने विद्यालय में कुछ परिवर्तन सुझा सकते हैं जिनसे इसे पर्यानुकूलित बनाया जा सके।
- 3. इस अध्याय में हमने देखा कि जब हम वन एवं वन्य जंतुओं की बात करते हैं तो चार मुख्य दावेदार सामने आते हैं। इनमें से किसे वन उत्पाद प्रबंधन हेतु निर्णय लेने के अधिकार दिए जा सकते हैं? आप ऐसा क्यों सोचते हैं?
- 4. अकेले व्यक्ति के रूप में आप निम्न के प्रबंधन में क्या योगदान दे सकते हैं। (a) वन एवं वन्य जंतु (b) जल संसाधन (c) कोयला एवं पेट्रोलियम?
- 5. अकेले व्यक्ति के रूप में आप विभिन्न प्राकृतिक उत्पादों की खपत कम करने के लिए क्या कर सकते हैं?
- 6. निम्न से संबंधित ऐसे पाँच कार्य लिखिए जो आपने पिछले एक सप्ताह में किए हैं-
 - (a) अपने प्राकृतिक संसाधनों का संरक्षण।
 - (b) अपने प्राकृतिक संसाधनों पर दबाव को और बढ़ाया है।
- 7. इस अध्याय में उठाई गई समस्याओं के आधार पर आप अपनी जीवन-शैली में क्या परिवर्तन लाना चाहेंगे जिससे हमारे संसाधनों के संपोष्ठण को प्रोत्साहन मिल सके?

उत्तरमाला अध्याय 4 1. (b) 2. (c) 3. (b) अध्याय 5 2. (b) 1. (c) अध्याय 8 2. (c) 3. 1. (b) (d) अध्याय 9 2. (d) 3. 1. (c) (a) अध्याय 10 1. (d) 2. (d) (b) 5. (d) (b) 4. (a) 7. दूरी 15 cm से कम; आभासी; विवर्धित 9. हाँ 10. लेंस से 16.7 cm दूसरी ओर; 3.3 cm, बिंब से छोटा, वास्तविक, उलटा 11. 30 cm 12. 6.0 cm, दर्पण के पीछे; आभासी, सीधा 13. m=1 दर्शाता है कि समतल दर्पण में प्रतिबिंब, बिंब के साइज़ के बराबर है। m का धनात्मक चिह्न दर्शाता है कि प्रतिबिंब आभासी तथा सीधा है। 14. 8.6 cm, दर्पण के पीछे; आभासी, सीधा; 2.2 cm, बिंब से छोटा 15. बिंब की ओर 54 cm; 14 cm, आवर्धित, वास्तविक, उलटा 16. - 0.50 m; अवतल लेंस 17. + 0.67 m; अभिसारी लेंस अध्याय 11 1. (b) 2. (d) 3. (c) 4. (c) 5. (a) -0.18 m; (b) +0.67 m 6. अवतल लेंस; -1.25 D 7. उत्तल लेंस; +3.0 D अध्याय 14

3. (c)

1. (b)

2. (c)

पारिभाषिक शब्दावली

अ		अपघटक	Decomposers
अंडकोशिका	Egg cell	अपघटन	Decomposition
अंडवाहिनी	Oviduct	अपच	Indigestion
अंडाशय	Ovary	अपचयन	Reduction
अंतर्जनन	Unbreeding	अपद्रव्य	Impurity
अंतरापृष्ठ	Interface	अपमार्जक	Detergent
अक्रिय	Inert	अपवर्त	Refract
अक्रिय गैस	Inert gas	अपवर्तन	Refraction
अक्षय	Inexhaustible	अपवर्तनांक	Refractive index
अग्न्याशय	Pancreas	अपवर्तित किरण	Refracted ray
अग्निशामक	Fire extinguisher	अपशिष्ट	Waste
अग्र मस्तिष्क	Fore brain	अपसारी	Diverging
अजैव निम्नीकरणीय	Abiodegradation	अपारदर्शी	Opaque
अति भारण	Over loading	अपोहन	Dialysis
अतिशय रूप में	Exceptionally	अप्रभावी लक्षण	Recessive traits
अर्ध प्रवाह	d/s (down	अभिकल्प	Design
	stream)	अभिकारक	Reactant
अधात्विक	Non-metalic	अभिक्रियाशीलता	Activity
अनवीकरणीय	Non-renewable	अभिनेत्र लेंस	Eye lens
अनुपचारित वाहित मल	Untreated sewage	अभिलक्षण	Characteristic
अनुक्रिया	Response	अभिसारी	Converging
अनुशिथिलन	Diastole	अम्लीय	Acidified
अनुदैर्घ्य	Longitudinal	अयस्क	Ore
अनुप्रस्थ	Transverse	अलिंद	Atrium
अनुमस्तिष्क	Cerebellum	अल्पवर्धित आँख	Rudimentary eye
अनुरक्षण	Maintenance	अवक्षेप	Precipitate
अनुलग्न 🍎	Prefix	अवक्षेपण अभिक्रिया	Precipitation
अनुशंसित	Recommendation		reaction
अन्योन्याश्रित	Interdependent	अवतल	Concave
अपक्षयन	Depletion	अविरोध	Consistency

अविरोधिनी पेशी	Sphincter	उ	
	muscles	उत्कृष्ट गैस	Noble gas
अविलेय	Insoluble	उच्च रक्तचाप	Hypertension
अष्टक	Octet/Octave	उत्तरजीविता	Survival
असंक्षारक क्षारक	Non-Corrosive base	उत्तल	Convex
असंतृप्त	Unsaturation	उत्सर्जन	Excretion
असत्य/अप्रमाणित	Disprove	उत्पादक	Producers
आ		उदासीन तार	Neutral wire
आँख	Eye	अभिक्रिया	Redox reaction
आक्सीकरण, उपचयन	Oxidation	उदासीनीकरण	Neutralisation
आर्गन	Argon	उद्दीपन	Stimulus
आघातवर्ध्यता	Malleability	उत्प्रेरक	Catalyst
आँतरोष्मि	Endothermic	उपभोक्ता	Consumers
आँत्र रस	Intestine juice	उपस्कर	Equipment
आर्द्र	Humid/Moisture	उपोत्पाद	By products
आनुवंशिकता	Heredity	उभयधर्मी	Amphoteric
आनुवंशिक पदार्थ	Genetic material	<u> </u>	
आपतित किरण	Incident ray	ऊर्ध्व प्रवाह	u/s (Upstream)
आभासी	Virtual	उपचयन/अपचयन	
आमाशय	Stomach	ऊष्माक्षेपी	Exothermic
आयोडीन	Iodine	ऊष्मायन	Incubation
आवर्त 🗼	Periodic	ऊष्मारोधन	Insulation
आवर्त नियम	Periodic law	ऊष्माशोषी	Endothermic
आवर्धित	Magnified	U	211400110111110
आवेश	Charge	एककोशिक	Linicalitata
आवृत्ति	Frequency	•	Unicellular
आहार जाल	Food web	एकल कृषि	Monoculture
आहार शृंखला	Food chain	एस्टरीकरण	Esterification
इ		ऐ	
इंद्रधनुष	Rainbow	ऐंटेसिड	Antacid
इत्र	Essence	ऐलुमिनियम	Aluminium
			157

क		गर्भाशय	Uterus
कंठ	Larynx	गुच्छ	Cluster
कठोरता	Hardness	गुणधर्म	Properties
कड्वा	Bitter	गुदाद्वार	Anus
कर्णपालि	Earlobe	ग्रासिका	Oesophagus
काचाभ द्रव	Vitreous humour	गर्भाशयग्रीवा	Cervix
कॉर्निया अंधता	Corneal blindness	गुणसूत्र	Chromosome
कायिक प्रवर्धन	Vegetative	गोलीय दर्पण	Spherical mirror
	propagation	घ	100
किण्वन	Fermentation	घ्राण ग्राही	Smell receptor
क्रिस्टलीय लेंस	Crystalline lens	a 44	5'
कुसंक्रिया	Malfunction	चक्रण	Cycle
कूपिका	Alveoli	चतुःसंयोजक	Tetravalent
कैल्सियम	Calcium	चमक	Glitter
कोबाल्ट	Cobalt	चमकना	Sparkle
कोश	Shell	चश्मा	Spectacles
कोशिकागुच्छ	Glomerulus	चालक	Conductor
क्लोरीन	Chlorine	चित्रित	Depict
क्ष	A - 01	चुंबकन	Magnetisation
क्षति	Damage	चुंबकीय क्षेत्र रेखाएँ	Magnetic field
क्षतिग्रस्त	Damaged		lines
क्षय	Decay	चुंबकीय अनुनाद	Magnetic
क्षार	Alkali	प्रतिबिंबन	Resonance
क्षारीय	Alkaline		Imaging (MRI)
क्षुद्रांत	Intestine	छ	
ख		छानना	Filter
खंडन	Fragmentation	छितरावक	Sprinkler
खनिज	Mineral	ज	
ग		जंग	Rust
गंधीय	Olfactory	जठर ग्रंथि	Gastric gland
1-11	Shactory	जठर रस	Gastric juice
450			

जनन	Reproduction	त	
जरा दूर दृष्टिता	Presbyopia	तंडु	Nozzle
जल-जीवशाला	Aquarium	तंत्रिका	Nerve
जल-भीति	Rabies	तंत्रिका आवेग	Nerve impulse
जलना	Glow	तंत्रिकाक्ष	Axon
जलन	Irritation	तकनीक	Technique
जलीय विलयन	Aqueous solution	तत्व	Element
जलरागी	Hydrophilic	तनिका/मस्तिष्कावरण शोथ	Meningitis
जलविरागी	Hydrophobic	तन्यता 🔨	Ductility
जल विद्युत संयंत्र	Hydro power plant	तरंग ऊर्जा	Wave Energy
जलाशय	Reservoir	तापीय विद्युत संयंत्र	Thermal power plant
जाति उद्भव	Speciation	तीव्र ल्युकीमिया	Acute leukaemia
जিह्वा	Tongue	त्र	
जीव	Organism	त्रिआयामी	Three-dimensional
जीवाश्म	Fossil	त्रिक	Triad
जीवाष्मी ईंधन	Fossil fuel	त्रिज्या	Radius
जैव-आवर्धन	Biological	त्रिविम चाक्षुकी	Stereopsis
2	magnification	<u>द</u>	Stereoposo
जैव उत्प्रेरक	Biocatalyst	दक्षता	Efficiency
जैव-निम्नीकरण	Biodegradation	दक्षिण-हस्त अंगुष्ठ नियम	·
जैव-प्रकम	Life process	पान्नण-हला अगुष्ठ ।नयम	Right hand thumb rule
जैव मात्रा	Biomass	दर्पण	Mirror
ज्वार भाटा	Tides	दहन	Combustion
ज्वारीय ऊर्जा	Tidal Energy	दानेदार	Granulated
ट		दावेदार	Stakeholder
टिमटिमाना	Twinkle	दिक्परिवर्तक	Commutation
ड		दिक्सूचक यंत्र	Magnetic compass
डंकमारा	Stung	दिक्सूची	Magnetic needle
डाबेराइनर	Dobereiner	दिष्ट धारा	Direct current
	Dobereniei	दीर्घरोम	Villi

दुर्भिक्ष	Famine	निकेल	Nickel
दूरदृष्टि	Myopia	निर्गत किरण	Emergent ray
दूर बिंदु	Far point	नेत्र	Eye
दृक् तंत्रिका/चक्षुक तंत्रिका	Optic nerve	नेत्रगोलक	Eyeball
दृढ़ संरचना	Rigid structure	नेत्रोद	Aqueous humour
दृष्टि क्षेत्र	Field of view	नींबू का रस	Lemon juice
दृष्टिपटल	Retina	निलय	Ventricle
द्वारक	Aperture	निषेचन	Fertilisation
द्विखंडन	Binary fission	निष्कर्ष	Interference
द्विपरमाणु	Diatomic	निष्कर्षण	Extraction
द्विफोकसी लेंस	Bio-focal lens	निस्तापन	Calcination
द्वि-विस्थापन अभिक्रिया	Double displace-	निस्यंदन	Filtration
द्रमिका	ment reaction	ч	
ध	Dendrite	पंखुड़ी	Petal
		पक्षमाभी पेशियाँ	Ciliary muscles
धमनी	Artery	पदार्थ	Substance
धनुस्तंभ धात्विक	Tetanus Metallic	परमाणु द्रव्यमान	Atomic mass
धारा अनुमातांक		परमाणु संख्या	Atomic number
धारा नियंत्रक	Current rating Rheostat	परमाणु साइज	Atomic size
धारावाही		पराग कण	Pollen grain
	Current carrying	परागण	Pollination
ध्रुव	Pole	पराग कोश	Anther
न		पर परागण	Cross pollination
नवीकरणीय	Renewable	परावर्तन	Reflection
नवोद्भिद	Seedling	परावर्तित किरण	Reflected ray
नाभिकीय	Nuclear	परासरण	Osmosis
नाभिकीय रिएक्टर	Nuclear reactor	परिकलन	Calculation
निऑन	Neon	परिक्षेपित	Splitting
निकट दृष्टि	Hypermetropia	परिघटना	Phenomenon
निकट बिंदु	Near point	परितारिका	Iris
निकेत	Niche	परिनालिका	Solenoid
140			

परिपथ	Circuit	पुनर्भरण	Feedback
परिपाटी	Convention	पुनरूद्भवन, पुनर्जनन	Regeneration
परिवर्त	Variants	पुनर्वशोषण	Reabsorption
परिवर्धन	Development	पुनः क्रिस्टलीकरण	Recrystallisation
परिवर्णी शब्द	Acronym	पूर्वलग्न	Suffix
परिशोषिका	Appendix	पौध घर	Green house
परिष्करण	Refining	पोटैशियम	Potassium
परिष्कृत	Sophisticated	पोषण	Nutrition
पर्यावरण	Environment	पोषी-स्तर 🔥	Trophic level
पवन	Wind	प्रकुंचन	Systole
पश्च दृश्य दर्पण	Rear view mirror	प्रक्रम	Process
पश्च मस्तिष्क	Hind brain	प्रकाश का परिक्षेपण	Dispersion of light
पाचन	Digestion	प्रकाशसंश्लेषण	Photosynthesis
पारंपरिक	Conventional	प्रकाश सुग्राही कोशिका	Light sensitive cell
पारगत	Transmitted	प्रकाशिक	Optical
पारगमन	Transmission	प्रकाशिको	Optics
पारदर्शी	Transparent	प्रकीर्णन	Scattering
पारितंत्र	Eco system	प्रचुर	Abundance
पाश	Loop	प्रतिकृति	Сору
पारिस्थितिक	Ecological	प्रतिरूप	Copies
पारिस्थितिक तंत्र	Eco-system	प्रतिबिंब	Image
पार्श्व	Side	प्रतिजैविक	Antibiotics
पार्श्व परिवर्तन	Lateral inversion	प्रतीक	Symbol
पार्श्व संयोजन	Parallel	प्रतिरोध	Resistance
	combination	प्रतिरोधी	Antiseptic
पिटवा	Wrought	प्रतिरोधकता	Resistivity
पित्ताशय	Gallbladder	प्रतिवर्ती क्रिया	Reflex action
पित्त रस	Bile juice	प्रतिवर्ती चाप	Reflex arc
पीड़ाहारी	Analgesic	प्रत्यारोपण	Transplantation
पुंकेसर	Stamen	प्रत्यावर्ती धारा	Alternating
पुतली	Pupil		current

प्रदीप्ति	Illumination	बृहद्रांत्र	Colon
प्रबंधन	Management	बेरियम	Barium
प्रभावी लक्षण	Dominant traits	बोमन संपुट	Bowmen's
प्रमस्तिष्क	Cerebrum		capsule
प्रयोज्य (निवर्तनीय)	Disposable	बोरॉन	Boron
प्रवृत्ति	Tendency	ब्रोमीन	Bromine
प्राचल	Parameter	भ	A
प्राकृतिक चयन	Natural selection	भर्जन	Roasting
प्रेक्षण	Observation	भूतापीय ऊर्जा	Geothermal
प्लग कुंजी	Plug key		energy
फ		भूरा लाल	Reddish brown
फुलरेन	Fullerenes	भू-पर्पटी	Earth crust
फुफ्फुस	Lungs	भू-संपर्क तार	Earth wire
फुफ्फुस शिराएँ -	Pulmonary veins	भ्रूण	Embryo
फेरे	Turns	н	
फोकस दूरी	Focal length	मधुमक्खी का डंक	Bee-sting
फ्लुओरीन	Fluorine	मध्य-मस्तिष्क	Midbrain
फ्लेमिंग का वाम	Fleming's left	मरूद्भिद	Xerophyte
हस्त नियम	hand rule	मलीन	Tarnish
্ অ	100	मस्तिष्क	Brain
बहुकोशिक	Multicellular	मस्तिष्क शोथ	Encephalitis
बहुखंडन	Multiple fission	(मस्तिष्क ज्वर)	
बंध्य पुष्प	Sterile flower	महाधमनी	Aorta
X		महाशिरा	Vena cava
बाह्य दल	Sepal Object	महासागरीय तापीय ऊर्जा	Ocean thermal Energy
बीजांड	Ovule	मांसाहारी	Carnivore
बीजाणु	Spore	मानव नेत्र	Human eye
बुदबुदाहट	Effervescence	मिल्क ऑफ मैग्निशिया	Milk of magnesia
बुभुक्षण	Starvation	मिश्र धातु/मिश्रातु	Alloy
बुलबुला	Bubble	मिसेल	Micelles

मुकुलन	Budding	लिंग सूत्र	Sex chromosome
मुख्य अक्ष	Principal axis	लीथियम	Lithium
मुख्य फोकस	Principal focus	लेंस	Lens
मूत्रमार्ग	Urethra	लेंस की क्षमता	Power of lens
मूत्र वाहिनी	Ureter	व	
मेंडेलीफ	Mendelléev	वंशागत लक्षण	Inherited traits
मेरूरज्जु	Spinal cord	वंशागत	Inherit
मोतिया बिंद	Cataract	वंशागति	Inheritance
मोलेसस (सीरा)	Molasses	वक्रता त्रिज्या	Radius of
य	A	curvature	
यकृत	Liver	वर्तिका 💮 🤇	Style
यशदलेपन	Galvanisation	वर्तिकाग्र	Stigro
युग्मक	Gamete	वहन तंत्र	Transportation
युग्मनज	Zygote	system वक्रित दर्पण	O1
योनि	Vagina		Curved mirror
यौवनारंभ	Puberty	वन संरक्षण	Forest conservation
₹		वर्गीकरण	Classification
रंग	Colour	वर्ण	Colour
रंध्र	Stomata	वसा	Fat
रासायनिक अभिक्रिया	Chemical reaction	वृषण	Testes
रासायनिक सूत्र	Chemical formula	व्यष्टि	Individual
र्स्तापानक सूत्र रूबिडियम	Rubidium	वाष्पोत्सर्जन	Transpiration
रेटीना (दृष्टिपटल)		वाहित मल	Sewage
	Retina	विकल्प	Version
रोगाणुनाशक	Disinfectant	विकास	
m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		विकिरण	Evolution
लघु-पचन	Short circuit		Radiation
लसीका	Lymph	विकीर्णन	Scattering
लालाग्रंथि	Salivary gland	विकृतगंधिता	Rancidity
लालारस	Saliva	विकृत	Denature
लिंग निर्धारण	Sex determination	विखंडन	Fusion

विक्षुब्ध	Turbulent	विलयन	Solution
विचलन	Variation	विषम पोषी	Heterotroph
विचलन कोण	Angle of deviation	विवर्तन	Diffraction
विचरण	Deviation	विवर्धित	Enlarged
वितरण		विशिष्ट स्थल	Hot spots
	Distribution	विस्थापन	_
विद्युत	Electricity	विस्थापन अभिक्रिया	Displacement
विद्युत अपघटन	Electrolysis		Displacement
विद्युत इस्तरी	Electric iron	वैद्युत संयोजक यौगिक	Electrovalent
विद्युत जनित्र	Electrical	वैश्विक ऊष्मीकरण	compound
fara river	generator		Global warming
विद्युत चुंबक	Electro magnet	वैद्युत	Electrical
विद्युत चुंबकीय प्रेरण	Electromagnetic induction	वृक्क	Kidney
विद्युत धारा	Electric current	वृक्काणु	Nephron
विद्युत मापक यंत्र	Electric meter	वृद्धि	Growth
विद्युत मोटर	Electric motor	श	
विद्युन्मय तार	Live wire	शंक्वाकार	Conical
विद्युत रोधन	Insulation	शबलित	Verigated
विद्युतरोधी	Insulator	शर्मन	Quench
विद्युत ऋणात्मक		शल्य	Surgery
विन्यास	Electronegative	शाकाहारी	Herbivore
	Configuration	शिथिलता	Relaxation
विभेदन	Differentiation	शिरा	Vein
विभाजिक	Septum	शिश्न	Penis
विभवांतर	Potential	शुक्रवाहिनी	Vas deferens
विभेद	difference	शुक्राशय	Seminal vesicle
	Distinguish	शृंखलन	Catenation
विभक्त	Splitting	शृंखला अभिक्रिया	Chain Reaction
विषमांगी	Contrasting	शोधन	Purification
वियोजन	Dissociation	श्रेणीकरण	Gradation
वियोजन अभिक्रिया	Dissociation reaction	श्रेणी संयोजन	Series
विरूपण	Disfigurement		combination

श्वसन	Respiration	सन्निकट	Approximate
श्वसनी	Bronchi	समस्थानिक	Isotopes
श्वासनली	Trachea	समष्टि	Population
ष -	Y	समजातीय श्रेणी	Homologous series
षटकोणीय व्यूह	Hexagonal array	समाघात	Impact
स		समाप्य	Exhaustible
संकलित	Compile	समीकरण	Equation
संकेन्द्रण	Concentration	समूह	Group
संगठन	Organisation	सर्वतोमुखी	Versatile
संक्षारण	Corrosion	सांद्रण	Concentration
संग्रहण	Harvesting	सांश्लेषिक	Synthetic
संघटक	Ingredient	साधन	Resources
संतति	Progeny	साधित्र	Appliance
संतृप्त	Saturation	साबुनीकरण	Saponification
संदूषित	Polluted	समांगी	Homogeneous
संदूषण	Contamination	सार्वप्रायिक संख्या	Most probable
संधि	Joint		number (MPN)
संपोषित विकास	Sustainable	सार्वसूचक	Universal Indicator
	development	सिनेप्स	Synapse
संपाचन, पाचन	Digestion	सिरका	Vinegar
समंजन	Accommodation	सिरे	Terminals
समंजन क्षमता	Power of	सीजियम	Cesium
	accommodation	सीधी	Straight
संयोजकता	Valency	सुचालक	Conductor
संयोजन अभिक्रिया	Combination reaction	सुनार (स्वर्णकार)	Goldsmith
संलयन	Fusion	सुस्पष्ट	Distinct
विखंडन	Fission	सुस्पष्ट दर्शन की	Least distance
संवहन बंडल	Vascular Bundle	अल्पतम दूरी	of distinct vision
संसूचन	Detection	सूक्ष्म जीव	Micro organism
संसाधन	Resource	सूक्ष्म-विकास	Micro-evolution
VIVII -1 1	resource		

सूचक	Indicator	स्वपोषी विखंडन	Self sustaining
सूत्र	Formula	fission	
सौर कुकर	Solar cooker	स्वच्छमंडल/कॉर्निया	Cornea
सौर जल तापक	Solar water heater	स्वनिर्वाह	Self sustaining
सौर सेल	Solar cell	स्वपोषी	Autotroph
सौर स्थिरांक	Solar constant	स्वपोषी विखंडन	Self sustaining
सोडियम	Sodium	fission स्वपरागण	Self-pollination
स्कंदन	Coagulation		Sen-polintation
स्ट्रॉन्शियम	Strontium	ह होलियम	A () O
स्पेक्ट्रम	Spectrum	हा।लयम	Helium
	. (
	***	* 11	P