Cube and Cube Root

• Let us remember :

You have learnt about cube and its volume in Standard VII. All sides of a cube are equal in measure. Aren't they ? Now fill in the blanks according to example :

Question	Figure	Volume (cm ³)
What will be the volume of cube having side of measure 1 cm ?		$1 \times 1 \times 1 = 1^3 = 1$
What will be the volume of cube having side of measure 2 cm ?	Ē	$2 \times 2 \times 2 = 2^3 = 8$
What will be the volume of cube having side of measure 3 cm ?		$3 \times 3 \times 3 = 3^3 = 27$
What will be the volume of cube having side of measure 4 cm ?		
What will be the volume of cube having side of measure 5 cm ?		

Let's learn new :

On the basis of Table the numbers 1, 8, 27, 64, 125 are obtained if same number is multiplied three times. Such obtained number is called cube of that number.

Cube of a number is obtained by multiplying that number with its square. Therefore, $x^2 = x \times x$.

Here, $1 \times 1 \times 1 = 1^3 = 1$. Therefore cube of 1 is '1' and cube root of '1' is '1'. The symbol for cube root is ' $\sqrt[3]{}$ '.

1 : Cube and Cube Root

Symbolically $\sqrt[3]{1} = 1$ (Read as : Cuberoot of 1 is equal to 1) $2 \times 2 \times 2 = 2^{3} = 8$. Therefore cube of 2 is '8' and cuberoot of 8 is '2'. Symbolically $\sqrt[3]{8} = 2$ (Read as : Cuberoot of 8 is 2) $3 \times 3 \times 3 = 3^{3} = 27$. \therefore Cube of 3 is '27' and $\sqrt[3]{27} = 3$ $4 \times 4 \times 4 = 4^{3} = 64$ \therefore Cube of 4 is '64' and $\sqrt[3]{64} = 4$ $5 \times 5 \times 5 = 5^{3} = 125$ \therefore Cube of 5 is '125' and $\sqrt[3]{125} = 5$ The numbers 1, 8, 27, 64, 125,... etc obtained above are called perfect cube

Table 1

numbers.

MATHEMATICS

Now complete the following Table :

Number	Cube	Number	Cube								
1	$1^3 = 1$	11									
2	$2^3 = \dots$	12	$12^3 = 1728$								
3	$3^3 = \dots$	13	$13^3 = 2197$								
4	$4^3 = 64$	14									
5	$5^3 = \dots$	15									
6	$6^3 = 216$	16	$16^3 = 4096$								
7		17	$17^3 = 4913$								
8		18									
9	$9^3 = \dots$	19									
10		20	$20^3 = 8000$								

• Answer the following questions on the basis of Table 1 :

(1) Is your roll number is a perfect cube number ? Why ?

- (2) Which are the perfect cube numbers from 1 to 100 ?

2

STD.8

(3) How many perfect cube numbers are there from 1 to 1000 ?

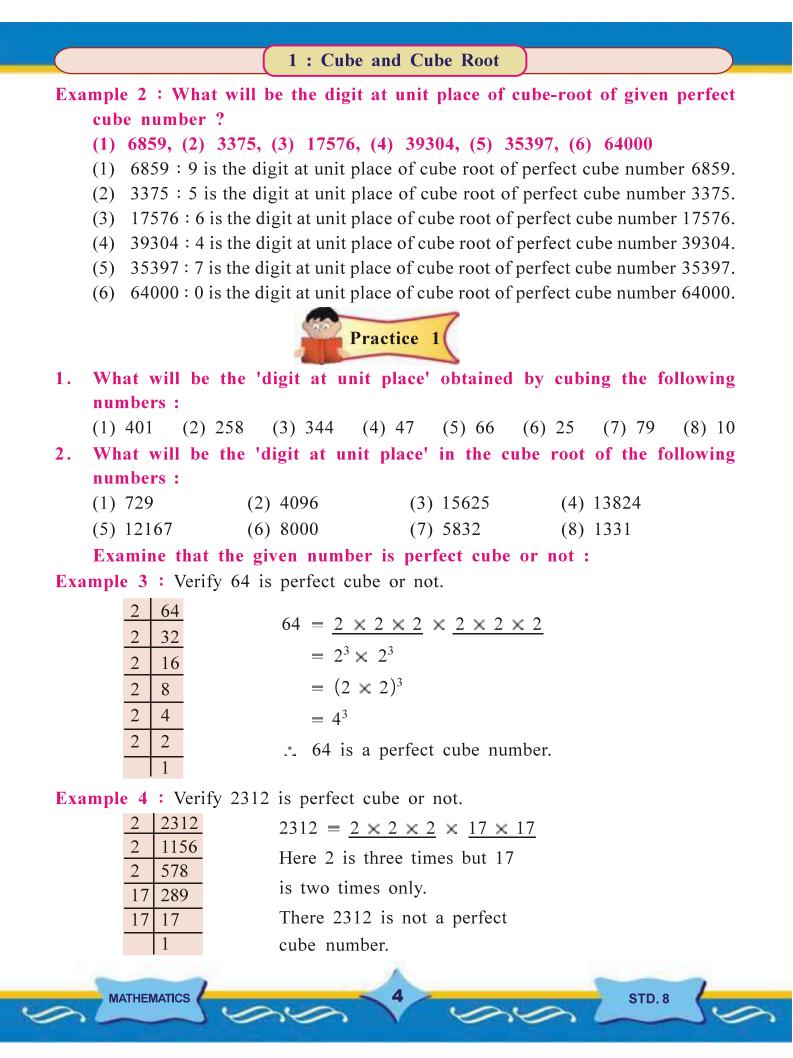
1 : Cube and Cube Root

• Fill in the blank in the given Table 2 on the basis of Table 1 : Table 2

Digit at unit place of number	place of a number	To get more information of the	Digit at unit place of number	place of a number obtained by
1	1	numbers on the	2	8
4		basis of Table 1 and Table 2, cube	8	
5	5	the following	3	7
6	••••••	numbers : 21 to 30	7	
9			0	

It is clear from the Table 2,

- If 1, 4, 5, 6, 9 and 0 are the digit at unit place of numbers then the digit at unit place of the cube of numbers will be 1, 4, 5, 6, 9 and 0 respectively.
- If digit at unit place of a number is 2 then 8 will be the digit at unit place of cube of that number and if 8 lies at unit place then cube of that number has 2 at its unit place. If 3 lies at unit place then its cube has 7 will be at its unit place and if 7 lies at unit place then its cube has 3 at its unit place.


Examine the number of zero of the number obtained by cube of 10, 20, 30. $10^3 = 10 \times 10 \times 10 = 1000$ $20^3 = 20 \times 20 \times 20 =$ $30^3 = 30 \times 30 \times 30 =$ $40^3 = 40 \times 40 \times 40 =$

On the basis of this we can say that the number having zero at its unit's place, the number obtained by cube of them have zero at unit's ten's and hundred's place. **Example 1 :** What will be the digit at unit place obtained by cubing the given numbers :

(1) 11 (2) 58 (3) 104 (4) 407 (5) 596 (6) 840

Number	Digit at unit place obtained by cube of number	Number	Digit at unit place obtained by cube of number
11	1	407	3
58	2	596	6
104	4	840	0

1 : Cube and Cube Root

Which of the following numbers are perfect cube ? For what ? (1) 729 (2) 100 (3) 243 (4) 400 (5) 3375 (6) 127000 (7) 4913 (8) 4096

Example 5 : By which smallest number 2312 must be multiplied to get a perfect cube. According to Example 4, $2312 = 2 \times 2 \times 2 \times 17 \times 17$

Here, 2 is three times but 17 is only two times. If here 17 will be three times, then the new number obtained will be perfect cube.

Therefore, $2312 \times 17 = \underline{2 \times 2 \times 2} \times \underline{17 \times 17 \times 17}$

Hence the smallest natural number by which 2312 should be multiplied to make it perfect cube is 17.

Example 6 : By which smallest number 1029 should be multiplied to get a perfect cube ?

Example 7 : By which smallest number 704 should be divided to get a perfect cube ?

2	704
2	352
2	176
2	88
2	44
2	22
11	11
	1

MATHEMATICS

 $704 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 11$

Here 11 is only one time. If 11 is removed, therefore, if given number is divided by 11, then new number is a perfect cube.

STD.8

Example 8 : By which smallest number 1600 should be divided to get a perfect cube number ?

1. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube ?

(1) 256 (2) 100 (3) 576 (4) 81 (5) 1715

2. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube :
(1) 88 (2) 875 (3) 1512 (4) 625 (5) 13500

5

(1) 88 (2) 875 (3) 1512 (4) 625 (5) 13500

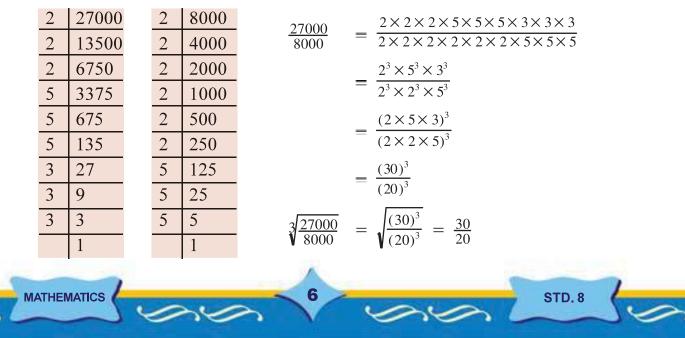
1 : Cube and Cube Root

• To find cube root through factorisation method :

We have learnt to find square root through factorisation method. Now let's learn to find cube root through factorisation method.

Example 9 : Find cube root of 15625 by factorisation method.

5	15625	
5	3125	$15625 = \underline{5 \times 5 \times 5} \times \underline{5 \times 5 \times 5}$
5	625	$= 5^3 \times 5^3$
5	125	$= (5 \times 5)^3$
5	25	$= (25)^3$
5	5	$3\sqrt{15625} = 25$
	1	$\sqrt{15025} = 25$


Example 10 : Find the cube root of 10648 by factorisation method.

2	10648	$10648 = 2 \times 2 \times 2 \times 11 \times 11 \times 11$
2	5324	23 - 113
2	2662	$= 2^3 \times 11^3$
11	1331	$= (2 \times 11)^3$
11	121	$= (22)^3$
11	11	(22)
	1	$\therefore \sqrt[3]{10648} = 22$
		*

To find cube-root of fractional and decimal-fractional numbers :

As we have learnt to find out the cube of perfect cube integers, similarly let us learn to find the cube-root of perfect cube fractions.

Example 11 : Find cube root of $\sqrt[3]{\frac{27000}{8000}}$ or $\frac{27000}{8000}$ by factorisation method

Examp	le	12	:	Find	cube	ro

oot of $\sqrt[3]{\frac{19683}{15625}}$ or $\frac{19683}{15625}$ by factorisation method.

3	19683	5	15625	19683	$3 \times 3 \times$
3	6561	5	3125	15625	$- 5 \times 5 \times 5 \times 5 \times 5 \times 5$
3	2187	5	625		$=\frac{3^3\times3^3\times3^3}{5^3\times5^3}$
3	729	5	125		$= \frac{1}{5^3 \times 5^3}$
3	243	5	25		$=\frac{(3\times3\times3)^3}{(5\times5)^3}$
3	81	5	5		
3	27		1		$=\frac{(27)^3}{(25)^3}$
3	9				
3	3			3 <u>19683</u> 15625	$=\sqrt{\frac{(27)^3}{(25)^3}} = \frac{27}{25}$
	1				

Example 13 : Find cube root of $\sqrt[3]{1.331}$ or 1.331 by factorisation method.

1.33	31 =	$\frac{1331}{1000}$			<u>1331</u>	$=\frac{11\times11\times11}{2\times2\times2\times5\times5\times5}$
	11	1331	2	1000	1000	$= \frac{1}{2 \times 2 \times 2 \times 5 \times 5 \times 5}$
	11	121	2	500		$=\frac{11^3}{(2^3 \times 5^3)}$
	11	11	2	250		$(-1)^{3}$
		1	5	125		$=$ $\frac{11}{(2\times5)^3}$
			5	25		$=\frac{11^3}{10^3}$
			5	5		10
				1	₹1.33	$\overline{1} = \sqrt{\frac{11^3}{10^3}} = \frac{11}{10} = 1.1$

Example 14 : Find cube root of $\sqrt[3]{12.167}$ or 12.167 by factorisation method. 12.167 = $\frac{12167}{1000}$

- •1	07	1000			$12167 = 23 \times 23 \times 23$
	23	12167	2	1000	$\frac{1}{1000} = 2 \times 2 \times 2 \times 5 \times 5 \times 5$
	23	529	2	500	$=\frac{23^3}{2^3\times 5^3}$
	23	23	2	250	
		1	5	125	$=\frac{23^3}{(2\times 5)^3}$
			5	25	
			5	5	$=\frac{23^3}{10^3}$
				1	$\sqrt[3]{12.167} = \sqrt{\frac{23^3}{10^3}} = \frac{23}{10} = 2.3$
					V_{10}^{3} 10 -10

To find cube root through estimation method :

If given number is perfect cube then the cube root of same number can be found by estimation method.

1 : Cube and Cube Root

Example 15 : Find the cube root of 4913 through estimate.

4913

Explanation :

- **Step 1** : Divide the given number into two parts. One part of number having hundred's, ten's and unit's digit and other part of number. Here, in 4913, 913 is first part and 4 is the second part.
- **Step 2** : Here, first part is 913 whose unit place digit is 3. Here 3 comes at the unit's place of a number between 1 and 9 when it's cube root ends in 3? This number is 7.
- **Step 3** : Here, the number of second part is the smallest number out of the numbers between the cube of two numbers. Here, the second part is 4, which lies between $1^3 = 1$ and $2^3 = 8$. 1 is smaller between 1 and 2. Therefore, 1 will be taken at ten's place of cube root of a perfect cube number.

 $\therefore \sqrt[3]{4913} = 17$

Example 16 : Find the cube root of 15625 through estimation.

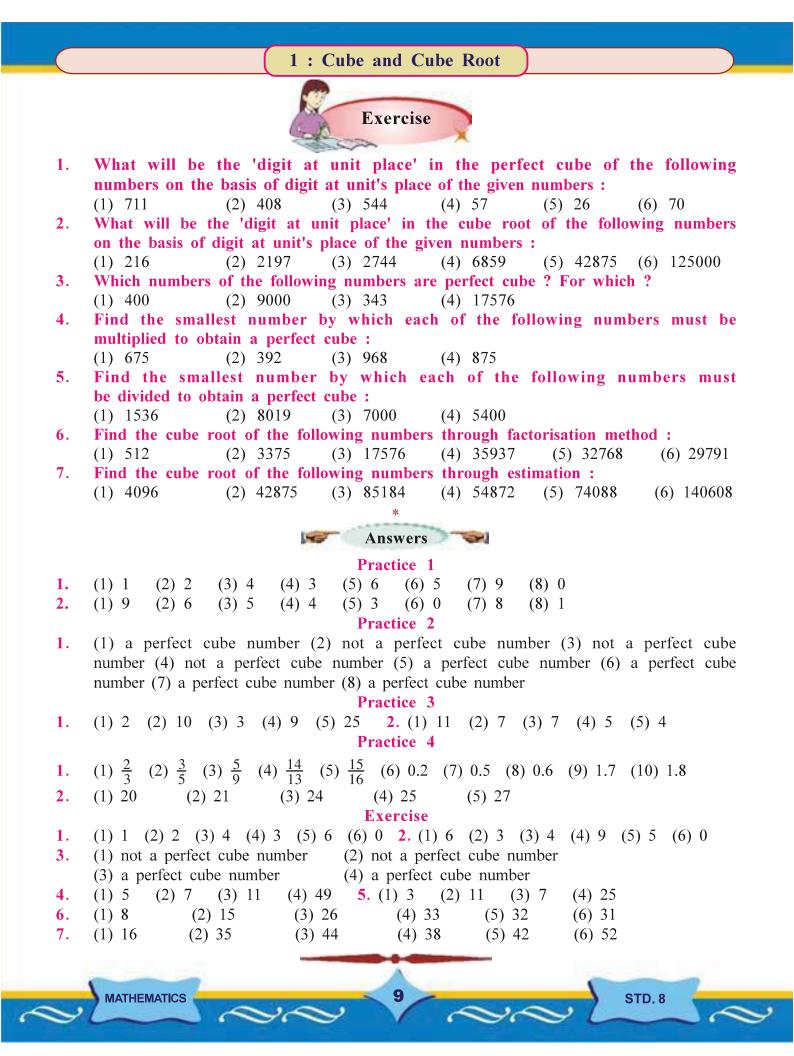
∛15625 15 625 2 5

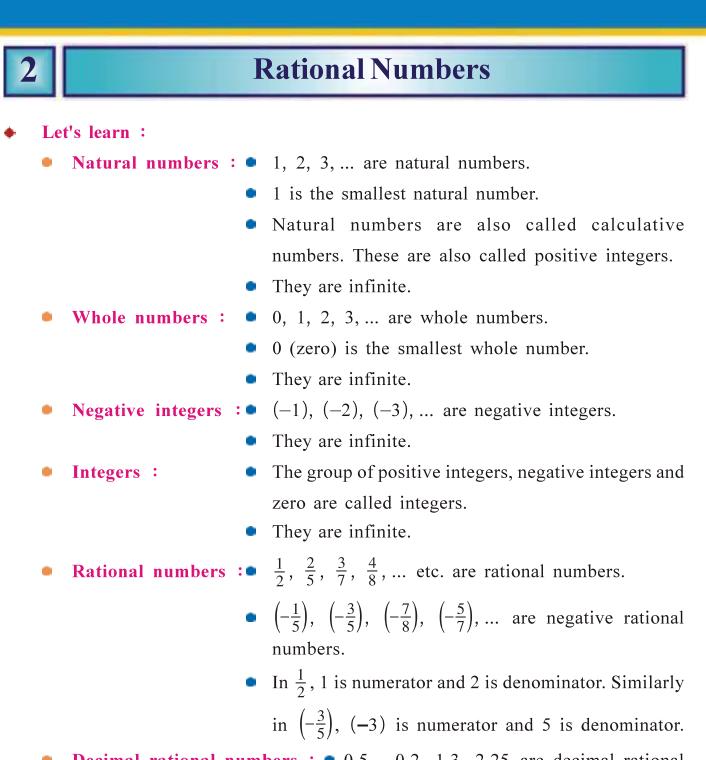
Explanation :

- **Step 1** : Divide the given number into two parts. One part of number having handred's, ten's and unit's digit and other part of number having remaining digits. Here, dividing 15625 into two parts, 625 is first part and 15 is second part.
- Step 2 : Here, first part is 625 whose digit at unit's place is 5. Therefore, 5 will be at unit place of the cube root of this perfect cube number.
- **Step 3** : Here, the number second part is the smallest number out of the numbers between cube of two numbers. Here, the second part is 15, which lies between $2^3 = 8$ and $3^3 = 27$. 2 is smaller between 2 and 3. Therefore, 2 will be taken at ten's place of cube root of a perfect cube number.

$$\therefore \sqrt[3]{15625} = 25$$

Note : If the second part is perfect cube then write the digit of its cube root.




Find the cube root of the following numbers by factorisation method : 1.

(1) $\frac{8}{27}$	(2) $\frac{27}{125}$	(3) $\frac{125}{729}$	(4) $\frac{2744}{2197}$	(5) $\frac{3375}{4096}$
(6) 0.8	(7) 0.125	(8) 0.216	(9) 4.913	(10) 5.832

2. Find the cube root of the following numbers by estimation method : (1) 8000(2) 9261 (3) 13824 (4) 15625 (5) 19683

- Decimal rational numbers :

 0.5, -0.2, 1.3, 2.25 are decimal rational numbers.
 - Decimal rational numbers can be shown as below

STD.8

$$\begin{array}{c|ccccc} 0.5 &=& \frac{5}{10} \\ -0.2 &=& \frac{-2}{10} \end{array} & 1.3 &=& \frac{13}{10} \\ 2.25 &=& \frac{225}{100} \end{array}$$

Downloaded from https:// www.studiestoday.com

10

MATHEMATICS

2 : Rational Numbers

Let's learn new :

We know that $\frac{2}{5}$, $-\frac{4}{7}$ etc. are non-integers, -0.3, 0.7 etc. are decimal non-integers which are denoted as $-\frac{3}{10}$ and $\frac{7}{10}$ respectively as simple fractions. Similarly, number 5, 9, 0 etc are also can be denoted by writing 1 as denominators.

For example, $5 = \frac{5}{1}$, $9 = \frac{9}{1}$, $0 = \frac{0}{1}$ etc.

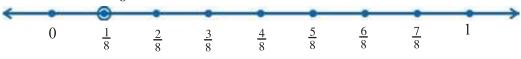
Therefore, any number can be denoted in the $\frac{p}{q}$ form.

The numbers which can be in the form ^p/_q (where p is a zero, positive and negative integer and q is a positive integer) is called a rational number.
 Therefore, group of integers and non-integers are called rational numbers.

In given rational number $\frac{p}{q}$,

- If p is a positive integer, then it is a positive rational number. For example, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{2}{5}$, $\frac{5}{7}$, $\frac{2}{10}$, 5,
- If p is a negative integer, then it is a negative rational number. For example, $-\frac{2}{3}$, $-\frac{5}{7}$, $-\frac{5}{8}$, $-\frac{3}{7}$, -11, -20,
- If p is a zero, then 0 (zero) is a rational number.
 For example, 0
- Write examples of required numbers in the following Table :

Negative rational number	Positive rational number	Zero rational number



2 : Rational Numbers

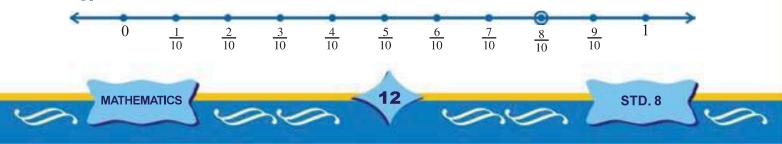
- Representation of rational numbers on the number line :You have learnt to represent integers on a number line. Let us revise them.Represent the following numbers on the number line as required :
 - (1) Any two integers less than 3.
 - (2) Two integers more than (-4) and less than (-1).
 - (3) Integer more than 2 and less than 4.

Example 1 : Represent $\frac{1}{8}$ on the number line.

 $\frac{1}{8} < 1$, therefore $\frac{1}{8}$ can be represented on the number line between 0 and 1. In the denominator of $\frac{1}{8}$, there is 8, so we will have to divide 0 to 1 in 8 equal parts on number line. His first part is $\frac{1}{8}$, second part is $\frac{2}{8}$ is represented respectively. Represent $\frac{1}{8}$ as \odot :

Think : How many rational numbers can be represented between 0 and 1 on the number line.

Example 2 : Represent $1\frac{2}{5}$ on the number line.


In $1\frac{2}{5}$, 1 is integer and $\frac{2}{5}$ is rational. Therefore, $1\frac{2}{5}$ will have to represent between 1 and 2. In the denominator of $\frac{2}{5}$, there is 5, so we will have to divide 1 to 2 in 5 equal parts. Here, 2 is in the numerator of $\frac{2}{5}$, therefore, on the second part we can represent $1\frac{2}{5}$.

$$1 1\frac{1}{5} 1\frac{2}{5} 1\frac{3}{5} 1\frac{4}{5} 2$$

Example 3 : Represent 0.8 on the number line.

 $0.8 = \frac{8}{10}$, here 8 is in numerator and 10 is in denominator.

See, by dividing 10 equal parts from 1 to 10, each part shows $\frac{1}{10}$. In the numerator of $\frac{8}{10}$ there is 8, therefore eighth point is represented as 0.8.

2 : Rational Numbers

Example 4 : Represent $\left(-1\frac{2}{3}\right)$ on the number line.

 $(-1) > (-1\frac{2}{3}) > (-2)$, therefore $(-1\frac{2}{3})$ is to be represented between (-1) and (-2) on the number line. Because $(-1\frac{2}{3})$ is greater than (-2) and smaller than (-1). The line segment from (-2) to (-1) is divided in three equal parts the $(-1\frac{2}{3})$ is represented on L.H.S. of (-1) on the second point.

0

$$(-2)$$
 $(-1\frac{2}{3})$ $(-1\frac{1}{3})$ (-1)

Think : Where to represent (-2.5) on the number line ?

Represent the given rational numbers on separate number lines :

- (1) $\left(-1\frac{4}{5}\right)$ (2) $2\frac{1}{4}$ (3) $\frac{4}{7}$ (4) $\left(-\frac{3}{5}\right)$ (5) 0.5 (6) (-1.5)
- The additive inverse negative and the multiplicative inverse (reciprocal) of rational number :

Negative of a number : Which number should be added to $\frac{2}{5}$ to get zero result.

For every rational number always such a number exist whose addition to the given rational number results zero. These rational numbers are called negative numbers to each other.

For example, $\frac{2}{5} + \left(-\frac{2}{5}\right) = 0$. Therefore, $\frac{2}{5}$ and $\left(-\frac{2}{5}\right)$ are negative numbers to each other. $\frac{1}{3} + \left(-\frac{1}{3}\right) = 0$ Therefore, $\frac{1}{3}$ and $\left(-\frac{1}{3}\right)$ are negative number to each other. $\left(-\frac{4}{7}\right) + \left(\frac{4}{7}\right) = 0$ Therefore, $\left(-\frac{4}{7}\right)$ and $\left(\frac{4}{7}\right)$ are negative number to each other.

MATHEMATICS

Downloaded from https:// www.studiestoday.com

13

STD.8

2 : Rational Numbers

Multiplicative inverse (Reciprocal) : 3 is multiplied by such a number that the multiplication of both is 1 ?

Except zero for any number, we get such a number whose multiplication with given number results 1, then these both numbers are called reciprocal to each other.

For example, $2 \times \frac{1}{2} = 1$ Here, 2 and $\frac{1}{2}$ are reciprocal to each other. Reciprocal of 2 is $\frac{1}{2}$ and reciprocal of $\frac{1}{2}$ is 2. $\frac{1}{5} \times 5 = 1$ Here, $\frac{1}{5}$ and 5 are reciprocal to each other. $\left(-\frac{4}{7}\right) \times \left(-\frac{7}{4}\right) = 1$ Here, $\left(-\frac{4}{7}\right)$ and $\left(-\frac{7}{4}\right)$ are reciprocal to each other.

If any number is multiplied with zero (0), the result is zero (0). Therefore, the reciprocal of zero (0) does not exist.

1. Write additive inverse of the given numbers :

(1) $\left(-\frac{3}{4}\right)$ (2) 0 (3) (-2) (4) $\frac{13}{20}$ (5) (-0.7)(6) 0.8 (7) 0.01 (8) $1\frac{2}{3}$ (9) $\frac{2}{5}$ (10) $\frac{7}{8}$

2. Write multiplicative inverse (reciprocal) of the given numbers :

(1)	(-1)	(2) $\left(-\frac{5}{8}\right)$	(3) $\frac{1}{8}$	(4) $\frac{2}{5}$	(5) (-0.7)
(6)	0.8	(7) 0.01	(8) $1\frac{3}{2}$	(9) $\frac{2}{5}$	$(10) \frac{7}{8}$
			*		

Properties for addition and multiplicative of rational numbers :

We have learnt about properties of addition and multiplication of integers. Let us now learn about properties of addition and multiplication of rational numbers.

2 : Rational Numbers

• Properties for addition of rational numbers :

Note the result by adding the following rational numbers :

No.	Addition	Result	Properties
(1)	$\frac{4}{7} + \left(-\frac{2}{3}\right) = \dots$	Is resulting number a	Closure property :
	$\left(-\frac{1}{4}\right) + \frac{3}{8} = \dots$	rational number?	The addition of any two
			rational numbers is a rational number.
(2)	$\frac{4}{7} + \left(-\frac{2}{3}\right) = \dots$	How result is obtained	Commutative property :
		when order is changed.	Two rational numbers can
	$\left(-\frac{2}{3}\right) + \frac{4}{7} = \dots$		be added in any order but the result is same.
(3)	$\left[\left(-\frac{3}{4} \right) + \frac{1}{2} \right] + \frac{2}{6} = \dots$	How result is obtained	Associative property :
	$\left(-\frac{3}{4}\right) + \left[\frac{1}{2} + \frac{2}{6}\right] = \dots$	when group is changed ?	For any three rational numbers if in the group of any two numbers, third number is added, the result is same.
(4)	$\left(-\frac{3}{4}\right) + 0 = \dots$	How result is obtained when addition is done with zero (0) ?	Existence of identity element : For addition of a rational number and zero,
	$0 + \frac{2}{3} = \dots$		we get the same rational number. Therefore, zero (0) is the identity element for addition.
(5)	$\left(-\frac{7}{17}\right)+\frac{7}{17}=\dots$	What is the result when	For any rational number
	$\frac{3}{5} + \left(-\frac{3}{5}\right) = \dots$	two opposite rational numbers are added ?	there always exist an opposite number such that addition of both number
	5 (5/		is zero.

Downloaded from https:// www.studiestoday.com

15

STD.8

MATHEMATICS

2 : Rational Numbers

• Properties for multiplication of rational numbers :

Note the result by multiplication of following rational numbers :

No.	Addition	Result	Properties
(1)	$0 \times \frac{5}{9} = \dots$ $\left(-\frac{3}{2}\right) \times \frac{2}{6} = \dots$	Is resulting number a rational number ?	Closure property : The addition of any two rational numbers is a rational number.
(2)	$\left(-\frac{2}{5}\right) \times \frac{10}{3} = \dots$ $\frac{10}{3} \times \left(-\frac{2}{5}\right) = \dots$	How result is obtained when order of numbers are changed.	
(3)	$\left[\left(-\frac{1}{3}\right) \times \frac{3}{4}\right] \times \frac{6}{7} = \dots$ $\left(-\frac{1}{3}\right) \times \left[\frac{3}{4} \times \frac{6}{7}\right] = \dots$	How result is obtained when group is changed ?	Associative property : For any three rational numbers if in the group of any two number, the third number is multiplied, the
			result is same.
(4)	$\left(-\frac{4}{9}\right) \times 1 = \dots$ $\frac{3}{7} \times 1 = \dots$	How result is obtained when any number is multiplied with one ?	Existence of identity element : Multiplication of any rational number and 1 is always the same rational number. Therefore, 1 is the identity element for multiplication.
(5)	$\frac{3}{5} \times \frac{5}{3} = \dots$ $\left(-\frac{1}{2}\right) \times \left(-\frac{2}{1}\right) = \dots$	What is the result when two inverse (reciprocal) rational numbers are multiplied ?	For any rational number there always exist a reciprocal number such that multiplication of both number is one.

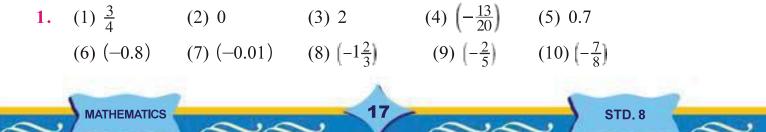
Downloaded from https:// www.studiestoday.com

16

STD.8

MATHEMATICS

	2 :	Rational Numbers	
No.	Addition	Result	Properties
(6)	$\left(-\frac{3}{5}\right) \times \left(-\frac{3}{4}\right) + \frac{2}{3} = \dots$	Can the distribution of multiplication of rational numbers over addition is possible ?	The distributive property : The distribution of multiplication of rational numbers over addition is possible.



1. Fill in the blanks :

- (1) (-5) is an integer but it is not a number. (rational, natural)
- (2) Zero is an integer but it is not considered in number. (rational, natural)
- (3) $\frac{5}{7}$ is a/an (integer, rational number)
- (4) In $\frac{3}{8}$, is numerator and is denominator. (8, 3, 83)
- (5) In $2\frac{3}{8}$, is an integer and is a rational number. (8, $\frac{3}{8}$, 2)
- 2. Represent the following number in $\frac{p}{q}$ form :
 - (1) $2\frac{1}{7}$ (2) 0.6 (3) $\left(-3\frac{1}{4}\right)$ (4) 0 (5) 28
- 3. Write which properties are used in the following rational numbers :
 - $(1) \quad \frac{2}{7} + \left(-\frac{7}{4}\right) = \left(-\frac{7}{4}\right) + \frac{2}{7} \qquad (2) \quad \left(-\frac{1}{8}\right) \times \frac{1}{7} = \frac{1}{7} \times \left(-\frac{1}{8}\right) \\ (3) \quad \frac{1}{2} \times \left(\frac{1}{3} \times \frac{1}{4}\right) = \left(\frac{1}{2} \times \frac{1}{3}\right) \times \frac{1}{4} \qquad (4) \quad \frac{1}{5} \times \left(\frac{1}{2} + \frac{1}{3}\right) = \left(\frac{1}{5} \times \frac{1}{2}\right) + \left(\frac{1}{5} \times \frac{1}{3}\right) \\ (5) \quad \left(-\frac{3}{5}\right) + 0 = \left(-\frac{3}{5}\right) \qquad (6) \quad \frac{1}{4} + \left(\frac{1}{6} + \frac{1}{3}\right) = \left(\frac{1}{4} + \frac{1}{6}\right) + \frac{1}{3}$

2 : Rational Numbers

2. (1) (-1)	$(2) \ \left(-\frac{8}{5}\right)$	(3) 8	(4) $\frac{5}{2}$	(5) $\frac{10}{7}$	(6) $\frac{10}{8}$	(7) $\frac{100}{1}$	(8) $\frac{2}{5}$	(9) $\frac{5}{2}$	$(10) \frac{8}{7}$
				Exerci	se				

- **1.** (1) natural (2) rational (3) rational number (4) 3, 8 (5) 2, $\frac{3}{8}$
- **2.** (1) $\frac{15}{7}$ (2) $\frac{6}{10}$ (3) $\left(-\frac{13}{4}\right)$ (4) $\frac{0}{1}$ (5) $\frac{28}{1}$
- **3.** (1) Commutative property for addition(2) Commutative property for multiplication
 - (3) Associative property for multiplication (4) Distributive property
 - (5) Existence of identity element for addition (6) Associative property for addition

For information only

Irrational Numbers :

 $\sqrt{4} = 2$ is an integer, so it is also a rational.

 $\sqrt{1.69} = 1.3$ is also a rational number.

 $\sqrt[3]{8} = 2$ is also a rational number.

These each can be denoted in $\frac{p}{q}$ form. Additionally each rational number can be written as finite decimal or infinite repeating decimal.

For example, $\frac{1}{5} = 0.2$, $\frac{1}{8} = 0.125$, $\frac{1}{3} = 0.333...$, $\frac{1}{7} = 0.1428571428571$

Here, 0.333 and 0.1428571428571... can be written as 0.3 and 0.142857 respectively.

Here, for 0.123456789101112... there is no possibility of finite and repeating. These numbers are called irrational numbers. Therefore, the numbers whose decimal form is infinite and non-repeating are called irrational numbers.

For example, $\sqrt{2}$, $\sqrt{3}$, π , $\frac{\sqrt{3}}{3}$

Real Numbers :

The set which is formed by collection of rational and irrational numbers, is called the set of Real numbers. They are denoted by R.

Rational Indices

(2) $7^5 \div 7^2 = 7^{\dots}$

Let's remember :

Let's remember the laws of rational indices which we have learnt in Std. 7.

- Fill in the blanks : (1) $5^4 \times 5^3 = 5^{...}$
 - (3) $\frac{11^3}{11^5} = \frac{1}{11^{\dots}}$ (4) $(9^3)^2 = 9^{\dots}$ (5) $(\dots)^3 = 4^3 \times m^3$ (6) $\left(\frac{2}{\dots}\right)^5 = \frac{2^5}{3^5}$

• Let's learn new :

Laws of natural indices :

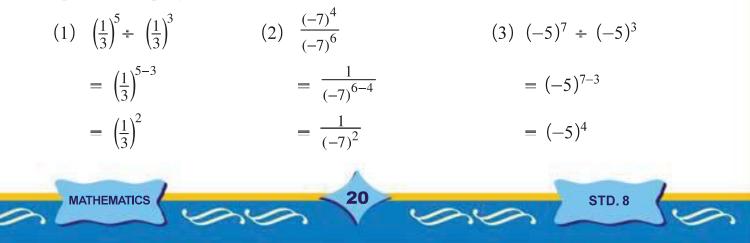
(1) Law of multiplication : In the earlier class we have learnt that 'during multiplication of two rational indices with same base then their indices are added with same base.'

Multiplication of indices	Repeated multiplication	Result
$2^2 \times 2^3$	$\underline{2 \times 2} \times \underline{2 \times 2 \times 2}$	$2^5 = 2^{2+3}$
$(-8)^3 \times (-8)^4$	$(-8)\times(-8)\times(-8)\times(-8)\times(-8)\times(-8)\times(-8)\times(-8)$	$(-8)^7 = (-8)^{3+4}$
$x^2 \times x^4$	$\underline{x \times x} \times \underline{x \times x \times x \times x}$	$x^6 = x^{2+4}$
$\left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^5$	$\underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)} \times \underline{\left(\frac{1}{2}\right)}$	$\left(\frac{1}{2}\right)^7 = \left(\frac{1}{2}\right)^{2+5}$
$(\sqrt{3})^2 \times (\sqrt{3})^3 \times (\sqrt{3})^4$	$\frac{(\sqrt{3})\times(\sqrt{3})\times(\sqrt{3})\times(\sqrt{3})\times(\sqrt{3})}{(\sqrt{3})\times(\sqrt{3})\times(\sqrt{3})\times(\sqrt{3})}\times$	$(\sqrt{3})^9 = (\sqrt{3})^{2+3+4}$

Therefore, $a^m \times a^n = a^{m+n}$; where $a \in \mathbb{R}$ and $m, n \in \mathbb{N}$

3 : Rational Indices

Example 1 : Simplify :


(1)
$$(0.3)^2 \times (0.3)^4 \times (0.3)$$
 (2) $(\sqrt{7})^2 \times (\sqrt{7})^7 \times (\sqrt{7})^3$ (3) $(-\frac{4}{5})^6 \times (-\frac{4}{5})^{18} \times (-\frac{4}{5})^{18}$
 $= (0.3)^{2+4+1} = (\sqrt{7})^{2+7+3} = (-\frac{4}{5})^{6+18+1}$
 $= (0.3)^7 = (\sqrt{7})^{12} = (-\frac{4}{5})^{25}$

(2) Law of division : During division of two rational indices with same base their indices are subtracted at the same base.

Division of indices	Repeated multiplication form	Result
$(-3)^6 \div (-3)^4$	$\frac{(-3)^{6}}{(-3)^{4}} = \frac{(-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3)}{(-3) \times (-3) \times (-3) \times (-3)}$	$(-3)^2 = (-3)^{6-4}$
$\left(\frac{1}{2}\right)^3 \div \left(\frac{1}{2}\right)^4$	$\frac{\left(\frac{1}{2}\right)^3}{\left(\frac{1}{2}\right)^4} = \frac{\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)}$	$\frac{1}{\left(\frac{1}{2}\right)^{1}} = \frac{1}{\left(\frac{1}{2}\right)^{4-3}}$
$\left(\sqrt{m}\right)^4 \div \left(\sqrt{m}\right)^4$ where $m \neq 0$	$\frac{(\sqrt{m})^4}{(\sqrt{m})^4} = \frac{(\sqrt{m}) \times (\sqrt{m}) \times (\sqrt{m})}{(\sqrt{m}) \times (\sqrt{m}) \times (\sqrt{m})} = 1$	$1 = \left(\sqrt{m}\right)^{4-4}$ $= \left(\sqrt{m}\right)^{0}$

Therefore, (i) If m > n and $a \neq 0$, then $a^m \div a^n = a^{m-n}$ (ii) If m < n and $a \neq 0$, then $a^m \div a^n = \frac{1}{a^{n-m}}$ (iii) If $a \neq 0$, then $a^m \div a^m = a^{m-m} = a^0 = 1$ For any $a \neq 0$, $a^0 = 1$.

Example 2 : Simplify :

3 : Rational Indices (4) $\frac{a'}{a^{14}} \times a^{12}$ First method : $\frac{a^7}{a^{14}} \times a^{12}$, $(a \neq 0)$ Second method : $\frac{a^7}{a^{14}} \times a^{12}$, $(a \neq 0)$ $= \frac{a^7 \times a^{12}}{a^{14}}$ $=\frac{1}{a^{14-7}} \times a^{12}$ $= \frac{a^{7+12}}{a^{14}}$ $=\frac{a^{12}}{7}$ $=\frac{a^{19}}{a^{14}}$ $= a^{12-7}$ $= a^{5}$ $= a^{19-14}$ $= a^{5}$ (5) $y^{19} \div y^{19}$; $(y \neq 0)$ $= y^{19-19}$ $= y^{0}$ = 1

(3) Law of power of a power :

For taking power of a power, the rational indices are multiplied on the same base.

Example : (1) $(2^2)^3 = 2^{2 \times 3} = 2^6$ (2) $[(-3)^4]^5 = (-3)^{4 \times 5} = (-3)^{20}$ (3) $\left[\left(\frac{1}{2}\right)^3\right]^4 = \left(\frac{1}{2}\right)^{3 \times 4} = \left(\frac{1}{2}\right)^{12}$

Try yourself :

(1) $(7^3)^4 = 7^{\dots} = \dots^{\dots}$ (2) $(a^5)^2 = a^{\dots} = \dots^{\dots}$

Therefore, $(a^m)^n = a^{mn}$; where $a \in \mathbb{R}$ and $m, n \in \mathbb{N}$

MATHEMATICS 21 NON STD. 8

3 : Rational Indices

Example 3 : Simplify :

- (1) $(a^{10})^3 \div (a^6)^5$, $(a \neq 0)$ $= a^{10 \times 3} \div a^{6 \times 5}$ $= a^{30} \div a^{30}$ $= a^{30 - 30}$ $= a^0 = 1$ (2) $\frac{\left[(-2)^3 \times (-2)^5\right]^2}{(-2)^7}$ $= \frac{\left[(-2)^{3+5}\right]^2}{(-2)^7}$ $= \frac{\left[(-2)^{8}\right]^2}{(-2)^7}$ $= (-2)^{16-7} = (-2)^9$
- (4) Law of power of product :

The power of multiplication of two numbers is multiplication of powers of two numbers.

Example : (1)
$$(3 \times 4)^5 = 3^5 \times 4^5$$

(2) $[(-3) \times 2]^4 = (-3)^4 \times 2^4$
Try yourself : (1) $(8 \times 10)^3 = 8^{\dots} \times 10^{\dots}$ (2) $(a \times b)^5 = a^{\dots} \times b^{\dots}$

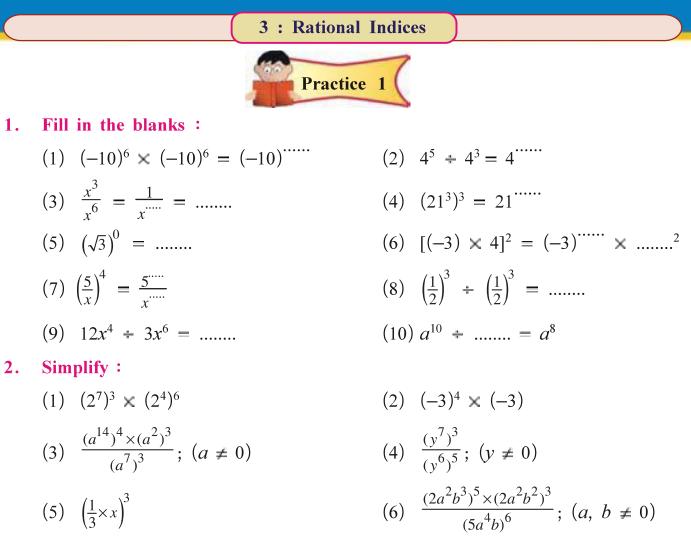
Therefore, $(ab)^n = a^n b^n$; where $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$

Note : If there is multiplication of more than two numbers, then this law can be applied.

Example 4 : Simplify :

(1)
$$(-2ab)^5$$

= $(-2)^5a^5b^5$
= $a^3(b^2)^3c^3$
= $a^3b^6c^3$
(3) $(6a^3)^2$
= $(6 \times a^3)^2$
= $6^2 \times (a^3)^2$
= $36 \times a^6$
= $36a^6$
STD. 8


3 : Rational Indices

(5) Law of power of quotient :

The power of division of two numbers is the division of two numbers with same power, where divisor is not zero.

Example : (1)
$$\left(\frac{2}{5}\right)^{10} = \frac{2^{10}}{5^{10}}$$
, (2) $\left(\frac{-3}{4}\right)^5 = \frac{(-3)^5}{4^5}$
• Try yourself : (1) $\left(\frac{7}{9}\right)^8 = \frac{7}{9}$, (2) $\left(\frac{-2}{4}\right)^6 = \frac{(-2)^{-\cdots}}{4}$.
Therefore, $b \neq 0$ and $a, b \in \mathbb{R}$, then $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$.
Example 5 : Simplify :
(1) $[(a^6)^3(b^4)^7] \div [(a^2)^9(b^{14})^2]; (a \neq 0, b \neq 0)$
 $= [a^{18}b^{28}] \div [a^{18}b^{28}]$
 $= \frac{a^{18}b^{28}}{a^{18}b^{28}}$
 $= a^{18-18}b^{28-28}$
 $= a^0b^0$
 $= 1 \times 1$
 $= 1$
(2) $\frac{(3x^2)^2 \times (2x^3)^4}{(6x^2)^2}$
 $= \frac{3^2 \times (x^2)^2 \times 2^4 \times (x^3)^4}{(2\times 3 \times x^2)^2}$
 $= \frac{3^2 \times x^4 \times 2^4 \times x^{12}}{2^2 \times 3^2 \times x^4}$
 $= 2^{4-2} \times x^{12}$
 $= 2^2 \times x^{12}$
 $= 4x^{12}$

Negative Rational indices :

For number x except zero according to the law of division of power the indices are subtracted in the numerator only.

$$\frac{x^{3}}{x} = x^{3-1} = x^{2}$$

$$\frac{x^{2}}{x} = x^{2-1} = x^{1}$$

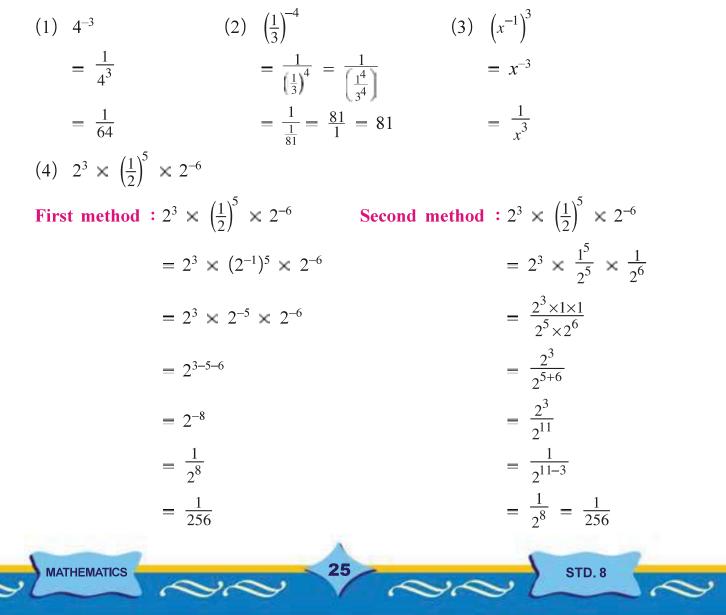
$$\frac{x}{x} = x^{1-1} = x^{0} = 1$$

$$\frac{1}{x} = \frac{x^{0}}{x} = x^{0-1} = x^{-1} \quad (\because 1 = x^{0})$$

$$\frac{1}{x} \div x = \frac{1}{x} \times \frac{1}{x} = \frac{1}{x \times x} = \frac{x^{0}}{x^{2}} = x^{0-2} = x^{-2} \quad (\because 1 = x^{0})$$
Therefore, for any positive real number $a, \frac{1}{a} = a^{-1}, \frac{1}{a^{2}} = a^{-2}, \frac{1}{a^{3}} = a^{-3}$

$$\because \text{ is read as 'because'}$$
STD.8

3 : Rational Indices


Similarly (i) $a^{-1} = \frac{1}{a}$, $a^{-5} = \frac{1}{a^5}$, $a^{-7} = \frac{1}{a^7}$ (ii) $5^{-1} = \frac{1}{5}$, $(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}$ (iii) $\left(\frac{1}{4}\right)^{-3} = \frac{1^{-3}}{4^{-3}} = \frac{4^3}{1^3} = 4^3 = 64$ (iv) $\left(\frac{2}{7}\right)^{-5} = \frac{2^{-5}}{7^{-5}} = \frac{7^5}{2^5}$ Therefore, if $a \neq 0$ and $a \in \mathbb{R}$, then for $n \in \mathbb{N}$, $a^{-n} = \frac{1}{a^n}$

Besides this, all the laws of rational indices for positive integers are also true for negative integers.

$$a, b \neq 0, m, n \in \mathbb{Z}$$
, then

(1) $a^m \times a^n = a^{m+n}$ (2) $(a^m)^n = a^{mn}$ (3) $\frac{a^m}{a^n} = a^{m-n}$ (4) $(ab)^n = a^n b^n$ (5) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Example 6 : Simplify :

3 : Rational Indices

Example 7 : Simplify :

2.

MATHEMATICS

(1)
$$(5x^{-2})^3 \times (3x^3)^4 \div (15x^2)^2$$

$$= \frac{5^3 \times x^{(-2) \times 3} \times 3^4 \times x^{3 \times 4}}{(3 \times 5 \times x^2)^2}$$

$$= \frac{5^3 \times x^{-6} \times 3^4 \times x^{12}}{3^2 \times 5^2 \times x^{2 \times 2}}$$

$$= \frac{3^4 \times 5^3 \times x^{-6+12}}{3^2 \times 5^2 \times x^4}$$

$$= \frac{3^4 \times 5^3 \times x^6}{3^2 \times 5^2 \times x^4}$$

$$= 3^{4-2} \times 5^{3-2} \times x^{6-4}$$

$$= 3^2 \times 5^1 \times x^2$$

$$= 9 \times 5 \times x^2$$

$$= 45x^2$$
(2) $\left(\frac{x}{y}\right)^a (xy)^b \div \left(\frac{x}{y}\right)^b$

$$= \frac{x^a}{y^a} (xy)^b \div \left(\frac{x}{y}\right)^b$$

$$= \frac{x^a}{y^a} \times x^b \times y^b \div \frac{x^b}{y^b}$$

$$= \frac{x^a \times x^b \times y^b \times y^b}{x^b \times y^a}$$

$$= \frac{x^a \times x^b \times y^{b+b}}{x^b \times y^a}$$

$$= x^a \times \frac{x^b}{x^b} \times y^{2b-a}$$

1. Fill in the blanks by choosing proper options :

(1) $4^{-3} = \dots = [(a) 64, (b) -12, (c) \frac{1}{64}]$ (2) $\frac{1}{5} = \dots = [(a) 5^{-1}, (b) 5^{-2}, (c) 5^{-3}]$ (3) $(8^{-1})^{-2} = \dots = [(a) \frac{1}{8}, (b) \frac{1}{64}, (c) 64]$ (4) $a^{-2} \times \frac{1}{a^{-2}} = \dots = [(a) a^0, (b) a^2, (c) a^{-4}]$ (5) $\frac{1}{(2^{-1})^2} = \dots = [(a) \frac{1}{4}, (b) 2^2, (c) \frac{1}{2}]$ (6) $(\sqrt{5})^3 \div (\sqrt{5})^3 = \dots = [(a) \sqrt{5}, (b) 1, (c) (\sqrt{5})^6]$ Simplify : (1) $2^{-3} \times (\frac{1}{4})^5 \times 8^{-3}$ (2) $(\frac{a}{b})^{m+n} (\frac{a}{b})^{m-n} (ab)^m$ (3) $4a^{-2} \times (\frac{a}{2})^5 \div (2a)^2$

Downloaded from https:// www.studiestoday.com

26

STD.8

3 : Rational Indices

3. Evaluate :

(1) $2^2 \times 2^{-3} \times 2^{-1}$ (2) $\left(\frac{1}{3}\right)^3 \times 3^{-2} \times 3^5$ (3) $(8^{-2} \times 12^4) \div 27^2$

• Fractional (rational) indices :

Number	Square	Square root of square
1	1	$\sqrt{1} = \sqrt{1^2}$
2	4	$\sqrt{4} = \sqrt{2^2}$
3	9	$\sqrt{9} = \sqrt{3^2}$
4	16	$\sqrt{16} = \sqrt{4^2}$
5	25	$\sqrt{25} = \sqrt{5^2}$

Now, from the table comparing number and square root of square of the number we get,

$$1 = \sqrt{1^2}$$
$$2 = \sqrt{2^2}$$
$$3 = \sqrt{3^2}$$
$$4 = \sqrt{4^2}$$
$$5 = \sqrt{5^2}$$

Now, $\sqrt{3^2} = 3$ Result (1)

Here, 3 is square root of 3^2 .

Now, let's find such indices of 3^2 such that value is 3.

If, we take such rational indices of 3^2 which when multiplied with 3, then rational indices is 1. (Law of power of power)

The reciprocal of two inverse numbers is 1 and so reciprocal of $2 = \frac{1}{2}$.

Thus,
$$(3^2)^{\frac{1}{2}} = 3^{2 \times \frac{1}{2}}$$

 $= 3^1 = 3$ Result (2)

Comparing result (1) and result (2) we get,

$$3 = \sqrt{3^2} = (3^2)^{\frac{1}{2}}$$

Here, the symbol of square root $(\sqrt{})$ is denoted by index $\frac{1}{2}$.

Therefore, $\sqrt{2} = 2^{\frac{1}{2}}$, $\sqrt{3} = 3^{\frac{1}{2}}$, $\sqrt{5} = 5^{\frac{1}{2}}$ and $\sqrt{x} = x^{\frac{1}{2}}$; where x is a real positive number.

3 : Rational Indices

Similarly, for symbol of cube root $\sqrt[3]{}$, $\sqrt[3]{x} = x^{\frac{1}{3}}$, for symbol of fourth root $\sqrt[4]{}$, $\sqrt[4]{x} = x^{\frac{1}{4}}$, for symbol of fifth root $\sqrt[5]{}$, $\sqrt[5]{x} = x^{\frac{1}{5}}$, for symbol of *n*th root $\sqrt[n]{}$, $\sqrt[n]{x} = x^{\frac{1}{n}}$, where $n \in \mathbb{N}$.

Therefore, if x is a positive real number and $n \in N$, then $\sqrt[n]{x} = x^{\frac{1}{n}}$ can be written.

Example 8 : For a = 64, $m = \frac{3}{2}$, $n = \frac{1}{3}$ verify $a^m \times a^n = a^{m+n}$. L.H.S. $= a^m \times a^n$ R.H.S. $= a^{m+n}$ $= (64)^{\frac{3}{2}} \times (64)^{\frac{1}{3}}$ $= (64)^{\frac{3}{2} + \frac{1}{3}}$ $= (64)^{\frac{3}{2} + \frac{1}{3}}$ $= (64)^{\frac{11}{6}}$ $= 2^{6 \times \frac{3}{2}} \times 2^{6 \times \frac{1}{3}}$ $= (2^6)^{\frac{11}{6}}$ $= 2^9 \times 2^2$ $= 2^{11}$ Therefore, $a^m \times a^n = a^{m+n}$

Note : To show exponent (indices) form of any number, write that number as exponent form of prime number.

Example 9 : For a = 64, $m = \frac{2}{3}$, $n = \frac{1}{2}$, verify $(a^m)^n = a^{mn}$. L.H.S. $= (a^m)^n$ R.H.S. $= a^{mn}$ $= (64)^{\frac{2}{3} \times \frac{1}{2}}$ $= ((2^6)^{\frac{2}{3}})^{\frac{1}{2}}$ $= (2^6)^{\frac{1}{3}}$ $= (2^4)^{\frac{1}{2}}$ $= 2^2$ = 4Therefore, $(a^m)^n = a^{mn}$

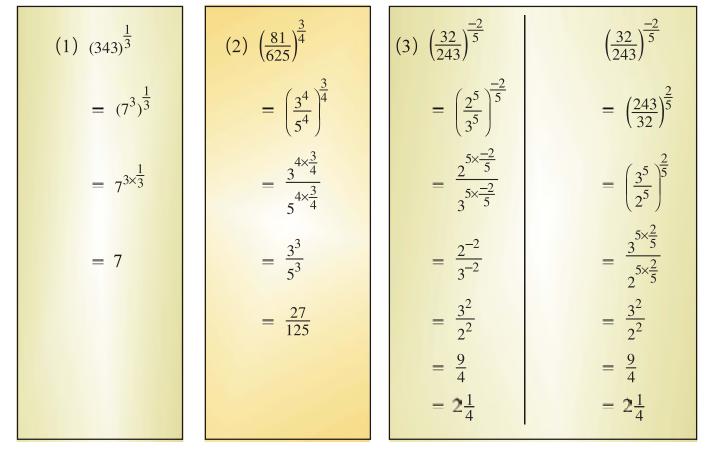
Downloaded from https:// www.studiestoday.com

28

STD.8

MATHEMATICS

3 : Rational Indices


Example 10 : For a = 27, b = 8, $m = \frac{1}{3}$ verify $(ab)^m = a^m b^m$

L.H.S. = $(ab)^m$ = $(27 \times 8)^{\frac{1}{3}}$ = $(3^3 \times 2^3)^{\frac{1}{3}}$ = $(3^3)^{\frac{1}{3}}(2^3)^{\frac{1}{3}}$ = $3^{3^{\frac{1}{3}}2^{3^{\frac{1}{3}}}$ = 3×2 = $3 \times 2 = 6$ R.H.S. = $a^m b^m$ = $27^{\frac{1}{3}} \times 8^{\frac{1}{3}}$ = $(3^3)^{\frac{1}{3}}(2^3)^{\frac{1}{3}}$ = 3×2

 \therefore L.H.S. = R.H.S. Therefore, $(ab)^m = a^m b^m$

Example 11 : Simplify :

MATHEMATICS 29 NON STD. 8

Downloaded from https:// www.studiestoday.com

3 : Rational Indices

Example 12 : Simplify :
$$\left(\frac{x^{\frac{1}{3}}}{x^{\frac{1}{2}}}\right)^{\frac{1}{5}} \left(\frac{x^{\frac{1}{5}}}{x^{\frac{1}{3}}}\right)^{\frac{1}{2}} \left(\frac{x^{\frac{1}{2}}}{x^{\frac{1}{5}}}\right)^{\frac{1}{3}}$$
, where $(x > 0)$.

$$= \frac{(x^{\frac{1}{3}})^{\frac{1}{5}}}{(x^{\frac{1}{2}})^{\frac{1}{5}}} \times \frac{(x^{\frac{1}{5}})^{\frac{1}{2}}}{(x^{\frac{1}{3}})^{\frac{1}{2}}} \times \frac{(x^{\frac{1}{2}})^{\frac{1}{3}}}{(x^{\frac{1}{5}})^{\frac{1}{3}}}$$

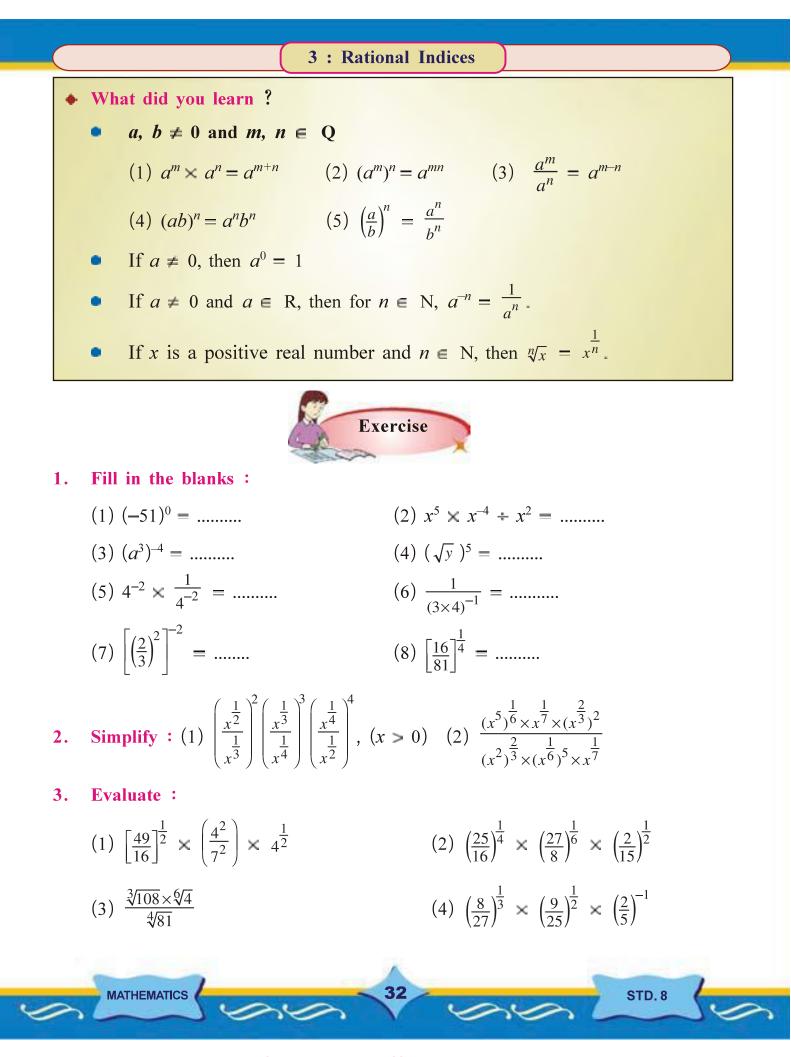
$$= \frac{x^{\frac{1}{3}\times\frac{1}{5}}}{x^{\frac{1}{2}\times\frac{1}{5}}} \times \frac{x^{\frac{1}{5}\times\frac{1}{2}}}{x^{\frac{1}{3}\times\frac{1}{2}}} \times \frac{x^{\frac{1}{2}\times\frac{1}{3}}}{x^{\frac{1}{5}\times\frac{1}{3}}}$$

$$= \frac{x^{\frac{1}{3}\times\frac{1}{5}}}{x^{\frac{1}{10}}} \times \frac{x^{\frac{1}{10}}}{x^{\frac{1}{6}}} \times \frac{x^{\frac{1}{6}}}{x^{\frac{1}{15}}}$$

$$= \frac{x^{\frac{1}{15}}}{x^{\frac{1}{15}}} \times \frac{x^{\frac{1}{10}}}{x^{\frac{1}{10}}} \times \frac{x^{\frac{1}{6}}}{x^{\frac{1}{6}}}$$

$$= 1$$

Example 13 : If x = 64, then find the value of $x^{\frac{1}{6}} + x^{-\frac{1}{6}}$.


$$x^{\frac{1}{6}} + x^{-\frac{1}{6}} = 64^{\frac{1}{6}} + 64^{-\frac{1}{6}}$$
$$= (2^{6})^{\frac{1}{6}} + (2^{6})^{\frac{1}{6}}$$
$$= 2^{6\times\frac{1}{6}} + 2^{6\times\frac{-1}{6}}$$
$$= 2^{1} + 2^{-1}$$
$$= 2 + \frac{1}{2}$$
$$= 2\frac{1}{2}$$

3	: Rational Indices		
Example 14 : If $x = \frac{9}{4}$, then prove	ove $(x\sqrt{x})^x = x^{x\sqrt{x}}$.		
$\left(x\sqrt{x}\right)^x = \left(\frac{9}{4}\sqrt{\frac{9}{4}}\right)^{\frac{9}{4}}$	$x^{x\sqrt{x}} = \left(\frac{9}{4}\right)^{\frac{9}{4}\sqrt{\frac{9}{4}}}$		
$= \left(\frac{3^2}{2^2} \times \frac{3}{2}\right)^{\frac{9}{4}}$	$= \left(\frac{9}{4}\right)^{\frac{9}{4}\times\frac{3}{2}}$		
$= \left[\left(\frac{3}{2}\right)^3 \right]^{\frac{9}{4}}$	$= \left(\frac{9}{4}\right)^{\frac{27}{8}}$		
$=\left(\frac{3}{2}\right)^{\frac{27}{4}}$	$= \left[\left(\frac{3}{2}\right)^2 \right]^{\frac{27}{8}}$		
	$=\left(\frac{3}{2}\right)^{\frac{27}{4}}$		
Therefore, $(x\sqrt{x})^x = x^{x\sqrt{x}}$.			
	Practice 3		
1. Evaluate :			
(1) $\sqrt[5]{243}$ (2) $729^{\frac{1}{3}}$	(3) $\left(\frac{125}{343}\right)^{\frac{1}{3}}$	(4) $64^{\frac{1}{6}}$	
(5) $625^{\frac{1}{4}}$ (6) $\left(\frac{81}{144}\right)^{\frac{1}{2}}$		$(8) \ \frac{32^{\frac{1}{5}}}{\frac{1}{81^{\frac{1}{4}}}}$	
2. Prove that, $5^{\frac{1}{3}} \times \left(\frac{2}{5}\right)^{\frac{1}{3}} \times \frac{64^{\frac{1}{3}}}{3^{\frac{1}{3}}} \times \frac{9^{\frac{1}{6}}}{2^{\frac{1}{3}}}$	= 4.		
3. If $x = 243$, then find the value			
4. Verify : (1) $\sqrt{625} - 5\sqrt[3]{27} - 5\sqrt[3]{27}$	$(100)^{\frac{1}{2}} = 0$		
(2) $\left[(81)^{\frac{1}{2}} + 1 \right] \left[(81)^{\frac{1}{2$	$\left[\frac{1}{4}-1\right] = 20$		
	31~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	STD. 8	3~

Downloaded from https:// www.studiestoday.com

¢

3 : Rational Indices
4. Prove that
$$:\left[\frac{2^{\frac{1}{3}}}{2^{\frac{3}{3}}}\right]^{\frac{3}{3}} + \frac{3^{\frac{1}{2}}}{3^{\frac{1}{2}}} = 7$$

5. Prove that $\frac{(16)^{\frac{1}{4}}}{(27)^{\frac{1}{3}}} + \frac{(625)^{\frac{1}{4}}}{(81)^{\frac{1}{4}}} - \frac{1}{(243)^{\frac{1}{3}}} = 2$
6. Prove : $[(a^{*})^{*}(a^{*})^{\frac{1}{3}}]^{\frac{1}{2}} = a^{2yz} (x, y, z \in Q)$
7. If $x > 0$ and $x, y, z \in Q$ and a, b, c are non-zero integers, then prove that
 $\left[\left(\frac{x^{\frac{1}{a}}}{x^{\frac{1}{b}}}\right)^{\frac{1}{a}}\right]^{\frac{1}{a}}\left[\left(\frac{x^{\frac{1}{a}}}{x^{\frac{1}{a}}}\right)^{\frac{1}{a}}\right]^{\frac{1}{a}} = 1.$
Answers
Practice 1
1. (1) 12 (2) 2 (3) 3 (4) 9 (5) + (6) 2, 4 (7) 4, 4 (8) $(\frac{1}{2})^{0}$ or $+ (9) \frac{4}{x^{2}} (10) a^{2}$
2. (1) 2^{45} (2) $(-3)^{5}$ (3) $a^{(1)}$ (4) $\frac{1}{y^{9}}$ (5) $\frac{x^{3}}{3}$ (6) $\frac{2^{\frac{5}{2}h^{15}}}{5^{\frac{1}{a}}}$
Practice 2
1. (1) c (2) a (3) c (4) a (5) b (6) b
2. (1) $\frac{1}{2^{22}}$ (2) $a^{3m} + b^{m}$ (3) $\frac{a}{3^{22}}$
3. (1) $\frac{1}{4}$ (2) 1 (3) $\frac{4}{9}$
Practice 3
1. (1) 3 (2) 9 (3) $\frac{5}{7}$ (4) 2 (5) 5 (6) $\frac{3}{4}$ (7) $\frac{125}{27}$ (8) $\frac{2}{3}$ **3.** 1
Exercise
1. (1) 1 (2) $\frac{1}{x}$ (3) $\frac{1}{a^{12}}$ (4) $\frac{y^{\frac{5}{2}}}{5}$ (5) 1 (6) 12 (7) $5\frac{1}{16}$ (8) $\frac{2}{3}$
2. (1) $\frac{1}{x^{\frac{1}{22}}}$ (2) 1 3. (1) $\frac{8}{7}$ or $\frac{1}{7}$ (2) $\frac{1}{2}$ (3) 2 (4) 1

Downloaded from https:// www.studiestoday.com

Introduction to Set

Let's learn new :

Identification of set :

Dear students, have you ever seen herd of cattle ?

have you seen flock of sheep ?

have you ever seen caravan of camel ?

have you even seen such type of group anywhere ?

- In all these groups, the number of members is more than one or two. But number of members are definite. For example, 10, 15, 20, 28,... etc. Therefore, group of definite elements (members) i.e. A set is a collection of well specified object. Set is an undefined term.
- The brackets { } are used to express a set
 - (1) The group of birds like sparrow, parrot, crow are written in set form as {Sparrow, Parrot, Crow}.
 - (2) The group of flowers like rose, marigold, hibiscus, bougainvillea are denoted in set forms {rose, marigold, hibiscus, bougainvillea}.
 - (3) The group of numbers line 1, 2, 3, 4, 5 are denoted in set form as $\{1, 2, 3, 4, 5\}$.
- Each of the well specified objects forming a set is called a member or an element of the set.
- Each member of a set is separated by commas (,). In the last comma and fullstop is not denoted. No element or member of a set is repeated.
- The symbol ∈ (Belongs to) is used to denote that an object is a member of set and the symbol ∉ (Does not Belong to) is used to denote that an object is not a member of set.

Methods of describing a set : (1) The listing method (2) property method Sets are denoted by capital letters A, B, C,, X, Y, Z, etc.

For example, $A = \{1, 2, 3, 4, 5\}$, $X = \{Mango, Asopalav, Pipal, Gulmohor\}$

Here, the natural numbers from 1 to 5 are written in the set form. This method of denoting the set is called listing method.

4 : Introduction to Set

If this list is to show briefly then first five natural number can be written as : $A = \{x \mid x \text{ is first five natural numbers}\}$. This method of denoting (writing) a set is called the property method. If all the members of a set have some common properties then that property is denoted by P(x) and the set is denoted by $\{x/p(x)\}$.

Some special sets :

Complete the following table :

No.	The listing method	The property method
1		$B = \{x / x \text{ is an even prime number}\}$
2.	$\mathbf{X} = \{2, 4, 6, 8, 10\}$	
3.	$\mathbf{Y} = \{-2, -1, 0, 1, 2\}$	
4.		C = $\{x x < 6, x \in \mathbb{N}\}$
5.		$Z = \{x / x \text{ is tools of geometry box}\}$
6.	$M = \{a, b, c, d, e, f\}$	

(1) Which is the set of having one and only one member ?

- (2) Which is the set of having members more than 5 ?
- (3) Which two sets have equal numbers of members ?

Some special sets :

Empty Set :

The set without any member is called the empty set. It is denoted by symbol ϕ (phi) or "{ }".

For example : $A = \{x \mid x \text{ is a prime number less than 2, } x \in N\}$, then $A = \phi$ or $A = \{\}$ $B = \{x \mid x \text{ is a prime of female chief minister of Gujarat}$, then $B = \phi$ or $B = \{\}$

Singleton Set :

A set having only one element (member) is called the singleton set. For example : $P = \{x \mid x \text{ is an odd prime number less than 5}\}$

 $P = \{3\}$

4 : Introduction to Set

Finite Set :

If the number of members in a set is a definite non-negative integer, then the set is called a finite set. For example, $A = \{1, 2, 3, \dots 10\}$

Here, 1 to 10 natural numbers are included in set A, which can be counted. Therefore, the number of members of set A is 10 which is definite. Therefore, the set A is a finite set.

The number of members of a set A is denoted by n(A).

Here, the number of members of set A is 10. Therefore, n(A) = 10

• The empty set is also a finite set.

Infinite Set :

A set which is not finite is an infinite set.

For example : $A = \{x/x \text{ is a natural number}\}$: $A = \{1, 2, 3, 4, ...\}$

Here, there is no end of the list of members in set A. Such set is called an infinite set. To an infinite set after writing some members, generally three points are denoted.

- The set of natural numbers is denoted by a special symbol N.
 N = {1, 2, 3, ...}
- The set of whole numbers is denoted by a special symbol W.
 W = {0, 1, 2, 3, ...}
- The set of integers is denoted by a special symbol Z.

 $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

• The set of rational numbers (quotients) is denoted by a special symbol Q.

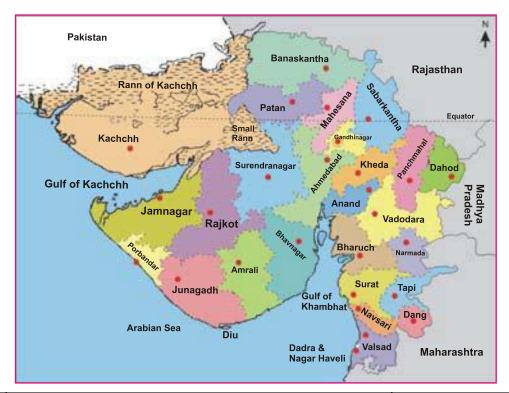
 $\mathbf{Q} = \left\{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{N} \right\}$

- N, W, Z and Q, all these are infinite sets.
- Why is the set of leaves of a tree is called an infinite set ? Why ? Think !

- 1. Fill in the blanks with appropriate symbol ∈ or ∉ :
 - (1) 3 $\{1, 2, 3, 4\}$

MATHEMATICS

(2) 100 $\{1, 2, 3, ..., 99\}$


Downloaded from https:// www.studiestoday.com

38

STD.8

4 : Introduction to Set

- (3) 5 $\{x \mid x \text{ is a multiple of } 10\}$ (5) 0 $\{x \mid x \text{ is a natural number}\}$
- (4) 2 $\{x \mid x \text{ is a prime factor of } 15\}$
- 2. On the basis of given map write the given groups by the listing method :

No.	Groups	The listing method
1.	The district of Gujarat starting with 'A'	
2.	Such a district of Gujarat whose boundary touches Uttar Pradesh	
3.	The bay lying in Gujarat	
4.	The smallest district	
5.	The largest district	

3. Answer the following questions on the basis of groups given in the above Table :

- (1) Which are the singleton sets ?
- (2) Which are the finite sets ?
- (3) Which one is the empty set ?

4 : Introduction to Set

Subset :

If every member of the set B is a member of the set A, then B is called a subset of A.

For example, $A = \{x \mid x \text{ is a positive integer less than } 10\}$

 $= \{1, 2, 3, ..., 9\}$

 $\mathbf{B} = \{1, 2, 3, 6\}$

Here, each and every member of set B lies in the set A. Therefore, set B is called subset of set A. Symbolically it is denoted as $B \subset A$.

Think : In every set, each and element of that set is member of itself, then can we say every set is a subset of itself.

A = $\{a, b, c\}$ and B = $\{x, b, c\}$, then can we say that set A is subset of set B? Why?

• Keep in mind : Every set is a subset of itself, i.e. $A \subset A$.

- The empty set is a subset of each and every set, i.e. $\phi \subset A$.
- Every set has at least two subsets, except the empty set.
- The empty set has only one subset, i.e., itself only.
- If A is not a subset of set B, then it is written as A $\not\subset$ B.

Number (of	subsets	of	a	given	set	:	Look	and	understand
----------	----	---------	----	---	-------	-----	---	------	-----	------------

No.	Set	Number of member in set	Subsets	Number subsets	Number of subsets in exponent form
1.	A = { }	0	{ }	1	2^{0}
2.	$\mathbf{B} = \{x\}$	1	$\{ \}, \{x\}$	2	2 ¹
3.	$\mathbf{C} = \{p, q\}$	2	$\{ \}, \{p\}$	4	2 ²
			$\{q\}, \{p, q\}$		
4.	$\mathbf{D} = \{a, b, c\}$	3	$\{ \}, \{a\}, \{b\}$	8	2 ³
			$\{c\}, \{a, b\}$		
			$\{b, c\}, \{c, a\}$		
			$\{a, b, c\}$		

On the basis of above Table it can be said that number subsets of set having number of members n in itself = 2^n .

4 : Introduction to Set

Think :

- (1) How many subsets are there in a set having four members in it?
- (2) How many subsets are there in a set having five members in it ?

• Equal Set :

If set A and B contain the same elements, then set A and set B are said to be equal sets. Symbolically it is written as A = B.

For example : A = $\{x \mid x \text{ is a natural number less than 5}\}$, A = $\{1, 2, 3, 4\}$

B = {x / x is a factor of 12 less than 5}, B = {1, 2, 3, 4}

Here, set A and set B have the same elements, therefore set A and set B are equal sets.

 \therefore A = B

Additionally here $A \subset B$ and $B \subset A$.

 \therefore A \subset B and B \subset A, then A = B

• One to One Correspondence :

Suppose there are 10 students in a class. A unique (one and only one) roll number is given to each student.

(1) Utsav or $1 \leftrightarrow$ Utsav (2) Vijay or $2 \leftrightarrow$ Vijay (3) Chahana or $3 \leftrightarrow$ Chahana \vdots \vdots \vdots

(10) Rehana or $10 \leftrightarrow$ Rehana

Therefore, there is only one number from 1 to 10 corresponding to each student, which is his roll number and no student have two roll numbers because there will not be two students with same roll number. Such correspondence is called one to one correspondence.

Now, A = {1, 2, 3} and B = {a, b, c}, then there can be 6 correspondence between them.

(i)	(ii)	(iii)	(iv)	(v)	(vi)
$1 \leftrightarrow a$	$1 \leftrightarrow a$	$1 \leftrightarrow b$	$1 \leftrightarrow b$	$1 \leftrightarrow c$	$1 \leftrightarrow c$
$2 \leftrightarrow b$	$2 \leftrightarrow c$	$2 \leftrightarrow a$	$2 \leftrightarrow c$	$2 \leftrightarrow a$	$2 \leftrightarrow b$
$3 \leftrightarrow c$	$3 \leftrightarrow b$	$3 \leftrightarrow c$	$3 \leftrightarrow a$	$3 \leftrightarrow b$	$3 \leftrightarrow a$

4 : Introduction to Set

Equivalent Set :

If the number of the elements of two finite sets is the same, then they are called equivalent sets. Its symbol is '--'.

A = $\{1, 4, 6\}$ n(A) = 3 B = $\{x, y, z\}$ n(B) = 3

Here, n(A) = n(B). Therefore set A and set B are equivalent sets.

Symbolically they are written as A - B.

Universal Set :

Generally, in the discussion about sets, all sets are assumed to be the subsets of a definite set. This definite set with respect to its subsets is called the universal set. The symbol U is used for universal set.

For example, with reference to the set of all students of the school, the set of the player of Kho-kho team, the set of players of Kabaddi team, the set of members of the prayer committee, the set of students of VIII Standard etc are the subsets of the set of the students of school. Therefore, in this reference the set of the students of the school is the universal set.

1. Fill in the blanks using symbol ⊂ or ⊄

- (1) N Z
- (3) Z Q

(2) {3, 1, -1} N (4) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\right\}$ Q

2. Write the following with symbols :

- (1) 3 lies in the set A.
- (2) $\frac{1}{2}$ does not lie in the set A.
- (3) The set A is an empty set.
- (4) Set A and set B are equal sets.
- (5) Set C is subset of set D.
- (6) Set B and set C are equivalent sets.
- (7) Set A is not subset of set B.
- (8) $\{0\}$ is a subset of set B.

4 : Introduction to Set

A = {x / x is an even natural number less than 10} and
B = {-2, -3, -4, -5}, then whether they are equal sets or equivalent set ? Write with symbol.

*

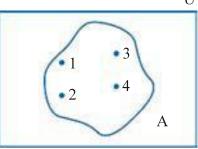
Venn Diagram :

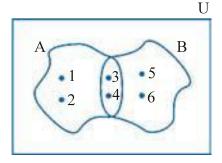
According to the method of British logician John Venn, a universal set is expressed by the interior part of a rectangle and other sets (subsets of the universal set) are expressed by freehand interior part of the rectangle. This pictorial representation of the sets are known as Venn Diagram.

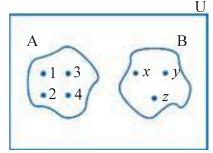
Venn diagram of a single set : $A = \{1, 2, 3, 4\}$

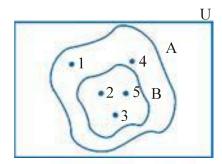
Venn diagrams of two sets :

There are four possibilities for Venn diagrams of two sets.


(1) When one or more than one members between the two sets are common.


 $A = \{1, 2, 3, 4\}$ $B = \{3, 4, 5, 6\}$


- (2) When both sets are disjoint sets
 A = {1, 2, 3, 4}
 B = {x, y, z}
- (3) When out of two sets one set is subset of the other.
 A = {1, 2, 3, 4, 5}


 $B = \{2, 3, 5\}$

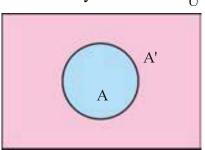
MATHEMATICS

STD.8

Downloaded from https:// www.studiestoday.com

43

4 : Introduction to Set


(4) When both are equal sets.

A = $\{x, y, z\}$ and B = $\{x, y, z\}$

Think : How many possibilities are there for Venn diagram of three sets ?

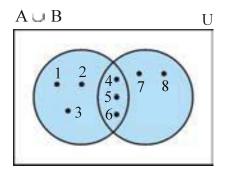
• Complement of a set :

The set of all those elements which are present in the universal set U but not present in the set A, is called complement of the set A. It is denoted by A'. U

U

В

Set operations : There are two types of set opeations : (1) Union (2) Intersection.


Union :

The set consisting of all elements of the set A and the set B is called the union of the sets A and B and it is denoted by $A \cup B$.

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

For example, $A = \{1, 2, 3, 4, 5, 6\}$ and set $B = \{4, 5, 6, 7, 8\}$

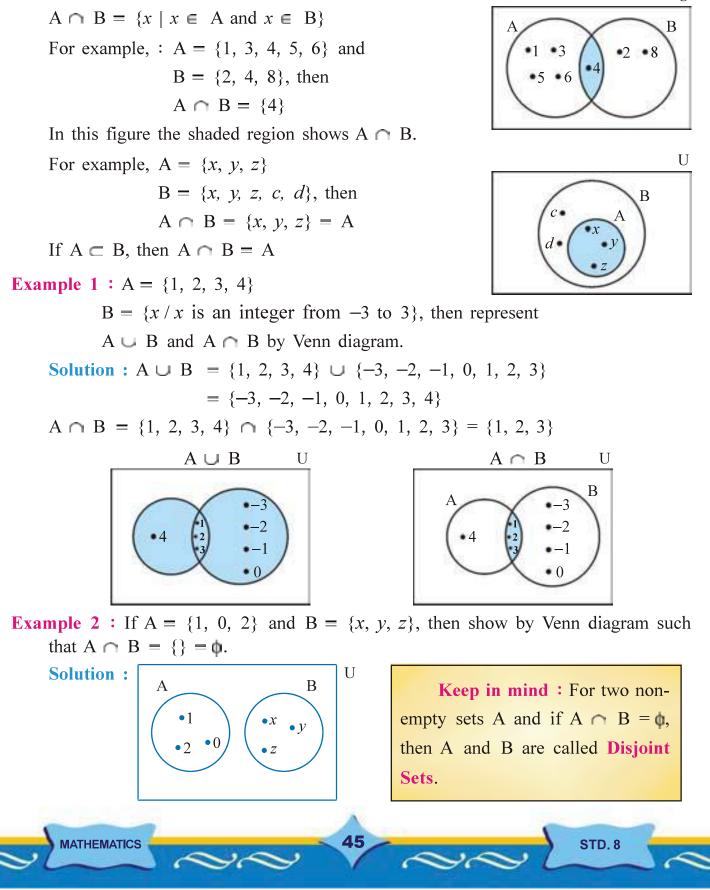
 $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$

MATHEMATICS

In the diagram, $A \cup B$ is denoted by shaded portion. The elements lying in both set A and set B are not written two times but they are shown in the intersection part of two circles.

For example, : $A = \{1, 0, 2\}$ $B = \{-2, -3, -1\}$, then $A \cup B = \{1, 0, 2, -1, -2, -3\}$

STD.8



44

4 : Introduction to Set

Intersection :

The set consisting of elements which are in both A and B is called the intersection of A and B. It is denoted by A \cap B. U

4 : Introduction to Set

$$B = \{3, 4, 5, 6, 7, 8, 9\}, C = \{5, 6, 7, 8, 9, 10, 11\}$$

Draw a Venn diagram representing these sets. From that, find the following sets :

(1)
$$B \cup C$$
 (2) $A \cap C$

(4)
$$(A \cup B) \cap C$$
 (5) $(A \cap C) \cup (B \cap C)$

- (1) $B \cup C = \{3, 4, 5, 6, 7, 8, 9, 10, 11\}$
- (2) $A \cap C = \{5, 6\}$
- (3) $A \cap B = \{3, 4, 5, 6\}$
- (4) $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $C = \{5, 6, 7, 8, 9, 10, 11\}$ $(A \cup B) \cap C = \{5, 6, 7, 8, 9\}$
- (5) $A \cap C = \{5, 6\}, B \cap C = \{5, 6, 7, 8, 9\}$ ($A \cap C$) \cup ($B \cap C$) = $\{5, 6, 7, 8, 9\}$

(6) $A \cap B \cap C$ U A 124557891011C12C

(3) $A \cap B$

(6) For A ∩ B ∩ C, taking intersection A ∩ B as in (3) with C, we will obtain the result.

 $A \cap B \cap C = \{5, 6\}$

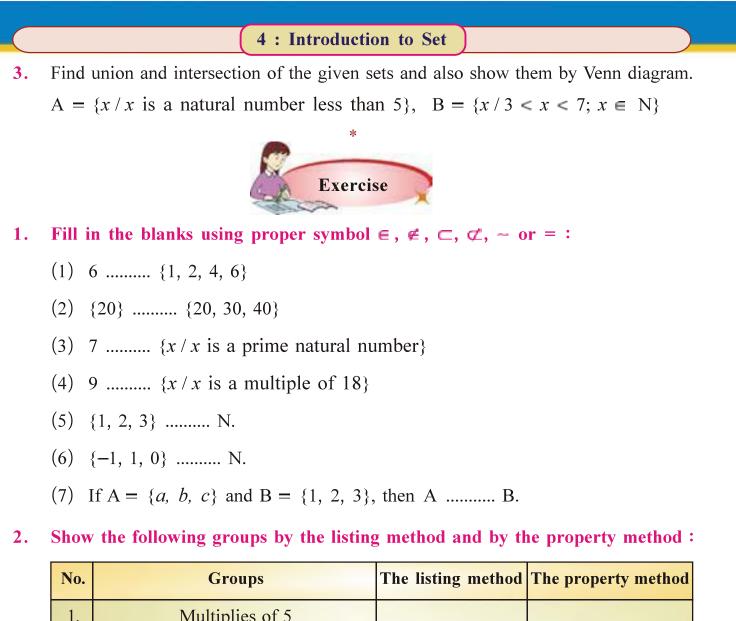
Please do activity by game of BINGO under the guidance of the teacher.

1. Calculate as asked :

- (1) $U = \{x \mid x \text{ is name of months of English calendar}\},$ A = {March, May, July, June}, then find A'.
- (2) U = $\{x \mid x \text{ is main colour of Rainbow}\}$, R = {Violet, Red, Yellow}, then find R'.
- (3) $U = \{x \in N \mid x \le 9\}, A = \{2, 3, 5\}$ B = {4, 5, 7}, then find A', (A')', B' and (B')'.

2. Find the following results from the Venn diagram :

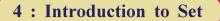
- (1) $A \cup B = \dots$
- (2) A \cap B =
- (3) (A \cap C) \cup B =
- (4) $(A \cup C) \cup B = \dots$
- (5) $U = \dots$


MATHEMATICS

U A 0239154912671010

STD.8

Downloaded from https:// www.studiestoday.com


46

1.	Multiplies of 5	
2.	Prime numbers between 21 and 30	
3.	Positive integers less than 6	
4.	Factors of 21	

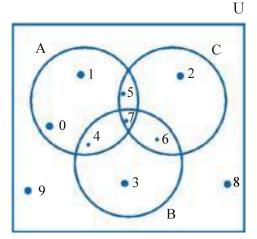
- 3. State which of the following sets are empty sets and which are singleton sets :
 - (1) $\{x \mid x \text{ is a prime number less than 3}\}$
 - $(2) \{5\}$
 - (3) $\{x / x + 1 = 1, x \in \mathbb{N}\}$
 - (4) $\{x \mid x \text{ is the additive identity}\}$ or $\{x \mid x \text{ is a neutral demant for addition1}\}$

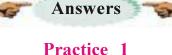
- 4. Which of the following are finite sets and infinite sets, write them :
 - (1) The set of citizens of India.
 - (2) The set of numbers of three digits more than 100.
 - (3) $A = \{x \mid x \text{ is a number whose unit digit is 7}\}$
 - (4) $\{x \mid x \text{ is a prime number}\}$
- 5. Classify the following sets are equal sets and equivalent set and write them in symbolic form :

(1)
$$P = \{a, b, c\}, Q = \{x, y, z\}$$

- (2) $F = \{ \}, G = \{x \mid x \text{ is a four digit number less than } 1000 \}$
- (3) A = {1, 4, 9, 16}, B = {x / x is a perfect square number less than 25}

(4)
$$D = \{p, q, r\}, E = \{r, q, p\}$$


(5)
$$A = \{1, 2, 3\}, B = \{7, 8, 9\}$$


- 6. If U = N and $A = \{1, 2, 3, ..., 10\}$, then find A' and (A')'.
- 7. Write all one-to-one correspondence between the given two sets : $A = \{x, y\}$ and $B = \{a, b\}$
- 8. Draw Venn diagram for given sets and write union and intersection for each set :

(1)
$$A = \{x, y, z, w\}, B = \{a, b, c, x, y\}$$

(2)
$$S = \{5, 10, 15\}, R = \{10, 15, 25, 20\}$$

- 9. From the given Venn diagram find the following results :
 - (1) $A \cap B$
 - (2) $(A \cup B) \cup (B \cup C)$
 - (3) $A \cap (B \cup C)$
 - $(4) (A \cup C) \cap B$
 - (5) U

1. (1) \in (2) \notin (3) \notin (4) \notin (5) \notin

_	
	4 : Introduction to Set
	Practice 2
1.	$(1) \ \square (2) \ \square (3) \ \square (4) \ \square$
2.	(1) $3 \in A$ (2) $\frac{1}{2} \notin A$ (3) $A = \phi$ (4) $C = B$
	(5) $C \subset D$ (6) $\overline{B} - C$ (7) $A \not\subset B$ (8) $\{0\} \subset B$
3.	(1) Equivalent sets, A – B
	Practice 3
1.	(1) A' = {January, February, March, April, May, June, July, August, September,
	October, November, December}
	(2) $R' = \{Blue, Indigo, Green, Orange\}$
	(3) $A' = \{1, 4, 6, 7, 8, 9\}, (A')' = A, B' = \{1, 2, 3, 6, 8, 9\}, (B')' = B$
2.	$(1) \{0, 1, 2, 3, 4, 5, 8, 9\} (2) \{2, 3\} (3) \{2, 3, 4, 5, 8, 9\}$
	$(4) \{0, 1, 2,, 9\} (5) \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
3.	$A \cap B = \{4\}, A \cup B = \{1, 2, 3, 4, 5, 6\}$
	Exercise
1.	$(1) \in (2) \sqsubset (3) \not\in (4) \not\in (5) \sqsubset (6) \not\subset (7) -$
2.	(1) Listing method : {5, 10, 15,}, Property method : { x / x is a multiple of 5}
	(2) Listing method : $\{23, 29\},\$
	Property method : { x / x is a prime number between 21 and 30}
	(3) Listing method : $\{1, 2, 3, 4, 5\},\$
	Property method : { x / x is positive integer less than 6}
	(4) Listing method : {1, 3, 7, 21}, Property method : { x / x is a factor of 21}
3.	 (1) Singleton set (2) Singleton set (3) Empty set (4) Singleton set
4.	(1) Finite set (2) Finite set (3) Infinite set (4) Infinite set (1) $P_{1} = Q_{2} = $
5.	(1) $P - Q$ (2) $F = G$ (3) $A = B$ (4) $D = E$ (5) $A - B$ $A' = \{11, 12, 13,\}, (A')' = A$
6. 7.	
7. 8.	$x \leftrightarrow a, x \leftrightarrow b, y \leftrightarrow a, y \leftrightarrow b$ (1) A \cup B = {a, b, c, x, y, z, w}, A \cap B = {x, y}
0.	(1) $A \cup B = \{u, v, v, y, 2, w\}, A \cap B = \{x, y\}$ (2) $S \cup R = \{5, 10, 15, 20, 25\}, S \cap R = \{10, 15\}$
9.	$(1) \{4, 7\} (2) \{0, 1, 2, 3, 4, 5, 6, 7\} (3) \{4, 5, 7\} (4) \{4, 6, 7\}$
	$(1) \{(1, 7)\} (2) \{(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)\}$
	MATHEMATICS 49 STD. 8

Expansion

• Let us remember :

- A polynomial having one term is called Monomial.
- A polynomial having two terms is called Binomial.
- A polynomial having three terms is called Trinomial.
- Let us learn new :
 - Multiplication (product) of monomial with monomial : $2 \times 3 = 6$ similarly $a \times b = ab$ $2 \times 3x = 2 \times 3 \times x = 6x$
 - $5x \times 3y = 5 \times x \times 3 \times y = 5 \times 3 \times x \times y = 15xy$ $5x \times 3x^2 = 5 \times x \times 3 \times x^2 = 5 \times 3 \times x \times x^2 = 15x^3$ $3x \times (-5y) = 3 \times x \times (-5) \times y = 3 \times (-5) \times x \times y = (-15)xy$ $4x \times 6y^2 = 24xy^2$

Therefore, in multiplication (product) of two monomials their coefficients are multiplied with coefficients and variable is multiplied with variable. Hence here multiplication (product) of monomials with monomial is monomial only.

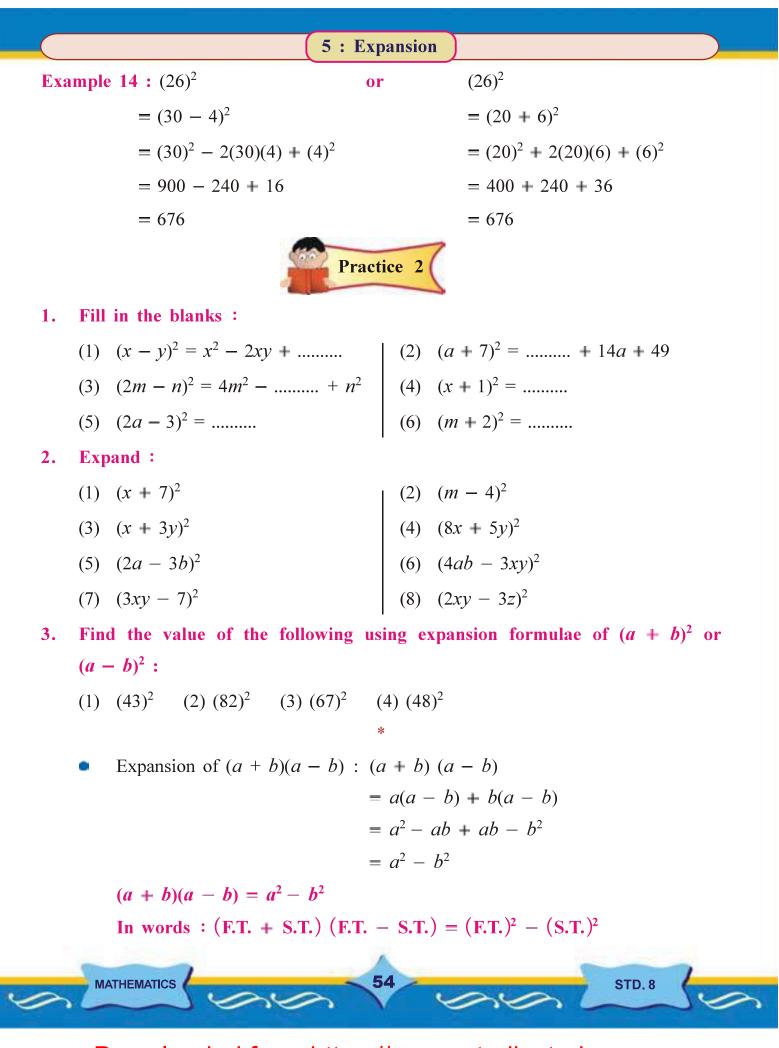
• Multiplication (product) of monomial with binomial :

In the earlier class we have learnt about distribution of multiplication over addition.

 $a \times (b + c) = (a \times b) + (a \times c)$ (Distribution of multiplication over addition) $a \times (b + c) = ab + ac$ Now, if a = 2x, b = 3y and c = 5z, then $2x \times (3y + 5z) = (2x \times 3y) + (2x \times 5z)$ = 6xy + 10xz

There by using distributive law, the product on left hand side is expressed in the form of addition on right hand side. This process is called expansion. i.e. The process of getting ab + ac from a(b + c) is expansion. "To express the product of polynomials as a single polynomial means expansion." The product of monomial with binomial is a binomial.

	5 : Expansion	
Example 1 : $a \times (5a - 6b)$	or	$= (a \times 5a) + [(a)(-6b)]$
$= (a \times 5a) - (a \times$	6 <i>b</i>)	$= 5a^2 + (-6ab)$
$= 5a^2 - 6ab$		$= 5a^2 - 6ab$
Example 2 : $(2x - 4) \times (-3x)$		
$= (-3x) \times (2x - 4)$		
$= \left[(-3x) \times (2x) \right] -$	$[(-3x) \times (4)]$	
$= (-6x^2) - (-12x)$		
$= (-6x^2) + 12x$		
Example 3 : $2m(3m^2 + 5)$		
$= (2m \times 3m^2) + (2m)$	$n \times 5$)	
$= 6m^3 + 10m$		


• Product (multiplication of binomial with binomial :

To get product of binomial (a + b)(c + d), both the terms of any one binomial is multiplied with other nonomial respectively.

(a+b)(c+d) or	(a+b)(c+d)
= a(c + d) + b(c + d)	= (a+b) c + (a+b)d
= ac + ad + bc + bd	= ac + bc + ad + bd
• Expand :	
Example 4 : $(x + y)(2y + 5)$	
= x(2y + 5) + y(2y + 5)	
$= 2xy + 5x + 2y^2 + 5y$	(No two terms are like terms)
Example 5 : $(2a + 3b)(5x - 3y)$	
= 2a(5x - 3y) + 3b(5x - 3y)	
= 10ax - 6ay + 15bx - 9by	(No two terms are like terms)
Example 6 : $(5a - 7b)(3a - 2b)$	
= 5a(3a - 2b) - 7b(3a - 2b)	
$= 15a^2 - 10ab - 21ab + 14b^2$	(Two terms are like terms)
$= 15a^2 - 31ab + 14b^2$	
MATHEMATICS 51	STD. 8

	(2)(2 ->	5 : Expansi	on		
Exai	mple 7 : $(x^2 - 5)(x^2 - 5$		2 - 2			
	$= x^2(x^2 + x^2)^2$	/	,	(T	1.1	
	$= x^4 + \underline{3}z$ $= x^4 - 2z$		- 15	(1W0	o terms are lil	ke terms)
	= x - 2x Therefore, product	10	nial with a bin	omial is a poly	nomial	
Exa	mple 8 : $(2x + 3y)$			onnur is u pory	nonnun.	
	-		y(2x-3y)			
	$= 4x^2 - 6$	xy + 6xy	$-9y^{2}$	(Two	o terms are lil	ke terms)
	$= 4x^2 - 9$					
	We can see from	the exam	ples in expan	sion that, the	product of a	binomial
	with a binomial, g	et (1) Fo	ur terms or (2	2) Three term	s or (3) Two	terms.
		5	Practice	17		
4				_	(1 • 1	_
1.	Complete the give			_		•
	1st monomial \rightarrow 2nd monomial \downarrow	2x	-5y	$3a^2$	-4xy	mn
	2 nd monomial v 2 <i>x</i>	$4x^{2}$	-10xy			
	$3y^2$			$9a^2v^2$		
				90 y		
	-2a				8axy	
	<u>3mn</u>		-15mny			
	5xy				$-20x^2y^2$	
2.	Expand :					
	(1) $2a(3x + 5y)$				5a(6a+3b)	
	(4) $(-6y)(5x - 7y)(5x - 7y)($				(-3ab)(2a +	+ 3 <i>b</i>)
2	$(7) (6x^3y^3 - 1)(-2)$	$(8^{2x^{2}})$) 2ab(3ab -	1)		
3.	Expand :					
	(1) $(2r \pm v)(a \pm v)$	36) (2	(5r - 2)(2r)	(-1, 5) (2)	$(r - 2)(r^2)$	L 3)
	(1) $(2x + y)(a + (4))(5x^2 + 3)(2x^2)$					
	(4) $(5x^2 + 3)(2x^2)$	+ 5) (5	(x - 3)(x - 3)	7) (6)		
	• • •	+ 5) (5	(x - 3)(x - 3)	7) (6)		

5 : Expa	nsion
• Expansion of square of binomial :	
$(a + b)^2 = (a + b) \times (a + b)$	
= a(a + b) + b(a + b)	
$= a^2 + ab + ba + b^2$	
$= a^2 + ab + ab + b^2$	$(\because ba = ab)$
$(a + b)^2 = a^2 + 2ab + b^2$	
(F.T. = First Term, S.T. = Second Te	erm)
In words,	
$(F.T. + S.T.)^2 = (F.T.)^2 + 2(F.T.)(S.T.)$	$(S.T.)^2$
$(a-b)^2 = (a-b) \times (a-b)$	
= a(a - b) - b(a - b)	
$= a^2 - ab - ba + b^2$	
$= a^2 - ab - ab + b^2$	$(\because ba = ab)$
$(a - b)^2 = a^2 - 2ab + b^2$	
In words $(F.T S.T.)^2 = (F.T.)^2 - 2($	$(F.T.)(S.T.) + (S.T.)^2$
• Expand :	
Example 8 : $(x + 3)^2$	Example 9 : $(a - 5)^2$
$= (x)^2 + 2(x)(3) + (3)^2$	$= (a)^2 - 2(a)(5) + (5)^2$
$= x^2 + 6x + 9$	$= a^2 - 10a + 25$
Example 10 : $(2x + 3y)^2$	Example 11 : $(2ab - y)^2$
$= (2x)^2 + 2(2x)(3y) + (3y)^2$	$= (2ab)^2 - 2(2ab)(y) + (y)^2$
$= 4x^2 + 12xy + 9y^2$	$=4a^2b^2-4aby+y^2$
• Find the values using expansion form	
	imple 13 : $(34)^2$
$= (10 + 2)^2$	$= (30 + 4)^2$
$= (10)^2 + 2(10)(2) + (2)^2$	$= (30)^2 + 2(30)(4) + (4)^2$
= 100 + 40 + 4	= 900 + 240 + 16
= 144	= 1156
MATHEMATICS 53	STD.8

5 : Expansion

Practice 3

• Expand :

Example 15 :
$$(x + 5) (x - 5)$$

= $(x)^2 - (5)^2$
= $x^2 - 25$
Example 16 : $(2a - 3b) (2a + 3b)$
= $(2a)^2 - (3b)^2$
= $4a^2 - 9b^2$

Example 17 : Find the value of 22×18 using expansion formula.

$$22 \times 18 = (20 + 2) (20 - 2)$$
$$= (20)^{2} - (2)^{2}$$
$$= 400 - 4$$
$$= 396$$

1. Make pairs :

	Section 'A'	Section 'B'
(1)	(m+n)(m-n)	(a) $m^2 - 49$
(2)	(m + 7)(m - 7)	(b) $25 - m^2$
(3)	(5 + m)(5 - m)	(c) $9m^2 - 1$
(4)	(3m-1)(3m+1)	(d) $m^2 - n^2$

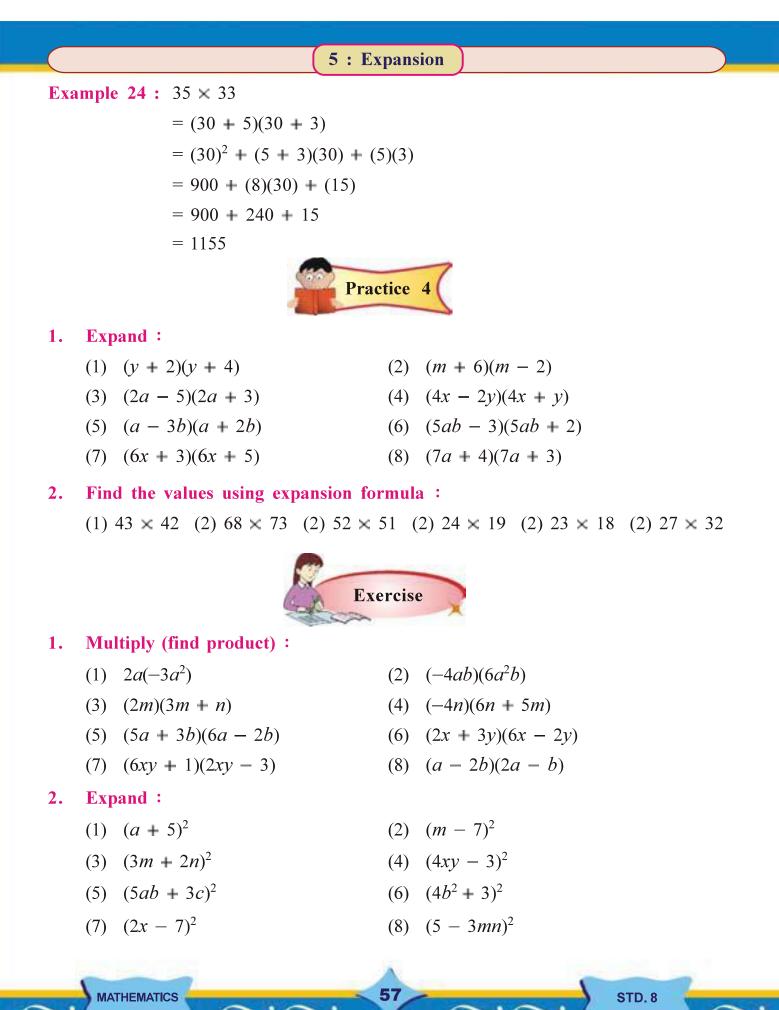
2. Expand :

- (1) (4x + 1)(4x 1)
- (3) (6-x)(6+x)

MATHEMATICS

- (5) (11 + 3xy)(11 3xy)
- (2) (3x 7y)(3x + 7y)
- (4) (a + 8b)(a 8b)
- (6) (2mn + 5)(2mn 5)

STD.8


- 3. Find values using expansion formula :
 - (1) 41×39 (2) 56×64 (3) 73×67 (4) 33×27

Downloaded from https:// www.studiestoday.com

*

55

5 : Expansion
• Expansion of $(x + a)(x + b)$:
(x + a)(x + b) = x(x + b) + a(x + b)
$= x^2 + xb + ax + ab$
$= x^2 + ax + bx + ab$
$\therefore (x + a)(x + b) = x^2 + (a + b)x + ab$
• Expand :
Example 18 : $(x + 3)(x + 2)$
$= (x)^{2} + (3 + 2)(x) + (3)(2)$
$= x^2 + 5x + 6$
Example 19 : $(x + 3)(x - 5)$
$= (x)^{2} + (3 - 5)(x) + (3)(-5)$
$= x^2 - 2x - 15$
Example 20 : $(x + 8)(x - 3)$
$= (x)^{2} + (8 - 3)(x) + (8)(-3)$
$= x^2 + 5x - 24$
Example 21 : $(x - 4)(x - 3)$
$= (x)^{2} + (-4 - 3)(x) + (-4)(-3)$
$= x^2 - 7x + 12$
Example 22 : $(3x + 5y)(3x - 2y)$
$= (3x)^2 + (5y - 2y)(3x) + (5y)(-2y)$
$= 9x^2 + (3y)(3x) + (-10y^2)$
$= 9x^2 + 9xy - 10y^2$
• Find the values using expansion formula :
Example 23 : 26×32
= (30 - 4)(30 + 2)
$= (30)^2 + (-4 + 2)(30) + (-4)(2)$
= 900 + (-2)(30) + (-8)
= 900 - 60 - 8
= 832
MATHEMATICS 56 STD. 8

		5 : Expansion
3.	Expand :	
	(1) $(x - 7)(x + 7)$	(2) $(2a + 3b)(2a - 3b)$
	(3) $(2m + 5)(2m - 5)$	(4) $(2mn + 3)(2mn - 3)$
4.	Expand :	
	(1) $(a + 3)(a + 2)$	(2) $(m-2)(m-5)$
	(3) $(x - 9)(x + 2)$	(4) $(x + 6y)(x - 2y)$
	(5) $(5x - 2y)(5x - 4y)$) (6) $(2m + 3n)(2m + 5n)$
	(7) $(xy - 7)(xy + 4)$	(8) $(x^2 - 5)(x^2 + 3)$
5.	Find the values using	expansion formula :
	(1) 62^2	(2) 57^2 (3) 43×37
	(4) 97×103	(5) 16×22
•	What did we learn ?	
	• Product of monomi	ial with monomial.
	 Product of monomi 	
	 Product of hionomia Product of binomia 	
	• $(a + b)^2 = a^2 + 2a^2$	
	• $(a + b)^2 = a^2 - 2a^2$	
	• $(a - b) = a - 2a$ • $(a + b)(a - b) =$	
	(x + a)(x + b) = .	$x^2 + (a+b)(x) + ab$
		Answers 😪
		Practice 1
1.	(1) $6ax + 10ay$	(2) $15x^3 - 12x^2y$ (3) $30a^2 + 15ab$
	(4) $-30xy + 42y^3$	(5) $-50a^3 - 10ab$ (6) $-6a^2b - 9ab^2$
	(7) $-12x^5y^3 + 2x^2$	(8) $6a^2b^2 - 2ab$
		58 STD. 8

Downloaded from https:// www.studiestoday.com

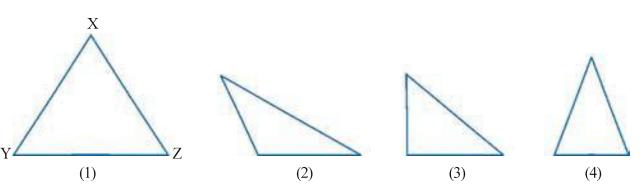
			5 : Expans	sion		
2.	<mark>1st Monomial→</mark> 2nd Monomial ↓	2 <i>x</i>	-5 <i>y</i>	3 <i>a</i> ²	-4xy	mn
	2 <i>x</i>	$4x^{2}$	-10xy	$6xa^2$	$-8x^2y$	2xmn
	$3y^2$	$6xy^2$	$-15y^{3}$	$9a^2y^2$	$-12xy^3$	3y ² mn
	-2a	-4ax	10 <i>ay</i>	$-6a^{3}$	8axy	-2amn
	3mn	6mnx	-15 <i>mny</i>	9a ² mn	-12 <i>xymn</i>	$3m^2n^2$
	5xy	$10x^2y$	$-25xy^2$	$15a^2xy$	$-20x^2y^2$	5xymn
3.	(1) $2xa + 6xb$	+ ya + 3yb	(2) $10xa + 2$:	5x - 6a - 15	(3) $x^3 + 3x$	$x - 2x^2 - 6$
	(4) $10x^4 + 31x^2$	+ 15	(5) $x^2 - 10x$	+ 21	(6) $6m^3 + 2$	$m^2 + 15m + 3$
	(7) $6x^2 - 2x - $	20	(8) $4x^2 - 7xc$	$a - 15a^2$		
			Practice	2		
1.	(1) y^2	(2) a^{2}	2	(3) 4 <i>n</i>	nn	
	(4) $x^2 + 2x + $	1 (5) 40	$a^2 - 12a + 9$	(6) <i>m</i>	$^{2} + 4m + 4$	
2.	(1) $x^2 + 14x$	+ 49	(2)	$m^2 - 8m +$	16	
	(3) $x^2 + 6xy$	$+ 9y^2$	(4)	$64x^2 + 80xy$	$y + 25y^2$	
	(5) $4a^2 - 12a$			$16a^2b^2 - 24$		2
	(7) $9x^2y^2 - 42$	•		$4x^2y^2 - 12x$	$yz + 9z^2$	
3.	(1) 1849 (2)	6724 (3) 44				
1	(1) d (2) a	(3) h (/	Practice	3		
	(1) d (2) a (1) $16x^2 - 1$			(3) 36	$-x^{2}$	
<i>-</i>	(1) $10x - 1$ (4) $a^2 - 64b^2$		v			
3.	(1) 1599 (2)				11 25	
- •	() (-)		Practice			
1.	(1) $y^2 + 6y +$	8 (2	$) m^2 + 4m -$	12 (3	$) 4a^2 - 4a -$	- 15
	(4) $16x^2 - 4xy$	$y^2 - 2y^2$ (5)	$) a^2 - ab - c$	$6b^2$ (6	b) $25a^2b^2 - 5a^2b^2 - $	<i>ab</i> – 6
	(7) $36x^2 + 48x$	+ 15 (8) $49a^2 + 49a$	+ 12		
2.	(1) 1806 (2)	4964 (3)	2652 (4) 4	56 (5) 414	(6) 864	
					~	-
	MATHEMATICS		59	-		STD. 8

Downloaded from https:// www.studiestoday.com

c

5

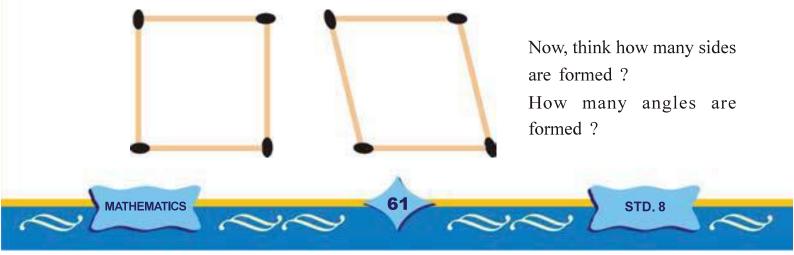
	5 : Expansion	
(1) $-6a^3$	Exercise (2) $-24a^3b^2$	(3) $6m^2 + 2mn$
	(2) $24a b$ (5) $30a^2 + 8ab - 6b^2$	
	$-3 (8) \ 2a^2 - 5ab + 2b^2$	(0) 12x 11xy 0y
	(c) $m^2 - 14m + 49$	(3) $9m^2 + 12mn + 4n^2$
	$+ 9 (5) \ 25a^2b^2 + 30abc + 9$	
	9 (7) $4x^2 - 28x + 49$	
	$a^2 - 9b^2$ (3) $4m^2 - 25$ (4)	
	$(2) m^2 - 7m + 10$, ,
	$(2) m - 7m + 10$ $(5) 25x^2 - 30xy + 8y^2$	
· · ·	$(5) 23x - 30xy + 8y$ $(8) x^4 - 2x^2 - 15$	(0) 4m + 10mn + 13n
(7) x y = 5xy = 20	6 (8) x - 2x - 15	
(1) 3844 (2) 324	9 (3) 1591 (4) 9991	(5) 352
	9 (3) 1591 (4) 9991 etween units :	(5) 352
		(5) 352 • $100 \text{ m}^2 = 1 \text{ acre}$
Relations be		
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 	etween units :	• $100 \text{ m}^2 = 1 \text{ acre}$
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 3 feet = 1 bar = 3 	etween units :	• $100 \text{ m}^2 = 1 \text{ acre}$ 100 acre = 1 hectare
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 3 feet = 1 bar = 3 1 metre = 39.37 inc 	etween units : 6 inch ch = 3.280 feet = 1.0936 bar	• $100 \text{ m}^2 = 1 \text{ acre}$ 100 acre = 1 hectare
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 3 feet = 1 bar = 3 	etween units : 6 inch ch = 3.280 feet = 1.0936 bar par 1 cubic	• $100 \text{ m}^2 = 1 \text{ acre}$ 100 acre = 1 hectare 100 hectore = 1 sq km
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 3 feet = 1 bar = 3 1 metre = 39.37 inc 9 sq feet = 1 sq b 121 sq. bar = 1 Gr 	etween units : 6 inch ch = 3.280 feet = 1.0936 bar par 1 cubic	 100 m² = 1 acre 100 acre = 1 hectare 100 hectore = 1 sq km foot = 1728 cubic inch bar = 27 cubic feet
 Relations be 1 inch = 2.54 cm 1 foot = 30.48 cm 1 foot = 12 inch 3 feet = 1 bar = 3 1 metre = 39.37 inc 9 sq feet = 1 sq b 121 sq. bar = 1 Gr 	etween units : 6 inch ch = 3.280 feet = 1.0936 bar ar • 1 cubic untha 1 cubic e = 4840 sq bar 100 cub	 100 m² = 1 acre 100 acre = 1 hectare 100 hectore = 1 sq km foot = 1728 cubic inch bar = 27 cubic feet

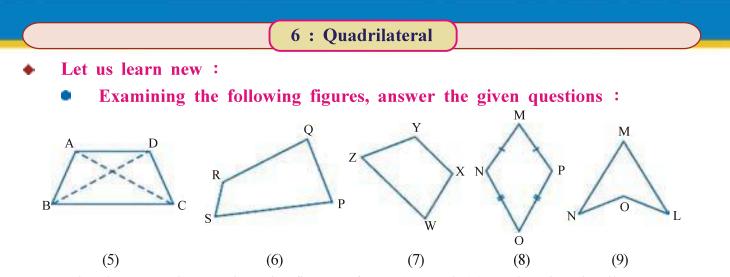

Downloaded from https:// www.studiestoday.com

4

C

Quadrilateral


• Let us remember :



• Complete the Table by naming the each triangle with different names shown in the figure :

No.	Vertices of Triangle	Name of Triangle	Angles	Sides
(1)	X, Y and Z	ΔXYZ	ZXYZ	$\overline{\mathrm{XY}}, \ \overline{\mathrm{YZ}}, \ \overline{\mathrm{ZX}}$
			∠YZX	
			ZXY	
(2)				
(3)				
(4)				

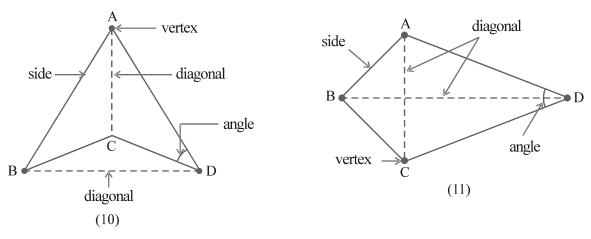
- Activity 1 : Make such shapes that by taking four match-sticks closed figures are obtained.
 - Keep it in mind that two black ends of match-sticks do not touch each other

Join the opposite vertices in figures from (5) and (9) and write the line-segment so formed :

No.	(5)	(6)	(7)	(8)	(9)
Line-segment	$\overline{AC}, \overline{BD}$				

(1) How many vertices are there in above each figure ?

(2) In the above each figure are there any three vertices in only one line ?


(3) How many sides are there in each figure ?

(4) How many angles are there in each figure ?

(5) is the figure in which line-segments intersect.

(6) is the figure in which line-segments do not intersect.

Examine the following figures and understand :

Understand :

In the above figure (10) and (11)

• A, B, C, D are the vertices of a quadrilateral.

6 : Quadrilateral

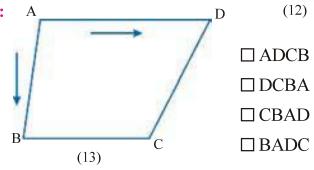
- \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} are the sides of quadrilateral.
- $\angle ABC$, $\angle BCD$, $\angle CDA$, $\angle DAB$ are the angles.
- \overline{AC} and \overline{BD} are their diagonals.
- A closed figure made by four line-segments having four angles and not intersecting each other at any point except the end points is a quadrilateral.

 \square ABCD can be written as in set form as under :

$\Box ABCD = \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}$

- Therefore, a quadrilateral is the union of four line-segments.
- Each line-segment which is formed by connecting opposite vertices of a quadrilateral is called a diagonal.
- If the diagonals of a quadrilateral intersect each other then that quadrilateral is called a convex quadrilateral.
- If the diagonals of a quadrilateral do not intersect each other then that quadrilateral is called a concave quadrilateral.
- Each quadrilateral contains four sides, four angles and two diagonals.

Here, we will discuss about the convex quadrilateral.


In the figure, D, E, F, G are the vertices of a quadrilateral, therefore, its name is given quadrilateral DEFG. Symbolically it is written as \Box DEFG.

Read as : Quadrilateral DEFG

- Naming of quadrilateral :
 - □ ABCD
 - BCDA

 - \Box DABC

MATHEMATICS

D

F

STD. 8

G

E

- A quadrilateral can be given name by two methods as clockwise and anticlockwise.
- Fill the details of the Table on the basis of above figures (12) and (13) :

Figures	Sides	Angles	Diagonals	Diagonals intersect	?
(12)					
(13)					

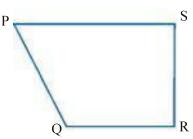
63

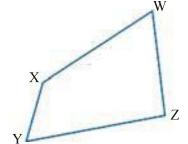
6 : Quadrilateral

Remember the following :

- A quadrilateral is formed with four coplanar points.
- Among four distinct coplanar points no three are colinear in a quadrilateral.
- A quadrilateral in which diagonals do not intersect is called a concave quadrilateral according to given figure.
- Here, \overline{AC} and \overline{BD} are diagonals.

1. By studying the given figure, write all the possible quadrilaterals formed in your notebook. Out of these write informations of any three in the table :


Н	\bigvee		G
J	\bigcirc	\bigcirc	L
Е		\square	F


A


В

No.	Name of quadrilateral	Sides	Angles	Diagonals
1.	□EFGH	EF, FG, GH, HE	∠EFG, ∠FGH, ∠GHE, ∠HEF	FH,EG

2. Write all the possible methods of writing names of the following quadrilaterals :

3. Draw and give names of such a quadrilateral whose vertices are S, T, U and V.

6 : Quadrilateral

• The opposite sides and opposite angles, adjacent sides and the adjacent angles of a quadrilateral :

In figure (14), \overline{PQ} and \overline{RS} are opposite sides.

 \overline{QR} and \overline{PS} are opposite sides.

 $\angle P$ and $\angle R$ are opposite angles.

 $\angle Q$ and $\angle S$ are opposite angles.

Therefore, two pairs of opposite sides are obtained. Similarly two pairs of opposite angles are obtained.

Now, The adjacent sides of \overline{PQ} are \overline{PS} and \overline{QR} .

The adjacent sides of \overline{QR} are \overline{PQ} and \overline{RS} .

The adjacent sides of \overline{RS} are \overline{QR} and \overline{SP} .

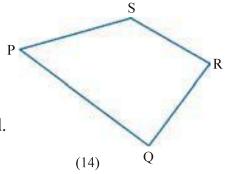
The adjacent sides of \overline{PS} are \overline{PQ} and \overline{RS} .

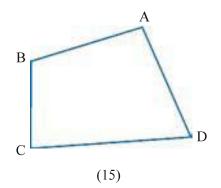
The adjacent angles of $\angle P$ are $\angle Q$ and $\angle S$.

The adjacent angles of $\angle Q$ are $\angle P$ and $\angle R$.

The adjacent angles of $\angle R$ are $\angle Q$ and $\angle S$.

The adjacent angles of $\angle S$ are $\angle P$ and $\angle R$.


Therefore, four pairs of adjacent sides are obtained. Similarly four pairs of adjacent angles are obtained.



Fill in the following blanks on the basis of given figure :

- (1) is the opposite side of \overline{AB} .
- (2) \overline{AD} is the opposite side of
- (3) The adjacent sides of \overline{AB} are and
- (4) and are the adjacent sides of \overline{BC} .
- (5) The adjacent sides of \overline{CD} are and
- (6) and are the adjacent sides of \overline{DA} .
- (7) Write opposite angle of $\angle A$.
- (8) Which are the adjacent angles of $\angle D$?
- (9) Which are the adjacent angles of $\angle A$?
- (10) $\angle A$ and $\angle C$ are the adjacent angles of which angle ?

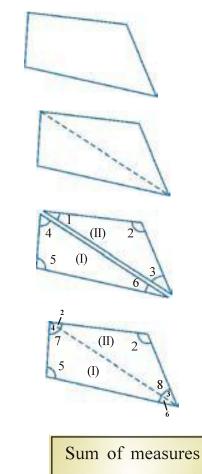
6 : Quadrilateral

Activity 2 :

0

- First of all take a quadriangular paper of any measure.
- Make the triangular from quadriangular shape by folding from the mid of dotted line.
- Measure all the three angles of triangular region respectively by protector.
- After measuring the angles of both triangular regions, open the fold.

Now, there will be four angles of quadrilateral instead of six angles of two triangles.


•
$$m \angle 1 + m \angle 4 = m \angle 7$$
 and

 $m\angle 3 + m\angle 6 = m\angle 8.$

 Now find the sum of measures of four angles of quadrilateral :

 $m\angle 7 + m\angle 2 + m\angle 8 + m\angle 5 = \dots$

Sum of measures of four angles of = quadrilateral =

of angles of 2nd triangular region 180^a

Activity 3 : Draw different types of quadrilaterals in chart paper. Cut with the help of scissors. Measure all four angles of each quadrilateral with the help of protractor and write in Table :

Sum of measures

of 1st triangular

region

180°

360°

+

+

Name of quadrilateral	measure of ∠1	measure of ∠2	measure of ∠4	$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4$

6 : Quadrilateral	
• Problems on the basis of measures of angle	s of quadrilateral :
Example 1 : The measures of three angles of a quantum contract of the second	
respectively. Find measure of its fourth angle.	-
The sum of measures of three angles of qua	adrilateral :
$85^{\circ} + 35^{\circ} + 160^{\circ} = 280^{\circ}$	or
The measures of all four angles	$m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^{\circ}$
	$\therefore 85^{\circ} + 35^{\circ} + 160^{\circ} + m \angle 4 = 360^{\circ}$
of a quadrilateral is 360°. Measure of fourth angle = $360^\circ - 280^\circ = 80^\circ$	$\therefore 280^{\circ} + m \angle 4 = 360^{\circ}$
The measure of fourth angle $= 300^{\circ}$ $= 30^{\circ}$	$\therefore m \angle 4 = 360^\circ - 280^\circ$ $\therefore m \angle 4 = 80^\circ$
	1
Example 2 : The measure of three angles of a qua	-
each angle is 95°, then find measure of its four	th angle.
Suppose \Box ABCD is a quadrilateral. $\dots m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$	
$m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$ $\therefore 95^{\circ} + 95^{\circ} + 95^{\circ} + m \angle D = 360^{\circ}$	
$285^{\circ} + m\angle D = 360^{\circ}$	
$m \angle D = 360^{\circ} - 285^{\circ}$	
$m \angle D = 75^{\circ}$	
The measure of fourth angle is 75°.	
Example 3 : The measure of three angles of a qua	adrilateral are equal. If measure of
fourth angle is 105°, then find the measure of e	-
The sum measures of all three equal angles	or
$= 360^{\circ}$ – measure of fourth angle	Suppose the measures of three equal
$= 360^{\circ} - 105^{\circ}$	angles is x^{n} . Now,
	$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^{\circ}$ $\therefore x^{\circ} + x^{\circ} + x^{\circ} + 105^{\circ} = 360^{\circ}$
= 255 th	$3x^{\circ} + 105^{\circ} = 360^{\circ}$
The measure of each equal angle $=\frac{255}{3}=85$	$\therefore 3x^{\circ} = 360^{\circ} - 105^{\circ} = 255^{\circ}$
The measure of each equal angle = 85°	$\therefore 3x^{\circ} = 360^{\circ} - 105^{\circ} = 255^{\circ}$ $\therefore x^{\circ} = \frac{255}{3} = 85^{\circ}$
Practice 3	-

1. The measure of three angles of a quadrilateral are 75th, 65th and 120th respectively, then find the measure of fourth angle of the quadrilateral.

6 : Quadrilateral

- 2. The measure of two adjacent angles of a quadrilateral are 80[°] and 100[°]. If remaining angles have equal measure then find the measures of equal angles.
- In □ MNOP, m∠N is 10^a more, m∠O is 20^a more, and m∠P is 30^a more than m∠M, then find the measures of all four angles.
- 4. In \Box DEFG, $m \angle D = 120^{\circ}$ and $m \angle F = 140^{\circ}$. If $m \angle E = m \angle G$, then find the measures of both angles.
- 5. If the measures of all four angles of a quadrilateral are equal, then find the measure of each angle.
- 6. One angle of a quadrilateral is a right angle and the measure of other angle is 110th. If remaining two angles are of equal measures, then find the measures of each equal angle.

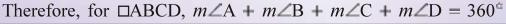
• Types of quadrilateral :

MATHEMATICS

See and understand :

No.	Figure and name	Definition	Characteristics
1.	Parallelogram	If both the pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is called a parallelogram. $\overline{AD} \parallel \overline{BC}$ and $\overline{AB} \parallel \overline{CD}$	 Diagonals bisect each other. Diagonals are not of equal measures. The measures of opposite sides are equal. The measures of opposite angles are equal.
2.	Rhombus $S \rightarrow R$ $P \rightarrow Q$	If all the sides of a parallelogram are equal, then it is called a rhombus. $\overline{QR} \parallel \overline{PS}$ and $\overline{PQ} \parallel \overline{SR}$ QR = RS = SP = PQ	 Diagonals are not of equal measurement. Diagonals bisect each other at right angles.

Downloaded from https:// www.studiestoday.com


68

STD.8

No.	Figure and Name	Definition	Characteristics
3.	Rectangle	If all the angles of a parallelogram are right angles, then the parallelogram is called a rectangle. $\overline{LO} \parallel \overline{MN}, \overline{LM} \parallel \overline{ON}$ $m \angle L = m \angle M =$ $m \angle N = m \angle O = 90^{c}$	 Diagonals are equa in measures. Diagonals bisect each other.
4.	Square D E E	If the measures of four angles and four sides are equal, then that parallelogram is called a square. $\overline{DG} \parallel \overline{EF}, \overline{DE} \parallel \overline{GF}$ DG = GF = FE = ED $m \angle D = m \angle E = m \angle F$ $= m \angle G = 90^{\circ}$	 The measures of diagonals are equa Diagonals bisect each other at right angles.
5.	Trapezium B C D	If in a quadrilateral one and only one pair of opposite sides are parallel then such quadrilateral is called a trapezium. BE CD	 The measures of diagonals are not equal. Diagonals do not bisect each other.

Remember :

- The name of a quadrilateral can be given by two ways : clockwise and anti-clockwise.
- The quadrilateral name can be written by starting with any vertex.
- Each quadrilateral has two pairs of opposite sides and two pairs of opposite angles.
- Each quadrilateral has four pairs of adjacent sides and four pairs of adjacent angles.
- The sum of the measures of all our angles of any quadrilateral is 360° .

- 1. Draw such a quadrilateral whose diagonals are \overline{DG} and \overline{EF} . Name it. How many types can it be named ? Write all the names.
- **2.** Make figure of \Box XYZW and write its all pairs of adjacent sides and adjacent angles.
- 3. $\angle S$ is a right angle in \Box STUV. If $m\angle T = m\angle U$ and $m\angle V = 80^{\circ}$, then find $m\angle T$ and $m\angle U$.
- 4. In \Box PQRS, $m \angle Q$ is 10^a less, $m \angle R$ is 20^a less and $m \angle S$ is 30^a less, then $m \angle P$, then find measure of each angle.
- 5. The measure of an angle of a quadrilateral is 120th. The measures of remaining angles are equal, then find the measure of each angle.
- 6. Answer the following questions :

MATHEMATICS

- (1) Write the number of sides, angles and diagonals of a quadrilateral.
- (2) What is the sum of measures of four angles of quadrilateral ?
- (3) What is the sum of measures of three angles of a square ?
- (4) Which quadrilaterals have equal measures of four sides ?

Answers 😪

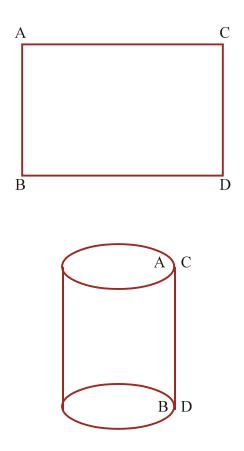
Practice 2

Practice 2								
	(1) $\overline{\text{CD}}$	(2) $\overline{\mathrm{BC}}$	(3) $\overline{\text{BC}}$, $\overline{\text{AD}}$	(4) \overline{AB} , \overline{CD}	(5) $\overline{\text{BC}}$, $\overline{\text{AD}}$			
	(6) \overline{AB} , \overline{CD}	(7) ∠C	(8) ∠A, ∠C	(9) ∠B, ∠D	(10) $\angle B$ and $\angle D$			
			Practice 3					
	(1) 100	(2) 90°, 90) [±]	(3) 75°, 85°, 9	5≞, 105≞			
	(4) 50°, 50°	(5) 90°, 90	0°, 90°, 90°	(6) 80° , 80°				
			Exercise					
1.	□DEGF, □EGFD, □GFDE, □FDEG, □DFGE, □FGED, □GEDF, □EDFG							
2.	(1) \overline{XY} and \overline{ZW} (2) \overline{YZ} and \overline{XW}							
	(3) The adjacent angles of $\angle X$ are $\angle W$ and $\angle Y$. The adjacent angles of $\angle Y$ are							
	$\angle X$ and $\angle Z$. The adjacent angles of $\angle Z$ are $\angle Y$ and $\angle W$. The adjacent							
	angles of $\angle W$ are $\angle Z$ and $\angle X$.							
3.	$m \angle T = 95^{\circ}, m$	∠U = 95ª	4. 105 ^a , 95 ^a , 8	5°, 75° 5. 80°	$, 80^{\circ}, 80^{\circ}$			
6.	(1) 4, 4, 2	(2) 360•	(3) 270 ^a (4)	Square, Rhombu	S			
		-						

Downloaded from https:// www.studiestoday.com

70

STD.8

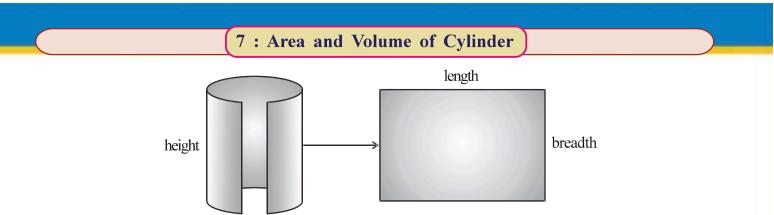

Area and Volume of Cylinder

• Let us learn new :

Activity 1 :

Dear children, take a rectangular piece of paper as shown in the figure. Stick side \overline{AB} of this rectangle with the side \overline{CD} such that a figure shown below is obtained.

Above and below the surface of this figure are circular while the middle surface is curved surface. Water pipe, grainary tank, power box, drum, *Bhunglu*, etc. have the same type of shape. This shape is known as cylinder. Two ends of cylinder are circular, while other surfaces are curved which is known as curved (lateral) surface of cylinder.



Curved surface area of cylinder :

Activity 2 :

- Take a tin, metal or plastic, scissors and a paper.
- Wrap the paper all around the tin.
- Mark with pencil on the paper which is totally wrapped to cylinder.
- Cut the extra paper with the help of scissors.
- Now take the paper from cylinder and open it as shown in the figure.

The wrapped paper on cylinder is the curved surface area of cylinder. If you want to find the curved surface area of cylinder, then you will have to find the area of wrapped paper.

- Curved surface area of cylinder on the basis of figure = Area of rectangular paper.
- Now breadth of rectangular paper becomes the height of cylinder and length of rectangular paper becomes the circumference of circular part.
- Let's see the above reality in the formula :
 Curved surface of cylinder = Area of rectangular paper
 - = Length × Breadth = Circumference × Height = $2\pi r \times h$

$$= 2\pi rh$$

We know that circumference $= \pi \times \text{diameter} = \pi d$ Curved surface area of cylinder $= \pi d \times h = \pi dh$

Curved surface area of cylinder = $2\pi rh = \pi dh$

An open cylinderical thing with base which is closed from one side.

For example, water filling tin is such type of thing in which there are two

surfaces : (1) circular base and (2) curved surface.

Total surface area of open cylinder with base

- = Curved surface area + Area of base
- $= 2\pi rh + \pi r^2$
- $= \pi r (2h + r)$

Therefore, total surface area of open cylinder with base = $\pi r(2h + r)$

7 : Area and Volume of Cylinder

Such a cylinderical thing which is closed on both sides (base with cover)
 For example : A tin of grain have (1) circular base (2) curved surface and (3) circular top, such three surfaces.

• Total surface area of closed cylinder :

- = Curved surface area + Area of base + Area of top
- $= 2\pi rh + \pi r^2 + \pi r^2$
- $= 2\pi rh + 2\pi r^2$
- $= 2\pi r(h + r)$

Total surface area of closed cylinder = $2\pi r(h + r)$

Keep in mind :

• 1 metre = 100 cm, 1 sq metre = 10000 sq cm

• We take value of π as $\frac{22}{7}$. The value of π up to two decimal places is 3.14 approximately. In this chapter if value of π is not given then take value of π as $\frac{22}{7}$.

Example 1 : The radius of base is 14 metre and height is 20 metre of a cylinder. Find curved surface area of this cylinder.

Radius of cylinder r = 14 m, Height of cylinder h = 20 m

Curved surface area of cylinder = $2\pi rh$

=
$$2 \times \frac{22}{7} \times 14 \times 20$$

= 1760 m²

 \therefore Curved surface area of cylinder = 1760 m²

Example 2: The radius of base of a cylinder is 10 cm and its height is 40 cm. Find curved surface area of cylinder. ($\pi = 3.14$)

Radius of cylinder (r) = 10 cm, Height of cylinder (h) = 40 cm

Curved surface area of cylinder = $2\pi rh$

$$= 2 \times 3.14 \times 10 \times 40$$

7 : Area and Volume of Cylinder
= 2 × 314/100 × 10 × 40
= 2512 sq cm
∴ Curved surface area of cylinder = 2512 m²
✓ Practice 1

- 1. The radius of base of a cylinder is 7 cm and height is 10 cm, then find the curved surface area of this cylinder.
- 2. The radius of base of a cylinder is 3.5 cm and height is 40 cm, then find the curved surface area of cylinder.
- 3. The diameter of base of a cylinder is 50 cm and height is 20 cm, then find curved surface area of cylinder. (Take $\pi = 3.14$)
- 4. The radius of the base of cylinder is 20 cm and height is 30 cm, then find the curved surface area of cylinder. (Take $\pi = 3.14$)
- 5. The diameter of a cylinder is 28 cm and height is 10 cm. How much will be the curved surface area of this cylinder ?
- Example 3 : The diameter of a cylinderical chinmey of iron is 2 m and its height is 7 m. How much will be the cost of painting the chimney from outside at the rate of ₹ 160 per m² ?

Radius of chimney $r = \frac{d}{2} = \frac{2}{2} = 1$ m, height h = 7 m Curved surface area of cylindrical chimney $= 2\pi rh$

$$= 2 \times \frac{22}{7} \times 1 \times 7 = 44 \text{ m}^2$$

Cost of painting 1 m² = ₹ 160

 $\therefore \text{ Cost of painting } 44 \text{ m}^2 = 44 \times 160 = ₹ 7040$

The cost of painting the chimney from outside will be ₹ 7040.

Example 4: The radius of cylinder having base is 7 cm and its height is 50 cm, then how much will be its area ?

Radius of base of cylinder r = 7 cm, Height of cylinder h = 50 cm

7 : Area and Volume of Cylinder

Here, base of cylinder is circular suface.

Area of base $= \pi r^2$

$$=\frac{22}{7} \times 7 \times 7 = 154$$
 sq cm

Curved surface area of cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 7 \times 50$$

Curved surface area of cylinder with base

= Area of base + Curved surface area

= 154 sq cm + 2200 sq cm

= 2354 sq cm

or

Second method :

Curved surface area of cylinder with base = $2\pi rh + \pi r^2$

$$= \pi r (2h + r)$$

= $\frac{22}{7} \times 7(2 \times 50 + 7)$
= $\frac{22}{7} \times 7(100 + 7)$
= 22×107
= 2354 cm^2

STD.8

 \therefore Curved surface area of cylinder with base is 2354 cm².

Example 5 : The diameter of a grain filling cylindrical tin with cap is 100 cm and its height is 2.5 m. Find the total surface area of this tin in sq cm. ($\pi = 3.14$) Radius of cylinder $r = \frac{\text{diameter}}{2} = \frac{100}{2} = 50 \text{ cm} = 0.50 \text{ m}$ Height h = 2.5 mTotal surface area of cylinder with cap $= 2\pi r(h + r)$ $= 2 \times 3.14 \times 0.50 (2.5 + 0.50)$ $= 3.14 \times 3$

= 9.42 sq m

Total surface area of tin = 9.42 sq m

MATHEMATICS

Downloaded from https:// www.studiestoday.com

75

7 : Area and Volume of Cylinder

- 1. There is a cylindrical platform of 2 m radius 50 cm height in school playground. What will be the cost of white washing the curved surface of this platform at the rate of \gtrless 1.25 per 100 sq cm. (π = 3.14)
- 2. The radius of a cylindrical tank of oil without cap is 1.40 m and height is 2.3 m. What will be the cost of painting this tank from outside at the rate of ₹ 160 per m?
- **3.** The length of a roller of levelling the soil is 91 cm and the radius of its circular part is 30 cm. This roller rolls 100 revolutions on the soil, then how much sq metre of soil is levelled ?
- 4. The diameter of base of a chimney of kiln is 80 cm and height is 12.5 m. What will be the cost of painting this chimney from outside at the rate of ₹ 140 per sq m ? (π = 3.14)
- **5.** The radius of cylindrical tank with cap is 2.1 m and height is 2.9 m. Find its total surface area.
- 6. How much sq metre of sheet is required to make 50 cylinders of 20 cm height and diameter of 14 cm ? If cost of 1 sq m cost of sheet is ₹ 200 then how much will be expenditure ?

• Volume of cylinder :

- The surface of one rupee coin is circular.
- By arranging coins on this rupee coin we get a pile of coin.
 If we see carefully the shape of this pile seems like a cylinder.
- The pile of coins occupies (covers) space on the surface of table, additionally occupied (covered) sufface also covers space in the upper side. Therefore, the measure of space occupied by such cylinder in the space (universe) is called volume of cylinder.
- To find volume of cylinder we will have to multiply area of base and height.
 Cylinder also have equal shape from base to top. The base is circular.
 Therefore, Volume of cylinder = Area of base × height

= Area of circle \times height

7 : Area and Volume of Cylinder

Volume of cylinder $= \pi r^2 h$

۵

Keep in mind	L :		
1 cubic metre	= 10,00,000 cubic cm	1 litre	= 1000 cubic cm
1 litre	= 1000 ml	1 cubic metre	e = 1000 litre = 1 kilolitre
		1 cubic cm	= 1 ml

Example 6: The radius of the base of a cylinder is 7 cm and height is 10 cm. Find volume of this cylinder.

Radius of cylinder r = 7 cm, Height of cylinder h = 10 cm

Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times 7 \times 7 \times 10$$
$$= 1540 \text{ cm}^3$$

Volume of cylinder = 1540 cm^3

Example 7: The diameter of a rod of iron is 2 cm and height is 100 cm, find its volume. ($\pi = 3.14$)

Radius of rod $r = \frac{\text{diameter}}{2} = \frac{2}{2} = 1$ cm and height h = 100 cm

Volume of rod = $\pi r^2 h$

MATHEMATICS

=
$$3.14 \times 1 \times 1 \times 1 \times 100$$

= 314 cm^3

 \therefore Volume of iron rod = 314 cm³

Practical problems based on volume of cylinder :

Example 8 : The radius of a cylindrical tank of water is 35 cm and height is 1 m. How much maximum litres of water can be occupied by this tank ?

Radius of cylindrical tank r = 35 cm, height h = 1 m = 100 cm

Volume of cylindrical tank $= \pi r^2 h$

 $=\frac{22}{7} \times 35 \times 35 \times 100$

STD.8

$$=$$
 3,85,000 cm²

 \therefore Volume of cylindrical tank = 3,85,000 cm³

7 : Area and Volume of Cylinder

 $1000 \text{ cm}^3 = 1 \text{ litre}$

 $3,85,000 \text{ cm}^3 = \frac{385000}{1000}$ litre = 385 litre

Maximum 385 litres of water can be occupied by cylindrical tank.

Example 9: The radius of base of a cylindrical tank is 50 cm and its height is 100 cm. This tank is fully filled with kerosene. How many cans of 5 litres can be filled from this tank ? ($\pi = 3.14$)

Solution : Radius of cylindrical tank r = 50 cm and height h = 100 cm Radius of cylindrical tank $= \pi r^2 h$

=
$$3.14 \times 50 \times 50 \times 100$$

= 7,85,000 cm³

Volume of cylindrical tank = 7,85,000 cm³

$$1000 \text{ cm}^3 = 1 \text{ litre}$$

 \therefore 7,85,000 cm³ = $\frac{785000}{1000}$ litre = 785 litre

Number of cans filled in 5 litres = 1

- ... Number of cans filled in 785 litres = $\frac{785}{5}$ = 157
- ... 157 cans of kerosene will be filled.

- 1. The radius of base of cylinder is 20 cm and height is 21 cm, then find its volume.
- 2. The diameter of the base of a cylinder is 80 cm and height is 50 cm, then find its volume. ($\pi = 3.14$)
- 3. What will be the cost of digging a well of radius 3.5 m and height 4 m at the rate of ₹ 100 per cubic metre ?
- **4.** A cylinder of diameter 70 cm and height 80 cm is fully filled with medicine. If 25 ml medicine is filled in one bottle, then how much bottles will be filled from the medicine of this cylinder ?
- 5. The radius of the base of a cylindrical tank is 25 cm. It is filled with milk upto 2 m height. How many bags of 500 ml can be filled from this milk ? ($\pi = 3.14$)

7 : Area and Volume of Cylinder

6. The radius of base of a metallic cylinder is 14 cm and height is 10 cm. If the weight of 1 cm^3 metal is 8 gm, then find total weight of the metal.

• What did you learn ?

- Curved surface area of a cylinder = $2\pi rh$
- Total surface area of an open cylinder with base = $\pi r(2h + r)$
- Total surface area of closed cylinder = $2\pi r(h + r)$
- Volume of a cylinder = $\pi r^2 h$

- 1. The diameter of a cylindrical tin is 80 cm and height is 1.5 m. How many square metre will be its curved surface area ? ($\pi = 3.14$)
- 2. The radius of a water filling cylindrical tank without cover is 1.4 m and height is 2 m. Find total surface area of this tin.
- 3. The base diameter of a closed cylinder is 3.6 cm and height is 8.2 cm, then find its total surface area. ($\pi = 3.14$)
- 4. How much sheet is required to prepare 50 open cylinders of height 15 cm and diameter 4 cm ? What Will be the total cost at the rate ₹ 20 for 100 sq cm sheet ? (π = 3.14)
- 5. What will be the labour cost of digging a well of radius 3.5 m and weight 10 at the rate of ₹ 60 per cubic metre ?
- 6. The radius of a cylindrical tank of Municipality is 7 m and height is 4 m. How much kilolitre of water can be occupied in the tank ?
- 7. The diameter of a cylinder is 20 cm. If its height is equal to its radius, then find its volume ? ($\pi = 3.14$)

\subset		7 : Area and Volume	e of Cylinder					
Answers S								
Practice 1								
1.	440 cm ²	2. 880 cm ²	3. 3140 cm^2					
4.	3768 cm ²	5. 880 cm^2						
		Practice	2					
1.	₹ 7850	2. ₹ 4224	3. 171.6 m ²					
4.	₹ 4396	5. 66 m ²	6. 4.4 m ² , ₹ 880					
		Practice	3					
1.	26400 cm ³	2. 251200 cm^3	3. ₹ 15400					
4.	12320 bottles	5. 785 bags	6. 49.280 kilogram					
		Exercise	e					
1.	3.768 m ²	2. 23.76 m ²	3. 113.04 cm^2					
4.	9420 cm ² , ₹ 1884	5. ₹ 23,100	6. 616 kilolitre					
7.	3140 cm ³							
	Learn som	ething special :						

♦ How many total squares are there in this rectangle ?
Here a rectangle of size 5 × 4 is given.
∴ Number of squares = (5 × 4) + (4 × 3) + (3 × 2) + (2 × 1)= 20 + 12 + 6 + 2
= 40

Downloaded from https:// www.studiestoday.com

80

STD.8

MATHEMATICS