

प्राक्कथन

राष्ट्रीय शिक्षा नीति में यह स्पष्ट रूप से उल्लेखित है, अवसर की असमानता को कम करना। शिक्षा को राष्ट्रीय आवश्यकताओं के अनुरूप बनाना। मौजूदा आधारभूत सुविधाओं का बेहतर उपयोग करना। शिक्षा का स्तर सुधारना तथा शिक्षा में विज्ञान एवं प्रौद्योगिकी को महत्व देना। इन्हीं आधारभूत तत्वों को ध्यान में रखते हुए शिक्षाविदों ने हर क्षेत्र में जनहित के लिए शिक्षा हेतु पाठ्यक्रम तैयार करने की कोशिश की है जिसे हर प्रांत (राज्य) में लागू करके ही हम अपने देश में अपनी भावी पीढ़ी के लिए और उनके लाभ के लिए एक ही प्रकार की शिक्षा प्रदान कर सकते हैं और उनको एक ही प्रकार की शिक्षा देकर उनका आपस में मुकाबला करवा के उनसे अपने देश, अपने राज्य के प्रति एक सकारात्मक सोच उत्पन्न कर शिक्षा का स्वप्न साकार कर सकते हैं। इन्हीं बातों को ध्यान में रखते हुए एन.सी.ई.आर.टी. की पाठ्यपुस्तकों को छत्तीसगढ़ शासन, स्कूल शिक्षा विभाग के निर्णयानुसार अप्रैल 2018 से राज्य की उच्चतर माध्यमिक कक्षा बारहवीं हेतु लागू किया गया है।

विविधता में एकता इस देश की परम्परा रही है। इस परम्परा को कायम रखते हुए शिक्षा के स्तर को उठाने के लिए तथा अन्य देशों के साथ विकास के आयाम पूरे करने के लिए छत्तीसगढ़ राज्य में अध्ययनरत उच्चतर माध्यमिक शिक्षा के गुणवत्तापूर्ण विकास के लिए प्रारंभिक शिक्षा एवं साक्षरता विभाग, मानव संसाधन विकास मंत्रालय तथा भारत सरकार द्वारा समय—समय पर राज्यों को एक ही राष्ट्रीय स्तर पर पाठ्यक्रम स्वीकृत करने व एन.सी.ई.आर.टी. की पुस्तकों को प्रदेश में लागू करने के लिए कहा जाता रहा है। उल्लेखनीय है कि 2017 से राष्ट्रीय स्तर पर मेडिकल प्रवेश परीक्षा का होना इसी बात का परिचायक है। भविष्य में तकनीकी परीक्षाओं के लिए भी ऐसा सोचा जा सकता है। पुनश्च कक्षा 12 वीं के बाद होने वाली अधिकतर प्रतियोगी परीक्षाओं का आयोजन सी.बी.एस.ई. द्वारा किया जाता है तथा सी.बी.एस.ई. द्वारा ली जाने वाली परीक्षाओं में एन.सी.ई.आर.टी. की किताबों से ही प्रश्न पूछे जाते हैं। अतः राष्ट्रीय स्तर पर ली जाने वाली परीक्षाओं की तैयारी के लिए एक जैसी सामग्री का होना आवश्यक है।

इस नए पाठ्यक्रम के आलोक में एन.सी.ई.आर.टी., नई दिल्ली द्वारा विकसित कला, विज्ञान एवं वाणिज्य विषयक पाठ्यपुस्तकें, जिसे छत्तीसगढ़ पाठ्यपुस्तक निगम द्वारा नवीन आवरण पृष्ठ की डिजाइनिंग कर मुद्रित किया गया है, को छत्तीसगढ़ राज्य में पाठ्यपुस्तक के रुप में स्वीकार किया गया है। कक्षा बारहवीं में अध्ययनरत छात्रों के लिए स्वीकृत एन.सी.ई.आर.टी. की ये पुस्तकें छत्तीसगढ़ राज्य की वर्तमान एवं भावी पीढ़ी के लिए ज्ञानोपयोगी सिद्ध होंगी। एन.सी.ई.आर.टी. के नेदेशक तथा प्रकाशन विभाग के प्रति हम आभारी हैं जिन्होंने छत्तीसगढ़ राज्य के लिए एन.सी.ई.आर.टी., नई दिल्ली द्वारा सृजित पाठ्यपुस्तकों के लिए त्वरित स्वीकृति व बहुमूल्य मार्ग निर्देशन देकर पुस्तक की गुणवत्ता विकास व सुधार हेतु आवश्यक सुझाव एवं सहयोग प्रदान किया है।

हमें आशा ही नहीं, पूर्ण विश्वास है कि यह पुस्तक, ज्ञानवर्धक, ज्ञानोपयोगी एवं उपलब्धि स्तर की वृद्धि में सहायक सिद्ध होगी, यद्यपि संवर्धन एवं परिष्करण की सम्भावनाएँ सदैव भविष्य के लिए संचित रहती हैं, फिर भी प्रकाशन एवं मुद्रण में निरन्तर अभिवृद्धि करने के प्रति निष्ठा एवं समर्पण के साथ राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, छत्तीसगढ़ के छात्रों, अभिभावकों, शिक्षकों एवं शिक्षाविदों की टिप्पणियों तथा बहुमूल्य सुझावों का सदैव स्वागत करेगा जिससे छत्तीसगढ़ राज्य को देश के शिक्षा जगत में उच्चतम लब्धप्रतिष्ठित होने में हमारा लघु प्रयास सहायक सिद्ध हो सके। समस्त छात्र–छात्राओं की उज्ज्वल भविष्य की शुभकामनाओं के साथ...

संचालक

राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद् छत्तीसगढ़ रायपुर

प्रस्तावना

रसायन ने समाज पर गहरा असर डाला है। इसका मानवजाति के कल्याण से प्रगाढ़ संबंध है। रसायन में प्रगति की दर इतनी अधिक है कि पाठ्यक्रम विकासक सदैव इससे सामंजस्य बैठाने के लिए नीतियाँ बनाते रहते हैं। इसके अतिरिक्त विद्यार्थियों को भी प्रेरित करने की आवश्यकता है जो भविष्य में मूलभूत मार्गदर्शन करने में योगदान दे सकेंगे। वर्तमान पाठ्यपुस्तक इस दिशा में वास्तविक प्रयास है।

इस पाठ्यपुस्तक के दो भाग हैं जिनमें कुल सोलह एकक हैं। यद्यपि विभिन्न एककों के शीर्षक देखने से लगता है कि विषयवस्तु भौतिक, अकार्बनिक एवं कार्बनिक रसायन में विभाजित है परंतु पाठक यह पाएंगे कि इन उपविषयों में जहाँ तक संभव हो सका, परस्पर संबंध स्थापित किया गया है जिससे विषय की एकीकृत पहुँच बनी रहे। विषयवस्तु का प्रस्तुतीकरण विद्यार्थियों को यंत्रवत स्मरण करने से रोकता है। वास्तव में विषय को रसायन के नियमों एवं सिद्धांतों के चारों ओर संघटित किया गया है। विद्यार्थी इन नियमों एवं सिद्धांतों पर प्रवीणता प्राप्त कर लेने के पश्चात प्रागुक्ति करने की स्थिति में पहुँच जाएंगे।

जहाँ पर भी उचित था, ऐतिहासिक विकास और जीवन में उपयोग बताते हुए, विषय में उत्सुकता जाग्रत रखने का प्रयास किया गया है। मूल–पाठ को परिवेश से उदाहरण देते हुए भली प्रकार समझाया गया है जिससे अवधारणा के गुणात्मक और मात्रात्मक पक्षों को समझना सुसाध्य तथा आसान हो जाएगा।

विभिन्न गुणधर्मों की तुलना आसान बनाने के लिए पुस्तक में सभी जगह भौतिक आँकड़े SI इकाइयों में दिए गए हैं। नामकरण के लिए IUPAC पद्धति के साथ-साथ सामान्य पद्धति का भी उपयोग किया गया है। रासायनिक यौगिकों के संरचनात्मक सूत्रों के प्रकार्यात्मक/उपसहसंयोजी समूहों को इलेक्ट्रॉनिक व्यवस्था सहित अलग-अलग रंगों में दर्शाया गया है। प्रत्येक एकक में समझाने के लिए अनेक उदाहरण और उनके हल दिए गए हैं। पाठ्यनिहित प्रश्न भी हैं जिनमें से कुछ के हल एकक के अंत में दिए गए हैं। एकक के अंत में अभ्यास के लिए दिए गए प्रश्नों की अभिकल्पना इस प्रकार की गई है कि उन्हें हल करने के लिए महत्वपूर्ण सिद्धांतों का उपयोग करना होगा और यह चिंतन की प्रवृत्ति को बढाएगा। अभ्यास के कुछ प्रश्नों के हल पुस्तक के अंत में दिए गए हैं।

कुछ वैज्ञानिकों के जीवन वृत्तांत और प्रसंग से संबंधित अधिक जानकारी जैसी विभिन्न पाठ्य सामग्री गहरे पीले रंग के दंड वाले घेरे में दी गई है। गहरे पीले दंड से युक्त घेरे में दी गई विषयवस्तु पाठ्य-सामग्री को अधिक रोचक बनाने के लिए है लेकिन यह मूल्यांकन के लिए नहीं है। पुस्तक में दिए गए अधिक जटिल यौगिकों की संरचनाएं उनके रसायन को समझने के लिए हैं। उनका प्रस्तुतीकरण रटने का कारण बनेगा, अत: मूलपाठ का यह भाग भी मूल्यांकन के लिए नहीं है।

जहाँ पर संभव हो सका है केवल सूचनाओं पर आधारित भाग को काफी कम किया गया है। इसके स्थान पर तथ्य दिए गए हैं। परंतु विद्यार्थियों के लिए आवश्यक है कि उन्हें महत्वपूर्ण औद्योगिक

रसायनों के उत्पादन और उसमें प्रयुक्त होने वाले कच्चे माल के स्रोत का ज्ञान हो। यह विवरण पुस्तक में दिया गया है। ऐसे यौगिकों के विवरण को उनकी संरचनाओं और अभिक्रियाशीलता को महत्व देकर रोचक बनाने की कोशिश की गई है। रासायनिक अभिक्रियाओं को ऊष्मागतिकी, रासायनिक बलगतिकी तथा वैद्युतरसायन पक्ष द्वारा समझाया गया है जो विद्यार्थियों को यह समझने में लाभप्रद होगा कि अमुक अभिक्रिया क्यों होती है एवं उत्पाद द्वारा कोई विशेष गुण क्यों प्रदर्शित किया जाता है। वर्तमान में पर्यावरण एवं ऊर्जा के विषय में अत्यधिक जागरूकता है जिसका सीधा संबंध रसायन से है। इन विषयों को पुस्तक में यथास्थान उभारा गया है और उन पर विचार किया गया है।

राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् द्वारा गठित विद्वानों की टीम द्वारा पुस्तक की पांडुलिपि तैयार की गई है। मुझे टीम के सभी सदस्यों को उनके बहुमूल्य योगदान के लिए आभार प्रकट करते हुए अत्यंत हर्ष हो रहा है। इस पुस्तक को वर्तमान रूप में प्रस्तुत करने के लिए संपादकों द्वारा किए गए बहुमूल्य और अथक योगदान के प्रति भी मैं आभार प्रकट करता हूँ। मैं प्रोफ़ेसर ब्रह्म प्रकाश को भी समर्पित प्रयास एवं बहुमूल्य योगदान के लिए धन्यवाद ज्ञापित करता हूँ और आभार प्रकट करता हूँ जिन्होंने न केवल इस संपूर्ण कार्यक्रम का समन्वयन किया अपितु इस पुस्तक के लेखन तथा संपादन में भी सक्रिय भाग लिया। अध्यापकों और विषय विशेषज्ञों का भी आभार प्रकट करता हूँ जिन्होंने पुनरवलोकन कार्यशाला में भाग लेकर योगदान दिया, जिससे हमें पुस्तक को विद्यार्थियों के अनुकूल बनाने में सहायता मिली। मैं एन.सी.ई.आर.टी. के तकनीकी एवं प्रशासनिक स्टाफ को भी धन्यवाद देता हूँ जिन्होंने संपूर्ण प्रक्रिया में सहायता की।

इस पुस्तक की पाठ्यपुस्तक विकास समिति विश्वास करती है कि यह पुस्तक पाठकों में इस विषय को पढ़ने की उत्सुकता और आकर्षण उत्पन्न करेगी। प्रयास किया गया है कि पुस्तक त्रुटिरहित हो। फिर भी इस प्रकार की पुस्तक में जटिलता के कारण कभी-कभी त्रुटियाँ हो जाती हैं। इस प्रकार की त्रुटियों को पाठकों से जानकर उन्हें दूर करने में हमें प्रसन्नता होगी।

बी.एल. खंडेलवाल

पाठ्यपुस्तक विकास समिति

अध्यक्ष, विज्ञान और गणित पाठ्यपुस्तक सलाहकार समिति

जयंत विष्णु नार्लीकर, प्रोफ़ेसर, अध्यक्ष, सलाहकार समिति। अंतर-विश्वविद्यालय केंद्र, खगोलविज्ञान और खगोल भौतिकी, (IUCAA), पुणे विश्वविद्यालय परिसर, पुणे।

मुख्य सलाहकार

बी.एल. खंडेलवाल, प्रो.फ़ेसर, निदेशक, दिशा इंस्टीट्यूट ऑफ मैनेजमेंट तथा टैक्नोलोजी, रायपुर, छत्तीसगढ़, पूर्व अध्यक्ष, रसायन विभाग, इंडियन इंस्टीट्यूट ऑफ टैक्नोलॉजी, नयी दिल्ली।

सदस्य

अंजनी कौल, *प्रवक्ता*, डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली। आई.पी. अग्रवाल, प्रोफ़ेसर, डी.ई.एस.एम., क्षेत्रीय शिक्षण संस्थान, एन.सी.ई.आर.टी., भोपाल। आर.ए. वर्मा, उपप्रधानाचार्य, शहीद बसन्त कुमार बिस्वास सर्वोदय विद्यालय, सिविल लाइंस, नयी दिल्ली। आर.एस. सिंधू, प्रोफ़ेसर, डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली। आर.के. पाराशर, प्रवक्ता, डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली। आर.के. वर्मा, प्रोफ़ेसर, रसायन विभाग, मगध विश्वविद्यालय, बिहार। ए.एस. बरार, *प्रोफ़ेसर,* रसायन विभाग, इंडियन इंस्टीट्यूट ऑफ टेक्नोलॉजी, नयी दिल्ली। ए.क्यू. कॉन्ट्रेक्टर, प्रोफ़ेसर, रसायन विभाग, इंडियन इंस्टीट्यूट ऑफ टेक्नोलॉजी, पोवाई, मुंबई। एम.एल. अग्रवाल, प्रधानाचार्य (अवकाशप्राप्त), केंद्रीय विद्यालय, जयपुर, राजस्थान। एम.पी. महाजन, प्रोफ़ेसर, रसायन विभाग, गुरु नानक देव विश्वविद्यालय, अमृतसर, पंजाब। एस.के. गुप्ता, रीडर, स्कुल ऑफ स्टडीज़ इन केमेस्ट्री, जीवाजी विश्वविद्यालय, ग्वालियर, मध्य प्रदेश। एस.के. डोगरा, प्रोफ़ेसर, डॉ. बी.आर. अंबेडकर सेंटर फॉर बायोमेडिकल रिसर्च, दिल्ली विश्वविद्यालय, दिल्ली। एस. बधवार. प्रवक्ता. डेली कॉलेज. इंदौर. मध्य प्रदेश। कविता शर्मा, प्रवक्ता, डी.ई.ई., एन.सी.ई.आर.टी., नयी दिल्ली। के.एन. उपाध्याय, अध्यक्ष (अवकाशप्राप्त), रसायन विभाग, रामजस महाविद्यालय, दिल्ली विश्वविद्यालय, दिल्ली। के.के. अरोड़ा, रीडर, रसायन विभाग, जाकिर हुसैन महाविद्यालय, दिल्ली विश्वविद्यालय, नयी दिल्ली। पुरन चंद, प्रोफ़ेसर, संयुक्त निदेशक (अवकाशप्राप्त) सी.आई.ई.टी., एन.सी.ई.आर.टी., नयी दिल्ली। ब्रह्म प्रकाश, *प्रोफ़ेसर* (सदस्य एवं समन्वयक, अंग्रेज़ी संस्करण), डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली।

विजय सारदा, रीडर, रसायन विभाग, जाकिर हुसैन महाविद्यालय, दिल्ली विश्वविद्यालय, नयी दिल्ली।

वी.एन. पाठक, *प्रोफ़ेसर,* रसायन विभाग, राजस्थान विश्वविद्यालय, जयपुर, राजस्थान। वी.के. वर्मा, *प्रोफ़ेसर,* (अवकाशप्राप्त), इंस्टीट्यूट ऑफ टेक्नोलॉजी, बनारस हिंदू विश्वविद्यालय, वाराणसी, उ.प्र.। वी.पी. गुप्ता, *प्रोफ़ेसर,* डी.ई.एस.एम., क्षेत्रीय शिक्षण संस्थान, एन.सी.ई.आर.टी., भोपाल, मध्य प्रदेश। सर्वजीत सचदेवा, *पी.जी.टी. (रसायन),* सेंट कोलंबस स्कूल, नयी दिल्ली।

सदस्य-समन्वयक

अलका मेहरोत्रा, रीडर (समन्वयक, हिंदी संस्करण) डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली।

हिंदी रूपांतर

अतुल शर्मा, *प्रवक्ता*, राजकीय महाविद्यालय, नागौर। अरुण पारीक, *प्रवक्ता*, राजकीय महाविद्यालय, अजमेर। अलका मेहरोत्रा, *रीडर*, डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली। आर.के. उपाध्याय, वरिष्ठ प्रवक्ता, रसायन विभाग, राजकीय महाविद्यालय, अजमेर। आर.के. पाराशर, *प्रवक्ता*, डी.ई.एस.एम., एन.सी.ई.आर.टी., नयी दिल्ली। आलोक चतुर्वेदी, वरिष्ठ प्रवक्ता, रसायन विभाग, राजकीय महाविद्यालय, अजमेर। एस.पी. माथुर, विभागाध्यक्ष, विशुद्ध एवं अनुप्रयुक्त रसायन विभाग, म.द.स. विश्वविद्यालय, अजमेर। के.जी. ओझा, *एसोसिएट प्रोफ़ेसर*, विशुद्ध एवं अनुप्रयुक्त रसायन विभाग, म.द.स. विश्वविद्यालय, अजमेर। रेणु पाराशर, *प्रवक्ता*, हंसराज महाविद्यालय, दिल्ली विश्वविद्यालय, दिल्ली। सुरेन्द्र अरोड्ग, *वरिष्ठ प्रवक्ता*, रसायन विभाग, राजकीय महाविद्यालय, अजमेर।

viii

आभार

राष्ट्रीय शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् उन सभी संस्थाओं तथा व्यक्तियों के प्रति आभार प्रकट करती है जिन्होंने रसायन विज्ञान की कक्षा 12 की पाठ्यपुस्तक के विकास में अमूल्य योगदान दिया। परिषद् निम्नलिखित विद्वानों का भी आभार प्रकट करती है जिन्होंने हिंदी पांडुलिपि के पुनरवलोकन, संपादन तथा सुधार में अमूल्य योगदान दिया–

अरुण पारीक, लेक्चरर, रसायन विभाग राजकीय महाविद्यालय, अजमेर; अनिल कुमार शर्मा, पी.जी.टी. (रसायन), केंद्रीय विद्यालय, विकासपुरी, नई दिल्ली; अतुल कुमार शर्मा, लेक्चरर, रसायन विभाग, राजकीय महाविद्यालय, नागौर; आलोक चतुर्वेदी, वरिष्ठ लेक्चरर, रसायन विभाग, राजकीय महाविद्यालय, अजमेर; आर.एल. पितलिया, उपप्रधानाचार्य, एम.एल.वी. राजकीय पी.जी. कॉलेज, भीलवाड़ा, राजस्थान; आर.के. उपाध्याय, वरिष्ठ लेक्चरर, रसायन विभाग, राजकीय महाविद्यालय, अजमेर; उपमा सिंह, पी.जी.टी. (रसायन), विवेकानन्द स्कूल, दिल्ली; एस.पी. माथुर, विभागाध्यक्ष, विशुद्ध एवं अनुप्रयुक्त रसायन विभाग, म.द.स. विश्वविद्यालय, अजमेर; के.के. शर्मा, उपप्रधानाचार्य (अवकाशप्राप्त), कॉलेज ऑफ एजुकेशन, राजस्थान सरकार, अजमेर; के.जी. ओझा, एसोशिएट प्रोफ़ेसर, विशुद्ध एवं अनुप्रयुक्त रसायन विभाग, म.द.स. विश्वविद्यालय, अजमेर; वेन्जी. ओझा, एसोशिएट प्रोफ़ेसर, विशुद्ध एवं अनुप्रयुक्त रसायन विभाग, म.द.स. विश्वविद्यालय, अजमेर; विनेश गुप्ता, विभागाध्यक्ष, रसायन विभाग, राजकीय महाविद्यालय, अजमेर; बिजेन्द्र सिंह, रीडर, रसायन विभाग, हंसराज कॉलेज, दिल्ली; समीर व्यास, अनुसंधान सहायक, केंद्रीय मृदा एवं सामग्री अनुसंधानशाला, नयी दिल्ली; संजीव कुमार, रीडर, रसायन विभाग, राजकीय महाविद्यालय, अजमेर; परिषद्, श्री सतीश चंद्र सक्सेना, पूर्व उपनिदेशक शब्दावली आयोग, की भी भाषायी दृष्टि से सहयोग देने के लिए आभारी है। भाषा की दृष्टि से पांडुलिपि में सुधार के लिए अमर सिंह सचान और अवध किशोर सिंह प्रति संपादक, का सहयोग भी प्रशंसनीय रहा है।

परिषद्, शैक्षिक तथा प्रशासनिक सहयोग हेतु, *अध्यक्ष,* हुकुम सिंह, प्रो.फ़ेसर, डी.ई.एस.एम., एन.सी.ई.आर.टी., की भी आभारी है।

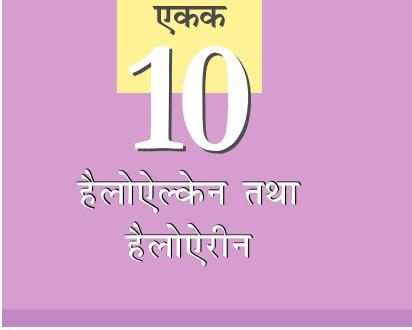
परिषद्, दीपक कपूर, प्रभारी, कंप्यूटर स्टेशन, डी.ई.एस.एम., एन.सी.ई.आर.टी तथा उनकी सहयोगी टीम के निम्नलिखित सदस्यों द्वारा सहयोग के लिए आभार प्रकट करती है। नरेन्द्र वर्मा, विजय सिंह, इन्द्र कुमार, सायमा, नरेश कुमार एवं राकेश वर्मा, सीमा मेहमी तथा सज्जाद हैदर अन्सारी डी.टी.पी. ऑपरेटर; ऋतु झा, कुन्दन निशाकर, अर्चना उपाध्याय एवं रणधीर ठाकुर प्रूफ रीडर, इन सभी का इस पुस्तक की सज्जा में विशेष सहयोग प्राप्त हुआ।

इस पुस्तक के प्रथम टंकण में सहयोग के लिए परिषद् टी.जे. एंटरप्राइज़ेज़ दरियागंज, दिल्ली, का भी आभार प्रकट करती है।

परिषद्, सहायक कार्यक्रम समन्वयक कार्यालय, डी.ई.एस.एम., एन.सी.ई.आर.टी. के प्रशासन और प्रकाशन विभाग के सहयोग हेतु हार्दिक आभार ज्ञापित करती है।

प्रथम भाग की विषय-सृ	्ची
1 ठोस अवस्था	1
2 विलयन	34
3 वैद्युतरसायन	64
4 रासायनिक बलगतिकी	96
5 पृष्ठ रसायन	124
6 तत्वों के निष्कर्षण के सिद्धांत एवं प्रक्रम	151
7 p -ब्लॉक के तत्व	174
8 d- एवं f- ब्लॉक के तत्व	224
9 उपसहसंयोजन यौगिक	253

ŝ	आमुख		iii
Ţ	प्रस्तावना		υ
एकक 10	हैलोऐल्	केन तथा हैलोऐरीन	303
	10.1	वर्गीकरण	304
	10.2	नामपद्धति	305
	10.3	C-X आबंध की प्रकृति	307
	10.4	ऐल्किल हैलाइडों के विरचन की विधियाँ	308
	10.5	हैलोएरीनों का विरचन	310
	10.6	भौतिक गुण	312
	10.7	रासायनिक अभिक्रियाएँ	314
	10.8	पॉलिहैलोजन यौगिक	331
एकक 11	ऐल्कोहाँ	लि, फ़ीनॉल एवं ईथर	338
	11.1	वर्गीकरण	339
	11.2	नामपद्धति	341
	11.3	प्रकार्यात्मक समूहों की संरचनाएँ	344
	11.4	ऐल्कोहॉल और फ़ीनॉलों का विरचन	345
	11.5	औद्योगिक महत्व के कुछ ऐल्कोहॉल	360
	11.6	ईथर	361
एकक 12	ऐल्डिहा	इड, कीटोन एवं कार्बोक्सिलिक अम्ल	372
	12.1	कार्बोनिल यौगिकों का नामकरण एवं संरचना	373
	12.2	ऐल्डिहाइडों एवं कीटोनों का विरचन	376
	12.3	भौतिक गुणधर्म	380
	12.4	रासायनिक अभिक्रियाएँ	381
	12.5	ऐल्डिहाइडों एवं कीटोनों के उपयोग	389
	12.6	कार्बोक्सिलिक समूह की नामपद्धति व संरचना	389
	12.7	कार्बोक्सिलिक अम्ल बनाने की विधियाँ	391
	12.8	भौतिक गुण	394
	12.9	रासायनिक अभिक्रियाएँ	394
	12.10	कार्बोक्सिलिक अम्लों के उपयोग	399


एकक 13	ऐमीन		405
	13.1	ऐमीनों की संरचना	405
	13.2	वर्गीकरण	406
	13.3	नामपद्धति	406
	13.4	ऐमीनों का विरचन	408
	13.5	भौतिक गुणधर्म	411
	13.6	रासायनिक अभिक्रियाएँ	412
	13.7	डाइएजोनियम लवणों के विरचन की विधि	421
	13.8	भौतिक गुण	421
	13.9	रासायनिक अभिक्रियाएँ	421
	13.10	ऐरोमैटिक यौगिकों के संश्लेषण में डाइऐज़ोलवणों का महत्व	423
एकक 14	जैव-अ	णु	427
	14.1	कार्बोहाइड्रेट	427
	14.2	प्रोटीन	436
	14.3	एन्जाइम	441
	14.4	विटामिन	441
	14.5	न्यूक्लीक अम्ल	443
	14.6	हार्मोन	446
एकक 15	बहुलक		449
	15.1	बहुलकों का वर्गीकरण	450
	15.2	बहुलकन के प्रकार	452
	15.3	बहुलकों का आण्विक द्रव्यमान	459
	15.4	जैव-निम्ननीकरणीय बहुलक	459
	15.5	व्यापारिक महत्व के कुछ बहुलक	460
एकक 16	दैनिक	जीवन में रसायन	463
	16.1	औषध तथा उनका वर्गीकरण	463
	16.2	औषध–लक्ष्य अन्योन्यक्रिया	464
	16.3	विभिन्न वर्गों की औषधों के चिकित्सीय प्रभाव	467
	16.4	भोजन में रसायन	473
	16.5	शोधन अभिकर्मक	475
कुछ अभ्या	सार्थ प्रश	नों के उत्तर	480
तकनीकी-श	गब्दसूची		486

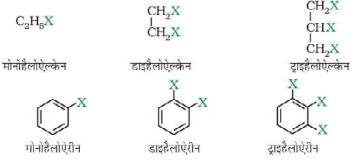
xii

उद्देश्य

इस एकक के अध्ययन के पश्चात् आप -

- IUPAC प्रणाली की नामपद्धति से हैलोऐल्केनों तथा हैलोऐरीनों की दी गई संरचना का नामकरण कर सकेंगे;
- हैलोऐल्केनों तथा हैलोऐरीनों के विरचन में प्रयुक्त होने वाली अभिक्रियाओं का वर्णन कर सकेंगे तथा इनके द्वारा दी जाने वाली विभिन्न अभिक्रियाओं को समझ सकेंगे;
- विभिन्न प्रकार की अभिक्रियाओं तथा हैलोऐल्केनों एवं हैलोऐरीनों की संरचनाओं को सहसंबंधित कर सकेंगे;
- अभिक्रिया की क्रियाविधि को समझने में त्रिविमरसायन का उपयोग कर सकेंगे;
- कार्बधात्विक यौगिकों के अनुप्रयोगों का महत्व समझ सकेंगे;
- पॉलिहैलोजन यौगिकों के पर्यावरण पर प्रभावों को अतिदीप्त कर सकेंगे।

हैलोजनयुक्त यौगिक पर्यावरण में लंबे समय तक बने रहते हैं क्योंकि यह मृदा के जीवाणुओं द्वारा भंजन के प्रति प्रतिरोधी होते हैं।


ऐलिफैटिक अथवा ऐरोमैटिक हाइड्रोकार्बन के हाइड्रोजन परमाण् (अथवा परमाणुओं) का हैलोजन परमाणु (अथवा परमाणुओं) द्वारा प्रतिस्थापन होने से क्रमश: ऐल्किल हैलाइड (हैलोऐल्केन) तथा ऐरिल हैलाइड (हैलोऐरीन) बनते हैं। हैलोऐल्केनों में हैलोजन परमाणु ऐल्किल समूह के sp^3 संकरित कार्बन परमाणु (परमाणुओं) से जुड़ा रहता है जबकि हैलोऐरीनों में हैलोजन परमाणु ऐरिल समूह के sp^2 संकरित कार्बन परमाणु (परमाणुओं) से जुड़ा रहता है। बहुत से हैलोजनयुक्त कार्बनिक यौगिक प्रकृति में मिलते हैं तथा इनमें से कुछ चिकित्सकीय रूप से उपयोगी होते हैं। इस वर्ग के यौगिकों के उपयोगों का विस्तार उद्योगों में तथा दैनिक जीवन में बहुत बडा़ है। इनका उपयोग अपेक्षाकृत अधुवीय यौगिकों के लिए विलायक के रूप में तथा अनेक प्रकार के कार्बनिक यौगिकों के संश्लेषण के लिए प्रारंभिक पदार्थ के रूप में होता है। सूक्ष्मजीवियों द्वारा उत्पादित क्लोरेम्फेनिकॉल, जो कि क्लोरीनयुक्त प्रतिजैविक (ऐन्टिबायोटिक) है, आंत्रज्वर (टाइफ़्राइड) के इलाज में अत्यधिक प्रभावी होती है। हमारे शरीर में आयोडीनयुक्त हार्मोन*, थाइरॉक्सिन* उत्पन्न होता है जिसकी कमी से *गलगंड (घेंघा)* नामक रोग हो जाता है। संश्लेषित हैलोजन यौगिक जैसे, क्लोरोक्वीन का उपयोग मलेरिया के उपचार में होता है। हैलोथेन का उपयोग शल्य चिकित्सा में निश्चेतक के रूप में होता है। कुछ पूर्णत: फ्लुओरीनीकृत यौगिकों को शल्य चिकित्सा में प्रभावी रक्त प्रतिस्थापी के रूप में देखा जा रहा है।

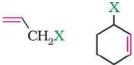
इस एकक में आप कार्बहैलोजन यौगिकों के विरचन की प्रमुख विधियों, भौतिक एवं रासायनिक गुणों तथा उपयोगों का अध्ययन करेंगे।

10.1 वर्शीकरण

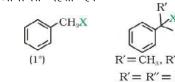
10.1.1 हैलोजन परमाणुओं की संख्या के आधार पर


हैलोऐल्केनों तथा हैलोऐरीनों को निम्न प्रकार से वर्गीकृत किया जा सकता है– संरचना में उपस्थित एक, दो अथवा अधिक हैलोजन परमाणुओं की संख्या के आधार पर इन्हें मोनो, डाइ अथवा पॉलिहैलोजन (ट्राइ- टेट्रा- आदि) में वर्गीकृत किया जा सकता है। उदाहरणार्थ-

मोनोहैलोयौगिकों को, उस कार्बन परमाणु के संकरण के आधार पर पुनः वर्गीकृत किया जा सकता है जिससे हैलोजन परमाणु आबंधित होता है। जैसा कि नीचे वर्णित किया गया है। इस वर्ग में सम्मिलित हैं—


(क) ऐल्किल हैलाइड अथवा हैलोऐल्केन (R-X)

ऐल्किल हैलाइडों में हैलोजन परमाणु ऐल्किल समूह (R) से आबंधित रहता है। ये एक सजातीय श्रेणी बनाते हैं जिसे $C_{n}H_{2n+1}X$ से प्रदर्शित करते हैं। इन्हें उस कार्बन परमाणु की प्रकृति के आधार पर पुनः प्राथमिक, द्वितीयक अथवा तृतीयक में वर्गीकृत किया गया है। जिससे हैलोजन परमाणु आबंधित होता है। यदि ऐल्किल हैलाइड में हैलोजन प्राथमिक कार्बन से जुडा हो तो उसे प्राथमिक ऐल्किल हैलाइड अथवा 1° ऐल्किल हैलाइड कहते हैं। इसी प्रकार से यदि हैलोजन द्वितीयक या तृतीयक कार्बन परमाणु से जुड़ा हो तो उसे क्रमश: द्वितीयक (अथवा 2°) और तृतीयक (अथवा 3°) ऐल्किल हैलाइड कहते हैं।



(ख) ऐलिलिक हैलाइड

यह वे यौगिक होते हैं जिनमें हैलोजन परमाणु कार्बन–कार्बन द्विक आबंध (C=C) के समीपवर्ती sp^3 संकरित कार्बन परमाणु से आबंधित रहता है अर्थात् एक ऐलिलिक कार्बन से आबंधित होता है।

(ग) बेन्जिलिक हैलाइड इस प्रकार के यौगिकों में हैलोजन परमाणु ऐरोमैटिक वलय से जुडे़ sp^3 संकरित कार्बन परमाणु से आबंधित रहता है।

 $R' = CH_{*}, R'' = H(2^{\circ})$ $R' = R'' = CH_3(3^\circ)$

304 रसायन विज्ञान

Downloaded from https:// www.studiestoday.com

10.1.2 *sp*³ C–X आबंध युक्त यौगिक

 $(\mathbf{X} = \mathbf{F}, \mathbf{Cl}, \mathbf{Br}, \mathbf{I})$

इस वर्ग में शामिल हैं-

आबंधयुक्त यौगिक

10.1.3 sp² C–X

(क) वाइनिलिक हैलाइड इस प्रकार के यौगिकों में हैलोजन परमाणु कार्बन-कार्बन द्विक् आबंध (C = C) के sp^2 संकरित कार्बन परमाणु से सीधे जुड़ा रहता है।

(ख) ऐरिल हैलाइड

इस प्रकार के यौगिकों में हैलोजन परमाणू एक ऐरोमैटिक वलय के sp^2 संकरित कार्बन परमाणु से सीधे जुडा रहता है।

10.2 नामपद्धति

हैलोजन यौगिकों का वर्गीकरण सीखने के पश्चात् आइए अब हम सीखें कि इन्हें नाम कैसे दिया जाता है। ऐल्किल हैलाइडों के सामान्य नाम को व्युत्पित करने के लिए ऐल्किल समूह का नाम लिखने के पश्चात हैलाइड का नाम लिखा जाता है। नामकरण की IUPAC पद्धति में ऐल्किल हैलाइड का नामकरण हैलोप्रतिस्थापी हाइड्रोकार्बन के रूप में किया जाता हैं। एक हैलोजन वाले बेन्जीन के व्युत्पन्नों के सामान्य और IUPAC नाम एक ही होते हैं। डाइहैलोजन व्युत्पन्नों के लिए सामान्य प्रणाली में o-, m-, तथा p- पूर्वलग्न का उपयोग करते हैं जबकि जैसा आप कक्षा XI के एकक-12 में जान चुके हैं, IUPAC पद्धति में इसके लिए 1.2: 1.3 तथा 1.4 संख्याओं का उपयोग करते हैं।

CH₃CH₂CH₂Br

n-प्रोपिल ब्रोमाइड सामान्य नाम– IUPAC नाम-1-ब्रोमोप्रोपेन

सामान्य नाम– IUPAC नाम-

ब्रोमोबेन्जीन

ब्रोमोबेन्जी**न**

1, 3-डाइब्रोमोबेन्जीन CH_3

H₃C-CH-CH₃ I Br

 CH_3

H₃C-CH-CH₂Cl

आइसोब्यूटिल क्लोराइड

1-क्लोरो-2-मेथिलप्रोपेन

2-ब्रोमोप्रोपेन

 $H_{3}C - C - CH_{2} - CI$ 1-क्लोरो- 2, 2-डाइमेथिलप्रोपेन

H₃C-CH-CH₃

CI

आइसोप्रोपिल क्लोराइड

2-क्लोरोप्रोपेन

m-डाइब्रोमोबेन्जीन

IUPAC नाम-

समान हैलोजन परमाणुयुक्त डाइहैलोऐल्केनों को ऐल्किलिडीन या ऐल्किलीन डाइहैलाइड कहते हैं। यदि समान हैलोजन परमाणुयुक्त डाइहैलो यौगिक में दोनों हैलोजन परमाणु श्रुंखला के एक ही कार्बन परमाणु पर उपस्थित हों तो इसे जेम डाइहैलाइड

हैलोऐल्केन तथा हैलोऐरीन 305

sym-ट्राइब्रोमोबेन्जीन

1,3,5-ट्राइब्रोमोबेन्जीन

या जैमिनल डाइहैलाइड कहते हैं। यदि हैलोजन परमाणु शृंखला के दो निकटवर्ती कार्बन परमाणुओं पर उपस्थित हों तो उन्हें विसिनल हैलाइड कहा जाता है। सामान्य नामकरणपद्धति में जेम-डाइहैलाइड को ऐल्किलिडीन हैलाइड तथा विस-डाइहैलाइड को ऐल्किलीन डाइहैलाइड के रूप में नामित करते हैं। IUPAC पद्धति में इन्हें डाइहैलोऐल्केन के रूप में नामित करते हैं।

	$H_3C-CHCl_2$	$\begin{array}{c} H_2C - CH_2 \\ I & I \\ CI & CI \end{array}$
सामान्य नाम–	एथिलिडीन क्लोराइड (<i>जेम</i> -डाइहैलाइड)	एथिलीन डाइक्लोराइड (<i>विस</i> -डाइहैलाइड)
IUPAC नाम-	1, 1-डाइक्लोरोएथेन	1, 2-डाइक्लोरोएथेन

कुछ प्रमुख हैलो यौगिकों के उदाहरण सारणी 10.1 में दिए गए हैं।

सारणी 10.1- कुछ हैलाइडों के	सामान्य एव	IUPAC नाम

प्रारूप	सामान्य नाम	IUPAC नाम
CH ₃ CH ₂ CH(Cl)CH ₃	<i>sec-</i> ब्यूटिल क्लोराइड	2-क्लोरोब्यूटेन
$(CH_3)CCH_2Br$	neo-पेन्टिल ब्रोमाइड	1-ब्रोमो-2,2-डाइमेथिल प्रोपेन
(CH ₃) ₃ CBr	tert-ब्यूटिल ब्रोमाइड	2-ब्रोमो-2-मेथिल प्रोपेन
CH ₂ =CHCl	वाइनिल क्लोराइड	क्लोरोएथीन
CH ₂ =CHCH ₂ Br	ऐलिल ब्रोमाइड	3-ब्रोमोप्रोपीन
Cl CH ₃	<i>o-</i> क्लोरोटॉलूईन	1-क्लोरो-2-मेथिल बेन्जीन या 2-क्लोरोब्यूटीन
CH ₂ Cl	बेन्जिल क्लोराइड	क्लोरोफ़ेनिल मेथेन
CH_2Cl_2	मेथिलीन क्लोराइड	डाइक्लोरोमेथेन
CHCl ₃	क्लोरोफॉर्म	ट्राइक्लोरोमेथेन
CHBr ₃	ब्रोमोफॉर्म	ट्राइब्रोमोमेथेन
CCl_4	कार्बन टेट्राक्लोराइड	टेट्राक्लोरोमेथेन
$\rm CH_3 CH_2 CH_2 F$	n-प्रोपिल फ्लुओराइड	1-फ्लुओरोप्रोपेन

306 रसायन विज्ञान

उदाहरण 10.1	C ₅ H ₁₁ Br अणुसूत्र वाले आठ संरचनात्मक समावयवियों की संरचनाएं बनाइए। <i>I U P A C</i> पद्धति के अनुसार सभी समावयवियों के नाम दीजिए तथा उन्हें प्राथमिक, द्वितीयक एवं तृतीयक ब्रोमाइडों के रूप में वर्गीकृत कीजिए।
हल	$\begin{array}{lll} & \mbox{CH}_3\mbox{CH}_2\mbox{Br} & 1-\mbox{a}\mbox{h}$$
उदाहरण 10.2	निम्नलिखित के IUPAC नाम लिखिए– H-C H II CII3 H3C CH3
	$(1) \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(iv) $H_{3}C \xrightarrow{CH_{3}} (v) \xrightarrow{H_{3}C} H_{1} \xrightarrow{H_{3}C} H_{1} (v) \xrightarrow{H_{3}C} H_{1} (v) \xrightarrow{H} \xrightarrow{CH_{3}} H_{1} \xrightarrow{H} \xrightarrow{CH_{3}} H_{1} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$
<u>हल</u>	(i) 4-ब्रोमोपेन्ट-2-ईन(ii) 3-ब्रोमो-2-मेथिलब्यूट-1-ईन(iii) 4-ब्रोमो-3-मेथिलपेन्ट-2-ईन(iv) 1-ब्रोमो-2-मेथिलब्यूट-2-ईन(v) 1-ब्रोमोब्यूट-2-ईन(vi) 3-ब्रोमो-2-मेथिल प्रोपीन
पाठ्यनिहित प्रश्न	
10.1 निम्नलिखित यौ	गिकों की संरचनाएं लिखिए—

- (i) 2-क्लोरो-3-मेथिलपेन्टेन
 (iv) 1, 4-डाइब्रोमोब्यूट-2-ईन
 (ii) 1-क्लोरो-4-एथिलसाइक्लोहेक्सेन
 (v) 1-ब्रोमो-4-द्वितीयक-ब्यूटिल-2-मेथिलबेन्ज्ञीन
 (iii) 4-gतीयक-ब्यूटिल-3-आयडोहेप्टेन
- $(III) \quad 4^{-} \mathcal{V}(II44) = \mathcal{W}_{1} \mathcal{U}(I-3) = \mathcal$

10.3 **C-X** आवंध की प्रकृति हैलोजन परमाणु, कार्बन परमाणु की तुलना में अधिक विद्युतऋणात्मक होता है अत: ऐल्किल हैलाइड का कार्बन हैलोजन आबंध ध्रुवित हो जाता है। इससे कार्बन परमाणु पर आंशिक धनावेश तथा हैलोजन परमाणु पर आंशिक ऋणावेश आ जाता है।

आवर्त सारणी में वर्ग में ऊपर से नीचे की ओर जाने पर हैलोजन परमाणु का आकार बढ़ता जाता है, अत: फ्लुओरीन परमाणु सबसे छोटे आकार का तथा आयोडीन

हैलोऐल्केन तथा हैलोऐरीन 307

परमाणु सबसे बड़े आकार का होता है। परिणामत: कार्बन-हैलोजन आबंध की लंबाई C—F से C—I तक बढ़ती जाती है। सारणी 10.2 में कुछ विशिष्ट आबंध लंबाइयाँ, आबंध एन्थैल्पी तथा द्विध्रुव आघूर्ण दिए गए हैं।

सारणी 10.2— कार्बन-हैलोजन (C—X) आबंध लंबाई, आबंध एन्थैल्पी तथा द्विधुव आघूर्ण

आबंध	आबंध लंबाई (pm)	C-X आबंध एन्थैल्पी∕kJmol ⁻¹	द्विध्रुव आघूर्ण⁄Debye
CH ₃ –F	139	452	1.847
CH ₃ –Cl	178	351	1.860
CH ₃ –Br	193	293	1.830
CH ₃ –I	214	234	1.636

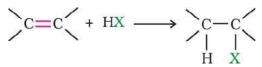
10.4 ऐल्किल हैलाइडों के विश्चन की विधियाँ

ऐल्कोहॉलों से ऐल्किल हैलाइड, ऐल्कोहॉल से सर्वोत्तम प्रकार से बनाए जा सकते हैं जो आसानी 10.4.1 से प्राप्त की जा सकती हैं। सांद्र हैलोजन अम्लों, फ़ास्फ़ोरस हैलाइड अथवा थायोनिल क्लोराइड के साथ अभिक्रिया से ऐल्कोहॉल का हाइड्रॉक्सिल समूह हैलोजन द्वारा प्रतिस्थापित हो जाता है। इनमें से थायोनिल क्लोराइड को प्राथमिकता दी जाती है क्योंकि इस अभिक्रिया में ऐल्किल हैलाइडों के साथ दो गैसें SO_2 तथा HCl बनती हैं। दोनों गैसीय उत्पाद आसानी से निकल सकने वाली गैसें हैं अत: अभिक्रिया में शुद्ध ऐल्किल हैलाइड प्राप्त होता है। प्राथमिक एवं द्वितीयक ऐल्कोहॉल की HCl से अभिक्रिया में ${
m ZnCl}_2$ उत्प्रेरक की आवश्यकता होती है। तृतीयक ऐल्कोहॉल की अभिक्रिया कमरे के ताप पर केवल सांद्र HCl के साथ हिलाने पर संपन्न हो जाती है। ऐल्किल ब्रोमाइड के विरचन के लिए इसे HBr (48%) के साथ लगातार उबाला जाता है। 95 प्रतिशत ऑर्थोफ़ास्फ़ोरिक अम्ल में ऐल्कोहॉल को सोडियम अथवा पोटैशियम आयोडाइड के साथ गरम करके R–I की अच्छी लब्धि प्राप्त की जा सकती है। हैलोअम्लों से ऐल्किल हैलाइड की अभिक्रियाशीलता का क्रम $3^\circ > 2^\circ > 1^\circ$ होता है। फ़ास्फ़ोरस ट्राइब्रोमाइड तथा ट्राइआयोडाइड को सामान्यत: लाल फ़ास्फ़ोरस की क्रमश: ब्रोमीन तथा आयोडीन के साथ अभिक्रिया द्वारा स्वस्थाने यानी अभिक्रिया मिश्रण में ही उत्पन्न किया जाता है।

$$\begin{array}{rcl} R-OH &+ & HCl & \xrightarrow{ZnCl_2} & R-Cl &+ & H_2O \\ R-OH &+ & NaBr &+ & H_2SO_4 \longrightarrow & R-Br &+ & NaHSO_4 &+ & H_2C \\ 3R-OH &+ & PX_3 & \longrightarrow & 3R-X &+ & H_3PO_3 & (X = Cl, Br) \\ R-OH &+ & PCl_5 & \longrightarrow & R-Cl &+ & POCl_3 &+ & HCl \\ R-OH & & & & & \\ \hline \hline R-OH & & & & & \\ \hline R-OH &+ & & & \\ \hline R-OH &+ & & & \\ \hline R-OH &+ & & & \\ \hline SOCl_2 & \longrightarrow & R-Cl &+ & \\ \hline SOcl_2 & \longrightarrow & R-Cl &+ & \\ \hline SOcl_2 &+ & \\ \hline \end{array}$$

308 रसायन विज्ञान

ऐल्किल क्लोराइड का विरचन ऐल्कोहॉल में शुष्क हाइड्रोजन क्लोराइड गैस को प्रवाहित करके अथवा सांद्र जलीय हैलोजन अम्लों के साथ ऐल्कोहॉल के मिश्रण को गरम करके किया जा सकता है। ऐरिल हैलाइड के विरचन के लिए उपरोक्त विधियाँ उपयुक्त नहीं हैं; क्योंकि फ़ीनॉल में कार्बन-ऑक्सीजन आबंध में आंशिक द्विआबंध के गुण होने के कारण यह एकल आबंध से अधिक मज़बूत होता है अत: इसे एकल आबंध की तुलना में तोड़ना कठिन होता है। (एकक 11, कक्षा XI)।


10.4.2 हाइड्रोकार्बनों से (i) ऐल्केनों से मुक्त मूलक हैलोजनन द्वारा

ऐल्केनों के मुक्त मूलक क्लोरीनन अथवा ब्रोमीनन में समावयवी मोनो तथा पॉलिहैलोऐल्केनों का जटिल मिश्रण प्राप्त होता है, जिसे शुद्ध यौगिकों में पृथक् करना कठिन होता है। परिणामत: किसी भी एक यौगिक की लब्धि कम होती है (एकक 13, कक्षा XI)।

 $CH_{3}CH_{2}CH_{2}CH_{3} \xrightarrow{Cl_{2}/UV \text{ प्रकाश}} CH_{3}CH_{2}CH$

(ii) ऐल्कीनों से

(क) हाइड्रोजन हैलाइड के संयोजन या योगज द्वारा— हाइड्रोजन क्लोराइड, हाइड्रोजन ब्रोमाइड अथवा हाइड्रोजन आयोडाइड से अभिक्रिया करने पर ऐल्कीन संगत ऐल्किल हैलाइड में परिवर्तित हो जाती हैं।

प्रोपीन दो प्रकार के उत्पाद देती है परंतु मार्कोनीकॉफ के नियमानुसार एक उत्पाद प्रमुख होता है। (एकक 13, कक्षा XI)

 $CH_3CH = CH_2+ H-I \longrightarrow CH_3CH_2CH_2I + CH_3CHICH_3$ अल्प मुख्य

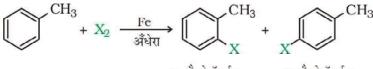
(ख) हैलोजन के संयोजन द्वारा— CCl₄ में घुली ब्रोमीन को ऐल्कीन में डालने से ब्रोमीन का लाल रंग विलुप्त हो जाता है। यह किसी अणु में द्विआबंध की पहचान करने की एक महत्वपूर्ण प्रयोगशाला विधि है। इस संयोजन के परिणामस्वरूप संनिधि डाइब्रोमाइड (Vic-dibromide) का संश्लेषण होता है जो कि रंगहीन होता है। (एकक 13, कक्षा XI)।

 $\begin{array}{ccc} H & H & H \\ & C = C & H & H \\ & H & H & \end{array} \xrightarrow{CCl_4} & BrCH_2 - CH_2Br \\ & & \overrightarrow{Hrle} - \overrightarrow{Slsgal} \\ & & \overrightarrow{Hrle} - \overrightarrow{Slsgal} \\ \end{array}$

10.4.3 हैलोजन विनिमय ऐल्किल आयोडाइडों का विरचन प्राय: ऐल्किल क्लोराइडों/ब्रोमाइडों की शुष्क ऐसीटोन द्वारा में NaI के साथ अभिक्रिया से होता है। इस अभिक्रिया को फिंकेल्स्टाइन अभिक्रिया कहते हैं।

$$R-X + NaI \longrightarrow R-I + NaX$$

X=Cl, Br

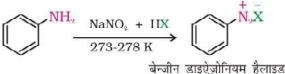

हैलोऐल्केन तथा हैलोऐरीन 309

इस प्रकार प्राप्त NaCl तथा NaBr शुष्क ऐसीटोन में अवक्षेपित हो जाते हैं तथा यह ले-शातैलिए के नियमानुसार अग्र अभिक्रिया को सुगम बना देता है। धात्विक फ्लुओराइड जैसे AgF, $\mathrm{Hg}_{2}\mathrm{F}_{2}$, CoF_{2} अथवा SbF_{3} की उपस्थिति में ऐल्किल क्लोराइड/ब्रोमाइड को गरम करके उपलब्ध करना, ऐल्किल फ्लुओराइडों के संश्लेषण का सर्वोत्तम तरीका है। इस अभिक्रिया को स्वार्ट्स अभिक्रिया कहते हैं। $H_3C-Br + Ag F \longrightarrow H_3C-F + Ag Br$

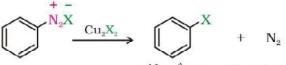
उदाहरण 10.3	(CH ₃) ₂ CHCH ₂ CH ₃ के मुक्त मूलक क्लोरीनन से बनने वाले सभी संभावित मोनोक्लोरो संरचनात्मक समावयवों को पहचानिए।
हल	दिए गए अणु में चार विभिन्न प्रकार के हाइड्रोजन परमाणु हैं। इन हाइड्रोजन परमाणुओं के प्रतिस्थापन से निम्नलिखित चार मोनोक्लोरो व्युत्पन्न प्राप्त होंगे– (CH ₃) ₂ CHCH ₂ CH ₂ Cl, (CH ₃) ₂ CHCH(Cl) CH ₃ , (CH ₃) ₂ C(Cl)CH ₂ CH ₃ , CH ₃ CH(CH ₂ Cl)CH ₂ CH ₃

10.5 हैलोएरीनों का विश्चन

(i) हाइड्रोकार्बनों से इलेक्ट्रॉनरागी प्रतिस्थापन द्वारा ऐरिल क्लोराइडों तथा ब्रोमाइडों का विरचन, आयरन या आयरन (III) क्लोराइड अथवा किसी अन्य लुईस अम्ल उत्प्रेरक की उपस्थिति में ऐरीनों के क्लोरीन अथवा ब्रोमीन द्वारा इलेक्ट्रॉनरागी प्रतिस्थापन द्वारा आसानी से किया जा सकता है।

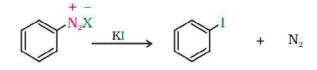


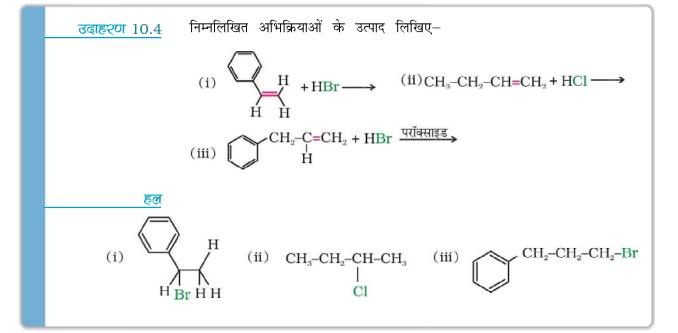
0- हैलोटॉलूईन p- हैलोटॉलईन

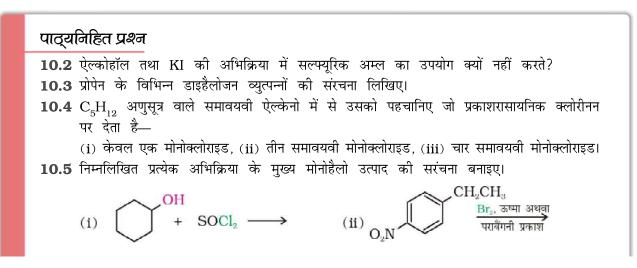

ऑर्थो तथा पैरा समावयवों को, उनके गलनांकों में अत्यधिक अंतर होने के कारण सुगमतापूर्वक पृथक् किया जा सकता है। आयोडीन के साथ अभिक्रिया उत्क्रमणीय होती है तथा इस अभिक्रिया में उत्पन्न HI को ऑक्सीकृत करने के लिए ऑक्सीकरण dea (HNO3, HIO3) की आवश्यकता होती है। फ्लुओरीन की अत्यधिक क्रियाशीलता के कारण इस विधि द्वारा फ्लुओरीन युक्त यौगिकों का विरचन नहीं किया जाता।

(ii) ऐमीनों से सैन्डमायर-अभिक्रिया द्वारा

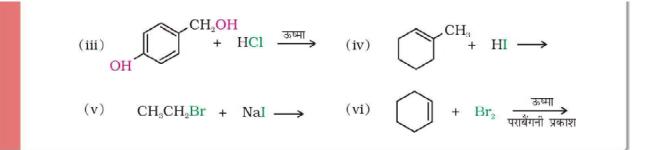
जब ठंडे जलीय खनिज अम्ल में घुली अथवा निलंबित किसी प्राथमिक ऐमीन को सोडियम नाइट्राइट के साथ अभिकृत किया जाता है तो डाइऐज़ोनियम लवण बनते हैं (एकक-13, कक्षा 12)। ताज़ा बने डाइऐज़ोनियम लवण तथा क्यूप्रस क्लोराइड अथवा क्यूप्रस ब्रोमाइड के विलयन को मिलाने पर डाइजोनियम समूह – Cl अथवा - Br के द्वारा प्रतिस्थापित हो जाता है।



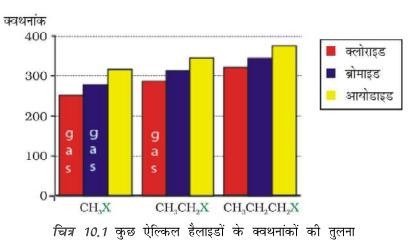

310 रसायन विज्ञान



ऐरिल हैलाइड, X = Cl, Br

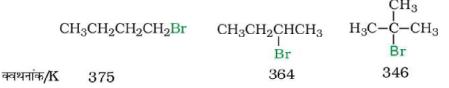

आयोडीन द्वारा डाइऐज़ोनियम समूह के प्रतिस्थापन के लिए क्यूप्रस हैलाइड की उपस्थिति आवश्यक नहीं होती तथा इसे सामान्यत: डाइऐज़ोनियम लवण तथा पोटैशियम आयोडाइड के विलयन को एक साथ हिलाकर किया जाता है।

हैलोऐल्केन तथा हैलोऐरीन 311

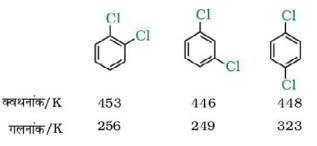

10.6 भौतिक शुण

शुद्ध अवस्था में ऐल्किल हैलाइड रंगहीन यौगिक होते हैं परंतु ब्रोमाइड तथा आयोडाइड, प्रकाश के संपर्क में आने पर रंगीन हो जाते हैं। अनेक वाष्पशील हैलोजन युक्त यौगिक सुगंधमय होते हैं।

गलनांक एवं क्वथनांक


मेथिल क्लोराइड, मेथिल ब्रोमाइड, एथिल क्लोराइड तथा कुछ क्लोरोफ्लुओरोमेथेन कमरे के ताप पर गैस के रूप में होते हैं जबकि उच्च सदस्य द्रव अथवा ठोस होते हैं। जैसा कि हम जानते हैं, कार्बनिक हैलोजन यौगिकों के अणु सामान्यत: ध्रुवीय होते हैं। उच्च ध्रुवता एवं जनक हाइड्रोकार्बन की तुलना में उच्च आण्विक द्रव्यमान होने के कारण हैलोजन व्युत्पन्नों में प्रबल अंतराआण्विक आकर्षण बल (द्विध्रुव-द्विध्रुव तथा वान्डरवाल्स) होते हैं। यही कारण है कि क्लोराइडों, ब्रोमाइडों तथा आयोडाइडों के क्वथनांक समतुल्य द्रव्यमान वाले हाइड्रोकार्बनों के क्वथनांकों की अपेक्षा महत्वपूर्ण रूप से अधिक होते हैं।

अणुओं का आकार बड़ा होने पर तथा अधिक संख्या में इलेक्ट्रॉन उपस्थित होने पर आकर्षण बल और अधिक प्रबल हो जाते हैं। चित्र 10.1 में विभिन्न हैलाइडों के क्वथनांकों में परिवर्तन का प्रारूप दिया गया है। समान ऐल्किल समूह के लिए ऐल्किल हैलाइडों के क्वथनांकों के घटने का क्रम – RI > RBr > RCl > R-F है। ऐसा हैलोजन परमाणु के आकार तथा द्रव्यमान में वृद्धि होने से वान्डरवाल्स बलों के परिमाण में वृद्धि होने के कारण होता है।



समावयवी हैलोऐल्केनों में शृंखलन बढ़ने के साथ क्वथनांक कम होते जाते हैं। (,dd 13]d{kXI)। उदाहरणार्थ, निम्नलिखित तीन समावयवियों में से 2-ब्रोमो-2-मेथिलप्रोपेन का क्वथनांक न्युनतम होता है।

312 रसायन विज्ञान

समावयवी डाइहैलोबेन्जीन के क्वथनांक लगभग समान होते हैं परंतु *पैरा*-समावयवी *आर्थो*-तथा *मेटा*-समावयवियों की अपेक्षा उच्च गलनांकी होते हैं। ऐसा पैरा समावयवियों की सममिति के कारण होता है, जिसके कारण यह *आर्थो* तथा *मेटा* समावयवियों की तूलना में क्रिस्टल जालक में अधिक समायोजित होते हैं।

घनत्व

हाइड्रोकार्बनों के ब्रोमो, आयडो तथा पॉलिक्लोरो व्युत्पन्न जल की तुलना में भारी होते हैं। कार्बन परमाणुओं की संख्या, हैलोजन परमाणुओं की संख्या तथा हैलोजन परमाणु का द्रव्यमान बढ़ने से घनत्व बढ़ता जाता है (सारणी 10.3)।

सारणी 10.3— कुछ हैलोएल्केनों का घनत्व

यौगिक	?UB (g/mL)	यौगिक	घनत्व (g/mL)
n–C ₃ H ₇ Cl	0.89	$\mathrm{CH}_2\mathrm{Cl}_2$	1.336
n–C ₃ H ₇ Br	1.335	$CHCl_3$	1.489
n-C ₃ H ₇ I	1.747	CCl_4	1.595

विलेयता

हैलोऐल्केन जल में बहुत अल्प विलेय होते हैं। हैलोऐल्केन को जल में घोलने के लिए ऊर्जा की आवश्यकता होती है जिससे कि हैलोऐल्केन के अणुओं के मध्य उपस्थित आकर्षण को तथा जल के अणुओं के मध्य हाइड्रोजन आबंध को तोड़ा जा सके। हैलोऐल्केन तथा जल में अणुओं के मध्य नए आकर्षण बलों के बनने से कम ऊर्जा निर्गमित होती है, क्योंकि ये आकर्षण बल जल में उपस्थित मूल हाइड्रोजन आबंधों जितने प्रबल नहीं होते। परिणामस्वरूप, हैलोऐल्केन की जल में विलेयता बहुत कम होती है। हालॉॅंकि, हैलोऐल्केनों की प्रवृत्ति कार्बनिक विलायकों में घुलने की होती है क्योंकि हैलोऐल्केन तथा विलायक अणु के मध्य बने नए अंतराआण्विक आकर्षण बलों की सामर्थ्य लगभग उतनी ही है जितनी की टूटने वाले अलग-अलग हैलोऐल्केन तथा विलायक अणुओं के मध्य होती है।

हैलोऐल्केन तथा हैलोऐरीन 313

पाठ्यनिहित प्रश्न

10.6 निम्नलिखित यौगिकों को क्वथनांकों के बढ़ते हुए क्रम में व्यवस्थित कीजिए।

- (i) ब्रोमोमेथेन, ब्रोमोफॉर्म, क्लोरोमेथेन, डाइब्रोमोमेथेन
- (ii) 1-क्लोरोप्रोपेन, आइसोप्रोपिल क्लोराइड, 1-क्लोरोब्यूटेन

10.7 रासायनिक अभिक्रियाउँ

10.7.1 हैलोऐल्केनों कीहैलोऐल्केनों की अभिक्रियाओं को निम्न संवर्गों में बाँटा गया है–अभिक्रियाएँ1. नाभिकरागी प्रतिस्थापन2. निराकरण अभिक्रियाएँ3. धातुओं के साथ अभिक्रियाv k d {kx1 में जान चुके हैं कि नाभिकरागी इलेक्ट्रॉन धनी स्पीशीज होती हैं, अत: वे क्रियाधार

v k d {kx1 में जान चुके हैं कि नाभिकरागी इलेक्ट्रॉन धनी स्पशिजि होती है, अतः व क्रियाधार के उस भाग पर आक्रमण करती हैं, जहाँ इलेक्ट्रॉनों की अल्पता होती है। वह अभिक्रिया जिसमें एक नाभिकरागी, पहले से उपस्थित नाभिकरागी को प्रतिस्थापित करता है, नाभिकरागी प्रतिस्थापन अभिक्रिया कहलाती है। इन अभिक्रियाओं में हैलोऐल्केन क्रियाधार होते हैं।

 नाभिकरागी प्रतिस्थापन अभिक्रियाएँ – इस प्रकार की अभिक्रिया में नाभिकरागी उस हैलोऐल्केन (क्रियाधार) से अभिक्रिया करता है जिसमें हैलोजन परमाणु से आबंधित कार्बन परमाणु पर आंशिक धनावेश होता है, प्रतिस्थापन अभिक्रिया होती है तथा हैलाइड आयन निकल जाता है जिसे अवशिष्ट समूह कहते हैं। चूँकि प्रतिस्थापन अभिक्रिया नाभिकरागी के द्वारा प्रारंभ होती हैं अत: इसे नाभिकरागी प्रतिस्थापन अभिक्रिया कहते हैं।

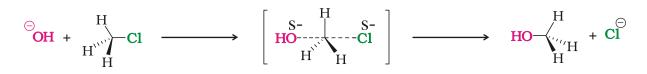
 $N\bar{u} + -C X \longrightarrow C -Nu + X$

यह ऐल्किल हैलाइड की कार्बनिक अभिक्रियाओं का एक प्रमुख उपयोगी संवर्ग है जिसमें हैलोजन परमाणु sp^3 संकरित कार्बन परमाणु से आबंधित होता है। हैलोऐल्केनों की कुछ सामान्य नाभिकरागियों द्वारा अभिक्रिया के उपरांत बने उत्पादों को सारणी 10.4 में दिया गया है।

सारणी 10.4— ऐल्किल हैलाइडों का नाभिकरागी प्रतिस्थापन (\mathbf{R} - \mathbf{X}) R − X + Nu⁻ → R − Nu + X⁻

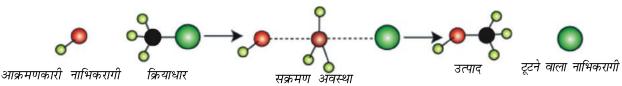
अभिकर्मक	नाभिकरागी (Nu⁻)	प्रतिस्थापन उत्पाद R-Nu	मुख्य उत्पाद का वर्ग
NaOH (KOH)	НО⁻	R–OH	ऐल्कोहॉल
H ₂ O	H_2O	R–OH	ऐल्कोहॉल
NaOR'	R [′] O⁻	R–OR'	ईथर
NaI	Г	R–I	ऐल्किल आयोडाइड
NH ₃	$\ddot{\mathrm{N}}\mathrm{H}_3$	RNH_2	प्राथमिक ऐमीन
$R'NH_2$	$ m R'\ddot{N}H_2$	R.NHR'	द्वितीयक ऐमीन
R'R''NH	R' R'' ŇH	RNR'R''	तृतीयक ऐमीन
KCN	$\overline{\mathbf{C}} \equiv \mathbf{N}$:	RCN	नाइट्राइल (सायनाइड)
AgCN	$Ag - C \equiv N$:	RNC (आइसोसायनाइड)	आइसोनाइट्राइल
KNO_2	$O = \ddot{N} - \bar{O}$	R-O-N=O	ऐल्किल नाइट्राइट
$AgNO_2$	Ag-Ö-N=O	$R-NO_2$	नाइट्रोऐल्केन

314 रसायन विज्ञान


LiAlH ₄ H ⁻ RH हाइड्रोकार्बर	T
R'- M+ R'- RR' ऐल्केन	

सायनाइड तथा नाइट्राइट जैसे समूहों में दो नाभिकरागी केंद्र होते हैं तथा इन्हें उभदंती नाभिकरागी कहा जाता है। वास्तव में सायनाइड समूह दो अंशदायी संरचनाओं का संकर होता है। अत: यह दो भिन्न प्रकार से नाभिकरागी के रूप में कार्य कर सकता है। $[{}^{\ominus}C \equiv N \leftrightarrow : C = N^{\ominus}]$ अर्थात् कार्बन परमाणु से जुड़ने के परिणामस्वरूप ऐल्किल सायनाइड तथा नाइट्रोजन परमाणु से जुड़ने के परिणामस्वरूप आइसोसायनाइड बनाता है। इसी प्रकार से नाइट्राइट आयन भी **उभदंती नाभिकरागी** के दो भिन्न संयोजन केंद्रों वाला $[{}^{-}O - \ddot{N} = O]$ है। ऑक्सीजन के द्वारा जुड़ने के परिणामस्वरूप ऐल्किल नाइट्राइट तथा नाइट्रोजन के द्वारा जुड़ने के परिणामस्वरूप यह नाइट्रोऐल्केन बनता है।

उदाहरण 10.5	हैलोऐल्केन की KCN से अभिक्रिया करके मुख्य उत्पाद के रूप में ऐल्किल सायनाइड बनाते हैं, जबकि AgCN से अभिक्रिया करने पर आइसोसायनाइड प्रमुख उत्पाद के रूप में प्राप्त होता है। समझाइए।
हल	KCN प्रमुखत: आयनिक होता है तथा विलयन में सायनाइड आयन देता है। यद्यपि कार्बन तथा नाइट्रोजन दोनों ही परमाणु इलेक्ट्रॉन युगल प्रदान करने की स्थिति में होते हैं परंतु आक्रमण मुख्यत: कार्बन परमाणु के द्वारा होता है न कि नाइट्रोजन परमाणु के द्वारा; क्योंकि C–C आबंध C–N आबंध की तुलना में अधिक स्थायी होता है। तथापि, AgCN मुख्यत: सहसंयोजक प्रकृति का होता है तथा इसका नाइट्रोजन परमाणु इलेक्ट्रॉन युगल प्रदान करने के लिए सक्षम होता है, इसलिए आइसोसायनाइड मुख्य उत्पाद के रूप में बनता है।


क्रियाविधि–अभिक्रिया दो भिन्न क्रियाविधियों द्वारा संपन्न होती है जिनका वर्णन नीचे किया गया है–

(क) द्विअणुक नाभिकरागी (नाभिकस्नेही) प्रतिस्थापन अभिक्रिया (S_N2) CH₃Cl तथा हाइड्रॉक्साइड आयन की अभिक्रिया, जिसमें मेथेनॉल तथा क्लोराइड आयन बनता है, द्वितीय कोटि बलगतिकी का अनुसरण करती है। अर्थात्, अभिक्रिया का वेग दोनों अभिक्रियकों की सांद्रता पर निर्भर करता है। इस अभिक्रिया को आरेखीय रूप में चित्र 10.2 (पृष्ठ 316) द्वारा प्रदर्शित किया जा सकता है।

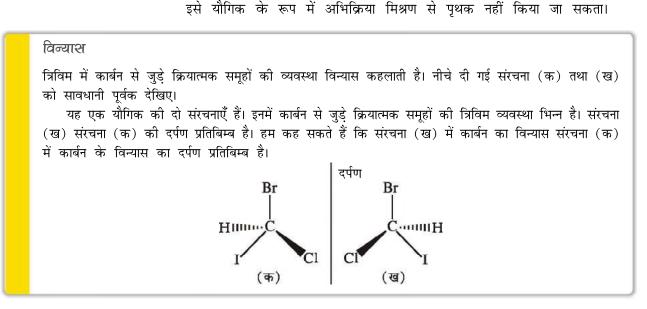
जैसा कि आप पूर्व में कक्षा 11 के एकक 12.3.2 में सीख चुके हैं, ठोस वेज पृष्ठ के ऊपर की ओर आने वाले आबंध को, टूटी हुई लाइन पृष्ठ से पीछे की ओर जाने वाले आबंध को तथा सीधी लाइन पृष्ठ के तल में उपस्थित आबंध को प्रदर्शित करती है।

हैलोऐल्केन तथा हैलोऐरीन 315

चित्र 10.2– लाल गेंद आक्रमणकारी हाइड्रॉक्साइड आयन को तथा हरी गेंद निकलने वाले हैलाइड आयन को प्रदर्शित करती है।

यह द्विअणुक नाभिकरागी प्रतिस्थापन (S_N2) को प्रदर्शित करता है। आक्रमणकारी नाभिकरागी की ऐल्किल हैलाइड से अन्योन्यक्रिया होने पर कार्बन-हैलाइड आबंध टूटता हैस एवं है तथा साथ ही कार्बन एवं आक्रमणकारी नाभिकरागी के बीच में एक नया आबंध S_N2 बनता है। यहाँ पर C तथा O के मध्य C-O बंध बनता है। ये दोनों प्रक्रियाएँ एक साथ एक ही पद में संपन्न होती हैं तथा कोई मध्यवर्ती नहीं बनता। जैसे-जैसे अभिक्रिया प्रगति करती है तथा आने वाले नाभिकरागी एवं कार्बन परमाणु के मध्य आबंध बनना प्रारंभ हो जाता है; कार्बन परमाणु एवं अवशिष्ट समूह के मध्य आबंध दुर्बल होने लगता है। जैसे ही ऐसा होता है, क्रियाधार के कार्बन-हाइड्रोजन बंध, आक्रमणकारी नाभिकरागी से दूर होने लगते हैं। संक्रमण स्थिति में तीनों C-H बंध एक ही तल

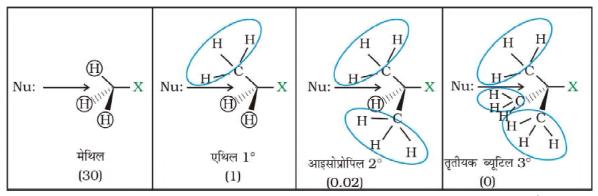
में हो जाते हैं तथा आक्रमणकारी एवं टूटने वाला नाभिकरागी कार्बन से अंशत: जुड़े रहते हैं। जैसे ही आक्रमणकारी नाभिकरागी कार्बन के समीप पहुँचता है, C-H बंध पहले की दिशा में तब तक अग्रसर होते रहते हैं जब तक टूटने वाला समूह कार्बन से ट्टकर अलग नहीं हो जाता परिणामस्वरूप आक्रमण के लिए उपलब्ध कार्बन परमाण


का विन्यास प्रतीप हो जाता है, ठीक उसी प्रकार जिस प्रकार कि तेज हवाओं में

छाता अंदर की ओर से बाहर उलट जाता है, इसके साथ ही अवशिष्ट समूह निकल

जाता है। इस प्रक्रिया को विन्यास का प्रतीपन कहते हैं। संक्रमण अवस्था में कार्बन परमाणु एक ही समय पर आने वाले नाभिकरागी तथा निकलने वाले अवशिष्ट समूह दोनों के साथ जुड़ा रहता है। अत: संक्रमण अवस्था में कार्बन परमाणु एक साथ पाँच परमाणुओं से आबंधित रहता है। इस प्रकार की संरचना अस्थायी होती है तथा

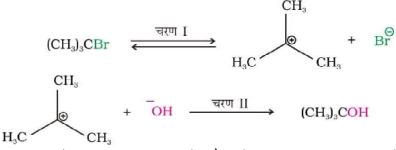
सन् 1937 में एडवर्ड डेवी ह्यूहेस एवं सर क्रिस्टोफर इन्गोल्ड ने S_N2 अभिक्रियाओं की क्रियाविधि दी।


ह्यूहेस ने इन्गोल्ड के निर्देशन में कार्य करके लंदन विश्वविद्यालय से डी.एस.सी. की उपाधि प्राप्त की।

चूँकि इस अभिक्रिया में नाभिकरागी अवशिष्ट समूह युक्त कार्बन परमाणु के निकट आता है, अत: इस कार्बन परमाणु पर अथवा उसके निकट उपस्थित स्थूल समूह प्रभावशाली अवरोध (निरोधक प्रभाव) उत्पन्न करता है। सामान्य ऐल्किल हैलाइडों में

316 रसायन विज्ञान

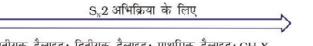
मेथिल हैलाइड सबसे अधिक शोघ्रता से S_N2 अभिक्रिया देता है क्योंकि इसमें केवल तीन छोटे हाइड्रोजन परमाणु होते हैं। तृतीयक ऐल्किल हैलाइड सबसे कम क्रियाशील होते हैं क्योंकि स्थूल समूह आगमनकारी नाभिकरागी के लिए अवरोध उत्पन्न करते हैं (चित्र 10.3)। अत: अभिक्रियाशीलता का क्रम निम्नलिखित होता है– प्राथमिक हैलाइड > द्वितीयक हैलाइड > तृतीयक हैलाइड


चित्र 10.3 S_N2 अभिक्रिया में त्रिविम प्रभाव, S_N2 अभिक्रिया के तुलनात्मक वेग कोष्ठक में दिए हैं।

(ख) एकाण्विक नाभिकरागी प्रतिस्थापन (${f S}_{N}{f 1}$)

S_N1 अभिक्रियाएं सामान्यत: ध्रुवीय प्रोटिक विलायकों (जैसे जल, ऐल्कोहॉल, ऐसीटिक अम्ल आदि) में संपन्न होती हैं। *तृतीयक-ब्यू*टिल ब्रोमाइड तथा हाइड्रॉक्साइड आयन के मध्य अभिक्रिया *तृतीयक-ब्यू*टिल ऐल्कोहॉल देती है एवं प्रथम कोटि की बलगतिकी का अनुसरण करती है। अर्थात् अभिक्रिया का वेग केवल एक अभिक्रियक की सांद्रता पर निर्भर करता है, जो कि *तृतीयक-ब्यू*टिल ब्रोमाइड है।

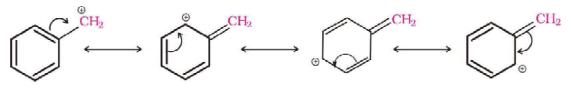
 $(CH_3)_3CBr + \overline{OH} \longrightarrow (CH_3)_3COH + \overline{Br}$ $2-\overline{a}hh-2-\overline{h}er$ $2-\overline{h}er$ $2-\overline{h}er$ <td


यह दो चरणों में संपन्न होती है। प्रथम चरण में ध्रुवीय C-Br आबंध का धीमा विदलन एक कार्बोकैटायन तथा एक ब्रोमाइड आयन बनता है। द्वितीय चरण में इस प्रकार निर्मित कार्बोकैटायन पर नाभिकरागी के द्वारा आक्रमण होता है तथा प्रतिस्थापन अभिक्रिया पूर्ण होती है।

चरण-1 सबसे धीमा तथा उत्क्रमणीय होता है इसमें C-Br आबंध का विदलन होता है जिसके लिए ऊर्जा प्रोटिक विलायकों के प्रोटॉन द्वारा हैलाइड आयन के विलायक योजन से प्राप्त होती है। चूँकि अभिक्रिया की दर सबसे धीमे चरण पर निर्भर करती है, अत: अभिक्रिया का वेग केवल ऐल्किल हैलाइड की सांद्रता पर निर्भर करता है, न कि हाइड्रॉक्साइड आयन की सांद्रता पर। इसके अतिरिक्त कार्बोकैटायन का स्थायित्व जितना अधिक होगा, ऐल्किल हैलाइड से इसका विरचन उतना ही सरल होगा तथा अभिक्रिया का वेग उतना ही अधिक

हैलोऐल्केन तथा हैलोऐरीन 317

होगा। ऐल्किल हैलाइडों में 3° ऐल्किल हैलाइड, तीव्रता से S_N1 अभिक्रिया देते हैं क्योंकि 3° कार्बोकैटायन का स्थायित्व सर्वाधिक होता है। हम S_N1 तथा S_N2 अभिक्रिया के लिए ऐल्किल हैलाइड की क्रियाशीलता के क्रम को संक्षेप में निम्न प्रकार से दे सकते हैं–



तृतीयक हैलाइड; द्वितीयक हैलाइड; प्राथमिक हैलाइड; ${
m CH}_{
m s}{
m X}$

S_№1 अभिक्रिया के लिए

इन्हीं कारणों से ऐलिलिक तथा बेन्ज़िलिक हैलाइड $\mathbf{S}_{_{\mathrm{N}}}\mathbf{1}$ अभिक्रिया के प्रति अधिक क्रियाशीलता प्रदर्शित करते हैं। इस प्रकार निर्मित कार्बोकैटायन अनुनाद के द्वारा स्थायित्व प्राप्त कर लेता है जैसा कि नीचे दर्शाया गया है–

 $H_2C = CH^4CH_2^* \iff H_2C^{*}CH=CH_2$

दोनों क्रियाविधियों में दिए हुए ऐल्किल समूह के लिए, हैलाइड R-X की क्रियाशीलता का क्रम इस प्रकार होता है– R–I > R– Br > R–Cl > R–F.

	उदाहरण 10.6	निम्नलिखित हैलोजन यौगिकों के युगलों में कौन सा यौगिक $S_N 2$ अभिक्रिया तीव्रता से देगा? \bigcirc $-CH_2 Cl$ तथा \bigcirc $-Cl$; $-CH_2 Cl$ तथा \bigcirc $-Cl$
	हल	CH ₂ Cl; यह प्राथमिक हैलाइड है अत: S _N 2 अभिक्रिया तीव्रता से देता है। I; बड़े आकार के कारण आयोडीन बेहतर अवशिष्ट समूह है अत: आने वाले नाभिकरागी की उपस्थिति में द्रुत वेग से निकल जाएगा।
	उदाहरण 10.7	S _N 1 व S _N 2 अभिक्रिया में निम्नलिखित यौगिकों की अभिक्रियाशीलता का क्रम अनुमानित कीजिए। (i) ब्रोमोब्यूटेन के चार समावयवी (ii) C ₆ H ₅ CH ₂ Br, C ₆ H ₅ CH(C ₆ H ₅)Br, C ₆ H ₅ CH(CH ₃)Br, C ₆ H ₅ C(CH ₃)C ₆ H ₅ Br
	हल	(i) $CH_3CH_2CH_2CH_2Br < (CH_3)_2CHCH_2Br < CH_3CH_2CH(Br)CH_3 < (CH_3)_3CBr (S_N1)$ $CH_3CH_2CH_2CH_2Br>(CH_3)_2CHCH_2Br>CH_3CH_2CH(Br)CH_3>(CH_3)_3CBr (S_N2)$ $(CH_3)_2CH-$ समूह के इलेक्ट्रॉन दाता प्रेरणिक प्रभाव के अधिक होने के कारण दो प्राथमिक ब्रोमाइडों में से $(CH_3)_2CHCH_2Br$ से निर्मित मध्यवर्ती कार्बोकैटायन, $CH_3CH_2CH_2CH_2Br$ से बने कार्बोकैटायन की अपेक्षा अधिक स्थायी होगा। अत: S_N1 अभिक्रिया में $CH_3CH_2CH_2CH_2Br$ की अपेक्षा $(CH_3)_2CHCH_2Br$ अधिक क्रियाशील होता है। $CH_3CH_2CH(Br)CH_3$ एक द्वितीयक ब्रोमाइड है। जबकि $(CH_3)_3CBr$ तृतीयक ब्रोमाइड
318	रसायन विज्ञान	

है, अत: S_N1 अभिक्रिया के लिए अभिक्रियाशीलता का क्रम उपरोक्त होता है। S_N2 अभिक्रिया में उपर्युक्त अभिक्रियाशीलता का क्रम विपरीत हो जाता है, क्योंकि इलेक्ट्रॉन रागी कार्बन पर त्रिविम बाधा इसी क्रम में बढ़ती है।

(ग) नाभिकरागी प्रतिस्थापन अभिक्रियाओं के त्रिविम रासायनिक पहलू नाभिकरागी प्रतिस्थापन अभिक्रियाओं के त्रिविम रासायनिक पहलू को समझने के लिए हमें कुछ मूलभूत त्रिविम-रासायनिक सिद्धांतों तथा प्रतीकों (ध्रुवण घूर्णकता, काइरलता, धारण, प्रतिलोमन तथा रेसिमीकरण आदि) को सीखना होगा। (i) ध्रवण घूर्णकता-कुछ यौगिकों के विलयन में से समतल ध्रुवित प्रकाश गुज़ारे जाने पर (जो कि सामान्य प्रकाश को निकॉल प्रिज्म से गुज़ारने पर प्राप्त होता है) यह इस प्रकाश के तल को घूर्णित कर देते हैं। इस प्रकार के यौगिकों को ध्रुवण भूर्णक यौगिक कहते हैं। उस कोण को जिस पर ध्रुवित प्रकाश का तल भूर्णित हो जाता है, ध्रुवणमापी नामक उपकरण के द्वारा मापा जा सकता है। यदि यौगिक समतल ध्रवित प्रकाश के तल को दाईं ओर घुमा देता है अर्थात घडी की सुई की दिशा में घुमा देता है तो उसे दक्षिण ध्रुवण घूर्णक (ग्रीक में दाहिनी ओर घूर्णन) अथवा d रूप कहते हैं तथा इसे घूर्णन कोण से पूर्व धनात्मक (+) चिह्न द्वारा प्रदर्शित करते हैं। यदि प्रकाश का तल बाईं ओर घूर्णित होता है, अर्थात् घड़ी की सूई के विपरीत दिशा में, तो यौगिक को वाम ध्रुवण धूर्णक अथवा l रूप कहते हैं तथा घूर्णन कोण से पूर्व ऋणात्मक (-) चिह्न लगाते हैं। इस प्रकार के (+) तथा (-) समावयवियों को **ध्रवण समावयवी** कहते हैं तथा इस परिघटना को **ध्रवण समावयवता** कहते हैं।

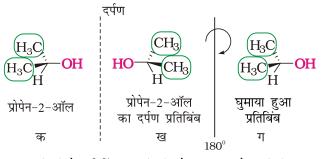
(ii) आणिवक असममितता, काइरलता एवं प्रतिबिंब रूप-लुइस पाश्चर (1848) के इस प्रेक्षण ने आधुनिक त्रिविम रसायन की आधारशिला रखी कि कुछ यौगिकों के क्रिस्टल, दर्पण प्रतिबिंब रूपों में पाए जाते हैं। उन्होंने प्रदर्शित किया कि दोनों प्रकार के क्रिस्टलों के समान सांद्रता वाले जलीय विलयन, समान परिमाण, किंतु विपरीत दिशा में ध्रुवण घूर्णन प्रदर्शित करते हैं। उनको विश्वास था कि दोनों प्रकार के क्रिस्टलों के ध्रूवण घूर्णन में अंतर इनके अणुओं में परमाणुओं की तीनों विमाओं में भिन्न व्यवस्था (विन्यास) से संबंधित होता है। डच वैज्ञानिक जे. वान्ट हॉफ तथा फ्रांसिसी वैज्ञानिक ले बेल ने उसी वर्ष (1874), में स्वतंत्र रूप से कार्य करते हुए तर्क दिया कि केंद्रीय कार्बन परमाणु के चारों ओर, समूहों (संयोजकताओं) की त्रिविम व्यवस्था चतुष्फलकीय होती है और यदि कार्बन परमाणु से जुड़े सभी प्रतिस्थापी भिन्न हों तो अणु का दर्पण प्रतिबिंब अणु पर अध्यारोपित नहीं होता। ऐसे कार्बन परमाणु को असममित कार्बन परमाणु अथवा त्रिविमकेंद्र कहते हैं। परिणामी अणु की सममितता भंग हो जाती है तथा इसे असममित अणु कहते हैं। अणु की असममितता तथा दर्पण

हैलोऐल्केन तथा हैलोऐरीन 319

विलियम निकॉल (1768-1851) ने समतल धुवित प्रकाश उत्पन्न करने वाला पहला प्रिज्म बनाया।

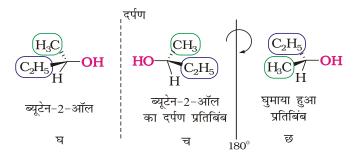
जैकब्स हैन्ड्रिक्स वान्ट हॉफ (1852–1911) ने 1901 में विलयनों पर अपने कार्य के लिए रसायन का प्रथम नोबेल परस्कार प्राप्त किया।

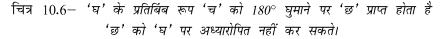
प्रतिबिंब का अणु पर अध्यारोपित न होना इस प्रकार के कार्बनिक यौगिकों में ध्रुवण घूर्णन के लिए उत्तरदायी होती है।


सममितता तथा असममितता हमारे दैनिक जीवन में काम आने वाली वस्तुओं में भी देखने को मिलती है। गोले, घन, शंकु, ग्लोब आदि सभी के दर्पण प्रतिबिंब उनके समान होते हैं तथा ये दर्पण प्रतिबिंब पर अध्यारोपित किए जा सकते हैं। तथापि बहुत सी वस्तुएं अपने दर्पण प्रतिबिंब पर अध्यारोपित नहीं होतीं। उदाहरणार्थ, आपका बायाँ तथा दायाँ हाथ समान दिखाई देता है; लेकिन यदि आप अपने बाएं हाथ को दाहिने हाथ पर उसी समतल में ले जाते हुए रखें तो दोनों एक दूसरे को ठीक-ठीक नहीं ढकते। वे वस्तुएं जो अपने दर्पण प्रतिबिंब पर अध्यारोपित नहीं होतीं (दोनों हाथों के समान) काइरल कहलाती हैं तथा इस गुण को काइरलता कहते हैं काइरल अणु ध्रुवण घूर्णक होते हैं तथा वे वस्तुएं जो कि अपने दर्पण प्रतिबिंब पर अध्यारोपित हो जाती हैं, उन्हें एकाइरल कहते हैं।

चित्र 10.4– कुछ काइरल एवं अकाइरल वस्तुओं के उदाहरण

उपरोक्त आण्विक काइरलता के इस परीक्षण को कार्बनिक अणुओं तथा उनके दर्पण प्रतिबिंब के मॉडल बनाकर अथवा त्रिविमीय संरचना का आरेख बनाकर एवं उसे कल्पना में प्रतिबिंब पर अध्यारोपित करके किया जा सकता है। इसके अतिरिक्त अन्य कई सहायक हैं जो हमें काइरल अणु की पहचान करने में मदद करते हैं। इनमें से एक सहायक असममित कार्बन परमाणु की उपस्थिति है। आइए, हम दो साधारण अणुओं, प्रोपेन-2-ऑल (चित्र 10.5)

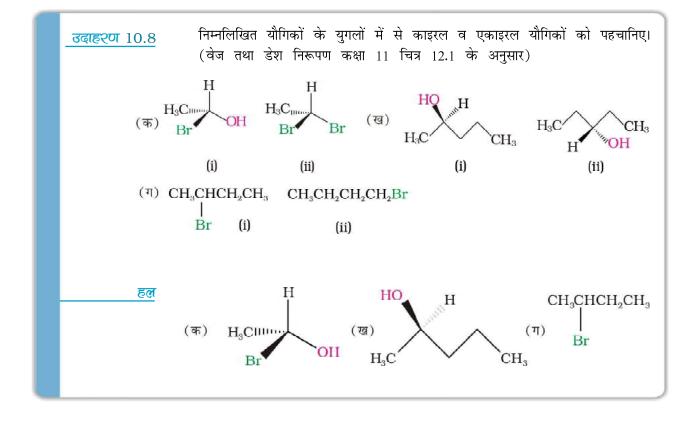

एवं ब्यूटेन-2-ऑल (चित्र 10.6) तथा उनके दर्पण प्रतिबिंब रूपों पर विचार करें। जैसा कि आप स्पष्टत: देख सकते हैं कि प्रोपेन-2-ऑल में असममित कार्बन परमाणु नहीं है, क्योंकि चतुष्फलकीय कार्बन परमाणु से जुड़े चारों समूह असमान नहीं हैं, हम दर्पण प्रतिबिंब (ख) को 180° पर घुमाते हैं तथा प्राप्त संरचना (ग) को संरचना (क) पर अध्यारोपित करने का प्रयत्न करते हैं। यह संरचनाएँ पूर्णत: अध्यारोपित हो जाती हैं। अत: प्रोपेन-2-ऑल एक **एकाइरल** अणु है।



चित्र 10.5— 'क' के प्रतिबिंब रूप 'ख' को 180° घुमाने पर 'ग' प्राप्त होता है 'ग' को 'क' पर अध्यारोपित कर सकते हैं।

ब्यूटेन-2-ऑल में चतुष्फलकीय कार्बन परमाणु से जुड़े चारों समूह भिन्न हैं। अत: अपेक्षा अनुसार यह **काइरल** है। काइरल अणु के सामान्य उदाहरण जैसे कि; 2-कलोरोब्यूटेन, 2,3-डाइहाइड्रॉक्सी प्रोपेनैल (OHC-CHOH-CH₂OH); ब्रोमोक्लोरोआयडोमेथेन (BrClHI); 2-ब्रोमोप्रोपेनॉइक अम्ल (H₃C-CHBr-COOH) आदि हैं।

320 रसायन विज्ञान

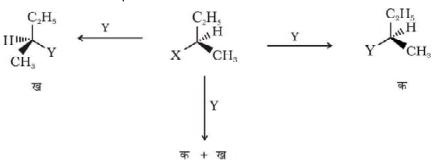

जिन त्रिविम समावयवियों का संबंध परस्पर अध्यारोपित न हो सकने वाले दर्पण प्रतिबिंबों की तरह होता है, उन्हें **प्रतिबिंब रूप** (एनेनटियोमर) कहते हैं (चित्र 10.7)। चित्र 10.6 में 'घ' एवं 'च' प्रतिबिंब रूप हैं।

प्रतिबिंब रूपों के भौतिक गुण जैसे गलनांक, क्वथनांक, अपवर्तनांक आदि समान होते हैं। इनमें अंतर केवल समतल ध्रुवित प्रकाश को घूर्णित करने में होता है। यदि एक *प्रतिबिंब रूप दक्षिण ध्रुवण घूर्णक* हो तो दूसरा *वाम ध्रुवण घूर्णक* होगा।

चित्र 10.7– एक काइरल अणु एवं उसका दर्पण प्रतिबिंब

ध्रुवण घूर्णन के चिह्न का अणु के निरपेक्ष (वास्तविक) विन्यास से कोई संबंध नहीं होता।

हैलोऐल्केन तथा हैलोऐरीन 321


दो प्रतिबिंब रूपों के समान अनुपात में मिश्रण का ध्रुवण घूर्णन शून्य होगा, क्योंकि एक समावयवी के द्वारा उत्पन्न घूर्णन को दूसरा समावयवी निरस्त कर देगा। इस प्रकार के मिश्रण को रेसिमिक मिश्रण अथवा रेसिमिक अंशातरण कहते हैं। एक रेसिमिक मिश्रण को उसके नाम से पूर्व *dl* अथवा (±) पूर्वलग्न लगाकर प्रदर्शित करते हैं। उदाहरणार्थ, (±) ब्यूटेन-2-ऑल। प्रतिबिंब रूप के रेसिमिक मिश्रण में परिवर्तित होने के प्रक्रम को, रेसिमीकरण कहते हैं।

(-)-2-मेथिलब्यूटेन-1-ऑल

(+)-1-क्लोरो-2-मेथिलब्यूटेन

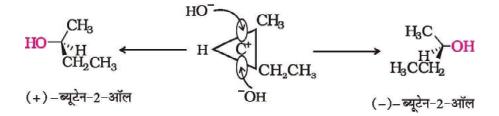
यह ध्यान देना महत्वपूर्ण है कि अभिक्रियक एवं उत्पाद में असममित केंद्र समान हैं। किंतु उत्पाद में ध्रुवण घूर्णक का चिन्ह बदल गया है, क्योंकि दो भिन्न यौगिकों का विन्यास असममित केंद्र पर एक समान होने पर भी ध्रुवण घूर्णन भिन्न हो सकता है। एक दक्षिण ध्रुवण घूर्णक (+चिह्न) जबकि दूसरा बाम ध्रुवण घूर्णक (-चिह्न) हो सकता है।

(iv) प्रतिलोमन, धारण तथा रेसिमीकरण– जब असममित कार्बन से जुड़ा कोई बंध टूटता है तो असममित कार्बन परमाणु पर किसी अभिक्रिया के तीन प्रकार के परिणाम होते हैं। निम्नलिखित अभिक्रिया में Y के द्वारा X समूह के प्रतिस्थापन पर विचार कीजिए—

यदि केवल यौगिक 'क' प्राप्त होता है तो इसे विन्यास का धारण कहते हैं। नोट करें कि (क) में विन्यास सुरक्षित रहता है। यदि केवल यौगिक 'ख' प्राप्त होता है तो इसे विन्यास का प्रतिलोमन कहते हैं। (ख) में विन्यास का प्रतिलोमन हो गया है।

322 रसायन विज्ञान

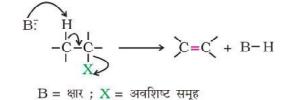
यदि दोनों यौगिकों 'क' तथा 'ख' का मिश्रण 50 : 50 अनुपात में प्राप्त होता है तो इस प्रक्रिया को रेसिमीकरण कहते हैं तथा उत्पाद ध्रुवण घूर्णक नहीं होगा, क्योंकि एक समावयवी समतल ध्रुवित प्रकाश को दूसरे से विपरीत दिशा में घूर्णित करेगा।


आइए अब हम S_N1 व S_N2 क्रियाविधियों का ध्रुवण घूर्णक ऐल्किल हैलाइड लेकर पुनरवलोकन करें।

ध्रुवण घूर्णक ऐल्किल हैलाइडों में S_N2 क्रियाविधि द्वारा प्राप्त उत्पाद का विन्यास अभिक्रियक की तुलना में प्रतिलोम होगा। ऐसा इसलिए होगा क्योंकि नाभिकरागी, जिस दिशा में हैलोजन परमाणु जुड़ा है उसके विपरीत दिशा में जुड़ता है। जब (-)-2-ब्रोमोऑक्टेन की अभिक्रिया सोडियम हाइड्रॉक्साइड से कराते हैं तो (+)-ऑक्टेन-2-ऑल बनता है जिसमें –OH समूह ब्रोमाइड के विपरीत स्थिति पर स्थान ग्रहण करता है।

$$\underset{C_{6}H_{13}}{\overset{H_{13}}{\longrightarrow}} Br + \overset{\odot}{O}H \longrightarrow HO - \underset{C_{6}H_{13}}{\overset{CH_{3}}{\longleftarrow}} + Br^{\odot}$$

अत: ध्रुवण घूर्णक हैलाइडों में $S_N 2$ अभिक्रिया विन्यास के प्रतिलोमन के साथ संपन्न होती है। ध्रुवण घूर्णक ऐल्किल हैलाइडों के लिए $S_N 1$ अभिक्रिया रेसिमीकरण के साथ संपन्न होती है। क्या आप सोच सकते हैं कि ऐसा क्यों होता है? वास्तव में धीमे चरण में बना कार्बोकैटायन sp^2 संकरित होने के कारण समतलीय हो जाता है (एकाइरल)। नाभिकरागी समतल कार्बोकैटायन पर समतल के ऊपर अथवा नीचे दोनों दिशाओं से आक्रमण कर सकता है। फलस्वरूप उत्पाद में ऐसा मिश्रण प्राप्त होता है जिसमें एक उत्पाद में विन्यास संरक्षित रहता है। (-OH उसी स्थिति पर जुड़ता है जहाँ हैलाइड आयन था) तथा दूसरे में विन्यास (-OH, हैलाइड आयन के विपरीत दिशा में जुड़ता है) विपरीत होता है। इसे ध्रुवण घूर्णक-2-ब्रोमोब्यूटेन के जल अपघटन द्वारा प्रदर्शित किया जा सकता है जिससे (±)-ब्यूटेन-2-ऑल का विरचन होता है।



2. विलोपन अभिक्रिया

जब β–हाइड्रोजन परमाणु युक्त हैलोऐल्केन को पोटैशियम हाइड्रॉक्साइड के ऐल्कोहॉली विलयन के साथ गरम किया जाता है तो β–कार्बन से हाइड्रोजन परमाणु तथा α–कार्बन से हैलोजन परमाणु का विलोपन होता है। इसके परिणामस्वरूप एक ऐल्कीन हैलोऐल्केन तथा हैलोऐरीन <mark>323</mark>

उत्पाद के रूप में प्राप्त होती है। चूँकि विलोपन अभिक्रिया में β–हाइड्रोजन परमाणु सम्मिलित होता है। अत: इसे सामान्यतया β–**विलोपन** भी कहते हैं।

यदि एक से अधिक β-हाइड्रोजन परमाणु उपलब्ध होने के कारण एक से अधिक प्रकार की एल्कीन बनने की संभावना हो तो सामान्यत: एक ऐल्कीन मुख्य उत्पाद के रूप में बनती है। इस प्रकार के प्रारूप को सर्वप्रथम रूसी रसायनज्ञ ऐलेक्जेण्डर जेटसेफ (जिन्हें सेत्जेफ भी उच्चारित किया जाता है) ने प्रेक्षित किया। इन्होंने 1875 में एक नियम प्रतिपादित किया जिसे निम्नलिखित प्रकार से संक्षेपित किया। इन्होंने 1875 में एक नियम प्रतिपादित किया जिसे निम्नलिखित प्रकार से संक्षेपित किया जा सकता है **"विहाइड्रोजनन के फलस्वरूप वह ऐल्कीन मुख्य रूप से निर्मित होती है जिसमें द्विक्आबंधी कार्बन परमाणुओं पर ऐल्किल समूहों की संख्या अधिक होती है।"** अत: 2-ब्रोमोपेन्टेन मुख्य उत्पाद के रूप में पेन्ट-2-ईन देता है।

विलोपन बनाम प्रतिस्थापन

किसी अणु में α तथा β

कार्बन जिससे हैलोजन परमाणु सीधा जुड़ा रहता है, उसे α

कार्बन कहते हैं। इससे जुड़े

अगले कार्बन को β-कार्बन

तथा β-कार्बन से जुड़े कार्बन

को α-कार्बन कहते हैं।

 $-\dot{c}\frac{\gamma}{2}\dot{c}\frac{\beta}{2}\dot{c}\frac{\alpha}{2}\times$

कार्बन का स्थान

एक रासायनिक अभिक्रिया प्रतिस्पर्धा का परिणाम होती हैं जिसमें सबसे तेज़ धावक दौड़ जीतता है। अणुओं का एक समूह अधिकांशत: वह करने का प्रयास करता है जो कि उसके लिए सरल होता है। जब β– हाइड्रोजन परमाणु युक्त एक ऐल्किल हैलाइड किसी क्षार अथवा नाभिकरागी के साथ अभिक्रिया करता है तो दो प्रतिस्पर्धात्मक पथ उपलब्ध होते हैं– प्रतिस्थापन (S_N1 तथा S_N2) तथा विलोपन। किस पथ का चयन होगा, यह ऐल्किल हैलाइड की प्रकृति, क्षार, नाभिकरागी का आकार एवं सामर्थ्य तथा अभिक्रिया की परिस्थितियों पर निर्भर करता है। अत: एक बड़ा नाभिकरागी क्षार के समान व्यवहार को प्राथमिकता देता है तथा चतुष्फलकीय कार्बन परमाणु के निकट जाने के स्थान पर एक प्रोटॉन का आहरण करता है (त्रिविम कारण)। इसी प्रकार से प्राथमिक ऐल्किल हैलाइड S_N2 अभिक्रिया को प्राथमिकता देगा, द्वितीयक ऐल्किल हैलाइड की प्राथमिकता S_N2 की होगी अथवा विलोपन की; यह क्षार अथवा नाभिकरागी का सामर्थ्य पर निर्भर करता है तथा तृतीयक ऐल्किल हैलाइड S_N1 को प्राथमिकता देगा अथवा विलोपन को यह कार्बोकैटायन के स्थायित्व अथवा ऐल्कीन के अधिक प्रतिस्थापन पर निर्भर करेगा।

324 रसायन विज्ञान

3. धातुओं से अभिक्रिया

अधिकांश कार्बनिक क्लोराइड, ब्रोमाइड तथा आयोडाइड कुछ धातुओं के साथ अभिक्रिया करके कार्बन-धातु आबंधयुक्त यौगिक देते हैं। इस प्रकार के यौगिकों को **कार्बधात्विक** यौगिक कहते हैं। ऐल्किल मैग्नीशियम हैलाइड RMgX कार्ब-धात्विक यौगिकों का एक मुख्य वर्ग है। जिनकी खोज *विक्टर ग्रीन्यार* ने 1900 में की थी। इन्हें ग्रीन्यार अभिक्रियक कहा जाता है। ये अभिक्रियक हैलोऐल्केन की शुष्क ईथर की उपस्थिति में मैग्नीशियम धातु से अभिक्रिया द्वारा प्राप्त किए जाते हैं।

$$CH_3CH_2Br + Mg \xrightarrow{ शुष्क ईथर} CH_3CH_2MgBr$$

ग्रीन्यार अभिक्रियक

विक्टर ग्रीन्यार की रसायनज्ञ के रूप में शैक्षणिक शुरुआत विचित्र थी। उन्होंने गणित में डिग्री प्राप्त की; किंतु वे अंततोगत्वा रसायन शास्त्र की ओर अग्रसर हुए। यह भौतिक रसायन का गणित कार्य क्षेत्र नहीं था; अपितु कार्बनिक रसायन का था। मेथिलन के लिए एक उत्कृष्ट उत्प्रेरक की खोज करते हुए उन्होंने देखा कि डाइएथिल ईथर में जिंक, इस कार्य के लिए प्रयोग में लिया जाता है। उन्होंने जानना चाहा कि क्या इसके स्थान पर मैग्नीशियम/ईथर संयोग भी सफल हो सकता है? ग्रीन्यार अभिक्रियक सर्वप्रथम 1900 में प्रस्तुत किए गए। ग्रिन्यार ने इस कार्य का उपयोग 1901 में अपनी पीएच.डी. उपाधि के लिए किया। 1910 में ग्रीन्यार नेंसी विश्वविद्यालय में प्रोफ़ेसर

पद पर नियुक्त हुए। वर्ष 1912 में उन्होंने पॉल साबात्ये (Paul Sabitier) के साथ संयुक्त रूप से रसायन शास्त्र का नोबेल पुरस्कार प्राप्त किया। पॉल साबात्ये ने निकैल उत्प्रेरित हाइड्रोजनन पर कार्य किया था।

> ग्रीन्यार अभिक्रियक में कार्बन मैग्नीशियम बंध सहसंयोजक आबंध होता है परंतु विद्युतधनी मैग्नीशियम के इलेक्ट्रॉन आकर्षित करने के कारण यह आबंध अत्यधिक ध्रुवीय होता है। मैग्नीशियम तथा हैलोजन आबंध आवश्यक रूप से आयनिक होता है।

δ- δ+ δ-R-Mg X

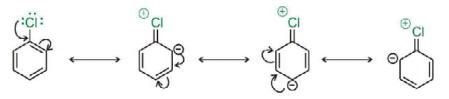
ग्रीन्यार अभिकर्मक अत्यधिक क्रियाशील होते हैं तथा किसी भी स्रोत से प्राप्त प्रोटॉन से अभिक्रिया कर हाइड्रोकार्बन देते हैं। यहाँ तक कि जल ऐल्कोहॉल तथा ऐमीन भी इन्हें संगत हाइड्रोकार्बन में परिवर्तित करने के लिए पर्याप्त अम्लीय होते हैं।

RMgX + H₂O -----> RH + Mg(OH)X अत: ग्रीन्यार अभिक्रियक के साथ अभिक्रिया के समय लेशमात्र नमी को भी निकालना आवश्यक है। इसलिए अभिक्रिया को शुष्क ईथर में किया जाता है। वहीं दूसरी ओर, ऐल्किल हैलाइड को हाइड्रोकार्बन में परिवर्तित करने के लिए इसे एक विधि माना जा सकता है।

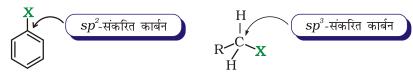
वुर्ट्ज अभिक्रिया

ऐल्किल हैलाइड शुष्क ईथर में सोडियम के साथ अभिक्रिया करके हाइड्रोकार्बन बनाते हैं। जिसमें मूल हैलाइड में उपस्थित कार्बन परमाणुओं से दुगुने कार्बन परमाणु होते हैं। इस अभिक्रिया को वुर्ट्ज़ अभिक्रिया कहते हैं (कक्षा XI, एकक 13)।

2RX + 2Na - राष्क ईथर → RR + 2NaX


हैलोऐल्केन तथा हैलोऐरीन 325

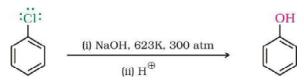
10.7.2 हैलोएरीनों की अभिक्रियाएं


1. नाभिकरागी प्रतिस्थापन

ऐरिल हैलाइड नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति निम्नलिखित कारणों से कम क्रियाशील होते हैं।

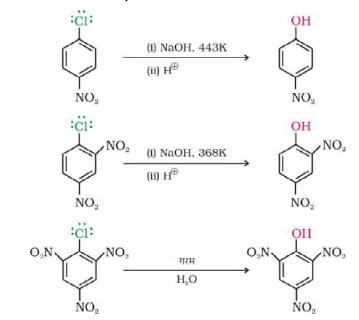
(i) अनुनाद प्रभाव-हैलोऐरीन में हैलोजन परमाणु पर उपस्थित एकाकी इलेक्ट्रॉन युगल वलय के π इलेक्ट्रॉनों के साथ संयुग्मन में होते हैं तथा निम्नलिखित अनुनादी संरचनाएं संभव हैं।

अनुनाद के कारण C-Cl आबंध में आंशिक द्विबंध के गुण आ जाते हैं। जिसके परिणामस्वरूप हैलोऐल्केन की तुलना में हैलोऐरीन में आबंध विदलन अपेक्षाकृत कठिन होता है। अत: ये नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति कम क्रियाशील होती हैं। (**ii**) **C-X आबंध में कार्बन परमाणु के संकरण में अंतर**- हैलोऐल्केन में हैलोजन से जुड़ा कार्बन परमाणु **sp**³ संकरित होता है जबकि हैलोऐरीन में हैलोजन परमाणु से जुड़ा कार्बन परमाणु **sp**² संकरित होता है।

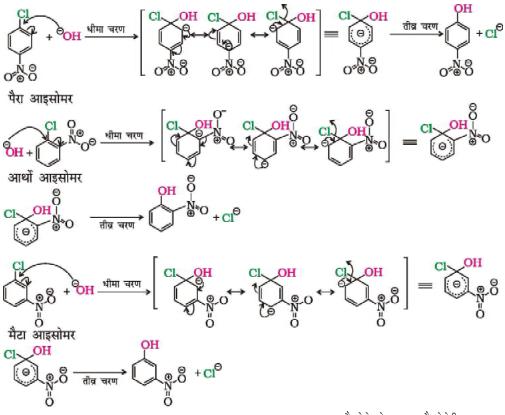

अधिक s गुणयुक्त sp^2 संकरित कार्बन अधिक विद्युतऋणात्मक होता है तथा हैलोऐल्केन में कम s गुण युक्त sp^3 संकरित कार्बन परमाणु की तुलना में C-X आबंध के इलेक्ट्रॉन युगल को अपेक्षाकृत अधिक सुदृढ़ता से थाम सकता है। अत: हैलोऐल्केन में C–Cl आबंध की लम्बाई 177pm है जबकि हैलोऐरीन में 169 pm है। चूँकि लंबे बंध की तुलना में छोटे बंध को तोड़ना कठिन होता है, अत: नाभिकरागी प्रतिस्थापन अभिक्रिया में हैलोऐल्केनों की तुलना में हैलोऐरीन कम क्रियाशील होते हैं।

(**iii**) **फेनिल धनायन का अस्थायित्व**- स्वआयनन के फलस्वरूप हैलोऐरीनों से बना फेनिल धनायन अनुनाद के द्वारा स्थायी नहीं हो पाएगा। अत: S_N1 क्रियाविधि की संभावना समाप्त हो जाती है।

(iv) संभावित प्रतिकर्षण के कारण इलेक्ट्रॉनधनी नाभिकरागी के इलेक्ट्रॉनधनी ऐरीन की ओर जाने की संभावना कम होती है।


हाइड्रॉक्सिल समूह के द्वारा प्रतिस्थापन

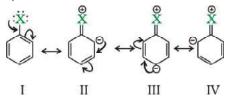
623K ताप तथा 300 वायुमंडलीय दाब पर जलीय सोडियम हाइड्रॉक्साइड के साथ गरम करने पर क्लोरोबेन्जीन को फीनॉल में परिवर्तित कर सकते हैं।



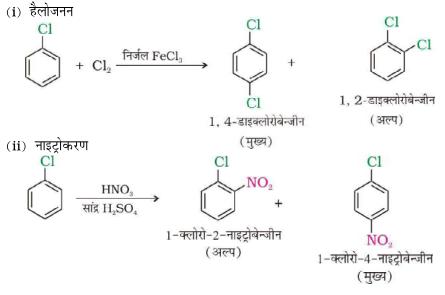
<mark>326</mark> रसायन विज्ञान

आर्थो-तथा *पैरा*-स्थिति पर इलेक्ट्रॉन-अपनयक समूह (–NO₂) उपस्थित होने पर हैलोऐरीन की क्रियाशीलता बढ़ जाती है।

जब –NO₂ समूह आर्थो– तथा *पैरा*–स्थितियों पर जुड़ा होता है, तब यह प्रभाव अधिक प्रबल होता है। तथापि, इलेक्ट्रॉन अपनयक समूह के *मैटा*-स्थिति पर जुड़े होने की स्थिति में हैलोएरीनों की अभिक्रियाशीलता पर कोई प्रभाव प्रेक्षित नहीं होता है। अभिक्रिया की क्रियाविधि को निम्न प्रकार से आरेखित किया जा सकता है।


हैलोऐल्केन तथा हैलोऐरीन 327

क्या आप विचार कर सकते हैं कि –NO₂ समूह *ऑर्थो*– तथा *पैरा*– स्थिति पर ही प्रभाव क्यों दर्शाता है, *मेटा-*स्थिति पर क्यों नहीं?


जैसा कि दर्शाया गया है, कि ऑर्थो- तथा पैरा-स्थिति पर नाइट्रो समूह की उपस्थिति से बेन्जीन वलय पर इलेक्ट्रॉन घनत्व कम हो जाता है। फलत: हैलोऐरीन पर नाभिकरागी का आक्रमण सरल हो जाता है। इस प्रकार बना कार्बऐनायन अनुनाद के द्वारा स्थायित्व प्राप्त कर लेता है। हैलोजन प्रतिस्थापी के स्थान से ऑर्थो- एवं पैरा-स्थितियों पर स्थित कार्बनों पर उत्पन्न ऋणावेश -NO₂ के द्वारा स्थायित्व प्राप्त कर लेता है जबकि *m*-नाइट्रोक्लोरोबेन्जीन में एक भी संरचना इस प्रकार की नहीं होती जिसमें -NO₂ समूह की उपस्थिति वाले कार्बन परमाणु पर ऋणावेश हो। अत: *मेटा*- स्थिति पर उपस्थित नाइट्रो समूह ऋणावेश को स्थायित्व प्रदान नहीं करता तथा *मेटा*- स्थिति पर उपस्थित -NO₂ समूह का अभिक्रियाशीलता पर कोई प्रभाव प्रेक्षित नहीं होता।

2. इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएं

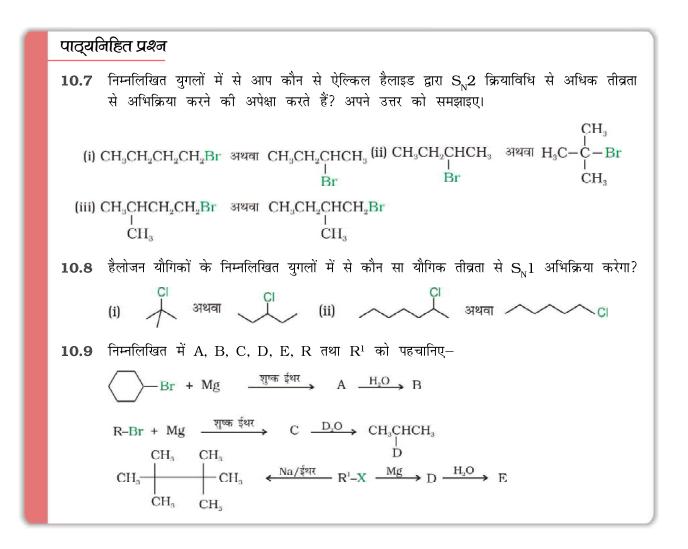
हैलोऐरीन, बेन्जीन की तरह सामान्य इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएं जैसे- हैलोजनन, नाइट्रोकरण, सल्फोनेशन तथा फ्रीडेल-क्राफ्ट आदि अभिक्रियाएं देती हैं। हैलोजन परमाणु के आंशिक निष्क्रियक होते हुए भी इसका o- तथा p- निर्देशकारी प्रभाव होता है। अत: अगला प्रतिस्थापन हैलोजन के स्थान से *ऑर्थो* और *पैरा* स्थितियों पर होता है। हैलोजन के *ऑर्थो* एवं *पैरा* निर्देशक प्रभाव को अनुनाद संरचनाओं की ओर ध्यान देकर आसानी से समझ सकते हैं।

अनुनाद के कारण, *मेटा*- स्थिति की तुलना में आर्थो- तथा पैरा- स्थितियों पर इलेक्ट्रॉन घनत्व अधिक बढ़ जाता है। -I प्रभाव के कारण हैलोजन परमाणु की प्रकृति बेन्जीन वलय के इलेक्ट्रॉन आकर्षित करने की होती है, इसलिए बेन्जीन की तुलना में वलय कुछ मात्रा में निष्क्रिय हो जाती है। अत: हैलोऐरीन में इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएं मंद होती हैं तथा बेन्जीन की तुलना में अधिक उग्र परिस्थितियों की आवश्यकता होती है।

328 रसायन विज्ञान

क्लोरीन यद्यपि इलेक्ट्रॉन अपनयक समूह है फिर भी यह ऐरोमैटिक इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में *ऑर्थो*- तथा *पैरा*- निर्देशक है, क्यों?

उदाहरण 10.9


<u>हल</u> प्रेरण प्रभाव के कारण क्लोरीन इलेक्ट्रॉन आकर्षित करती है तथा अनुनाद के कारण इलेक्ट्रॉन निर्गमित करती है। प्रेरण प्रभाव के कारण क्लोरीन इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में बने मध्यवर्ती कार्बोकैटायन को अस्थायित्व प्रदान करती है।

अनुनाद के द्वारा हैलोजन कार्बोकैटायन को स्थायित्व प्रदान करने का प्रयास करती है तथा यह प्रभाव *आर्थो*– एवं *पैरा-*स्थितियों पर अधिक प्रबल होता है। **अनुनाद प्रभाव की तुलना में**

हैलोऐल्केन तथा हैलोऐरीन 329

प्रेरण प्रभाव अधिक प्रबल होता है, अतः नेट प्रभाव इलेक्ट्रॉन अपनयन करने का होता है जिससे निष्क्रियण उत्पन्न होता है। *ऑर्थो*– एवं *पैरा*– स्थिति पर आक्रमण में अनुनाद प्रभाव, प्रेरण प्रभाव के विपरीत कार्य करता है, अत: *ऑर्थो*– एवं *पैरा*– स्थिति के निष्क्रियण को कम करता है। इस प्रकार अभिक्रियाशीलता, प्रबल प्रेरण प्रभाव के द्वारा तथा अभिविन्यास, अनुनाद प्रभाव के द्वारा नियंत्रित होता है।

3. धातुओं के साथ अभिक्रिया

वुर्ट्ज-फिटिग अभिक्रिया– ऐल्किल हैलाइड तथा ऐरिल हैलाइड का मिश्रण, सोडियम के साथ शुष्क ईथर की उपस्थिति में गरम करने पर ऐल्किलऐरीन देता है तथा इसे वुर्ट्ज-फिटिग अभिक्रिया कहते हैं।

330 रसायन विज्ञान

फिटिग अभिक्रिया–ऐरिल हैलाइड भी शुष्क ईथर में सोडियम के साथ अभिक्रिया द्वारा सजातीय यौगिक देते हैं, जिसमें दो ऐरिल समूह परस्पर जुड़े रहते हैं। इसे फिटिग अभिक्रिया कहते हैं।

 $2 \xrightarrow{X} + 2Na \xrightarrow{\overline{y_{gen}} \notin 2V} \xrightarrow{\overline{y_{gen}} \# 2NaX} + 2NaX$

एक से अधिक हैलोजन परमाणुयुक्त यौगिक सामान्यतः पॉलिहैलोजन यौगिक कहलाते हैं। इनमें से अनेक यौगिक उद्योगों तथा कृषि में उपयोगी हैं। इस खंड में कुछ महत्वपूर्ण पॉलिहैलोजन यौगिकों का वर्णन किया गया है।

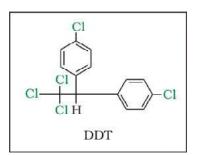
10.8.1 डाइक्लोरोमेथेनडाइक्लोरोमेथेन का अत्यधिक उपयोग विलायक के रूप में, पेंट अपयनक में, ऐरोसॉल में
प्रणोदक के रूप में तथा औषध निर्माण की प्रक्रिया में विलायक के रूप में होता है। यह
प्रणोदक के रूप में तथा औषध निर्माण की प्रक्रिया में विलायक के रूप में होता है। यह
धातु की सफ़ाई एवं फिनिशिंग विलायक के रूप में प्रयुक्त होता है। मेथिलीन क्लोराइड
मनुष्यों के केंद्रीय तंत्रिका तंत्र को हानि पहुँचाता है। वायु में मेथिलीन क्लोराइड की थोड़ी
सी मात्रा के सम्पर्क में आने के प्रभाव से श्रवण एवं दृश्य क्षमता में आंशिक क्षीणता आती
है। मेथिलीन क्लोराइड की वायु में अधिक मात्रा के प्रभाव से चक्कर आना, मितली,
हाथ-पैरों की अंगुलियों में सनसनी एवं जड़ता आदि लक्षण उत्पन्न हो जाते हैं। मनुष्यों में
मेथिलीन क्लोराइड के त्वचा के सीधे संपर्क में आने पर तीव्र जलन तथा हल्का लालपन
आ जाता है। आँखों से सीधा संपर्क कोर्निया जला सकता है।

10.8 पॉलिहैलोजन

यौशिक

10.8.2 ट्राइक्लोरोमेथेन (क्लोरोफार्म) (क्लोरोफार्म) स्22 बनाने में होता है। पहले इसका उपयोग वसा, ऐल्केलॉइड, आयोडीन तथा अन्य पदार्थों के लिए विलायक के रूप में होता है। वर्तमान में क्लोरोफार्म का प्रमुख उपयोग फ्रेऑन प्रशीतक R-22 बनाने में होता है। पहले इसका उपयोग शल्य चिकित्सा में निश्चेतक के रूप में होता था; परंतु अब इसका स्थान ईथर जैसे कम विषैले एवं अधिक सुरक्षित निश्चेतकों ने ले लिया है। निश्चेतक के रूप में इसके उपयोग को देखते हुए यह अपेक्षित है कि क्लोरोफॉर्म को सूँघने से केंद्रीय तंत्रिका तंत्र अवनमित हो जाता है। वायु के प्रति दस लाख भाग में 900 भाग क्लोरोफॉर्म (900 भाग प्रति दस लाख) में बहुत कम समय तक सांस लेने से चक्कर, थकान एवं सिरदर्द हो सकता है, क्लोरोफॉर्म के दीर्घकालिक संपर्क (exposure) से यकृत का (जहाँ क्लोरोफॉर्म फ्रॉस्जीन में उपापचयित होती है) एवं वृक्क का क्षय हो सकता है तथा कुछ व्यक्तियों की त्वचा क्लोरोफॉर्म में उपापचयित होती है) एवं वृक्क का क्षय हो सकता है तथा कुछ व्यक्तियों की त्वचा क्लोरोफॉर्म में उपापचयित होती है) एवं वृक्क का क्षय हो सकता है तथा कुछ व्यक्तियों की त्वचा क्लोरोफॉर्म में उपापचयित होती है। एवं वृक्क का क्षय हो सकता है तथा कुछ व्यक्तियों की त्वचा क्लोरोफॉर्म में उपापचयित होती है। इसलिए भंडारण के लिए इसे पूर्णत: भरी हुई इसे रंगीन बोतलों में रखा जाता है ताकि उनमें वायु न रहे।

$$2$$
CHCl₃ + O₂ \xrightarrow{yan} \xrightarrow{yan} 2 COCl₂ + 2HCl फ़ॉस्जीन


- 10.8.3 ट्राइआयोडोमेथेनइसका उपयोग प्रारंभ में पूतिरोधी (ऐंटिसेप्टिक) के रूप में किया जाता था परंतु आयडोफॉर्म
(आयडोफार्म)(आयडोफार्म)का यह पूतिरोधी गुण आयडोफार्म के कारण स्वयं नहीं, बल्कि मुक्त हुई आयोडीन के कारण
होता है। इसकी अरुचिकर गंध के कारण अब इसके स्थान पर आयोडीन युक्त अन्य दवाओं
का उपयोग किया जाता है।
- 10.8.4टेट्राक्लोरोमेथेन
इसका अत्यधिक मात्रा में उत्पादन प्रशीतक बनाने तथा ऐरोसॉल कैन के लिए प्रणोदक के
उत्पादन में उपयोग करने के लिए किया जाता है इसे क्लोरोफ्लुओरो कार्बन तथा अन्य रसायनों
के उत्पादन में अपयोग करने के लिए किया जाता है इसे क्लोरोफ्लुओरो कार्बन तथा अन्य रसायनों
के उत्पादन में भी फ्रीडस्टॉक की तरह एवं औषध उत्पादन में तथा सामान्य विलायक की
भाँति प्रयुक्त किया जाता है। 1960 के मध्य तक यह उद्योगों में ग्रीस को साफ करने वाले

हैलोऐल्केन तथा हैलोऐरीन 331

द्रव तथा घरों में दाग-धब्बे हटाने वाले द्रव एवं अग्नि शामक के रूप में बहुतायत से प्रयुक्त होता था। इस प्रकार के कुछ प्रमाण हैं कि कार्बन टेट्राक्लोराइड से उद्भासन (exposure) द्वारा मनुष्यों को यकृत का कैंसर हो जाता है। इसके कुछ प्रमुख प्रभाव हैं चक्कर आना, सिर का हल्कापन, मितली तथा उल्टी आना आदि, जिससे तंत्रिका कोशिकाओं में स्थायी क्षति हो सकती है। गंभीर स्थिति में यह प्रभाव शीघ्रता से मूर्च्छा, गहरी नींद, बेहोशी अथवा मृत्यु ला I drkg&CCl₄ के उद्भासन से हृदयगति अनियमित हो सकती है अथवा रुक जाती है। आँखों के संपर्क में आने पर इस रसायन से जलन उत्पन्न होती है। कार्बनटेट्राक्लोराइड वायु में निर्मुक्त होने पर ऊपरी वायुमंडल में पहुँच जाती है और ओज़ोन परत को विरल बना देती है। ओज़ोन परत के विरलीकरण से मनुष्यों का पराबैंगनी किरणों से उद्भासन बढ़ जाता है। जिससे त्वचा का कैंसर, आँखों की बीमारियाँ तथा विकार एवं प्रतिरक्षा प्रणाली में विदारण होना संभव है।

मेथेन व एथेन के क्लोरोफ्लुओरो व्युत्पन्न संयुक्त रूप से फ्रेऑन कहलाते हैं। यह अत्यधिक स्थायी, निष्क्रिय तथा निरावेषी (नॉन-टॉक्सिक) असंक्षारक (नॉन-कोरोसिव) तथा आसानी से द्रवित हो सकने वाली गैसें हैं। फ्रेऑन 12 (CF₂Cl₂) उद्योगों मे सर्वाधिक प्रयुक्त होने वाले सामान्य फ्रेऑनों में से एक है। इसका उत्पादन स्वार्ट्स आभिक्रिया द्वारा टेट्राक्लोरोमेथेन से किया जाता है। यह ऐरोसॉल प्रणोदक, प्रशीतक तथा वायु शीतलन में उपयोग करने के लिए उत्पादित किए जाते हैं। 1974 तक विश्व में फ्रेऑन का वार्षिक उत्पादन 20 करोड़ पाउंड तक था। अधिकांश फ्रेऑन यहाँ तक कि प्रशीतन में काम आने वाले भी, वायुमंडल से होते हुए क्षोभमंडल में विसरित हो जाते हैं। क्षोभमंडल में फ्रेऑन, मूलक श्रृंखला अभिक्रिया प्रारंभ कर देते हैं तथा प्राकृतिक ओजोन संतुलन को अनियंत्रित कर देते हैं (एकक 14 कक्षा XI)।

प्रथम क्लोरीनीकृत, कार्बनिक कीटनाशी DDT मूलत: 1873 में बनाया गया था, लेकिन इसके कीटनाशी प्रभाव की खोज 1939 में स्विट्ज़रलैंड के गिगी औषधालय के पॉल मूलर ने की। इस खोज के लिए पॉल मूलर को 1948 में चिकित्सा एवं शरीर क्रिया विज्ञान के लिए नोबेल पुरस्कार प्राप्त हुआ। द्वितीय विश्व युद्ध के उपरांत इसका उपयोग विश्वस्तर पर तेजी के साथ बढ़ा, क्योंकि यह मुख्यत: मलेरिया फैलाने वाले मच्छरों तथा टाइफस वाहक जुओं को समाप्त करने में प्रभावकारी होती है। 1940 के अंत में DDT के अत्यधिक उपयोग के कारण उत्पन्न होने वाली समस्याएं उभरने लगीं। कीटों की अनेक प्रजातियों ने DDT के प्रति प्रतिरोधात्मकता विकसित कर ली तथा यह मछलियों के लिए अति विषैली सिद्ध हुई। DDT के अत्यधिक रासायनिक स्थायित्व तथा इसकी वसा में विलेयता ने समस्या को और जटिल बना दिया। DDT का शीघ्रता से उपापचयन नहीं होता अपितु यह वसीय ऊतकों में एकत्र तथा संग्रहित हो जाती है। यदि अंतर्ग्रहण लगातार स्थायी गति से होता रहे तो जंतुओं में DDT की मात्रा समय के साथ बढ़ती जाती है। संयुक्त राज्य में 1973 में DDT पर प्रतिबंध लगा दिया था परंतु विश्व में अनेक स्थानों पर इसका उपयोग आज भी हो रहा है।

10.8.6 **p-p'-डाइ-**क्लोरोडाइफेनिल-ट्राइक्लोरो एथेन (**DDT**)

10.8.5 फ्रेऑन

332 रसायन विज्ञान

सारांश

ऐल्किल⁄ऐरिल हैलाइडों को उनकी संरचना में उपस्थित एक, दो अथवा अधिक हैलोजन परमाणुओं के आधार पर क्रमश: मोनो, डाइ अथवा पॉलिहैलोजन (ट्राइ-, टेट्रा- आदि) यौगिकों में वर्गीकृत किया जा सकता है चूँकि हैलोजन परमाणु कार्बन परमाणु से अधिक विद्युतऋणात्मक होता है, अत: कार्बन-हैलोजन आबंध ध्रुवित हो जाता है। कार्बन पर आंशिक धनावेश तथा हैलोजन परमाणु पर आंशिक ऋणावेश आ जाता है।

ऐल्किल हैलाइडों को ऐल्केन के **मुक्त मूलक हैलोजनन** द्वारा; ऐल्कीनों पर हैलोजन अम्लों के योगज द्वारा; ऐल्कोहॉल के –OH समूह को फ़ास्फ़ोरस हैलाइड या थायोनिल क्लोराइड अथवा हैलोजन अम्लों के उपयोग से हैलोजन द्वारा प्रतिस्थापित करके बनाया जाता है। एरिल हैलाइडों को ऐरीनो की **इलेक्ट्रॉनरागी प्रतिस्थापन** अभिक्रिया द्वारा बनाया जाता है। फ्लुओराइडों एवं आयोडाइडों को बनाने की श्रेष्ठ विधि हैलोजन विनिमय विधि है।

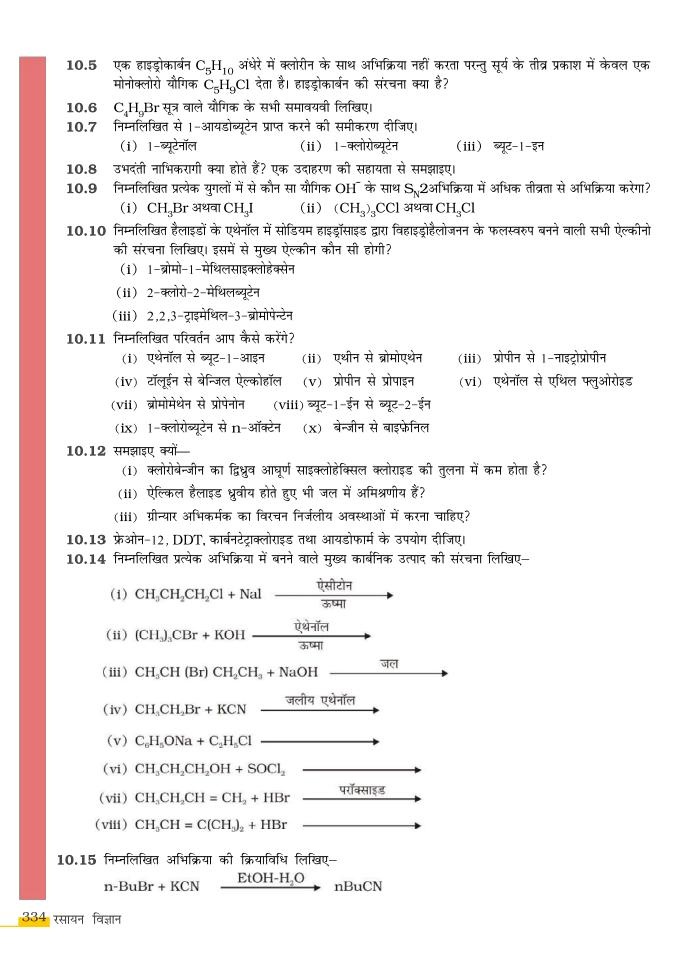
प्रबल, द्विध्रुव-द्विध्रुव तथा वान्डरवाल्स आकर्षण बलों के कारण कार्बनहैलोजन यौगिकों के क्वथनांक संगत होइड्रोकार्बनों की तुलना में अधिक होते हैं। ये जल में अल्प विलेय परंतु कार्बनिक विलायकों में पूर्ण विलेय होते हैं।

ऐल्किल हैलाइडों के कार्बन-हैलोजन आबंध की ध्रुवता इनके **नाभिकरागी प्रतिस्थापन, विलोपन तथा धातुओं से** अभिक्रिया द्वारा कार्बधात्विक यौगिकों के निर्माण के लिए उत्तरदायी है। रासायनिक बलगतिकी गुणों के आधार पर नाभिकरागी प्रतिस्थापन अभिक्रियाओं को $S_{_N}1$ व $S_{_N}2$ अभिक्रियाओं में वर्गीकृत किया गया है। $S_{_N}1$ व $S_{_N}2$ अभिक्रिया की क्रियाविधि को समझने के लिए **काइरलता** की महत्वपूर्ण भूमिका है। काइरल ऐल्किल हैलाइड की S_v2 अभिक्रिया को विन्यास में प्रतीपन के द्वारा तथा $\mathrm{S}_{\!\scriptscriptstyle \mathrm{N}} 1$ अभिक्रिया को रेसिमीकरण के द्वारा अभिलक्षणित किया जा सकता है।

अधिकांश पॉलिहैलोजन यौगिक जैसे डाइक्लोरोमेथेन, क्लोराफार्म, आयडोफार्म, कार्बनटेट्राक्लोराइड, फ्रेऑन तथा DDT के अनेक औद्योगिक अनुप्रयोग हैं। तथापि इनमें से कई यौगिक शीघ्रता से अपघटित नहीं किए जा सकते यहाँ तक कि ये ओज़ोन परत का विरलीकरण करते हैं और वायुमंडलीय संकट सिद्ध हो रहे हैं।

अभ्यास

- निम्नलिखित हैलाइडों के नाम आईयूपीएसी (IUPAC) पद्धति से लिखिए तथा उनका वर्गीकरण, ऐल्किल 10.1 ऐलिलिक, बेन्जिलिक (प्राथमिक, द्वितीयक एवं तृतीयक) वाइनिल अथवा ऐरिल हैलाइड के रूप में कीजिए– (ii) $CH_{2}CH_{2}CH(CH_{2})CH(C_{2}H_{5})Cl$
 - (i) $(CH_3)_{3}CHCH(Cl)CH_{3}$
 - (iii) $CH_3CH_2C(CH_3)_2CH_2I$
 - (v) $CH_{3}CH(CH_{3})CH(Br)CH_{3}$
 - (vii) $CH_{3}C(Cl)(\mathring{C}_{2}H_{5})CH_{2}CH_{3}$
 - (ix) $CH_{3}CH=CH\bar{C}(Br)(\bar{CH}_{3})_{2}$
 - (xi) m-ClCH₂C₆H₄CH₂C(CH₃)₃
- 10.2 निम्नलिखित यौगिकों के IUPAC नाम दीजिए-
 - (i) CH₃CH(Cl)CH(Br)CH₃
 - (iii) $CICH_0C \equiv CCH_0Br$
 - (v) $CH_3C(p-ClC_6H_4)_2CH(Br)CH_3$
- (iv) $(CH_3)_3 CCH_2 CH(Br) C_6 H_5$ (vi) $CH_3C(C_2H_5)_2CH_2Br$ (vii) $CH_3CH=C(CI)CH_2CH(CH_3)_2$


 - (x) p-ClC₆H₄CH₂CH(CH₃)₂
- (xii) o-Br- $\check{C}_6 \check{H}_4 C \check{H} (CH_3) \check{C} \check{H}_2 C H_3$
- (ii) $CHF_2CBrCIF$
- (iv) $(CCl_3)_3CCI$
- (vi) $(CH_3)_3CCH=CClC_6H_4I-p$
- निम्नलिखित कार्बनिक हैलोजन यौगिकों की संरचना दीजिए-10.3
 - (i) 2-क्लोरो-3-मेथिलपेन्टेन
 - (iii) 1-क्लोरो-4-एथिलसाइक्लोहेक्सेन
 - (v) 2-ब्रोमोब्यूटेन
 - (vii) 1-ब्रोमो-4-द्वितीयक-ब्यूटिल-2-मेथिल बेन्जीन (viii) 1,4- डाइब्रोमोब्यूट-2-ईन
- निम्नलिखित में से किसका द्विध्रुव आघूर्ण सर्वाधिक होगा? 10.4 (i) CH₂Cl₂ (ii) CHCl₂
- (iii) CCl₄

हैलोऐल्केन तथा हैलोऐरीन 333

Downloaded from https:// www.studiestoday.com

(iv) 2-(2-क्लोरोफेनिल)-1-आयडोऑक्टेन (vi) 4-*तृतीयक*-ब्यूटिल-3-आयडोहेप्टेन

(ii) *p*-ब्रोमोक्लोरो बेन्जीन

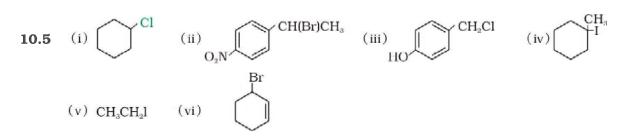
10.16 S 2 प्रतिस्थापन के प्रति अभिक्रियाशीलता के आधार पर इन यौगिकों के समूहों को क्रमबद्ध कीजिए।

- (i) 2-ब्रोमो-2-मेथिलब्यूटेन, 1- ब्रोमोपेन्टेन, 2- ब्रोमोपेन्टेन
- (ii) 1-ब्रोमो-3-मेथिलब्यूटेन, 2-ब्रोमो-2-मेथिलब्यूटेन, 2-ब्रोमो-3-मेथिलब्यूटेन
- (iii) 1-ब्रोमोब्यूटेन, 1-ब्रोमो-2,2-डाइमेथिलप्रोपेन, 1-ब्रोमो-2-मेथिलब्यूटेन, 1-ब्रोमो-3-मेथिलब्यूटेन

10.17 $C_6H_5CH_2Cl$ तथा $C_6H_5CHClC_6H_5$ में से कौन सा यौगिक जलीय KOH से शीघ्रता से जलअपघटित होगा? **10.18** o-तथा-*m*- समावयवियों की तुलना में *p*-डाक्लोरोबेन्जीन का गलनांक उच्च होता है, विवेचना कीजिए। **10.19** निम्नलिखित परिवर्तन कैसे संपन्न किए जा सकते हैं?

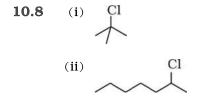
- (1) प्रोपीन से प्रोपेन-1-ऑल
- (2) एथेनॉल से ब्यूट-1-आइन
- (3) 1-ब्रोमोप्रोपेन से 2-ब्रोमोप्रोपेन
- (4) टॉलूईन से बेन्ज़िल ऐल्कोहॉल
- (5) बेन्जीन से 4-ब्रोमोनाइट्रोबेन्जीन
- (6) बेन्ज़िल ऐल्कोहॉल से 2-फेनिल एथेनॉइक अम्ल
- (7) एथेनॉल से प्रोपेन नाइट्राइल
- (8) ऐनिलीन से क्लोरोबेन्जीन
- (9) 2-क्लोरोब्यूटेन से 3,4-डाइमेथिलहेक्सेन
- (10) 2-मेथिल-1-प्रोपीन से 2-क्लोरो-2-मेथिलप्रोपेन
- (11) एथिल क्लोराइड से प्रोपेनॉइक अम्ल
- (12) ब्यूट-1-ईन से n-ब्यूटिल आयोडाइड
- (13) 2-क्लोरोप्रोपेन से 1- प्रोपेनॉल
- (14) आइसोप्रोपिल ऐल्कोहॉल से आयडोफार्म
- (15) क्लोरोबेन्जीन से p-नाइट्रोफ़ीनॉल
- (16) 2-ब्रोमोप्रोपेन से 1-ब्रोमोप्रोपेन
- (17) क्लोरोएथेन से ब्यूटेन
- (18) बेन्जीन से डाइफ्रेनिल
- (19) तृतीयक-ब्यूटिल ब्रोमाइड से आइसो-ब्यूटिल ब्रोमाइड
- (20) ऐनिलीन से फ़ेनिलआइसोसायनाइड
- 10.20 ऐल्किल क्लोराइड की जलीय KOH से अभिक्रिया द्वारा ऐल्कोहॉल बनती है लेकिन ऐल्कोहॉलिक KOH की उपस्थिति में ऐल्कीन मुख्य उत्पाद के रूप में प्राप्त होती है। समझाइए।

10.21 प्राथमिक ऐल्किल हैलाइड C₄H₉Br (क), ऐल्कोहॉलिक KOH में अभिक्रिया द्वारा यौगिक (ख) देता है। यौगिक 'ख' HBr के साथ अभिक्रिया से यौगिक 'ग' देता है जो कि यौगिक 'क' का समावयवी है। जब यौगिक 'क' को अभिक्रिया सोडियम धातु से होती है तो यौगिक 'घ' C₈H₁₈ बनता है, जो कि ब्यूटिल ब्रोमाइड की सोडियम से अभिक्रिया द्वारा बने उत्पाद से भिन्न है। यौगिक 'क' का संरचना सूत्र दीजिए तथा सभी अभिक्रियाओं की समीकरण दीजिए।


- 10.22 तब क्या होता है जब-
 - (i) *n*-ब्यूटिल क्लोराइड को ऐल्कोहॉलिक KOH के साथ अभिकृत किया जाता है?
 - (ii) शुष्क ईथर की उपस्थिति में ब्रोमोबेन्जीन की अभिक्रिया मैग्नीशियम से होती है?
 - (iii) क्लोरोबेन्जीन का जलअपघटन किया जाता है?
 - (iv) एथिल क्लोराइड की अभिक्रिया जलीय KOH से होती है?
 - (v) शुष्क ईथर की उपस्थिति में मेथिल ब्रोमाइड की अभिक्रिया सोडियम से होती है?
 - (vi) मेथिल क्लोराइड की अभिक्रिया KCN से होती है?

हैलोऐल्केन तथा हैलोऐरीन 335

कुछ पाठ्यनिहित प्रश्नों के उत्तर


- **10.1** (i) $CH_3CH_2CH(CH_3)CHCICH_3$ (ii) C_2H_5 (iii) $CH_3CH_2CH_2CH CH(I)CH_2CH_3$ (iv) $BrCH_2CH = CHCH_2Br$ $H_3C-C-CH_3$ (v) C_2H_5 C_2H_5 (iv) $BrCH_2CH = CHCH_2Br$
- 10.2 (i) ऐल्कोहॉल के ऐल्किल आयोडाइड में परिवर्तन के लिए KI के साथ $m H_2SO_4$ का प्रयोग नहीं किया जा सकता; क्योंकि यह KI को संगत HI अम्ल में परिवर्तित कर देता है, तत्पश्चात् इसे $m I_2$ में आक्सीकृत कर देता है।
- $\textbf{10.3} \quad \text{ClCH}_2\text{CH}_2\text{CH}_2\text{Cl} \quad (\text{II}) \quad \text{ClCH}_2\text{CHClCH}_3 \quad (\textbf{iii}) \quad \text{Cl}_2\text{CH}_2\text{CH}_2\text{CH}_3 \quad (\textbf{iv}) \quad \text{CH}_3\text{CCl}_2\text{CH}_3 \quad (\textbf{iv}) \quad \text{CH}_3\text{CCl}_2\text{CH}_3 \quad (\textbf{iv}) \quad \text{CH}_3\text{CCl}_3\text{CH}_3 \quad (\textbf{iv}) \quad \text{CH}_3\text{CH}_3 \quad (\textbf{iv}) \quad (\textbf{iv})$
- 10.4 (i) $H_3C-C-CH_3$ चूँकि सभी हाइड्रोजन परमाणु समतुल्य हैं, अतः किसी भी हाइड्रोजन । परमाणु के प्रतिस्थापन पर समान उत्पाद बनेगा। CH_3
 - (ii) $C^{a}H_{3}C^{b}H_{2}C^{c}H_{2}C^{b}H_{2}C^{a}H_{3}$ समतुल्य हाइड्रोजनों को a,b,c से निर्देशित किया गया है। समतुल्य हाइड्रोजनों के प्रतिस्थापन पर समान उत्पाद बनेंगें।

(iii) $C^{a}H_{3}C^{b}HC^{c}H_{2}C^{d}H_{3}$ CH_{3}^{a} इसी प्रकार समतुल्य हाइड्रोजनों को a, b, c तथा d से निर्देशित किया गया है अत: चार समावयवी उत्पाद संभव हैं।

- 10.6 (i) क्लोरोमेथेन < ब्रोमोमेथेन < डाइब्रोमोमेथेन < ब्रोमोफार्म अणुभार बढ़ने पर क्वथनांक बढ़ता जाता है।
 - (ii) आइसोप्रोपिल क्लोराइड < 1-क्लोरोप्रोपेन < 1-क्लोरोब्यूटेन शाखित होने के कारण आइसोप्रोपिल क्लोराइड का गलनांक 1-क्लोरोप्रोपेन से कम होगा।
- 10.7 (i) CH₂CH₂CH₂CH₂Br प्राथमिक हैलाइड होने के कारण कोई त्रिविम बाधा नहीं होगी।
 - $(ii) \begin{array}{c} CH_3CH_2CHCH_3 \\ I \\ Br \end{array}$ द्वितीयक हैलाइड, तृतीयक हैलाइड की तुलना में अधिक तीव्रता से
 - (iii) CH₃CHCH₂CH₂Br मेथिल समूह हैलाइड समूह के निकट होने के कारण त्रिविम बाधा । CH₃ अधिक होगी तथा अभिक्रिया का वेग कम होगा।

336 रसायन विज्ञान

तृतीयक कार्बोकैटायन का स्थायित्व अधिक होने के कारण तृतीयक हैलाइड की अभिक्रियाशीलता द्वितीयक हैलाइड से अधिक होगी।

प्राथमिक कार्बोकैटायन की तुलना में द्वितीयक कार्बोकैटायन का स्थायित्व अधिक होने के कारण।

$$10.9 A = \bigcirc -MgBr B = \bigotimes$$

C = RMgBr $R = CH_3CHCH_3$

$$\begin{array}{cccc} CH_3 & CH_3 & CH_3 \\ I & I \\ R^1 = H_3C - C & D = H_3C - C - MgX & E = H_3C - C - H \\ I & I \\ CH_3 & CH_3 & CH_3 \end{array}$$

हैलोऐल्केन तथा हैलोऐरीन 337

उह्रश्य

इस एकक के अध्ययन के पश्चात् आप -

- ऐल्कोहॉलों, फ़ीनॉलों तथा ईथरों के नामकरण IUPAC नामपद्धति के अनुसार कर पाएंगे।
- ऐल्कीनों, ऐल्डिहाइडों, कीटोनों तथा कार्बोक्सिलिक अम्लों से ऐल्कोहॉलों को बनाने की अभिक्रियाओं की विवेचना कर सकेंगे।
- हैलोऐरीनों, बेन्जीन सल्फोनिक अम्ल, डाइऐजोनियम लवणों तथा क्यूमीन से फ़ीनॉलों को बनाने की अभिक्रियाओं की व्याख्या कर सकेंगे।
- ऐल्कोहॉलों, ऐल्किल हैलाइडों तथा सोडियम ऐल्कॉक्साइडों / ऐरिल ऑक्साइडों से ईथरों के विरचन की अभिक्रियाओं की व्याख्या कर सकेंगे।
- ऐल्कोहॉलों, फ़ीनॉलों और ईथरों के भौतिक गुणधर्मों एवं उनकी संरचनाओं को सहसंबंधित कर सकेंगे।
- प्रकार्यात्मक समूहों के आधार पर तीनों वर्गों के यौगिकों की रासायनिक अभिक्रियाओं की व्याख्या कर सकेंगे।

ऐल्कोहॉल, फ्रीनॉल और ईथर क्रमश: अपमार्जक, पूतिरोधी एवं सुगंधि बनाने के मूल यौगिक हैं।

आपने पढ़ा है कि किसी हाइड्रोकार्बन के एक या उससे अधिक हाइड्रोजन परमाणुओं के दूसरे परमाणु या परमाणुओं के समूहों द्वारा प्रतिस्थापन से पूर्णत: नए यौगिकों का निर्माण होता है, जिनके गुणधर्म और अनुप्रयोग बिलकुल भिन्न होते हैं। जब ऐलिफ़ैटिक और ऐरोमैटिक हाइड्रोकार्बन का कोई हाइड्रोजन परमाणु हाइड्रॉक्सिल समूह द्वारा प्रतिस्थापित होता है तो क्रमश: ऐल्कोहॉल तथा फ़ीनॉल बनते हैं। इन वर्गों के यौगिकों के, उद्योगों और हमारे दैनिक जीवन में अनेक अनुप्रयोग हैं। उदाहरणार्थ, क्या आपने कभी ध्यान दिया है कि लकड़ी के फ़र्नीचर की पॉलिश में प्रयुक्त होने वाली सामान्य स्प्रिट मुख्य रूप से हाइड्रॉक्सिल समूह युक्त यौगिक एथेनॉल है। खाद्य शर्करा, वस्त्रों में प्रयुक्त कपास, लिखने के लिए कागज, सभी –OH समूह युक्त यौगिकों से निर्मित हैं। आप जरा, कागज के बिना जीवन के बारे में कल्पना करें; जब कोई पुस्तक, पुस्तिका, समाचार पत्र, मुद्रा-नोट, चैक, प्रमाणपत्र नहीं होंगे। सुन्दर चित्रों तथा रुचिकर कहानियों वाली पत्रिकाएं हमारे जीवन से विलुप्त हो जाएंगीं। यह वास्तव में एक भिन्न संसार होगा।

ऐल्कोहॉल में एक अथवा अधिक हाइड्रॉक्सिल (–OH) समूह, ऐलिफ़्रैटिक तंत्र (R–OH) के कार्बन परमाणु (परमाणुओं) से सीधे जुड़े होते हैं जबकि फ़ीनॉल में हाइड्रॉक्सिल (–OH) समूह ऐरोमैटिक तंत्र (Ar–OH) के कार्बन परमाणु (परमाणुओं) से सीधे जुड़े होते हैं।

ऐल्कॉक्सी अथवा ऐरिलॉक्सी (R–O/ArO) समूह द्वारा हाइड्रोजन के प्रतिस्थापन से यौगिकों का एक दूसरा वर्ग प्राप्त होता है; जिन्हें ईथर कहते हैं। उदाहरणार्थ, CH₃OCH₃ (डाइमेथिल ईथर)। आप यह भी कल्पना कर

सकते हैं कि ईथर वह यौगिक हैं जो किसी ऐल्कोहॉल अथवा फ़ीनॉल के हाइड्रॉक्सिल समूह की हाइड्रोजन के, किसी एल्किल या एरिल समूह द्वारा विस्थापन से बनती हैं।

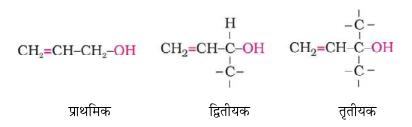
इस एकक में, हम तीन वर्गों के यौगिकों के बारे में पढ़ेंगे; यह हैं– ऐल्कोहॉल, फ़ीनॉल एवं ईथर।

11.1 वर्शीकरण

यौगिकों के वर्गीकरण से उनका अध्ययन क्रमबद्ध एवं सरल हो जाता है। इसलिए आइए, हम पहले यह सीखें कि ऐल्कोहॉलों, फ़ीनॉलों एवं ईथरों को किस प्रकार वर्गीकृत किया जाता है?

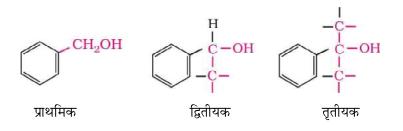
11.1.1 एल्कोहॉल मोनो, डाइ, ट्राइ एवं पॉलीहाइड्रिक एल्कोहॉल ऐल्कोहॉलों और फ़ीनॉलों को उनके यौगिकों में उपस्थित एक (मोनो-), दो (डाइ-), तीन (ट्राइ-) अथवा अधिक हाइड्रॉक्सिल (–OH) समूहों की संख्या के अनुसार क्रमश: मोनो, डाइ, ट्राइ अथवा पॉलीहाइड्रिक यौगिकों में वर्गीकृत किया जाता है, जैसा कि निम्नलिखित संरचनाओं में दिखाया गया है–

C ₂ H ₅ OH	CH ₂ OH CH ₂ OH	CH ₂ OH CHOH CH ₂ OH
मोनोहाइड्रिक	डाइहाइड्रिक	ट्राइहाइड्रिक


मोनोहाइड्रिक ऐल्कोहॉलों को हाइड्रॉक्सिल समूह से जुड़े कार्बन परमाणु की संकरण अवस्था के अनुसार पुन: वर्गीकृत किया जा सकता है।

(i) यौगिक जिनमें (C_{sp3}-OH) आबंध उपस्थित हो ऐल्कोहॉलों के इस वर्ग में हाइड्रॉक्सिल (-OH) समूह ऐल्किल समूह के sp³ संकरित कार्बन परमाणु से जुडा होता है। इन्हें पुन: निम्नलिखित प्रकार से वर्गीकृत किया जा सकता है-

प्राथमिक, द्वितीयक तथा तृतीयक ऐल्कोहॉल— इन तीन प्रकार के ऐल्कोहॉलों में हाइड्रॉक्सिल (–OH) समूह क्रमश: प्राथमिक, द्वितीयक तथा तृतीयक कार्बन परमाणु से जुड़ा होता है, जैसा कि नीचे दर्शाया गया है–


$-CH_2-OH$	СН-ОН	⇒с–он	
प्राथमिक (1°)	द्वितीयक (2°)	तृतीयक (3°)	

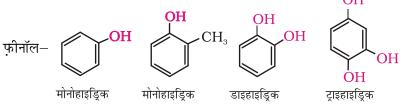
ऐलिलिक ऐल्कोहॉल— इस प्रकार के ऐल्कोहॉल में –OH समूह, कार्बन–कार्बन द्विक्आबंध से अगले *sp*³ संकरित कार्बन परमाणु पर अर्थात् ऐलिलिक कार्बन परमाणु से जुड़ा़ होता है। उदाहरणार्थ–

बेन्ज़िलिक ऐल्कोहॉल– इस प्रकार के ऐल्कोहॉल में –OH समूह ऐरोमैटिक वलय से अगले sp^3 संकरित कार्बन परमाणु पर जुड़ा होता है। उदाहरणार्थ–

ऐल्कोहॉल, फ़ीनॉल एवं ईथर <mark>339</mark>

ऐलिलिक एवं बेंजिलिक ऐल्कोहॉल भी प्राथमिक, द्वितीयक अथवा तृतीयक हो सकती हैं।

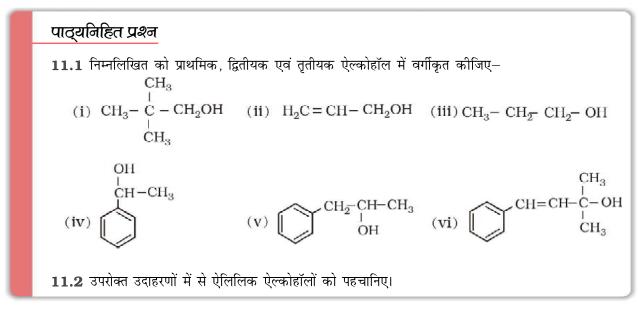
(ii) यौगिक जिनमें ($^{C}_{sp^{2}}$ – OH) आबंध उपस्थित हो


इन ऐल्कोहॉलों में -OH समूह कार्बन-कार्बन द्विक्आबंध जैसे वाइनिलिक कार्बन या ऐरिल कार्बन से जुड़ा होता है इन्हें वाइनिलिक ऐल्कोहॉल भी कहते हैं।

वाइनिलिक ऐल्कोहॉल- $CH_2 = CH - OH$

 11.1.2 फ़ीनॉल मोनो, डाइ
 फ़ीनोलों को भी हाइड्रॉक्सिल समूह की संख्या के अनसार मोनो, डाई एवं ट्राई हाइड्रिक

 एवं ट्राई हाइड्रिक
 फ़ीनोलों में वर्गीकृत किया जाता है।


 फ़ीनॉल
 OH

11.1.3 ईथर

ईथरों में यदि ऑक्सीजन परमाणु से जुड़े दोनों ऐल्किल अथवा ऐरिल समूह एक समान हों तो उन्हें **सरल** अथवा **सममित** ईथर और यदि ये दोनों समूह भिन्न-भिन्न हों तो इन्हें **मिश्रित** अथवा **असममित** ईथर में वर्गीकृत करते हैं।

 $C_2H_5OC_2H_5$ एक सममित ईथर है जबकि $C_2H_5OCH_3$ तथा $C_2H_5OC_6H_5$ असममित ईथर हैं।

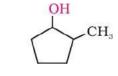
340 रसायन विज्ञान

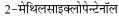
11.2 नामपद्धति

(क) ऐल्कोहॉल

ऐल्कोहॉल के सामान्य नाम को व्युत्पन्न करने के लिए, हाइड्रॉक्सिल समूह से जुड़े ऐल्किल समूह के सामान्य नाम के साथ ऐल्कोहॉल शब्द जोड़ा जाता है। उदाहरणार्थ, CH₃OH मेथिल ऐल्कोहॉल है। आईयूपीएसी (IUPAC) पद्धति (एकक 12 कक्षा XI) के अनुसार ऐल्कोहॉल का नाम व्युत्पन्न करने के लिए उस ऐल्केन के अंग्रेजी में लिखे नाम के अंतिम 'e' को अनुलग्न ऑल (ol) से प्रतिस्थापित किया जाता है, जिससे उस ऐल्कोहॉल की व्युत्पत्ति हुई है। प्रतिस्थापियों की स्थिति अंकों द्वारा इंगित की जाती है। इसके लिए सबसे लंबी कार्बन शृंखला (जनक शृंखला) का क्रमांकन उस सिरे से करते हैं जो हाइड्रॉक्सिल समूह के समीप हो। –OH समूह तथा अन्य प्रतिस्थापियों की स्थितियाँ उन कार्बन परमाणुओं के क्रमांक को प्रयुक्त कर दर्शाई जाती हैं जिससे वे जुड़े हों।

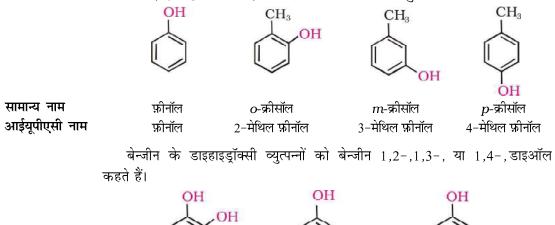
पॉलिहाइड्रिक ऐल्कोहॉलों का नामकरण करने के लिए ऐल्केन के अंग्रेज़ी के नाम का अंतिम e उसी प्रकार रखकर अंत में 'ऑल' जोड़ दिया जाता है। –OH समूहों की संख्या को 'ऑल' से पहले गुणात्मक पूर्वलग्न, डाइ, ट्राइ आदि लगाकर इंगित किया जाता है। –OH समूह की स्थिति को उपयुक्त स्थितिसूचक द्वारा इंगित करते हैं। उदाहरणार्थ– HO–CH₂–CH₂–OH का नाम एथेन–1,2-डाइऑल है। सारणी 11.1 में कुछ ऐल्कोहॉलों के सामान्य एवं आइयूपीएसी नाम दिए गए हैं।

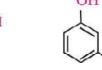

यौगिक	सामान्य नाम	आईयूपीएसी (IUPAC) नाम
СН ₃ –ОН СН ₃ –СН ₂ –СН ₂ –ОН	मेथिल ऐल्कोहॉल n- प्रोपिल ऐल्कोहॉल	मेथेनॉल प्रोपेन -1- ऑल
CH ₃ – CH – CH ₃ I OH	आइसोप्रोपिल ऐल्कोहॉल	प्रोपेन −2− ऑल
CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	${f n}$ - ब्यूटिल ऐल्कोहॉल	ब्यूटेन –1– ऑल
$CH_3 - CH - CH_2 - CH_3$ OH	द्वितीयक-ब्यूटिल ऐल्कोहॉल	ब्यूटेन –2– ऑल
$CH_3 - CH - CH_2 - OH$ CH_3	आइसोब्यूटिल ऐल्कोहॉल	2- मेथिलप्रोपेन-1-ऑल
$\begin{array}{c} \mathrm{CH}_{3}\\ \mathrm{I}\\ \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{OH}\\ \mathrm{I}\\ \mathrm{CH}_{3}\end{array}$	तृतीयक-ब्यूटिल ऐल्कोहॉल	2- मेथिलप्रोपेन-2-ऑल
$\begin{array}{ccc} H_2C & - & OH \\ & & & \\ H_2C & & OH \end{array}$	इथलीन ग्लाईकाल	एथेन−1, 2,−डाइऑल
$\begin{array}{c} \mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}\\ \mathrm{I}&\mathrm{I}&\mathrm{I}\\ \mathrm{OH}&\mathrm{OH}&\mathrm{OH} \end{array}$	ग्लिसरॉल	प्रोपेन –1, 2, 3,–ट्राइऑल

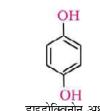

सारणी 11.1- कुछ ऐल्कोहॉलों के सामान्य तथा आईयूपीएसी नाम

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 341

चक्रीय ऐल्कोहॉलों का नामकरण पूर्वलग्न साइक्लो लगाकर तथा –OH समूह को C-1 पर मानकर किया जाता है।






(ख) फ़्रीनॉल

बेन्जीन का सबसे सरलतम हाइड्रॉक्सिल व्युत्पन्न फ़ीनॉल है। यह इसका सामान्य नाम तथा आईयूपीएसी द्वारा अनुमत नाम भी है। चूँकि फ़ीनॉल की संरचना में बेन्जीन वलय होती है अत: इसके प्रतिस्थापित यौगिकों में *ऑर्थो* (1,2 द्विप्रतिस्थापित), *मेटा* (1,3 द्विप्रतिस्थापित) तथा पैरा (1,4 द्विप्रतिस्थापित) भी प्राय: सामान्य नाम में प्रयुक्त होते हैं।

सामान्य नाम आईयूपीएसी नाम

बेन्जीन 1, 2- डाइऑल

कैटेकोल

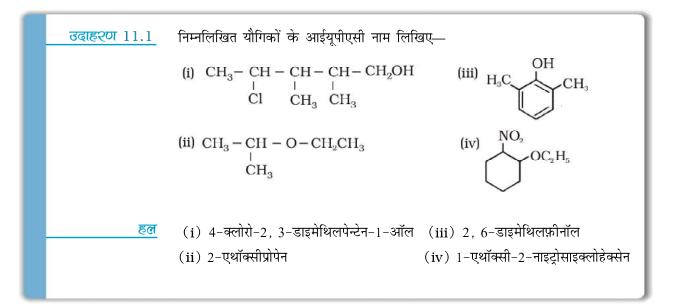
रिसॉर्सिनॉल बेन्जीन 1, 3- डाइऑल हाइड्रोक्विनोन अथवा क्विनॉल बेन्जीन 1, 4- डाइऑल

(ग) ईथर

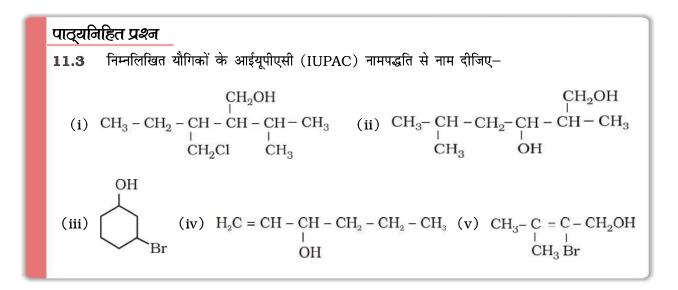
ईथरों के साधारण नाम की व्युत्पत्ति के लिए ऐल्किल अथवा ऐरिल समूहों के नामों को अग्रेज़ी वर्णमाला के वर्णात्मक (alphabatical) क्रम में अलग-अलग लिखकर अंत में 'ईथर' शब्द लिखा जाता है।

OH

उदाहरण के लिए CH₃OC₂H₅ एथिल मेथिल ईथर है। यदि दोनों ऐल्किल समूह समान हों तो ऐल्किल समूह से पूर्वलग्न 'डाइ' लगाते हैं। उदाहरणार्थ-

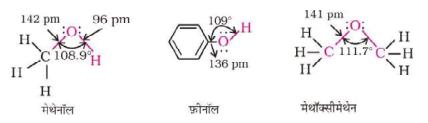

CH3-CH2-O-CH2-CH3 डाइएथिल ईथर

आईयूपीएसी नामपद्धति में, ईथरों को हाइड्रोकार्बनों का व्युत्पन्न माना जाता है जिनके हाइड्रोजन परमाणु –OR समूह अथवा –OAr समूह द्वारा प्रतिस्थापित होते हैं, जहाँ R व Ar क्रमश: ऐल्किल व ऐरिल समूह हैं। इनमें बड़े ऐल्किल (R) समूह को मूल हाइड्रोकार्बन चुना जाता है। कुछ ईथरों के नाम उदाहरण के रूप में सारणी 11.2 में दिए गए हैं।


342 रसायन विज्ञान

यौगिक	साधारण नाम	आईयूपीएसी नाम
CH ₃ OCH ₃	डाइमेथिल ईथर	मेथॉक्सीमेथेन
$C_2H_5OC_2H_5$	डाइएथिल ईथर	एथॉक्सीएथेन
$CH_3OCH_2CH_2CH_3$	मेथिल ${f n}$ -प्रोपिल ईथर	1-मेथॉक्सीप्रोपेन
$C_6H_5OCH_3$	मेथिल फ़्रेनिल ईथर (ऐनिसोल)	मेथॉक्सीबेन्जीन (ऐनिसोल)
$C_6H_5OCH_2CH_3$	एथिल फ़्रेनिल ईथर (फ़्रेनीटॉल)	एथॉक्सीबेन्जीन
C ₆ H ₅ O(CH ₂) ₆ -CH ₃	हेप्टिल फ़ेनिल ईथर	1-फ़ीनॉक्सी हेप्टेन
$CH_{3}O-CH-CH_{3}$ I CH_{3}	मेथिल आइसोप्रोपिल ईथर	2-मेथॉक्सीप्रोपेन
$\begin{array}{c} \mathrm{C_6H_5-O-CH_2-CH_2-CH_2-CH_3}\\ \mathrm{-}\\\mathrm{CH_3} \end{array}$	फ़ेनिल आइसोपेन्टिल ईथर	3-मेथिल ब्यूटॉक्सीबेन्जीन
CH ₃ -O-CH ₂ -CH ₂ -OCH ₃	-	1, 2-डाइमेथॉक्सीएथेन
H ₃ C CH ₃ OC ₂ H ₅	-	2 – एथॉक्सी–1,1–डाइमेथिल साइक्लोहेक्सेन

सारणी 11.2- कुछ ईथरों के साधारण तथा आईयूपीएसी नाम



ऐल्कोहॉल, फ़ीनॉल एवं ईथर 343

11.3 प्रकार्यात्मक समूहों की संरचनाएँ

ऐल्कोहॉलों में –OH समूह की ऑक्सीजन कार्बन के साथ एक सिग्मा (σ) आबंध द्वारा जुड़ी होती है। जो कार्बन के sp^3 संकरित कक्षक और ऑक्सीजन के sp^3 संकरित कक्षक के अतिव्यापन द्वारा बनता है। चित्र 11.1 मेथेनॉल, फ़ीनॉल तथा मेथॉक्सीमेथेन के संरचनात्मक पहलुओं को प्रदर्शित करता है।

चित्र 11.1- मेथेनॉल, फ़ीनॉल तथा मेथॉक्सीमेथेन की संरचनाएँ

ऐल्कोहॉलों में ट्रेम आबंध कोण चतुष्फलकीय कोण (109° 28') से थोड़ा सा कम होता है। ऐसा ऑक्सीजन के असहभाजित इलेक्ट्रॉन युगलों के मध्य प्रतिकर्षण के कारण होता है। फ़ीनॉलों में, –OH समूह ऐरोमैटिक वलय के sp^2 संकरित कार्बन के साथ जुड़ा होता है। फ़ीनॉलों के कार्बन-ऑक्सीजन आबंध की लंबाई (136 pm) मेथेनॉल में उपस्थित इस आबंध की लंबाई से थोड़ी कम होती है। इसका कारण है– (i) ऑक्सीजन के असहभाजित इलेक्ट्रॉन युगल का ऐरोमैटिक वलय के साथ संयुग्मन होना; जिससे यह आबंध आंशिक द्विक्आबंध गुण प्राप्त करता है (खंड 11.4.4) एवं (ii) उस कार्बन की sp^2 संकरित अवस्था, जिससे ऑक्सीजन जुड़ी है।

ईथरों में ऑक्सीजन पर उपस्थित चार इलेक्ट्रॉन युगल यानी कि दो आबंधी इलेक्ट्रॉन युगल और दो अनाबंधित इलेक्ट्रॉन युगल, लगभग चतुष्फलकीय रूप में व्यवस्थित होते हैं। दो स्थूल R समूहों के मध्य प्रतिकर्षक अन्योन्यक्रिया के कारण आबंध कोण चतुष्फलकीय कोण से थोड़ा अधिक होता है। ईथरों में C–O आबंध की लंबाई (141 pm); ऐल्कोहॉलों के C–O आबंध की लंबाई के लगभग समान होती है।

<mark>344</mark> रसायन विज्ञान

11.4 ऐल्कोहॉलों और फ़ीनॉलों का विश्चन ऐल्कोहॉलों को निम्नलिखित विधियों द्वारा विरचित किया जाता है-

न 1. ऐल्कीनो से

11.4.1 ऐल्कोहॉलों का(i) अम्ल उत्प्रेरित जलयोजन द्वारा— ऐल्कीन तनु अम्ल की उत्प्रेरकों की तरह उपस्थितिविरचनमें जल के साथ अभिक्रिया करके ऐल्कोहॉल बनाती हैं। असममित ऐल्कीनों में योगजअभिक्रिया मार्कोनीकॉफ नियम के अनुसार होती है (एकक 13, कक्षा XI)।

$$>C = C < + H_2O \implies >C - C <$$
$$H \quad OH$$
$$CH_3CH = CH_2 + H_2O \implies CH_3 - CH - CH$$
$$OH$$

क्रियाविधि— अभिक्रिया को क्रियाविधि में निम्नलिखित तीन चरण सम्मिलित होते हैं– **चरण 1–** H₃O⁺ के इलेक्ट्रॉनरागी आक्रमण के द्वारा ऐल्कीनों के प्रोटॉनन से कार्बोकैटायन बनते हैं।

$$H_{2}O + H^{+} \rightarrow H_{3}O^{+}$$

$$\rightarrow C = C < + H_{1} - \overset{H}{O}_{2}^{+} - H \implies - \overset{H}{C} - \overset{H}{C} < + H_{2} \overset{H}{O}_{2}$$

चरण 2- कार्बोकैटायन पर जल का नाभिकरागी आक्रमण

$$\begin{array}{c} H \\ - \overset{H}{C} - \overset{H}{C} + H_2 \overset{H}{O} \rightleftharpoons \end{array} \xrightarrow{H} \begin{array}{c} H \\ - \overset{H}{C} - \overset{H}{C} - \overset{H}{C} - \overset{H}{O} - H \end{array}$$

चरण 3- विप्रोटोनन जिससे ऐल्कोहॉल बनता है।

$$\begin{array}{c} H \\ - \overset{H}{C} - \overset{H}{C} - \overset{H}{C} - \overset{H}{O} \overset{H}{-} \overset{H}{H} + \overset{H}{H_2} \overset{H}{\odot} \rightarrow - \overset{H}{C} - \overset{H}{C} - \overset{H}{C} + \overset{H}{H_3} \overset{H}{\odot} \end{array}$$

यौगिकों के अध्ययन के लिए ब्राउन ने **(ii) हाइड्रोबोरॉनन-ऑक्सीकरण के द्वारा**— डाइबोरेन (BH₃)₂ एल्कीनों से अभिक्रिया 1979 में रसायन विज्ञान का नोबेल करके एक योगज उत्पाद ट्राइऐल्किल बोरेन बनाता है जो जलीय सोडियम हाइड्राक्साइड की पुरस्कार, जी.विटिंग के साथ संयुक्त उपस्थिति में हाइड्रोजन परआक्साइड द्वारा ऑक्सीकृत होकर ऐल्कोहॉल देता है।

 $\begin{array}{cccc} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} &+ & (\mathrm{H}-\mathrm{BH}_{2})_{2} \longrightarrow & \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2} \\ & & & & & & \\ \mathrm{H} & & \mathrm{BH}_{2} \\ & & & & & & \\ \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2})_{3}\mathrm{B} & \xleftarrow{} & \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \\ & & & & & \\ \mathrm{(CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2})_{3}\mathrm{B} & \xleftarrow{} & \mathrm{(CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2})_{2}\mathrm{BH} \\ & & & \\ \mathrm{H}_{2}\mathrm{O} \bigvee 3\mathrm{H}_{2}\mathrm{O}_{2}, & \bar{\mathrm{OH}} \\ & & & & \\ \mathrm{3CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH} + & \mathrm{B(OH)}_{3} \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 345

हाइड्रोबोरॉनन-आक्सीकरण का विवरण सर्वप्रथम एच.सी.ब्राउन द्वारा 1959 में दिया गया था। बोरॉनयुक्त कार्बनिक यौगिकों के अध्ययन के लिए ब्राउन ने 1979 में रसायन विज्ञान का नोबेल पुरस्कार, जी.विटिंग के साथ संयुक्त रूप से प्राप्त किया।

द्विक्आबंध पर बोरेन का योजन इस प्रकार होता है कि बोरॉन परमाणु, उस sp² संकरित कार्बन परमाणु पर जुड़ता है जिस पर पहले से ही अधिक हाइड्रोजन परमाणु उपस्थित होते हैं। इस प्रकार प्राप्त ऐल्कोहॉल, ऐसी दिखती है जैसे कि यह ऐल्कीनों से, मार्कोनीकॉफ के नियम के विपरीत जल योजन से बनी हो। इस अभिक्रिया में ऐल्कोहॉलों की लब्धि उत्तम होती है।

2. कार्बोनिल यौगिकों से

(i) ऐल्डिहाइड व कीटोन के अपचयन द्वारा— ऐल्डिहाइड एवं कीटोन उत्प्रेरक की उपस्थिति में हाइड्रोजन के योजन (उत्प्रेरकी हाइड्रोजनन) द्वारा संगत ऐल्कोहॉलों में अपचित हो जाते हैं। सामान्यत: सूक्ष्म विभाजित धातु, जैसे–प्लैटिनम, पैलेडियम या निकैल उत्प्रेरक का कार्य करती हैं। ये ऐल्डिहाइड और कीटोनों की सोडियम बोरोहाइड्राइड (NaBH₄) अथवा लीथियम ऐलुमिनियम हाइड्राॅइड (LiAlH₄) के साथ अभिक्रिया द्वारा भी बनाई जा सकती हैं। ऐल्डिहाइड प्राथमिक ऐल्कोहॉल देते हैं, जबकि कीटोन द्वितीयक ऐल्कोहॉल देते हैं।

$$\begin{array}{ccc} \text{RCHO} + \text{H}_2 & \xrightarrow{\text{Pd}} & \text{RCH}_2\text{OH} \\ \\ \text{RCOR'} & \xrightarrow{\text{NaBH}_4} & \text{R-CH-R'} \\ & & \text{OH} \end{array}$$

(ii) कार्बोक्सिलिक अम्लों तथा एस्टरों के अपयचन द्वारा— कार्बोक्सिलिक अम्ल लीथियम ऐलुमिनियम हाइड्राइड जैसे प्रबल अपचायक द्वारा अपचित हो जाते हैं और प्राथमिक ऐल्कोहॉलों की उत्तम लब्धि देते हैं।

$$\begin{array}{c} \text{(i) LiAlH}_{4} \\ \hline \\ \hline \\ \text{(ii) H}_{2}\text{O} \end{array} \end{array} \Rightarrow \text{RCH}_{2}\text{OH}$$

LiAlH₄ एक महँगा अभिकर्मक है अतः इसका प्रयोग केवल विशेष रसायनों को बनाने के लिए किया जाता है। औद्योगिक स्तर पर कार्बोक्सिलिक अम्लों का ऐल्कोहॉलों में अपचयन करने के लिए उन्हें एस्टर में परिवर्तित कर लिया जाता है (खंड 11.4.4) तत्पश्चात् उत्प्रेरक की उपस्थिति में एस्टर को हाइड्रोजन द्वारा अपचित कर लिया जाता है। (उत्प्रेरकी हाइड्रोजनन)

 $\begin{array}{c} \text{RCOOH} \xrightarrow{\text{R'OH}} & \text{RCOOR'} \xrightarrow{2H_2} & \text{RCH}_2\text{OH} + \text{R'OH} \\ \xrightarrow{\text{H}^+} & \text{RCOOR'} \xrightarrow{3 \text{c} \lambda \text{t} \alpha} & \text{RCH}_2\text{OH} + \text{R'OH} \end{array}$

3. ग्रीन्यार अभिकर्मकों से

ग्रीन्यार अभिकर्मकों की ऐल्डिहाइड और कीटोन के साथ अभिक्रिया कराने पर ऐल्कोहॉल प्राप्त होती हैं (एकक 10, कक्षा XII)।

अभिक्रिया के प्रथम चरण में कार्बोनिल समूह पर ग्रीन्यार अभिकर्मक का नाभिकरागी संयोजन योगोत्पाद बनता है। योगोत्पाद के जल अपघटन से ऐल्कोहॉल प्राप्त होती है।

तीर के निशान पर, अभिकर्मकों के नाम से पहले लिखी हुई संख्या इंगित करती है कि दूसरा अभिकर्मक तभी प्रयुक्त किया जाता है जब पहले अभिकर्मक के साथ अभिक्रिया पूर्णत: संपन्न हो जाती है।

346 रसायन विज्ञान

$$\begin{bmatrix} >C - \overline{O} \stackrel{+}{Mg} - X \\ R \\ \overline{R} \\ \overline{u} \overline{u} \overline{u} \overline{l} \overline{r} \overline{u} \overline{r} \overline{d} \overline{r} \end{bmatrix} \xrightarrow{H_2O} \xrightarrow{>C - OH} + Mg(OH)X \qquad \dots (ii)$$

विभिन्न ऐल्डिहाइडों एवं कीटोनों की समग्र अभिक्रियाएं निम्नलिखित हैं-

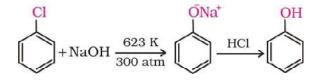
$$H$$
CHO + $RMgX \rightarrow RCH_2OMgX \xrightarrow{H_2O} RCH_2OH + Mg(OH)X$

ग्रीन्यार अभिकर्मक की मेथेनैल द्वारा अभिक्रिया से प्राथमिक ऐल्कोहॉल प्राप्त होती है, अन्य ऐल्डिहाइड द्वितीयक ऐल्कोहॉल तथा कीटोन तृतीयक ऐल्कोहॉल देते हैं।

$$RCHO + R'MgX \longrightarrow R-CH-OMgX \xrightarrow{H_2O} R-CH-OH + Mg(OH)X$$

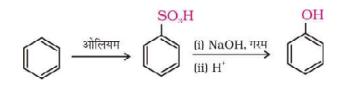
$$RCOR + R'MgX \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH + Mg(OH)X$$

आप देख सकते हैं कि मेथेनैल के साथ प्राथमिक ऐल्कोहॉल, किसी अन्य ऐल्डिहाइड के साथ द्वितीयक ऐल्कोहॉल तथा कीटोन के साथ तृतीयक ऐल्कोहॉल प्राप्त होती हैं।


उदाहरण 11.2	निम्नलिखित अभिक्रियाओं के संभव उत्पादों की संरचनाएं तथा उनके आईयूपीएसी नाम दीजिए–
	(क) ब्यूटेनैल का उत्प्रेरकी अपचयन
	(ख) तनु सल्फ्यूरिक अम्ल की उपस्थिति में प्रोपीन का जलयोजन
	(ग) प्रोपेनोन की मेथिलमैग्नीशियम ब्रोमाइड के साथ अभिक्रिया तत्पश्चात् जल अपघटन
	CH_3
হল	(क) CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH (ख) CH ₃ -CH-CH ₃ (ग) CH ₃ -C-OH
	OH CH3
	ब्यूटेन-1-ऑल प्रोपेन-2-ऑल 2-मेथिलप्रोपेन-2-ऑल

11.4.2 फ़ीनॉलों काफ़ीनॉल, जिसे कार्बोलिक अम्ल भी कहते हैं, का पृथक्करण सर्वप्रथम उन्नीसवीं शताब्दी के
विरचनविरचनप्रारंभ में कोलतार से किया गया था। आजकल फ़ीनॉल का औद्योगिक उत्पादन संश्लेषण द्वारा
किया जाता है। प्रयोगशाला में फ़ीनॉल को बेन्जीन के व्युत्पन्नों से निम्नलिखित में से किसी
भी विधि से प्राप्त किया जा सकता है–

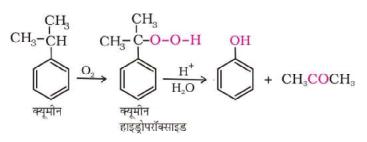
1. हैलोऐरीनों से


क्लोरोबेन्जीन को NaOH के साथ 623 K ताप एवं 320 वायुमंडलीय दाब पर संगलित किया जाता है। इस प्रकार प्राप्त सोडियम फ़ीनॉक्साइड का अम्लन करने पर फ़ीनॉल प्राप्त होती है (एकक 10, कक्षा XII)।

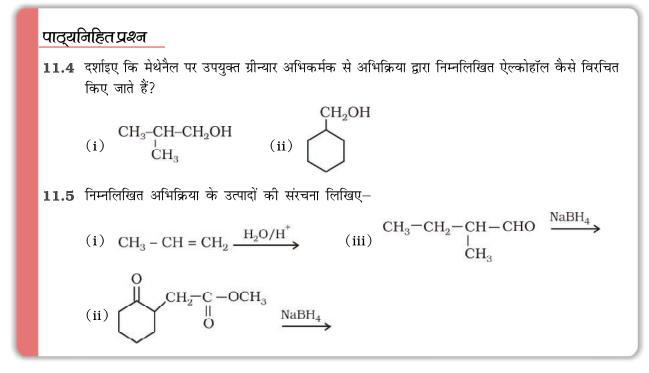
ऐल्कोहॉल, फ़ीनॉल एवं ईथर 347

2. बेन्जीन सल्फोनिक अम्लों से

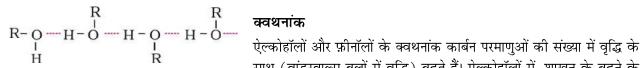
बेन्जीन का ओलियम द्वारा सल्फोनेशन किया जाता है तथा इससे प्राप्त सल्फोनिक अम्ल को गलित सोडियम हाइड्रॉक्साइड के साथ गरम करके सोडियम फ्रीनॉक्साइड में परिवर्तित कर लिया जाता है। सोडियम लवण के अम्लन से फ़ीनॉल प्राप्त हो जाती है।


3. डाइऐज़ोनियम लवणों से

प्राथमिक ऐरोमैटिक ऐमीन की (273-278 K) ताप पर नाइट्रस अम्ल (NaNO₂+HCl) के साथ अभिक्रिया द्वारा डाइऐज़ोनियम लवण बनते हैं। डाइऐज़ोनियम लवण जल के साथ गर्म करने पर अथवा तनु अम्लों के साथ क्रिया करने पर जल अपघटित हो जाते हैं और फ़ीनाल देते हैं (एकक 13, कक्षा XII)।


4. क्यूमीन से

फ़ीनॉल का उत्पादन हाइड्रोकार्बन क्यूमीन से किया जाता है। क्यूमीन (आइसोप्रोपिल बेन्जीन) को वायु की उपस्थिति में क्यूमीन हाइड्रोपरऑक्साइड में ऑक्सीकृत कर लिया जाता है। तनु अम्ल के साथ क्रिया द्वारा इसे फ़ीनॉल तथा ऐसीटोन में परिवर्तित किया जाता है। इस विधि से उत्पादन में इस अभिक्रिया का उपोत्पाद ऐसीटोन भी अधिक मात्रा में प्राप्त होता है।

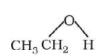


विश्व में फ़ीनॉल का अधिकतर उत्पादन क्यूमीन से किया जाता है।

348 रसायन विज्ञान

ऐल्कोहॉलों एवं फ़ीनॉलों के दो भाग होते हैं– एक ऐल्किल/ऐरिल समूह तथा दूसरा हाइड्रॉक्सिल समूह। ऐल्कोहॉलों एवं फ़ीनॉलों के गुणधर्म मुख्यत: –OH समूह के कारण होते हैं। ऐल्किल और ऐरिल समूह की प्रकृति इन गुणधर्मों को सामान्यत: संशोधित करती हैं।

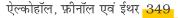
11.4.3 भौतिक गुणधर्म

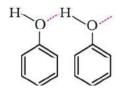

साथ (वांडरवाल्स बलों में वृद्धि) बढ़ते हैं। ऐल्कोहॉलों में, शाखन के बढ़ने के साथ-साथ (पृष्ठ क्षेत्रफल घटने से वांडरवाल बलों में कमी के कारण) क्वथनांक कम हो जाते हैं।

ऐल्कोहॉलों और फ़ीनॉलों में –OH समूह अंतराआण्विक हाइड्रोजन आबंध बनाते हैं जैसा कि चित्रों में प्रदर्शित किया गया है।

यह रोचक तथ्य है कि लगभग समान आण्विक द्रव्यमान वाले अन्य वर्गों के यौगिकों यानी कि हाइड्रोकार्बनों, ईथरों और हैलोऐल्केनों हैलोऐरीनो के यौगिकों की तुलना में ऐल्कोहॉलों तथा फ़ीनॉलों के क्वथनांक उच्चतर होते हैं। उदाहरणार्थ, एथेनॉल तथा प्रोपेन के आण्विक द्रव्यमान समतुल्य हैं किंतु इनके क्वथनांकों में काफ़ी अंतर है, मेथॉक्सीमेथेन का क्वथनांक इन दोनों के क्वथनांकों के मध्यवर्ती होता है।

 H_3C


एथेनॉल आण्विक द्रव्यमान/क्वथनांक आण्विक द्रव्यमान/क्वथनांक 46/351 K


मेथॉक्सीमेथेन $46/248 \,\mathrm{K}$

CH₂

CH₃

प्रोपेन आण्विक द्रव्यमान/क्वथनांक $44/231 \, \text{K}$

विलेयता

ऐल्कोहॉलों के उच्च क्वथनांक मुख्यत: अंतराआण्विक हाइड्रोजन आबंध की उपस्थिति के कारण होते हैं जिसका ईथरों एवं हाइड्रोकार्बनों में अभाव है।

$$CH_3-CH_2-CH_2-O:-H \rightarrow O:$$

H H

ऐल्कोहॉलों और फ़ीनॉलों की जल में विलेयता उनकी जल के अणुओं के साथ हाइड्रोजन आबंध बनाने की क्षमता के कारण होती है, जैसा कि चित्र में दिखाया गया है। यह विलेयता ऐल्किल/ऐरिल (जलविरागी) समूहों के आकार बढ़ने के साथ घटती है। अधिकांश निम्न आण्विक द्रव्यमान वाले ऐल्कोहॉल जल में सभी अनुपातों में मिश्रणीय होते हैं।

उदाहरण 11.3	निम्नलिखित समूहों के यौगिकों को उनके क्वथनांकों के बढ़ते हुए क्रम में व्यवस्थित कीजिए– (क) पेन्टेन-1-ऑल,ब्यूटेन-1-ऑल,ब्यूटेन-2-ऑल,एथेनॉल,प्रोपेन-1-ऑल,मेथेनॉल (ख) पेन्टेन-1-ऑल, n-ब्यूटेन,पेन्टेनैल,एथॉक्सीएथेन
हल	(क) मेथेनॉल, एथेनॉल, प्रोपेन-1-ऑल, ब्यूटेन -2-ऑल, ब्यूटेन -1-ऑल, पेन्टेन-1-ऑल (ख) n-ब्यूटेन, एथॉक्सीएथेन, पेन्टेनैल, पेन्टेन-1-ऑल

11.4.4 रासायनिक अभिक्रियाएँ ऐल्कोहॉल सर्वतोमुखी यौगिक हैं। ये नाभिकरागी (nucleophile) एवं इलेक्ट्रॉनरागी (electrophiles) दोनों के रूप में अभिक्रिया करती हैं।

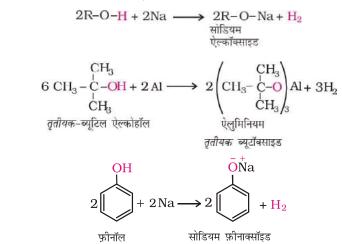
 (i) जब ऐल्कोहॉल नाभिकरागी के रूप में अभिक्रिया करती हैं तो O-H के मध्य आबंध टूटता है।

 (ii) जब ऐल्कोहॉल इलेक्टॉनरागी के रूप में अभिक्रिया करती है तो C-O के मध्य आबंध टूटता है। प्रोटॉनित ऐल्कोहॉल इस प्रकार अभिक्रिया करती हैं–

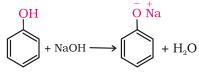
(ऐल्कोहॉल नाभिकरागी के रूप में)

$$R-CH_2-OH + H \rightarrow R-CH_2-OH_2$$

$$\begin{array}{c} Br + CH_2 - OH_2 + H_2O \\ H R \\ R \\ R \\ R \end{array} \xrightarrow{+} Br - CH_2 + H_2O \\ R \\ R \\ R \\ R \end{array}$$


O–H व C–O आबंध के विदलन के आधार पर ऐल्कोहॉलों एवं फ़ीनॉलों की अभिक्रिया को दो वर्गों में बाँटा जा सकता है–

350 रसायन विज्ञान


(क) अभिक्रियाएँ जिनमें O-H आबंध का विदलन होता है

1. ऐल्कोहॉलों एवं फ़ीनॉलों की अम्लता

(i) धातुओं के साथ अभिक्रियाएँ— ऐल्कोहॉल और फ़ीनॉल सक्रिय धातुओं, जैसे— सोडियम, पोटैशियम तथा ऐलुमिनियम के साथ अभिक्रिया करके संगत ऐल्कॉक्साइड/फ़ीनॉक्साइड एवं हाइड्रोजन देती हैं।

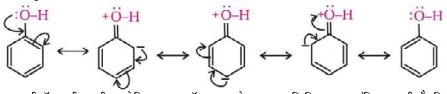
इसके अतिरिक्त फ़ीनॉल जलीय सोडियम हाइड्रॉक्साइड के साथ अभिक्रिया द्वारा सोडियम फ़ीनॉक्साइड बनाती हैं।

उपरोक्त अभिक्रियाएं दर्शाती हैं कि ऐल्कोहॉल एवं फ़ीनॉल अम्लीय प्रकृति की होती हैं। वास्तव में, ऐल्कोहॉल एवं फ़ीनॉल ब्रंसटेद अम्ल है अर्थात् वे किसी प्रबल क्षारक (B:) को प्रोटॉन प्रदान कर सकती हैं।

$$\vec{B}$$
: + \vec{H} - \vec{O} - \vec{R} - \vec{B} - \vec{H} + : \vec{O} - \vec{R}
and a size and

(ii) ऐल्कोहॉलों की अम्लता– ऐल्कोहॉलों की अम्लीय प्रकृति ध्रुवीय O-H आबंध के कारण होती है इलेक्ट्रॉन विमोचक (दाता) समूह (–CH₃, –C₂H₅) ऑक्सीजन परमाणु पर इलेक्ट्रॉन घनत्व बढ़ा देते हैं जिससे O–H आबंध की ध्रुवता कम हो जाती है इससे अम्ल सामर्थ्य कम हो जाती है। इसके कारण ऐल्कोहॉलों की अम्ल–सामर्थ्य निम्नलिखित क्रम में घटती है–

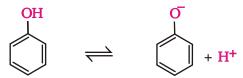
$$R \rightarrow CH_2OH > R \rightarrow CHOH > R \rightarrow CHOH > R \rightarrow CHOH > R \rightarrow CHOH R \rightarrow C \rightarrow C - OH R \rightarrow$$

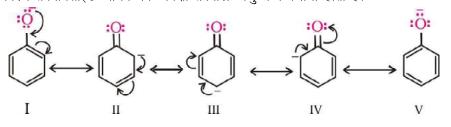

ऐल्कोहॉल जल की अपेक्षा दुर्बल अम्ल होती हैं। जल की ऐल्कॉक्साइड से अभिक्रिया कराने पर यह स्पष्ट हो जाता है।

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 351

यह अभिक्रिया प्रदर्शित करती है कि ऐल्कोहॉल की अपेक्षा जल एक बेहतर प्रोटॉन दाता है। (यानी कि प्रबलतर अम्ल), उपरोक्त अभिक्रिया में हम यह भी देख सकते हैं कि एक ऐल्कॉक्साइड आयन हाइड्रॉक्साइड आयन की अपेक्षा एक बेहतर प्रोटॉनग्राही होता है। जो यह संकेत देता है कि ऐल्कॉक्साइड प्रबलतर क्षारक होते हैं। (सोडियम एथॉक्साइड, सोडियम हाइड्रॉक्साइड से अधिक क्षारीय होता है।)

ऐल्कोहॉल भी ब्रंसटेद क्षारकों की भाँति कार्य करते हैं। ऐसा ऑक्सीजन पर उपस्थित असहभाजित इलेक्ट्रॉन युगलों के कारण होता है जो इन्हें प्रोटॉनग्राही बनाते हैं।


(iii) फ्रीनॉलों की अम्लता— फ़ीनॉल की धातुओं (उदाहरणार्थ; सोडियम तथा ऐलुमिनियम) तथा सोडियम हाइड्रॉक्साइड के साथ अभिक्रियाएं इसकी अम्लीय प्रकृति को दर्शाती हैं। फ़ीनॉल में हाइड्रॉक्सिल समूह बेन्जीन वलय के sp^2 संकरित कार्बन से सीधा संयुक्त रहता है जो कि इलेक्ट्रॉन अपनयक समूह के रूप में कार्य करता है। इसके कारण फ़ीनॉल अणु में आवेश वितरण से –OH समूह की ऑक्सीजन धनावेशित हो जाती है जैसा कि अनुनादी संरचनाओं द्वारा चित्रित किया गया है।


फ़ीनॉल की जलीय सोडियम हाइड्रॉक्साइड के साथ अभिक्रिया यह इंगित करती है कि फ़ीनॉल, ऐल्कोहॉलों तथा जल की अपेक्षा अधिक प्रबल अम्ल होती हैं। आइए, यह जाँचें कि ऐरोमैटिक वलय से जुड़ा हाइड्रॉक्सिल समूह, ऐल्किल समूह से जुड़े हाइड्रॉक्सिल समूह की अपेक्षा अधिक अम्लीय कैसे हो जाता है।

किसी ऐल्कोहॉल तथा फ़ीनॉल का आयनन निम्नलिखित प्रकार से होता है।

$$R - \ddot{O} - H \iff R - \ddot{O} + H^+$$

फ़ीनॉल में –OH से संयुक्त *sp*² संकरित कार्बन की उच्च विद्युतऋणात्मकता के कारण ऑक्सीजन पर इलेक्ट्रॉन घनत्व कम हो जाता है जिससे O–H आबंध की ध्रुवता बढ़ती है, जिसके फलस्वरूप ऐल्कोहॉल की अपेक्षा फ़ीनॉल के आयनन में वृद्धि होती है। अब, हम ऐल्कॉक्साइड एवं फ़ीनॉक्साइड आयनों के स्थायित्व के बारे में जॉँच करें। ऐल्कॉक्साइड आयनों में ऋणावेश ऑक्सीजन पर स्थानागत होता है जबकि फ्रीनॉक्साइड आयनों में विस्थानित होता है। ऋणावेश का विस्थानन (संरचना I-V) फ़ीनॉक्साइड आयनों को अधिक स्थायी बनाता है तथा फ़ीनॉल के आयनन में सहायक होता है। यद्यपि फ़ीनॉल में भी आवेश का विस्थानन होता है परंतु इसकी अनुनादी संरचनाओं में आवेशों का पृथकन होता है जिसके कारण फ़ीनॉक्साइड आयन की अपेक्षा फ़ीनॉल अणू कम स्थायी होता है।

352 रसायन विज्ञान

प्रतिस्थापित फ़ीनॉलों में नाइट्रो समूह जैसे इलेक्ट्रॉन अपनयक (प्रत्याहार्य) समूह, फ़ीनॉल की अम्लीय सामर्थ्य को बढ़ा देते हैं। जब ऐसे समूह *ऑर्थो* एवं *पैरा* स्थितियों पर उपस्थित होते हैं तो यह प्रभाव अधिक प्रबल हो जाता है। इसका कारण फ़ीनॉक्साइड आयन के आर्थो एवं पैरा स्थान पर के ऋणावेश का प्रभावी विस्थानन होता है। दूसरी ओर ऐल्किल समूह जैसे इलेक्ट्रॉन विमोचक (दाता) समूह सामान्य रूप से फ़ीनॉक्साइड आयन के बनने में सहायक नहीं होते, परिणामस्वरूप अम्ल सामर्थ्य में कमी आ जाती है। उदाहरणार्थ; फ़ीनॉल की अपेक्षा क्रीसॉल कम अम्लीय होते हैं।

pK_a मान जितना अधिक होगा, अम्ल उतना ही दुर्बल होगा।

<u>_</u>			$\circ \sim \sim$	-		<u>م</u>			
मारणा	11.3 -	O2 CD	फ़ीनॉलों	्रार	ग्रंथनाल	_{ch}	nK	dol	मान
/11/ 411	11.0	-	- <u>1</u> -1 II V II	9 11 \	S a 11/1	- I -	PIL		

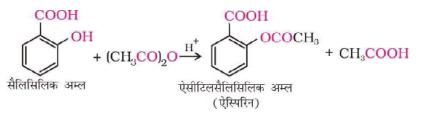
यौगिक	सूत्र	pK _a
<i>o</i> -नाइट्राफ़ीनॉल	$o-O_2N-C_6H_4-OH$	7.2
<i>m</i> –नाइट्रोफ़ीनॉल	m – O_2N – C_6H_4 – OH	8.3
$p ext{-}$ नाइट्रोफ़ीनॉल	p-O ₂ N–C ₆ H ₄ –OH	7.1
फ़ीनॉल	C ₆ H ₅ –OH	10.0
<i>o</i> -क्रीसॉल	<i>о</i> -СН ₃ -С ₆ Н ₄ -ОН	10.2
<i>m</i> -क्रीसॉल	<i>m</i> -CH ₃ -C ₆ H ₄ -OH	10.1
p-क्रीसॉल	<i>p</i> -CH ₃ -C ₆ H ₄ -OH	10.2
एथेनॉल	C ₂ H ₅ OH	15.9

उपरोक्त आँकड़ों के आधार पर आप देखेंगे कि फ़ीनॉल एथेनॉल की तुलना में दस लाख गूना अधिक अम्लीय है।

उदाहरण 11.4	निम्नलिखित यौगिकों को उनके अम्ल-सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिए–
	प्रोपेन-1-ऑल, 2,4,6-ट्राइनाइट्रोफ़ीनॉल, 3-नाइट्रोफ़ीनॉल, 3,5-डाइनाइट्रोफ़ीनॉल, फ़ीनॉल, 4-मेथिलफ़ीनॉल,
हल	प्रोपेन-1-ऑल; 4-मेथिलफ़ीनॉल; फ़ीनॉल; 3-नाइट्रोफ़ीनॉल; 3,5-डाइनाइट्रोफ़ीनॉल; 2,4,6-ट्राइनाइट्रोफ़ीनॉल

2. एस्टरीकरण

ऐल्कोहॉल एवं फ़ीनॉल कार्बाक्सिलिक अम्लों, अम्ल क्लोराइडों एवं अम्ल ऐनहाइड्राइडों के साथ अभिक्रिया द्वारा एस्टर बनाती हैं।


$$Ar/RO - H + R' - COOH \rightleftharpoons^{H^+} Ar/ROCOR' + H_2O$$
$$Ar/R-OH + (R'CO)_2O \rightleftharpoons^{H^+} Ar/ROCOR' + R'COOH$$
$$R/ArOH + R'COCI \xrightarrow{\text{fuftslar}} R/ArOCOR' + HCI$$

कार्बाक्सिलिक अम्ल तथा अम्ल ऐनहाइड्राइड की अभिक्रिया सांद्र सल्फ्यूरिक अम्ल की कुछ मात्रा की उपस्थिति में संपन्न होती है। यह अभिक्रिया उत्क्रमणीय होती है, अत: इसमें बने जल को तुरंत निष्कासित कर दिया जाता है। अम्ल क्लोराइड के साथ अभिक्रिया क्षारक

ऐस्पिरिन, पीड़ाहारी, शोथनाशी एवं ज्वरनाशी गुणधर्म वाली होती है।

ऐल्कोहॉल, फ़ीनॉल एवं ईथर <mark>353</mark>

(पिरिडीन) की उपस्थिति में की जाती है जिससे कि अभिक्रिया से बने HCl को उदासीन किया जा सके। यह साम्य को दाईं ओर विस्थापित कर देता है। ऐल्कोहॉल तथा फ़ीनॉल में ऐसीटिल (CH₃CO) समूह का प्रवेश ऐसीटिलन कहलाता है। ऐस्पिरिन सैलिसिलिक अम्ल के ऐसीटिलन से प्राप्त होती है।

(ख) अभिक्रियाएँ जिनमें कार्बन-ऑक्सीजन (C-O) आबंध का विदलन (Cleavage) होता है

C–O आबंध विदलन की अभिक्रियाएँ केवल ऐल्कोहॉलों में पाई जाती हैं। फ़ीनॉल इस प्रकार की अभिक्रिया केवल जस्त चूर्ण के साथ प्रदर्शित करती हैं।

1. हाइड्रोजन हैलाइडों के साथ अभिक्रिया

ऐल्कोहॉल, हाइड्रोजन हैलाइडों के साथ अभिक्रिया करके ऐल्किल हैलाइड बनाती हैं (देखिए- एकक 10, कक्षा XII)

$ROH + HX \rightarrow R-X + H_2O$

इन तीनों वर्गों की ऐल्कोहॉलों की HCl के प्रति अभिक्रियाशीलता के आधार पर इनमें विभेद किया जा सकता है **(ल्यूकास परीक्षण)**। ऐल्कोहॉल ल्यूकास अभिकर्मक (सांद्र HCl एवं ZnCl₂) में विलेय होती हैं जबकि उनके हैलाइड अमिश्रणीय होते हैं तथा विलयन में धुँधलापन (आविलता) उत्पन्न कर देते हैं। तृतीयक ऐल्कोहॉलों द्वारा धुँधलापन तत्काल उत्पन्न हो जाता है; क्योंकि वे आसानी से हैलाइड बनाती हैं। प्राथमिक ऐल्कोहॉल सामान्य ताप पर धुँधलापन उत्पन्न नहीं करतीं।

2. फ़ॉस्फ़ोरस ट्राइहैलाइडों के साथ अभिक्रिया

फ़ॉस्फ़ोरस ट्राइब्रोमाइड के साथ अभिक्रिया करने पर ऐल्कोहॉल, ऐल्किल ब्रोमाइड में परिवर्तित हो जाती है (देखिए— एकक 10, कक्षा XII)।

3. निर्जलन

ऐल्कोहॉल के सांद्र H_2SO_4 या H_3PO_4 जैसे प्रोटिक अम्लों अथवा निर्जलित जिंक क्लोराइड ऐलुमिना जैसे उत्प्रेरकों के द्वारा निर्जलित होने (जल के अणु के निष्कासन) पर ऐल्कीन बनती हैं (एकक 13, कक्षा XI)।

$$- \stackrel{-}{C} - \stackrel{-}{C} - \stackrel{-}{\xrightarrow{}} \stackrel{H^+}{\xrightarrow{}} \rangle C = C \langle + H_2 O \rangle$$

 $443~{
m K}$ ताप पर सांद्र ${
m H_2SO}_4$ के साथ गरम करने पर एथेनॉल का निर्जलन हो जाता है।

$$C_2H_5OH \xrightarrow{H_2SO_4} CH_2 = CH_2 + H_2O$$

<mark>354</mark> रसायन विज्ञान

द्वितीयक तथा तृतीयक ऐल्कोहॉलों का निर्जलन अपेक्षाकृत मध्यम परिस्थितियों में किया जाता है। उदाहरणार्थ–

$$CH_{3}CHCH_{3} \xrightarrow{85\% H_{3}PO_{4}} CH_{3}-CH = CH_{2} + H_{2}O$$

$$CH_{3}CHCH_{3} \xrightarrow{(1){}} H_{3}OHCH_{3} \xrightarrow{(1){}} CH_{3}OHCH_{3$$

ऐल्कोहॉलों के सापेक्षिक निर्जलन की सुगमता का क्रम इस प्रकार होता है-

तृतीयक > द्वितीयक > प्राथमिक

एथेनॉल के निर्जलन की क्रियाविधि में निम्नलिखित चरण होते हैं-

क्रियाविधि

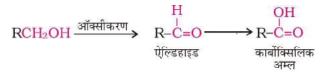
चरण 1- प्रोटॉनित ऐल्कोहॉल का बनना-

चरण 2- कार्बोकैटायन का बनना-

यह सबसे धीमा चरण है अत: यह अभिक्रिया का दर निर्धारक चरण होता है।

चरण 3- प्रोटॉन के निकल जाने से एथीन का बनना-

चरण 1 में प्रयुक्त अम्ल, अभिक्रिया के चरण 3 में मुक्त हो जाता है। साम्य को दाईं ओर विस्थापित करने के लिए, एथीन बनते ही निष्कासित कर ली जाती है।


4. ऑक्सीकरण– ऐल्कोहॉलों के ऑक्सीकरण में O–H एवं C–H आबंधों का विदलन होता है तथा कार्बन-ऑक्सीजन द्विआबंध बनता है।

$$H_{\uparrow}C_{\uparrow}O_{\uparrow}H \longrightarrow C=C$$

 $H_{\uparrow}C=C$
 $H_{\uparrow}C=C$

आबंधों का ऐसा विदलन एवं निर्माण ऑक्सीकरण अभिक्रियाओं में होता है। इन्हें विहाइड्रोजनन अभिक्रियाएं भी कहते हैं क्योंकि इनमें ऐल्कोहॉल अणु में से डाइहाइड्रोजन अणु की कमी हो जाती है। प्रयुक्त ऑक्सीकरण कर्मक के आधार पर, प्राथमिक ऐल्कोहॉल, ऐल्डिहाइड में ऑक्सीकृत हो जाती हैं जो बाद में कार्बोक्सिलिक अम्ल में ऑक्सीकृत हो जाता है।

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 355

तृतीयक कार्बोकैटायन अधिक स्थायी होते हैं, अत: द्वितीयक एवं तृतीयक कार्बोकैटायनों की अपेक्षा आसानी से बनते हैं। तृतीयक ऐल्कोहॉलों का निर्जलन करना सबसे अधिक आसान है।

ऐल्कोहॉलों से सीधे कार्बोक्सिलिक अम्लों को प्राप्त करने के लिए प्रबल ऑक्सीकरण कर्मकों, जैसे अम्लीकृत पोटैशियम परमैंगनेट का उपयोग किया जाता है। ऐल्डिहाइडों को पृथक् करने के लिए CrO, का निर्जल माध्यम में ऑक्सीकरण कर्मक की तरह उपयोग किया जाता है।

$$RCH_2OH \longrightarrow RCHO$$

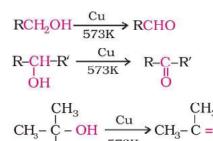
प्राथमिक ऐल्कोहॉल के ऑक्सीकरण से ऐल्डिहाइड की अच्छी लब्धि प्राप्त करने के लिए पिरिडीनियम क्लोरोक्रोमेट (PCC) श्रेष्ठ अभिकर्मक है जो कि क्रोमियम टाइऑक्साइड का पिरिडीन व HCl के साथ संकुल है।

 $CH_3 - CH = CH - CH_2OH \xrightarrow{PCC} CH_3 - CH = CH - CHO$ द्वितीयक ऐल्कोहॉल क्रोमिक ऐनहाइड्राइड (CrO_3) द्वारा कीटोनों में ऑक्सीकृत हो जाती हैं।

 $\begin{array}{ccc} R-CH-R' & \xrightarrow{CrO_3} & R-C-R' \\ & & & \\ OH & & O \\ \hline fgditan-termination & abler \end{array}$

तुतीयक ऐल्कोहॉल ऑक्सीकरण अभिक्रिया नहीं करते। प्रबल अभिक्रिया परिस्थितियों, जैसे- प्रबल आक्सीकरण कर्मकों (KMnO1) एवं उच्च ताप पर $\begin{array}{cccc} CH_3 & CH_3 & CH_3 & father C-C & Maili an father fathe$ विभिन्न C-C आबंधों का विदलन होता है। जिससे कार्बोक्सिलिक अम्लों का

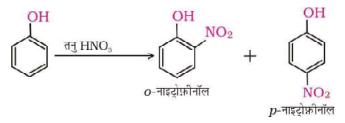
जब प्राथमिक अथवा द्वितीयक ऐल्कोहॉल के वाष्पों को 573 K पर तप्त कॉपर के ऊपर से प्रवाहित किया जाता है तो विहाइड्रोजनन होता है तथा ऐल्डिहाइड अथवा कीटोन बनते हैं। जबकि तृतीयक ऐल्कोहॉलों का निर्जलन होता है।

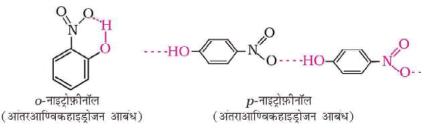

मेथेनॉल एवं एथेनॉल के जैविक ऑक्सीकरण से शरीर में संगत ऐल्डिहाइड बनते हैं, तत्पश्चात् अम्ल बनते हैं। कभी-कभी मद्यव्यसनी गलती से मेथेनॉल मिश्रित ऐथेनॉल जिसे विगुणित ऐल्कोहॉल भी कहते हैं, पी लेते हैं। शरीर में मेथेनॉल पहले मेथेनैल में ऑक्सीकृत होती है; तत्पश्चात् मेथेनॉइक अम्ल में, जो कि अन्धता एवं मृत्यु का कारण बन सकता है। मेथेनॉल की विषाक्तता के रोगी का उपचार तनुकृत ऐथेनॉल को अंत: शिरा द्वारा प्रदान करके किया जाता है। ऐल्डीहाइड (HCHO) को अम्ल में ऑक्सीकृत करने के लिए उत्तरदायी एन्जाइम जल ग्रहण कर लेता है जिससे वृक्क को मेथेनॉल उत्सर्जित करने के लिए समय प्राप्त हो जाता है।

(ग) फ़ीनॉल की अभिक्रियाएँ

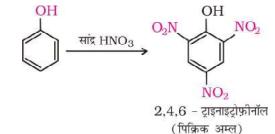
निम्नलिखित अभिक्रियाएँ केवल फ़ीनालों द्वारा दर्शायी जाती हैं-

1. **ऐरोमैटिक इलेक्ट्रॉनरागी प्रतिस्थापन**- फ़ीनॉलों में ऐरोमैटिक वलय पर होने वाली अभिक्रियाएँ इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ होती हैं। (एकक 13, कक्षा XI)। बेन्जीन वलय पर जुड़ा –OH समूह इसे इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया की ओर सक्रियित करता है और आने वाले समूह को वलय में *ऑर्थो* एवं *पैरा* स्थिति पर निर्दिष्ट करता है। जिससे –OH समूह के अनुनाद प्रभाव के कारण ये स्थितियाँ इलेक्ट्रॉन-धनी हो जाती हैं। इनकी अनुनादी संरचनाएँ फ़ीनॉलों की अम्लता शीर्षक के अंतर्गत दर्शायी गई हैं।


356 रसायन विज्ञान


फ़ीनॉलों की सामान्य इलेक्ट्रॉनरागी ऐरोमैटिक प्रतिस्थापन अभिक्रियाएँ निम्नलिखित हैं–

(i) नाइट्रोकरण


निम्न ताप (298 K) पर तनु नाइट्रिक अम्ल के साथ फ़ीनॉल के नाइट्रोकरण से *ऑर्थो*-नाइट्रोफ़ीनॉल एवं *पैरा* नाइट्रोफ़ीनॉल का मिश्रण प्राप्त होता है।

ऑर्थो एवं *पैरा* समावयवों को वाष्पीय आसवन द्वारा पृथक् किया जा सकता है। आंतरआण्विक हाइड्रोजन आबंध के कारण *ऑर्थो*–नाइट्रोफ़ीनॉल भाप द्वारा वाष्पित होती है जबकि *पैरा*–नाइट्रोफ़ीनॉल कम वाष्पशील होती है क्योंकि इसमें अंतराआण्विक हाइड्रोजन आबंध विद्यमान होता है, जिससे अणु संगुणित हो जाते हैं।

सांद्र नाइट्रिक अम्ल के साथ फ़ीनॉल 2,4,6-ट्राइनाइट्रोफ़ीनॉल में परिवर्तित हो जाती है। उत्पाद को सामान्यत: पिक्रिक अम्ल कहते हैं। अभिक्रिया उत्पाद की लब्धि बहुत कम होती है।

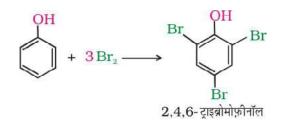
आजकल पिक्रिक अम्ल को बनाने के लिए सर्वप्रथम फ़ीनॉल की अभिक्रिया सांद्र H₂SO₄ के साथ करते हैं जिससे यह फ़ीनॉल-2, 4-डाइसल्फ़ोनिक अम्ल में परिवर्तित हो जाती है। तत्पश्चात् सांद्र HNO₃ के साथ अभिक्रिया द्वारा 2,4,6 - ट्राइनाइट्रोफ़ीनॉल प्राप्त कर लेते हैं।

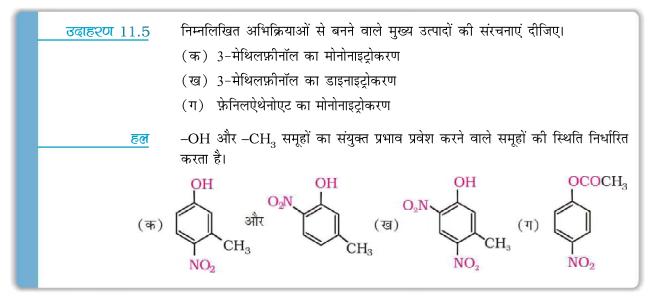
क्या आप इसमें सम्मिलित अभिक्रियाओं का समीकरण लिख सकते हैं?

(ii) हैलोजनन

फ़ीनॉल की ब्रोमीन के साथ अभिक्रिया द्वारा अलग-अलग प्रायोगिक अवस्थाओं में अलग-अलग उत्पाद प्राप्त होते हैं।

(क) जब CHCl_3 अथवा CS_2 जैसे कम ध्रुवीय विलायकों में निम्न ताप पर अभिक्रिया की जाती है तो मोनोब्रोमोफ़ीनॉल प्राप्त होती है।


ऐल्कोहॉल, फ़ीनॉल एवं ईथर 357

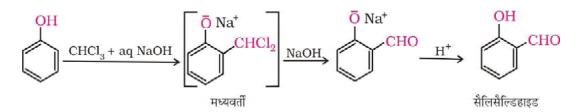

2,4,6-ट्राइनाइट्रोफ़ीनॉल तीन इलेक्ट्रॉन अपनयक –NO2 समूहों की उपस्थिति के कारण प्रबल अम्ल होती है। यह समूह हाइड्रोजन आयन निकलने में सहायक होते हैं।

बेन्जीन का सामान्य हैलोजनन FeBr₃ जैसे लूइस अम्ल की उपस्थिति में होता है (एकक 10, कक्षा XII), जो हैलोजन अणु को ध्रुवित कर देता है। फ़ीनॉल की अभिक्रिया में ब्रोमीन का ध्रुवण लूइस अम्ल की अनुपस्थिति में भी संभव होता है। इसका कारण बेन्जीन से जुड़े –OH समूह का वलय पर उच्च सक्रियण प्रभाव होता है।

(ख) जब फ़ीनॉल की अभिक्रिया ब्रोमीन जल के साथ की जाती है तो 2,4,6-ट्राइब्रोमोफ़ीनॉल श्वेत अवक्षेप के रूप में बनता है।

2. कोल्बे अभिक्रिया

फ़ीनॉल को सोडियम हाइड्रॉक्साइड के साथ अभिकृत कराने से बना फ़ीनॉक्साइड आयन, फ़ीनॉल की अपेक्षा इलेक्ट्रॉनरागी ऐरोमैटिक प्रतिस्थापन अभिक्रिया के प्रति अधिक क्रियाशील होता है। अत: यह CO₂ जैसे दुर्बल इलेक्ट्रॉनरागी के साथ इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया करता है। इससे ऑर्थो हाइड्रॉक्सीबेन्ज़ोइक अम्ल मुख्य उत्पाद के रूप में प्राप्त होता है।


358 रसायन विज्ञान

3. राइमर-टीमन अभिक्रिया

फ़ीनॉल की सोडियम हाइड्रॉक्साइड की उपस्थिति में क्लोरोफ़ार्म के साथ अभिक्रिया से बेन्जीन में, –CHO समूह ऑर्थो स्थिति पर प्रवेश कर जाता है। इस अभिक्रिया को *राइमर-टीमन अभिक्रिया* (Reimer-Tiemann reaction) कहते हैं।


प्रतिस्थापित मध्यवर्ती बेन्ज़िल क्लोराइड क्षार की उपस्थिति में अपघटित होकर सैलिसैल्डिहाइड बनाता है।

4. फ्रीनॉल की यशदरज के साथ अभिक्रिया

यशदरज के साथ गरम करने पर फ़ीनॉल बेन्जीन में परिवर्तित हो जाती है।

$$\rightarrow$$
 + Zn \rightarrow + ZnO

5. आक्सीकरण

फ़ीनॉल के क्रोमिक अम्ल द्वारा आक्सीकरण से संयुग्मित डाइकीटोन बनता है जिसे बेन्ज़ोक्विनोन कहते हैं। वायु की उपस्थिति में फ़ीनॉल धीरे-धीरे गहरे रंग के क्विनोनों के मिश्रण में ऑक्सीकृत हो जाते हैं।

पाठ्यनिहित प्रश्न

11.6 यदि निम्नलिखित ऐल्कोहॉल क्रमश: (क) $HCl-ZnCl_2$ (ख) $HBr(\tau) SOCl_2$ से अभिक्रिया करें तो आप अपेक्षित उत्पादों की संरचनाएं दीजिए।

(i) ब्यूटेन -1-ऑल (ii) 2-मेथिलब्यूटेन-2-ऑल

- 11.7 (i) 1-मेथिलसाइक्लोहैक्सेनॉल और (ii) ब्यूटेन-1-ऑल के अम्ल उत्प्रेरित निर्जलन के मुख्य उत्पादों की प्रागुक्ति कीजिए।
- **11.8** ऑर्थो तथा पैरा नाइट्रोफ़ीनॉल, फ़ीनॉल से अधिक अम्लीय होती हैं। उनके संगत फ़ीनॉक्साइड आयनों की अनुनादी संरचनाएं बनाइए।
- 11.9 निम्नलिखित अभिक्रियाओं में सम्मिलित समीकरण लिखिए-
 - (i) राइमर-टीमन अभिक्रिया (ii) कोल्बे अभिक्रिया

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 359

11.5 औंघोशिक महत्व के कुछ ऐल्कोहॉल मेथेनॉल एवं एथेनॉल दो औद्योगिक महत्व की ऐल्कोहॉल हैं।

1. मेथेनॉल

मेथेनॉल, CH₃OH जिसे 'काष्ठ स्प्रिट' भी कहते हैं, लकड़ी के भंजक आसवन द्वारा प्राप्त की जाती थी। वर्तमान में अधिकांश मेथेनॉल का उत्पादन उच्च ताप एवं दाब पर ZnO – Cr₂O₃ उत्प्रेरक की उपस्थिति में कार्बन मोनोक्साइड के उत्प्रेरकी हाइड्रोजनन द्वारा किया जाता है।

$$CO + 2H_2 \xrightarrow{ZnO-Cr_2O_3} CH_3OH$$

$$\xrightarrow{200-300 \text{ atm}} 573-673 \text{ K}$$

मेथेनॉल एक रंगहीन द्रव है, जिसका क्वथनांक 337 K होता है। यह अत्यंत विषैली प्रकृति की होती है। इसके बहुत कम मात्रा में सेवन से भी अंधापन हो सकता है और इसकी अधिक मात्रा से मृत्यु भी हो सकती है। मेथेनॉल का उपयोग पेंट और वार्निश के लिए विलायक के रूप में और मुख्य रूप से फॉर्मेल्डीहाइड को बनाने के लिए किया जाता है।

2. एथेनॉल

ऐथेनॉल C_2H_5OH को औद्योगिक स्तर पर किण्वन द्वारा प्राप्त किया जाता है। शर्करा के किण्वन से एथेनॉल प्राप्त करने की यह विधि सबसे पुरानी है। मोलैसेज (शीरे), गन्ने अथवा अंगूर जैसे फलों की शर्करा को इनवर्टेस एन्जाइम की उपस्थिति में ग्लूकोस एवं फ्रक्टोज (दोनों का आण्विक सूत्र $C_6H_{12}O_6$ है) में परिवर्तित कर लिया जाता है। ग्लूकोस एवं फ्रक्टोज को यीस्ट में पाए जाने वाले दूसरे एन्जाइम जाइमेज द्वारा किण्वन किया जाता है।

शराब बनाने के लिए अंगूर शर्करा (द्राक्ष-शर्करा) तथा यीस्ट का स्रोत होते हैं। जब अंगूर पक जाते हैं तो उनमें शर्करा की मात्रा बढ़ जाती है तथा उनकी ऊपरी सतह पर यीस्ट उत्पन्न हो जाती है। जब अंगूरों को कुचला जाता है तो शर्करा एवं एन्जाइम संपर्क में आते हैं तथा किण्वन आरंभ हो जाता है। किण्वन अवायवीय स्थितियों यानी कि वायु की अनुपस्थिति में होता है। किण्वन में कार्बनडाइऑक्साइड निर्मुक्त होती है।

उत्पन्न ऐल्कोहॉल की मात्रा 14% से अधिक हो जाने पर जाइमेज की क्रिया संदमित हो जाती है। यदि किण्वन मिश्रण में वायु आ जाती है तो वायु की ऑक्सीजन एथेनॉल को एथेनोइक अम्ल में आक्सीकृत कर देती है, जिससे ऐल्कोहॉली पेय का स्वाद नष्ट हो जाता है।

एथेनॉल एक रंगहीन द्रव है, जिसका क्वथनांक 351 K है। यह पेंट उद्योग में विलायक के रूप में तथा कार्बन के अनेक यौगिकों के विरचन में प्रयुक्त की जाती है। औद्योगिक ऐल्कोहॉल (सामान्य एथेनॉल) को कुछ कॉपर सल्फेट (रंग प्रदान करने के लिए) एवं पिरिडीन (दुर्गंधयुक्त तरल) मिलाकर पीने के अयोग्य बना दिया जाता है। इस प्रक्रम को ऐल्कोहॉल का **विकृतीकरण** कहते हैं। आजकल एथेनॉल की अधिक मात्रा एथीन के जलयोजन द्वारा प्राप्त की जाती है (खंड 11.4)।

एथेनॉल के सेवन का प्रभाव केंद्रीय तंत्रिका तंत्र पर पड़ता है। मध्यम मात्रा में यह निर्णय क्षमता पर प्रभाव डालती है तथा अंतर्बाधा को कम करती है। अधिक सांद्रता मितली और बेहोशी लाती है। उच्च सांद्रताओं में यह स्वत: श्वसन क्रिया में भी बाधा डालती है और प्राणघातक हो सकती है।

360 रसायन विज्ञान

1. ऐल्कोहॉलों के निर्जलन द्वारा

11.6 ईগ্রহ

11.6.1 ईथरों का विरचन

प्रोटिक अम्लों (H_2SO_4, H_3PO_4) की उपस्थिति में ऐल्कोहॉल निर्जलित हो जाती है। अभिक्रिया का उत्पाद ऐल्कीन होगा अथवा ईथर; यह अभिक्रिया की परिस्थितियों पर निर्भर करता है। उदाहरणार्थ; 443 K ताप पर सल्फ्यूरिक अम्ल की उपस्थिति में एथेनॉल निर्जलित होकर एथीन देती है। 413 K ताप पर एथॉक्सीएथेन मुख्य उत्पाद होता है।

$$CH_{3}CH_{2}OH \longrightarrow \begin{array}{c} H_{2}SO_{4} \\ 443 \text{ K} \\ H_{2}SO_{4} \\ H_{2}SO_{4} \\ 413 \text{ K} \\ \end{array} C_{2}H_{5}OC_{2}H_{5} \end{array}$$

ईथर का विरचन एक द्विअणुक नाभिकरागी प्रतिस्थापन अभिक्रिया (S_N2 अभिक्रिया) है जिसमें ऐल्कोहॉल अणु एक प्रोटॉनित ऐल्कोहॉल अणु पर आक्रमण करता है जैसा कि नीचे दर्शाया गया है–

(i)
$$CH_3-CH_2-\overset{\cdots}{O}-H + H^+ \rightarrow CH_3-CH_2-\overset{\cdots}{O}-H$$

(ii) $CH_3CH_2-\overset{\cdots}{O}: + CH_3-\overset{\cdots}{C}H_2-\overset{\cdots}{O}\overset{H}{H} \rightarrow CH_3CH_2-\overset{\cdots}{O}-CH_2CH_3 + H_2O$
(iii) $CH_3CH_2=\overset{\cdots}{O}-CH_2CH_3 \rightarrow CH_3CH_2-O-CH_2CH_3 + H^+$

ऐल्कोहॉलों का अम्लीय निर्जलन, जिसमें ऐल्कीन बनती है, एक प्रतिस्थापन अभिक्रिया से भी संबंधित है जो ईथर देती है।

यह विधि केवल प्राथमिक ऐल्किल समूह युक्त ईथरों के विरचन के लिए ही उपयुक्त होती है। ऐल्किल समूह अबाधित तथा तापक्रम निम्न होना चाहिए अन्यथा अभिक्रिया ऐल्कीन के बनने में सहायक होगी। जब ऐल्कोहॉल द्वितीयक या तृतीयक होती है तो अभिक्रिया S_N1 पथ का अनुसरण करती है, जिसके बारे में आप उच्च कक्षाओं में अध्ययन करेंगे। तथापि द्वितीयक और तृतीयक ऐल्कोहॉलों के निर्जलन से ईथरों को प्राप्त करना असफल होता है; क्योंकि प्रतिस्थापन और विलोपन की प्रतिस्पर्धा में प्रतिस्थापन की बजाय विलोपन होने के परिणामस्वरूप ऐल्कीनें सरलता से बनती हैं।

क्या आप समझा सकते हैं कि द्विअणुक निर्जलन, एथिल मेथिल ईथर के विरचन के लिए उपयुक्त क्यों नहीं है?

2. विलियम्सन संश्लेषण

यह सममित और असममित ईथरों को बनाने की एक महत्वपूर्ण प्रयोगशाला विधि है। इस विधि में, ऐल्किल हैलाइड की सोडियम ऐल्कॉक्साइड के साथ अभिक्रिया कराई जाती है।

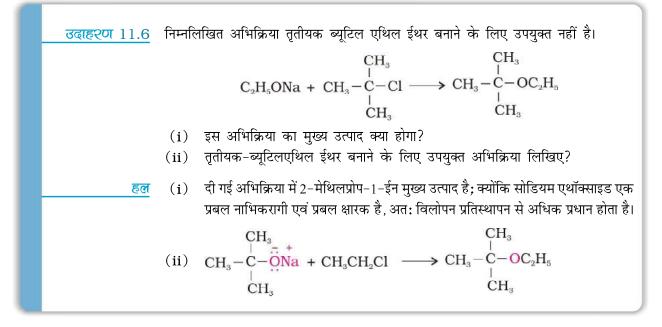
$$R-X + R' \rightarrow Na$$
 $R-O-R' + Na X$

प्रतिस्थापित (f_{g} तीयक अथवा f_{q} तीयक) ऐल्किल समूह युक्त ईथर भी इस विधि द्वारा बनाई जा सकती हैं। इस अभिक्रिया में प्राथमिक ऐल्किल हैलाइड पर ऐल्कॉक्साइड आयन का ($S_N 2$) आक्रमण होता है।

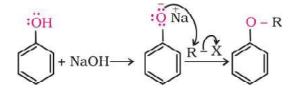
ऐल्कोहॉल, फ़ीनॉल एवं ईथर <mark>361</mark>

ऐलेक्जेंडर विलियम विलियम्सन (1824-1904) का जन्म लंदन में स्कॉट परिवार में हुआ। वह 1849 में यूनिवर्सिटी कॉलेज, लंदन में प्रोफ़ेसर नियुक्त हुए।

Downloaded from https:// www.studiestoday.com


डाइएथिल ईथर का उपयोग अंत:श्वसन निश्चेतक के रूप में होता रहा है। परंतु इसके धीमे असर एवं अप्रिय स्वास्थ्यलाभ समय के कारण, इसका प्रतिस्थापन दूसरे यौगिकों द्वारा कर दिया गया है।

$$\begin{array}{c} H_{3}C & \overset{H_{3}C}{\underset{C}{\rightarrow}} H_{3}C - \overset{H_{3}}{\underset{C}{\rightarrow}} H_{3} + NaBr$$


अगर ऐल्किल हैलाइड प्राथमिक होता है तो अच्छे परिणाम प्राप्त होते हैं। *द्वितीयक* एवं *तृतीयक* ऐल्किल हैलाइडों की अभिक्रिया में विलोपन, प्रतिस्पर्धा में प्रतिस्थापन से आगे होता है। यदि *तृतीयक* ऐल्किल हैलाइड का उपयोग किया जाए तो उत्पाद के रूप में केवल ऐल्कीन प्राप्त होती है एवं कोई ईथर नहीं बनती। उदाहरणार्थ; CH₃ONa की (CH₃)₃C–Br के साथ अभिक्रिया द्वारा केवल 2-मेथिलप्रोपीन प्राप्त होती है।

$$CH_{3}$$

 $CH_{3}-C-Br + Na\overset{+}{O}O-CH_{3} \rightarrow CH_{3}-C=CH_{2}+NaBr + CH_{3}OH$
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 $2-\dot{H}$ थिलप्रोपीन

ऐसा इसलिए होता है क्योंकि ऐल्कॉक्साइड न केवल नाभिकरागी होते हैं अपितु प्रबल

क्षारक भी होते हैं। वे ऐल्किल हैलाइडों के साथ विलोपन अभिक्रिया करते हैं। इस विधि से फ़ीनॉलों को भी ईथरों में परिवर्तित किया जाता है। इसमें फ़ीनॉल का उपयोग फ़ीनाक्सॉइड अर्धांश (Moiety) के रूप में होता है।

362 रसायन विज्ञान

ईथर में C-O आबंध ध्रुवीय होते हैं, अत: ईथरों का नेट द्विध्रुव आघूर्ण होता है। ईथरों की अल्प ध्रुवता उनके क्वथनांकों को बहुत अधिक प्रभावित नहीं करती, जो कि समतुल्य आण्विक द्रव्यमान वाले ऐल्केनों के क्वथनांकों के समान होते हैं, परंतु वे ऐल्कोहॉलों के क्वथनांकों से बहुत कम होते हैं, जैसा कि निम्नलिखित स्थितियों में दर्शाया गया है–

सूत्र	$CH_3(CH_2)_3CH_3$	$C_2H_5-O-C_2H_5$	$CH_3(CH_2)_3$ -OH
	\mathbf{n} -पेन्टेन	एथॉक्सीएथेन	ब्यूटेन-1-ऑल
क्वथनांक⁄I	K 309.1	307.6	390

ऐल्कोहॉलों एवं ईथरों के क्वथनांकों में अधिक अंतर का कारण ऐल्कोहॉलों में हाइड्रोजन आबंधों की उपस्थिति है।

ईथरों की जल में मिश्रणीयता, समान आण्विक द्रव्यमान वाले ऐल्कोहॉलों से सदृश्य होती है। एथॉक्सीएथेन एवं ब्यूटेन-1-ऑल दोनों ही जल में लगभग समान रूप से मिश्रणीय होते हैं अर्थात् 100 mL जल में क्रमश: 7.5 g तथा 9 g है जबकि पेन्टेन जल में अमिश्रणीय है। क्या आप इस प्रेक्षण को समझा सकते हैं? इसका कारण यह है कि ऐल्कोहॉलों की भौंति ईथरों का ऑक्सीजन परमाणु भी जल के साथ हाइड्रोजन आबंध बनाता है; जैसा कि चित्र में दर्शाया गया है।

1. ईथरों में C-O आबंध का विदलन

ईथर प्रकार्यात्मक समूहों में सबसे कम अभिक्रियाशील होती हैं। ईथरों के C–O आबंध का विदलन उग्र परिस्थितियों में हाइड्रोजन हैलाइडों के आधिक्य में होता है। डाइऐल्किल ईथर की अभिक्रिया से ऐल्किल हैलाइड के दो अणु प्राप्त होते हैं।

 $R-O-R + HX \longrightarrow RX + R-OH$ $R-OH + HX \longrightarrow RX + H_2O$

ऐरिल-ऑक्सीजन आबंध के अधिक स्थायी होने के कारण ऐल्किल ऐरिल ईथर का ऐल्किल-ऑक्सीजन आबंध विदलित होता है। इस अभिक्रिया से फ़ीनॉल एवं ऐल्किल हैलाइड प्राप्त होते हैं।

दो विभिन्न ऐल्किल समूहों वाली ईथर भी इसी प्रकार से विदलित होती हैं।

 $R-O-R' + HX \longrightarrow R-X + R' - OH$

हाइड्रोजन हैलाइडों की अभिक्रियाशीलता का क्रम इस प्रकार होता है– HI >HBr>HCl ईथरों का विदलन सांद्र HI अथवा HBr द्वारा उच्च ताप पर होता है। जब इनमें से एक ऐल्किल समूह तृतीयक समूह होता है, तो तृतीयक हैलाइड प्राप्त होते हैं।

$$\begin{array}{c} \operatorname{CH}_{3} & \operatorname{CH}_{3} \\ \operatorname{CH}_{3} - \overset{I}{\operatorname{C}} - \overset{O}{\operatorname{O}} - \operatorname{CH}_{3} + \operatorname{HI} \longrightarrow \operatorname{CH}_{3} \overset{OH}{\operatorname{OH}} + \operatorname{CH}_{3} - \overset{I}{\operatorname{C}} - \operatorname{I} \\ \operatorname{CH}_{3} & \operatorname{CH}_{3} \end{array}$$

ऐल्कोहॉल, फ़ीनॉल एवं ईथर <mark>363</mark>

Downloaded from https:// www.studiestoday.com

H∕Ö∕H

11.6.2 भौतिक गुणधर्म

क्रियाविधि

ईथर की सांद्र HI के साथ अभिक्रिया, ईथर के अणु के प्रोटॉनन से प्रारंभ होती है। **चरण–1**

$$CH_3 - \overset{\frown}{O} - CH_2CH_3 + H-I \rightleftharpoons CH_3 - \overset{H}{O} - CH_2CH_3 + I^-$$

अभिक्रिया HI या HBr के साथ होती है; क्योंकि ये अभिकर्मक पर्याप्त अम्लीय होते हैं।

चरण-2

आयोडाइड एक अच्छा नाभिकरागी है। यह पद 1 से प्राप्त ऑक्सोनियम आयन के अल्पतम प्रतिस्थापित कार्बन पर आक्रमण करता है और $S_{\!\scriptscriptstyle N}\!2$ क्रियाविधि से ऐल्कोहॉल अणु को विस्थापित कर देता है।

अत: दो भिन्न ऐल्किल समूह युक्त मिश्रित ईथर के विदलन से बनने वाली ऐल्कोहॉल तथा ऐल्किल आयोडाइड कौन से होंगे यह ऐल्किल समूहों की प्रकृति पर निर्भर करता है। जब प्राथमिक अथवा द्वितीयक ऐल्किल समूह उपस्थित होते हैं तो निम्नतर ऐल्किल समूह ऐल्किल आयोडाइड (S_N2 अभिक्रिया) बनते हैं।

$$\overbrace{I^{+} CH_{3}}^{H_{3}} - \overbrace{O}^{H_{4}}^{H_{4}} - CH_{2}CH_{3} \longrightarrow \left[I \cdots CH_{3} \cdots \overbrace{O}^{H_{4}}^{H_{4}} - CH_{2}CH_{3} \right] \longrightarrow CH_{3}-I + CH_{3}CH_{2}-OH$$

जब HI आधिक्य में होता है और अभिक्रिया उच्च ताप पर की जाती है तो एथेनॉल, HI के दूसरे अणु के साथ अभिक्रिया करके एथिल आयोडाइड में परिवर्तित हो जाती है।

चरण-3

$$\begin{array}{c} & \overset{H}{\underset{I_{+}}{\overset{H}{\underset{I_{+}}{\underset{I_{+}}{\overset{H}{\underset{I_{+}}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{+}}{\underset{I_{+}}{\underset{I_{+}{\underset{I_{+}}{\underset{I_{1}}{\underset{I_{1}}{\underset{I_{1}}{\underset{I_{1}}{\underset{I_{1}}{\underset{I_{1}}{\atop{I_{1}}{I_{$$

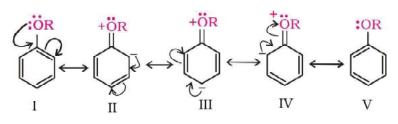
इसका कारण अभिक्रिया के चरण 2 में निष्कासित होने वाले (OH–CH₃) समूह के निष्कासन से अधिक स्थायी कार्बोकेटायन [(CH₃)₃C⁺] का बनाना जिससे अभिक्रिया S_N1 क्रियाविधि द्वारा संपन्न होती है।

$$CH_{3} \xrightarrow{CH_{3}}_{I} \xrightarrow{C}_{H} - CH_{3} \xrightarrow{\mathfrak{s}\widehat{\Pi} + \Pi} CH_{3} \xrightarrow{C}_{I} \xrightarrow{C}_{H} + CH_{3}OH$$

$$CH_{3} \xrightarrow{C}_{H} - CH_{3} \xrightarrow{L}_{H} + CH_{3} \xrightarrow{C}_{H} + CH_{3}OH$$

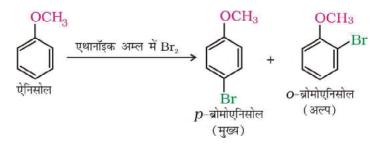
$$CH_{3} \xrightarrow{C}_{H} + \Gamma \xrightarrow{\widehat{\Pi} = \mathcal{I}}_{C} - 1$$

$$CH_{3} \xrightarrow{C}_{H} + \Gamma \xrightarrow{\widehat{\Pi} = \mathcal{I}}_{C} \xrightarrow{C}_{H} + CH_{3}$$

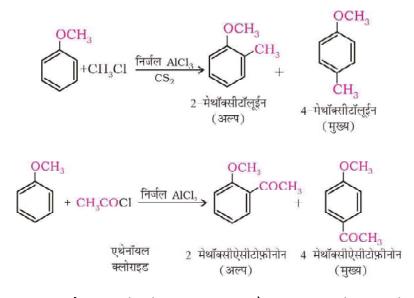

364 रसायन विज्ञान

ऐनिसोल में ईथर के प्रोटॉनन द्वारा मेथिलफेनिल ऑक्सोनियम आयन $C_6H_5 - \stackrel{o}{O} - CH_3$ बनता है। फेनिल समूह के कार्बन की sp^2 संकरण अवस्था तथा $(O-C_6H_5)$ समूह के आंशिक द्विआबंध अभिलक्षण के कारण $O-CH_3$ का आबंध $O-C_6H_5$ आबंध की तुलना में दुर्बल होता है। इसलिए Г आयन का आक्रमण $O-CH_3$ आबंध को तोड़कर CH_3 I बनाता है। फ़ीनॉल पुन: अभिक्रिया करके हैलाइड नहीं देते क्योंकि फ़ीनॉल का sp^2 संकरित कार्बन (नाभिकरागी) प्रतिस्थापन अभिक्रिया नहीं दर्शा सकता जो कि हैलाइड में परिवर्तन के लिए आवश्यक है।

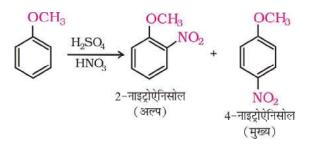
उदाहरण 11.7	निम्नलिखित ईथरों को HI के साथ गरम करने से प्राप्त मुख्य उत्पाद दीजिए।
	(i) CH_3 (i) CH_3 - CH_2 - CH - CH_2 - O - CH_2 - CH_3
	(ii) CH_3 - CH_2 - CH_2 - O - C - CH_2 C H_3 I CH_3 CH_3
	(iii) $-CH_2O-CH_$
<u>हल</u>	(i) CH_3 - CH_2 - $CHCH_2OH + CH_3CH_2I$ I CH_3
	(ii) $CH_3CH_2CH_2OH + CH_3CH_2-C-I$ CH_3 CH_3 CH_3
	(iii) $\sim - CH_2I + \sim -OH$

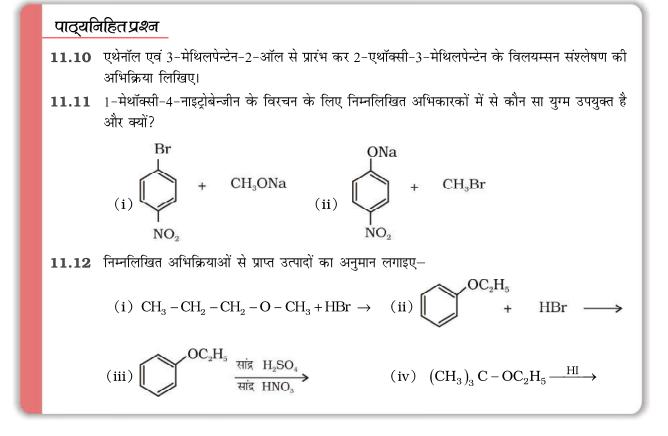

2. इलेक्ट्रॉनरागी प्रतिस्थापन

ऐल्कॉक्सी समूह (–OR) *ऑर्थो* एवं *पैरा* निर्देशक होता है तथा यह फ़ीनॉल के –OH समूह के समान ही ऐरोमैटिक वलय को इलेक्ट्रॉनरागी प्रतिस्थापन के प्रति सक्रिय करता है।



ऐल्कोहॉल, फ़ीनॉल एवं ईथर <mark>365</mark>


(i) हैलोजनन— फ़ोनिलऐल्किल ईथर, बेन्जीन वलय में सामान्य हैलोजनन अभिक्रियाएं nskg&mnkgj. kHZ, tul kg d kckehul], Hskkv v Ey eakyhckehu }kjk v kju (III) ब्रोमाइड उत्प्रेरक की अनुपस्थिति में भी होता है। ऐसा मेथॉक्सी समूह द्वारा बेन्जीन वलय के सक्रिमण के कारण होता है। इसमें पैरा समावयवी की लब्धि 90% होती है।


(ii) फ्रीडेल क्राफ्ट अभिक्रिया— ऐनिसोल फ्रीडेल-क्राफ्ट अभिक्रिया देता है ऐलुमीनियम क्लोराइड (एक लुईस अम्ल) उत्प्रेरक की उपस्थिति में ऐल्किल हैलाइड तथा ऐसिल हैलाइड की अभिक्रिया द्वारा ऐल्किल तथा ऐसिल समूह ऑर्थो तथा पैरा स्थितियों पर प्रवेश करते हैं।

(iii) नाइट्रोकरण— ऐनिसोल, सांद्र H₂SO₄ और सांद्र HNO₃ के मिश्रण के साथ अभिक्रिया द्वारा *ऑर्थों* और *पैरा* नाइट्रोएनिसोल का मिश्रण देता है।

366 रसायन विज्ञान

સારાંશ

ऐल्कोहॉलों एवं **फ्रीनॉलों** का वर्गीकरण– (1) हाइड्रॉक्सिल समूहों की संख्या व (11) कार्बन परमाणु के *sp*³ या *sp*² संकरण जिससे कि –OH समूह जुड़ा होता है, के आधार पर किया जाता है। **ईथरों** का वर्गीकरण ऑक्सीजन परमाणु से जुड़े समूहों के आधार पर किया जाता है।

ऐल्कोहॉलों को निम्नलिखित विधियों द्वारा बनाया जा सकता है-

- (1) ऐल्कीनों के जलयोजन से- (i) अम्ल की उपस्थिति में तथा (ii) हाइड्रोबोरॉनन-आक्सीकरण अभिक्रिया द्वारा
- (2) कार्बोनिल यौगिकों से- (i) उत्प्रेरकी अपयचन तथा (ii) ग्रीन्यार अभिकर्मक की क्रिया द्वारा

फ़ीनॉलों को निम्नलिखित विधियों द्वारा बनाया जा सकता है–

- –OH समूह से प्रतिस्थापन द्वारा– (i) हैलोऐरीन में हैलोजन परमाणु का तथा (ii) ऐरिल सल्फोनिक अम्ल में सल्फोनिक अम्ल समूह का प्रतिस्थापन।
- (2) डाइऐज़ोनियम लवणों के जलअपघटन द्वारा।
- (3) क्यूमीन से औद्योगिक उत्पादन द्वारा।

लगभग तुल्य द्रव्यमान वाले अन्य वर्गों, जैसे– हाइड्रोकार्बनों, ईथरों तथा हैलोऐल्केनों के यौगिकों की तुलना में ऐल्कोहॉलों के क्वथनांक अधिक होते हैं। ऐल्कोहॉलों, फ़ीनॉलों एवं ईथरों की जल के साथ **अंतराआण्विक हाइड्रोजन आबंध** बनाने की क्षमता के कारण यह जल में घुलनशील होती हैं।

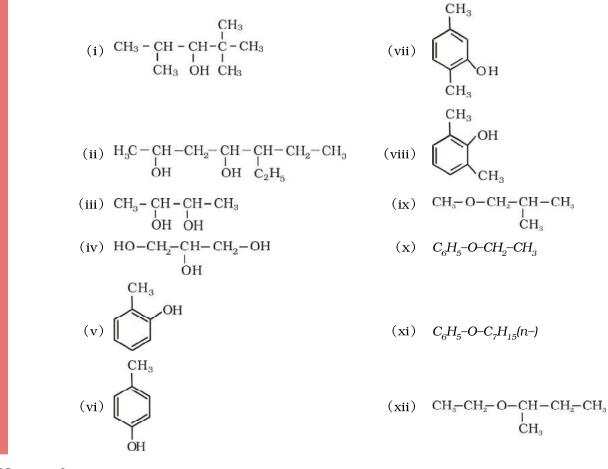
ऐल्कोहॉल एवं फ़ीनॉल अम्लीय प्रकृति की होती हैं। फ़ीनॉलों में **इलेक्ट्रॉन अपनयक समूह** इनकी अम्ल प्रबलता को बढ़ाते हैं तथा **इलेक्ट्रॉन दाता (विमोचक) समूह** अम्ल प्रबलता को कम करते हैं।

ऐल्कोहॉल हाइड्रोजन हैलाइडों के साथ नाभिकरागी प्रतिस्थापन द्वारा ऐल्किल हैलाइड प्रदान करते हैं। ऐल्कोहॉलों का निर्जलन

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 367

ऐल्कीन देता है। दुर्बल ऑक्सीकारकों द्वारा प्राथमिक ऐल्कोहॉल ऑक्सीकृत होकर **ऐल्डिहाइड** प्रदान करते हैं तथा प्रबल ऑक्सीकारकों द्वारा **कार्बोक्सिलिक अम्ल** प्राप्त होते हैं। जबकि द्वितीयक ऐल्कोहॉल **कीटोन** देते हैं। तृतीयक ऐल्कोहॉल ऑक्सीकरण प्रतिरोधी होते हैं।

फ़ीनॉलों में, –OH समूह की उपस्थिति, ऐरोमैटिक वलय को **इलेक्ट्रॉनरागी प्रतिस्थापन** के प्रति सक्रियित कर देती है एवं अनुनादी प्रभाव के कारण आने वाले समूह को *ऑर्थों* तथा *पैरा* स्थितियों की ओर निर्दिष्ट करती है। फ़ीनॉल की **राइमर-टीमन** अभिक्रिया सैलिसैल्डिहाइड प्रदान करती है। सोडियम हाइड्राक्साइड की उपस्थिति में फ़ीनॉल फ़ीनॉक्साइड आयन देता है जो फ़ीनॉल से अधिक क्रियाशील होता है अत: क्षारीय माध्यम में फ़ीनॉल कोल्बे अभिक्रिया देती है।


ईथरों को– (i) ऐल्कोहॉलों के निर्जलन तथा (ii) विलियम्सन संश्लेषण विधि द्वारा बनाया जाता है।

निम्नलिखित यौगिकों के आईयूपीएसी (IUPAC) नाम लिखिए।

ईथरों के क्वथनांक ऐल्केनों से मिलते–जुलते होते हैं। जबकि इनकी विलेयता समान आण्विक द्रव्यमान वाले ऐल्कोहॉलों से तुल्य होती हैं। ईथरों के C–O आबंध को हाइड्रोजन हैलाइडों द्वारा विदलित किया जा सकता है। इलेक्ट्रॉनरागी प्रतिस्थापन में, ऐल्कॉक्सी समूह ऐरोमैटिक वलय को सक्रिय बनाता है तथा प्रवेश करने वाले समूह को *ऑर्थों* एवं *पैरा* स्थितियों की ओर निर्दिष्ट करता है।

अभ्यास

11.1

368 रसायन विज्ञान

11.2 निम्नलिखित आईयूपीएसी (IUPAC) नाम वाले यौगिकों की संरचनाएं लिखिए-(i) 2-मेथिलब्यूटेन -2-ऑल (vi) 2-एथॉक्सी-3-मेथिलपेन्टेन (ii) 1-फ़ेनिलप्रोपेन-2-ऑल (vii) साइक्लोहैक्सिलमेथेनॉल (iii) 3, 5-डाइमेथिलहैक्सेन-1,3,5,-ट्राइऑल (viii) 3-साइक्लोहैक्सिलपेन्टेन-3-ऑल (ix) साइक्लोपेन्टेन-3-ईन-1-ऑल (iv) 2, 3-डाइएथिलफ़ीनॉल (v) 1-एथॉक्सीप्रोपेन (x) 4-क्लोरो-3-एथिलब्यूटेन-1-ऑल 11.3 (i) C₅H₁₂O आण्विक सूत्र वाले ऐल्कोहॉलों के सभी समावयवों की संरचना लिखिए एवं उनके आईयूपीएसी (IUPAC) नाम दीजिए। (ii) प्रश्न 11.3 (i) के समावयवी ऐल्कोहॉलों को प्राथमिक, द्वितीयक एवं तृतीयक ऐल्कोहॉलों में वर्गीकृत कीजिए। 11.4 समझाइए कि प्रोपेनॉल का क्वथनांक, हाइड्रोकार्बन ब्यूटेन से अधिक क्यों होता है? समतुल्य आण्विक भार वाले हाइड्रोकार्बनों की अपेक्षा ऐल्कोहॉल जल में अधिक विलेय होते हैं इस तथ्य को समझाइए। 11.5 हाइड्रोबोरॉनन-ऑक्सीकरण अभिक्रिया से आप क्या समझते हैं? इसे उदाहरण सहित समझाइए। 11.6 आण्विक सूत्र C,H,O वाले मोनोहाइड्रिक फ़ीनॉलों की संरचनाएं तथा आईयूपीएसी (IUPAC) नाम लिखिए। 11.7 *ऑर्थो* तथा *पैरा*-नाइट्रोफ़ीनॉलों के मिश्रण को भाप-आसवन द्वारा पृथक् करने में भाप-वाष्पशील समावयवी का नाम 11.8 बताइए। इसका कारण दीजिए। 11.9 क्यूमीन से फ़ीनॉल बनाने की अभिक्रिया का समीकरण दीजिए। 11.10 क्लोरोबेन्जीन से फ़ीनॉल बनाने की रासायनिक अभिक्रिया लिखिए। 11.11 एथीन के जलयोजन से एथेनॉल प्राप्त करने की क्रियाविधि लिखिए। 11.12 आपको बेन्जीन, सांद्र H_2SO_4 और NaOH दिए गए हैं। इन अभिकर्मकों के उपयोग द्वारा फ़ीनॉल के विरचन की समीकरण लिखिए। 11.13 आप निम्नलिखित को कैसे संश्लेषित करेंगे? दर्शाइए। (i) एक उपयुक्त ऐल्कीन से 1-फ़्रेनिलएथेनॉल (ii) S_N2 अभिक्रिया द्वारा ऐल्किल हैलाइड के उपयोग से साइक्लोहेक्सिलमेथेनॉल (iii) एक उपयुक्त ऐल्किल हैलाइड के उपयोग से पेन्टेन-1-ऑल 11.14 ऐसी दो अभिक्रियाएं दीजिए जिनसे फ़ीनॉल की अम्लीय प्रकृति प्रदर्शित होती हो, फ़ीनाल की अम्लता की तुलना एथेनॉल से कीजिए। 11.15 समझाइए कि ऑर्थो-नाइट्रोफ़ीनॉल, ऑर्थो-मेथॉक्सीफ़ीनॉल से अधिक अम्लीय क्यों होती है? 11.16 समझाइए कि बेन्जीन वलय से जुड़ा –OH समूह उसे इलेक्ट्रॉनरागी प्रतिस्थापन के प्रति कैसे सक्रियित करता है? 11.17 निम्नलिखित अभिक्रियाओं के लिए समीकरण दीजिए-(i) प्रोपेन-1-ऑल का क्षारीय KMnO, के साथ ऑक्सीकरण (ii) ब्रोमीन की CS₂ में फ़ीनॉल के साथ अभिक्रिया (iii) तनु HNO3 की फ़ीनॉल से अभिक्रिया (iv) फ़ीनॉल की जलीय NaOH की उपस्थिति में क्लोरोफार्म के साथ अभिक्रिया 11.18 निम्नलिखित को उदाहरण सहित समझाइए-(i) कोल्बे अभिक्रिया (ii) राइमर-टीमन अभिक्रिया (iii) विलियम्सन ईथर संश्लेषण (iv) असममित ईथर। 11.19 एथेनॉल के अम्लीय निर्जलन से एथीन प्राप्त करने की क्रियाविधि लिखिए। 11.20 निम्नलिखित परिवर्तनों को किस प्रकार किया जा सकता है? (i) प्रोपीन \rightarrow प्रापेन-2-ऑल (iii) एथिल मैग्नीशियम क्लोराइड → प्रापेन-1-ऑल (iv) मेथिल मैग्नीशियम ब्रोमाइड → 2-मेथिलप्रोपेन-2-ऑल

(ii) बेन्जिल क्लोराइड → बेन्जिल ऐल्कोहॉल

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 369

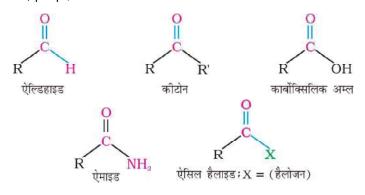
11.21 निम्नलिखित अभिक्रियाओं में प्रयुक्त अभिकर्मकों के नाम बताइए— (i) प्राथमिक ऐल्कोहॉल का कार्बोक्सिलिक अम्ल में आक्सीकरण (iv) बेन्जिल ऐल्कोहॉल से बेन्जोइक अम्ल (ii) प्राथमिक ऐल्कोहॉल का ऐल्डिहाइड में आक्सीकरण (v) प्रोपेन-2-ऑल का प्रोपीन में निर्जलन (iii) फ़ीनॉल का 2,4,6-ट्राइब्रोमोफीनॉल में ब्रोमीनन (vi) ब्यूटेन-2-ऑन से ब्यूटेन-2-ऑल 11.22 कारण बताइए कि मेथॉक्सीमेथेन की तुलना में एथेनॉल का क्वथनांक उच्च क्यों होता है? 11.23 निम्नलिखित ईथरों के आईयूपीएसी (IUPAC) नाम दीजिए-(i) $C_2H_5OCH_2 - CH - CH_3$ (ii) $CH_3OCH_2CH_2Cl$ (iii) $O_2N-C_6H_4 - OCH_3(p)$ H₃C CH₃ CH. (iv) CH₃CH₂CH₂OCH₃ (v) (vi) OC₂H₅ OC.H. 11.24 निम्नलिखित ईथरों को विलियम्सन संश्लेषण द्वारा बनाने के लिए अभिकर्मकों के नाम एवं समीकरण लिखिए— (i) 1-प्रोपॉक्सीप्रोपेन (ii) एथॉक्सीबेन्जीन (iii) 2-मेथॉक्सी-2-मेथिलप्रोपेन (iv) 1-मेथॉक्सीएथेन 11.25 कुछ विशेष प्रकार के ईथरों को विलियम्सन संश्लेषण द्वारा बनाने की सीमाओं को उदाहरणों से समझाइए। 11.26 प्रोपेन-1-ऑल से 1-प्रोपाक्सीप्रोपेन को किस प्रकार बनाया जाता है? इस अभिक्रिया की क्रियाविधि लिखिए। 11.27 द्वितीयक अथवा तृतीयक ऐल्कोहॉलों के अम्लीय निर्जलन द्वारा ईथरों को बनाने की विधि उपयुक्त नहीं है। कारण बताइए। 11.28 हाइड्रोजन आयोडाइड की निम्नलिखित के साथ अभिक्रिया के लिए समीकरण लिखिए-(iii) बेन्ज़िल एथिल ईथर (i) 1-प्रोपॉक्सीप्रोपेन (ii) मेथॉक्सीबेन्जीन तथा 11.29 ऐरिल ऐल्किल ईथरों में निम्न तथ्यों की व्याख्या कीजिए-(i) ऐल्कॉक्सी समूह बेन्जीन वलय को इलेक्ट्रॉनरागी प्रतिस्थापन के प्रति सक्रियित करता है, तथा (ii) यह प्रवेश करने वाले प्रतिस्थापियों को बेन्जीन वलय की ऑर्थों एवं पैरा स्थितियों की ओर निर्दिष्ट करता है। 11.30 मेथॉक्सीमेथेन की HI के साथ अभिक्रिया की क्रियाविधि लिखिए। 11.31 निम्नलिखित अभिक्रियाओं के लिए समीकरण लिखिए-(i) फ्रीडेल-क्राफ्ट अभिक्रिया-ऐनिसोल का ऐल्किलन (iii) एथेनॉइक अम्ल माध्यम में ऐनिसोल का ब्रोमीनन (ii) ऐनिसोल का नाइटोकरण (iv) ऐनिसोल का फ्रीडेल-क्राफ्ट ऐसीटिलन। 11.32 उपयुक्त ऐल्कीनों से आप निम्नलिखित ऐल्कोहॉलों का संश्लेषण कैसे करेंगे? (ii) (iii) (iv) Гон I ` ОН (i) 11.33 3-मेथिलब्यूटेन-2-ऑल को HBr से अभिकृत कराने पर निम्नलिखित अभिक्रिया होती है- $\begin{array}{c} CH_3 - CH - CH - CH_3 \\ \downarrow & \downarrow \\ CH_3 & OH \end{array} \xrightarrow{HBr} CH_3 - \begin{array}{c} Dr \\ \downarrow \\ CH_3 - CH_2 - CH_3 \\ \downarrow \\ CH_3 \end{array}$ इस अभिक्रिया को क्रियाविधि दीजिए। (संकेत- चरण II में प्राप्त द्वितीयक कार्बोकैटायन हाइड्राइड आयन विचलन के कारण पुनर्विन्यासित होकर स्थायी तृतीयक कार्बोकैटायन बनाते हैं।)

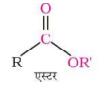
370 रसायन विज्ञान

कुछ पादुयनिहित प्रश्नों के उत्तर 11.1 प्राथमिक ऐल्कोहॉल (i) (ii) (iii) द्वितीयक ऐल्कोहॉल (iv) तथा (v) तृतीयक ऐल्कोहॉल (vi)ऐलिलिक ऐल्कोहॉल 11.2 (ii) तथा (vi) (i) 4-क्लोरो-3-एथिल-2-(1-मेथिल एथिल)-ब्यूटेन-1-ऑल (iv) हेक्स-1-ईन-3-ऑल 11.3 (ii) 2, 5-डाइमेथिलहेक्सेन-1,3-डाइऑल (v) 2-ब्रोमो-3-मेथिलब्यूट-2-ईन-1-ऑल (iii) 3-ब्रोमोसाइक्लोहेक्सेनऑल OMgBr 11.4 (i) $CH_3 - CH - MgBr + HCHO \longrightarrow CH_3 - CH - CH_2 \xrightarrow{HO} CH_3 - CH - CH_2OH + Mg(OH)Br$ CH₃ CH₂ ĊH_a MgBr CH₂OMgBr CH₂OH (ii) HCHO + OH (iii) CH₃-CH₂-CH-CH₂OH CH_2 -OCH₃ (i) CH₃—CH 11.5 ·CH₃ (**ii**) ·C -CH₃ ÔН Ο (ii) ब्यूट-1-ईन एवं ब्यूट-2-ईन का मिश्रण बनता है 11.7 (i) 1-मेथिलसाइक्लोहेक्सीन जिसमें ब्यूट-2-ईन मुख्य उत्पाद होती है क्योंकि पुनर्विन्यास द्वारा सेकेंड्री कार्बोकैटायन बनता है। 11.10 $CH_3 - CH_2 - CH - CH - CH_3 \xrightarrow{Na} CH_3 - CH_2 - CH - CH - ONa$ CH, OH CH₃ CH₃ $C_2H_5OH \xrightarrow{HBr} C_2H_5Br$ $CH_3 - CH_2 - CH - CH - ONa + C_2H_5Br \rightarrow CH_3 - CH_2 - CH - CH - OC_2H_5$ CH₃ CH₃ CH₃ CH₃ 2-एथॉक्सी-3-मेथिलपेन्टेन **11.11** (ii) **11.12** (i) $CH_3CH_2CH_2Br + CH_3Br$ (ii) C₂H₅Br (iv) $(CH_3)_3 C - I + C_2 H_5 OH$ (iii)

ऐल्कोहॉल, फ़ीनॉल एवं ईथर 371

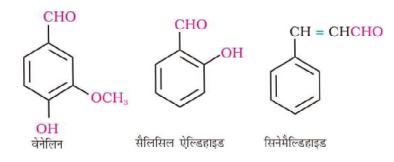
इस एकक के अध्ययन के पश्चात् आप -


- ऐल्डिहाइडों, कीटोनों एवं कार्बोक्सिलिक अम्लों के साधारण व IUPAC नाम लिख सकेंगे।
- कार्बोनिल व कार्बोक्सिलिक समूह युक्त यौगिकों की संरचना लिख सकेंगे।
- उपरोक्त वर्गों के यौगिकों के विरचन की महत्वपूर्ण विधियों एवं अभिक्रियाओं का वर्णन कर सकेंगे।
- ऐल्डिहाइडों, कीटोनों एवं कार्बोक्सिलिक अम्लों के भौतिक गुणधर्मों, रासायनिक अभिक्रियाशीलता और संरचनाओं के मध्य परस्पर संबंध स्थपित कर सकेंगे।
- ऐल्डिहाइडों व कीटोनों की कुछ चयनित अभिक्रियाओं की क्रियाविधि को समझा सकेंगे।
- कार्बोक्सिलिक अम्लों की अम्लता को प्रभावित करने वाले कारकों तथा उनकी अभिक्रियाओं को समझ सकेंगे।
- ऐल्डिहाइडों, कीटोनों एवं कार्बोक्सिलिक अम्लों के उपयोगों का वर्णन कर सकेंगे।

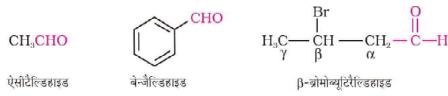


कार्बनिक रसायन में कार्बोनिल यौगिकों का अत्यधिक महत्व है। यह वस्त्रों, सुगन्धों, प्लास्टिकों तथा औषधों के संघटक होते हैं।

पिछले एकक में आपने ऐसे कार्बनिक यौगिकों का अध्ययन किया है, जिनमें प्रकार्यात्मक समूह में कार्बन तथा ऑक्सीजन परमाणु के मध्य एकल आबंध पाया जाता है। इस एकक में आप ऐसे कार्बनिक यौगिकों के बारे में अध्ययन करेंगे जिनमें प्रकार्यात्मक समूह में कार्बन तथा ऑक्सीजन के मध्य द्विआबंध (>C=O) होता है जिसे कार्बोनिल समूह कहते हैं। यह कार्बनिक रसायन का एक महत्वपूर्ण प्रकार्यात्मक समूह है।

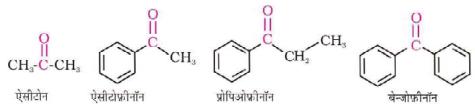

ऐल्डिहाइडों में कार्बोनिल समूह कार्बन व हाइड्रोजन से, जबकि कीटोनों में यह दो कार्बन परमाणुओं से आबंधित रहता है। कार्बोनिल यौगिक जिनमें कार्बोनिल समूह का कार्बन, हाइड्रोजन या कार्बन तथा हाइड्राक्सी माइटी (-OH) की ऑक्सीजन से आबंधित रहता है, कार्बोक्सिलिक अम्ल कहलाते हैं जबकि वे यौगिक जिनमें कार्बोनिल समूह का कार्बन, हाइड्रोजन या कार्बन तथा – NH₂ माइटी के नाइट्रोजन अथवा किसी हैलोजन से जुड़ा रहता है, क्रमश: एमाइड व ऐसिल हैलाइड कहलाते हैं। एस्टर और एनहाइड्राइड कार्बोक्सिलिक अम्लों के व्युत्पन्न होते हैं। इन वर्गों के यौगिकों के सामान्य सूत्र नीचे दिए गए हैं—

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल पौधों और जीवों में विस्तृत रूप से पाए जाते हैं। ये जीवों की जैव रासायनिक प्रक्रिया में महत्वपूर्ण योगदान देते हैं। ये प्रकृति में सुगंध व स्वाद प्रदान करते हैं। उदाहरणार्थ, वेनेलिन (बेनीला सेम से प्राप्त) सौलिसिल ऐल्डिहाइड (मेडोस्वीट से प्राप्त) तथा सिनेमैल्डिहाइड (दाल चीनी से प्राप्त) रुचिकर सुगंध देते हैं।

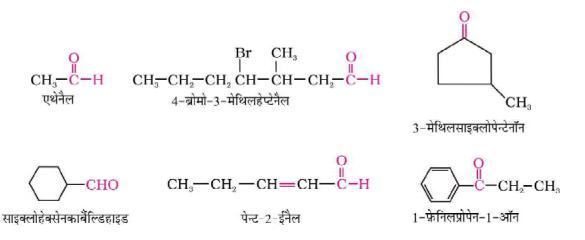

ये अनेक खाद्य उत्पादों व औषधों में सुगंध प्रदान करने के लिए प्रयुक्त होते हैं। इस वर्ग के कुछ यौगिकों का उत्पादन विलायक (ऐसीटोन) और आसंजी (चिपकने वाले) पदार्थ, पेंट, रेज़िन, सुगंध, प्लास्टिक, वस्त्र आदि बनाने के लिए किया जाता है।

12.1 कार्बोनिल यौथिकों का नामकरण एवं संरचना

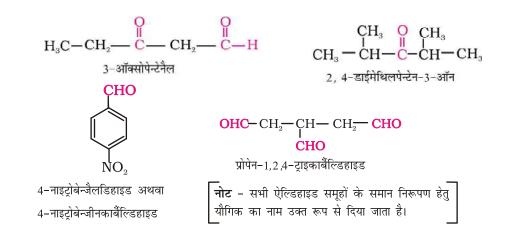
- 12.1.1 नामपद्धति
 (I) ऐल्डिहाइड एवं कीटोन


 ऐल्डिहाइड एवं कीटोन सरलतम और अत्यंत महत्वपूर्ण कार्बोनिल यौगिक हैं।

 ऐल्डिहाइडों एवं कीटोनों के नामकरण की दो पद्धतियाँ हैं–
 - (क) सामान्य नाम– ऐल्डिहाइड एवं कीटोन प्राय: IUPAC नामपद्धति की अपेक्षा अपने सामान्य नामों से जाने जाते हैं। ऐल्डिहाइड के सामान्य नाम संगत कार्बोक्सिलिक अम्लों (खंड 12.6.1) के अंग्रेज़ी में लिखे सामान्य नामों के अंत में स्थित अनुलग्न इक के स्थान पर ऐल्डिहाइड अनुलग्न लगाकर प्राप्त करते हैं। साथ ही कार्बोक्सिलिक अम्ल या ऐल्डिहाइड के नाम में वास्तविक स्रोत का नाम लेटिन या ग्रीक में प्रतिबिंबित होता है। कार्बन शृंखला में प्रतिस्थापियों की स्थिति को ग्रीक अक्षरों α, β, γ, δ, आदि से प्रदर्शित करते हैं। α उस कार्बन परमाणु को कहते हैं जो सीधे ऐल्डिहाइड समूह के कार्बन परमाणु से संलग्न होता है। तत्पश्चात् β कार्बन तथा अन्य इसी क्रम में आगे चलते हैं। उदाहरणार्थ–

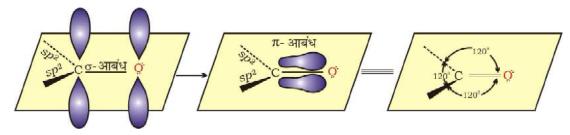


ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 373

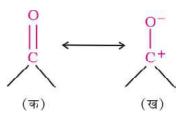

कीटोनों के सामान्य नाम व्युत्पन्न करने के लिए कार्बोनिल समूह से जुड़े दो ऐल्किल या ऐरिल समूहों का नामकरण किया जाता है। प्रतिस्थापियों की स्थिति को ग्रीक अक्षरों $\alpha \alpha'$, $\beta \beta'$ आदि द्वारा प्रदर्शित करते हैं। $\alpha \alpha'$ कार्बन परमाणु वे होते हैं जो सीधे कार्बोनिल समूह (> C = O) से संलग्न होते हैं। कुछ कीटोनों के ऐतिहासिक सामान्य नाम होते हैं जैसे सरलतम डाइमेथिल कीटोन को ऐसीटोन कहते हैं। ऐल्किल फेनिल कीटोन का नाम लिखने के लिए ऐसिल समूह के नाम को फ़ीनॉन शब्द के साथ पूर्वलग्न की तरह जोड़कर लिखा जाता है; उदाहरणार्थ–

(ख) आईयपीएसी (IUPAC) नाम— खुली श्रंखला वाले एलिफैटिक ऐल्डिहाइडों एवं कीटोनों के IUPAC नाम प्राप्त करने के लिए संगत ऐल्केन के अंग्रेज़ी में लिखे नाम के अंत में स्थित इ (-e) के स्थान पर क्रमश: अल (-al) एवं ओन (-one) अनुलग्न लगाते हैं। ऐल्डिहाइडों में कार्बन की सबसे लंबी शृंखला का अंकन उस सिरे से शुरू किया जाता है जहाँ ऐल्डिहाइड समूह स्थित होता है जबकि कीटोनों में उस सिरे से अंकन करते हैं, जो कार्बोनिल समूह के निकट होता है। प्रतिस्थापियों को पूर्वलग्न के रूप में अंग्रेज़ी वर्णमाला के क्रमानुसार, कार्बन शृंखला में अंकों द्वारा स्थिति प्रदर्शित करते हुए लिखते हैं। चक्रीय कीटोनों पर भी यही नियम लागू होता है, जिनमें कार्बोनिल के कार्बन परमाणु की स्थिति की संख्या एक (1) होती है। जब ऐल्डिहाइड समूह वलय से संयुक्त होता है तो साइक्लोऐल्केन (चक्रीय ऐल्केन) का नाम लिखने के पश्चात् अनुलग्न कार्बैल्डिहाइड (Carbaldehyde) जोड़ देते हैं। वलय के कार्बन परमाणुओं का संख्यांकन उस कार्बन परमाणु से आरंभ करते हैं, जिससे ऐल्डिहाइड समूह संयुक्त होता है। सरलतम ऐरोमेटिक ऐल्डिहाइड, जिसमें ऐल्डिहाइड समूह बेन्जीन वलय पर स्थित होता है, का नाम बेन्ज़ीनकार्बेल्डिहाइड है। यद्यपि, IUPAC पद्धति द्वारा सामान्य नाम बेन्जैल्डिहाइड भी स्वीकृत है। अन्य प्रतिस्थापित ऐरोमैटिक ऐल्डिहाइडों के नाम बेन्जैल्डिहाइड के व्युत्पन्न के रूप में दिए जाते हैं।

374 रसायन विज्ञान


ऐल्डिहाइडों एवं कीटोनों के कुछ सामान्य एवं आईयूपीएसी (IUPAC) नामों को सारणी 12.1 में दिया गया है— सारणी 12.1— ऐल्डिहाइडों व कीटोनों के सामान्य और IUPAC नाम

संरचना	सामान्य नाम	आई.यू.पी.ए.सी. नाम
ऐल्डिहाइड HCHO CH ₃ CHO (CH ₄),CHCHO	फार्मेल्डिहाइड ऐसीटैल्डिहाइड आइसोब्यूटिरऐल्डिहाइड	मेथेनैल ऐथेनैल 2-मेथिलप्रोपेनैल
H ₃ C CHO CH ₃ CH(OCH ₃)CHO	γ—मेथिलसाइक्लोहेक्सेनकार्बेल्डिहाइड α—मेथॉक्सीप्रोपिऑनैल्डिहाइड	- 3-मेथिलसाइक्लोहेक्सेनकार्बोल्डिहाइड 2-मेथॉक्सीप्रोपेनैल
CH ₃ CH ₂ CH ₂ CH ₂ CHO CH ₂ =CHCHO	वैलेरेल्डिहाइड ऐक्रोलीन थैलैल्डिहाइड	पेन्टेनैल प्रोप-2-इनैल बेन्जीन-1,2-डाइकार्बेल्डिहाइड
CHO CHO Br	<i>m</i> -ब्रोमोबेन्जैल्डिहाइड	3-ब्रोमोबेन्जैल्डिहाइड अथवा 3-ब्रोमोबेन्जीनकार्बेल्डिहाइड
कीटोन CH ₃ COCH ₂ CH ₂ CH ₃ (CH ₃) ₂ CHCOCH(CH ₃) ₂	मेथिल- <i>n</i> -प्रोपिल कीटोन डाईआइसोप्रोपिल कीटोन	पेन्टेन–2–ऑन 2,4–डाइमेथिलपेन्टेन–3–ऑन
(CH ₃) ₂ C=CHCOCH ₃	α—मेथिलसाइक्लोहेक्सेनोन मेसिटिल ऑक्साइड	2-मेथिलसाइक्लोहेक्सेनोन 4-मेथिलपेन्ट-3-ईन-2-ऑन


ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 375

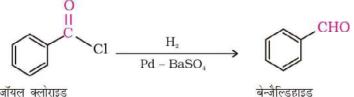
12.1.2 कार्बोनिल समूह की संरचना

कार्बोनिल समूह में कार्बन परमाणु sp^2 संकरित अवस्था में होता है तथा तीन सिग्मा (σ) आबंध निर्मित करता है। कार्बन का चौथा संयोजकता इलेक्ट्रॉन कार्बन के असंकरित p-कक्षक में होता है तथा ऑक्सीजन के p-कक्षक के साथ अतिव्यापन करके एक π आबंध बनाता है। इसके अतिरिक्त ऑक्सीजन परमाणु पर दो अनाबंधी इलेक्ट्रॉन युगल उपस्थित होते हैं। इस प्रकार कार्बोनिल समूह का कार्बन तथा इससे आर्बोधत तीन परमाणु एक ही तल में होते हैं। एवं π इलेक्ट्रॉन अभ्र इस तल के ऊपर एवं नीचे होता है। बंधक कोण लगभग 120° का होता है जैसा कि समतलीय त्रिकोणीय संरचना में अपेक्षित है (चित्र 12.1)।

कार्बन की अपेक्षा ऑक्सीजन की विद्युतऋणात्मकता उच्च होने के कारण कार्बन-ऑक्सीजन द्विक् आबंध ध्रुवित हो जाता है। अत: कार्बोनिल समूह का कार्बन एक इलेक्ट्रॉनरागी (लूइस अम्ल) केंद्र और कार्बोनिल ऑक्सीजन एक नाभिकरागी (लूइस क्षारक) केंद्र होता है। कार्बोनिल यौगिकों में पर्याप्त द्विध्रुव आघूर्ण होता है और ये ईथर से अधिक ध्रुवीय होते हैं। कार्बोनिल समूह की उच्च ध्रुवता, अनुनाद के आधार पर समझाई जा सकती है, जिसमें एक उदासीन संरचना (क) एवं एक द्विध्रुव संरचना (ख) है जैसा कि चित्र में प्रदर्शित किया गया है।

q	ााट्यनिहित प्रश्न					
1		पिऑनऐल्डिहाइड (ii) 3-हाइड्रॉक्सीब्यूटेनैल नाइक्लोपेन्टेन कार्बेल्डिहाइड (iv) 4-ऑक्सोपेन्टेनैल				
12.2	12.2 ऐल्डिहाइडों एवं कीटोनों के विरचन की कुछ महत्वपूर्ण विधियाँ इस प्रकार हैं– कीटोनों का विश्चन					
12.2.1	एवं कीटोनों का विरचन	. ऐल्कोहॉलों के ऑक्सीकरण से सामान्यत: ऐल्डिहाइड एवं कीटोन क्रमश: प्राथमिक व द्वितीयक ऐल्कोहॉलों के ऑक्सीकरण से बनाए जाते हैं (एकक 11, कक्षा XII)।				
	2	. ऐल्कोहॉलों के विहाइड्रोजनन से यह विधि वाष्पशील ऐल्कोहॉलों के लिए उचित होती है तथा यह एक औद्योगिक अनुप्रयोग की विधि है। इस विधि में ऐल्कोहॉल के वाष्प को तप्त भारी-धातु उत्प्रेरक (सिल्वर अथवा कॉपर) के ऊपर से प्रवाहित करते हैं, जिसके फलस्वरूप प्राथमिक व द्वितीयक ऐल्कोहॉल क्रमश: ऐल्डिहाइड व कीटोन देते हैं (एकक 11 कक्षा XII)।				

376 रसायन विज्ञान


हाइड्रोकार्बन से

- (i) ऐल्कीनों के ओज़ोनी अपघटन से- जैसा कि हम जानते हैं ऐल्कीनों के ओज़ोनी अपघटन के पश्चात् प्राप्त उत्पाद की ज़िंक धूल व जल के साथ अभिक्रिया के द्वारा ऐल्डिहाइड या कीटोन अथवा दोनों का मिश्रण प्राप्त होता है, जो ऐल्कीन में उपस्थित प्रतिस्थापन के प्रकार पर निर्भर करता है। (एकक 13, कक्षा XI)
- (ii) ऐल्काइनों के जलयोजन से- HaSO एवं HgSO की उपस्थिति में एथाइन में जलयोजन द्वारा ऐसीटैल्डिहाइड प्राप्त होता है। अन्य सभी ऐल्काइनें इस अभिक्रिया द्वारा कीटोन प्रदान करती हैं (एकक 13, कक्षा XI)।

12.2.2 ऐल्डिहाइडों का 1. ऐसिल क्लोराइड से (अम्ल क्लोराइड)

विरचन

ऐसिल क्लोराइड (अम्ल क्लोराइड) के बेरियम सल्फेट पर अवलंबित पैलेडियम उत्प्रेरक पर हाइड्रोजनन से ऐल्डिहाइड प्राप्त होते हैं। इस अभिक्रिया को **रोज़ेनमुंड** अपचयन (Rosenmund Reduction) कहते हैं।

बेन्जॉयल क्लोराइड

2. नाइट्राइल एवं एस्टर से

हाइड्रोक्लोरिक अम्ल की उपस्थिति में नाइट्राइल स्टैनस क्लोराइड द्वारा संगत इमीन में अपचित हो जाते हैं। जो जलअपघटन करने पर संगत ऐल्डिहाइड देते हैं।

$$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O} RCHO$$

यह अभिक्रिया स्टीफैन अभिक्रिया (Stephen Reaction) कहलाती है। वैकल्पिक अभिक्रिया में नाइटाइल को डाइआइसोब्युटिलऐलुमिनियम हाइडाइड (DIBAL-H) द्वारा चयनित अपचयन से इमीन में बदल लेते हैं एवं तत्पश्चात् इसके जलअपघटन से ऐल्डिहाइड प्राप्त हो जाता है।

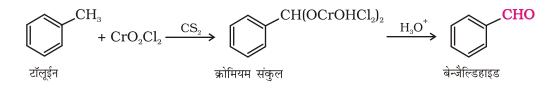
$$\operatorname{RCN} \xrightarrow{1. \operatorname{AlH}(i-\operatorname{Bu})_2}{2. \operatorname{H}_2 O} \operatorname{R-CHO}$$

 $CH_3-CH=CH-CH_2CH_2-CN \xrightarrow{1. AlH(i-Bu)_2} CH_3-CH=CH-CH_2CH_2-CHO$

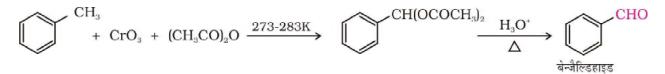
इसी प्रकार से एस्टर भी DIBAL-H द्वारा ऐल्डिहाइड में अपचित हो जाते हैं।

$$CH_{3}(CH_{2})_{9} - \overset{O}{C} - OC_{2}H_{5} \xrightarrow{1. \text{ DIBAL-H}} CH_{3}(CH_{2})_{9} - \overset{O}{C} - H$$

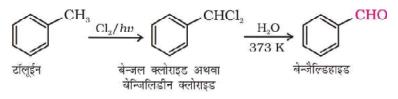
3. हाइड्रोकार्बन से

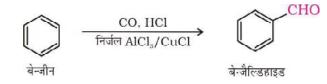

ऐरोमैटिक ऐल्डिहाइड (बेन्जैल्डिहाइड व इसके व्युत्पन्न) ऐरोमैटिक हाइड्रोकार्बन द्वारा निम्न प्रकार से बनाए जाते हैं-

(i) मेथिल बेन्जीन के ऑक्सीकरण द्वारा- प्रबल ऑक्सीकरण कर्मक टॉलूईन व इसके व्युत्पन्नों को बेन्ज़ोइक अम्ल में ऑक्सीकृत कर देते हैं। इस ऑक्सीकरण


ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 377

को उपयुक्त अभिकर्मकों द्वारा ऐल्डिहाइड चरण में ही रोकना संभव है। यह मेथिल समूह को एक मध्यवर्ती में परिवर्तित कर देते हैं जिसे पुन: ऑक्सीकृत करना कठिन होता है। इसके लिए निम्न विधियों का उपयोग किया जाता है–


(क) क्रोमिल क्लोराइड के उपयोग से— क्रोमिल क्लोराइड (CrO₂Cl₂) मेथिल समूह को एक क्रोमियम संकुल में ऑक्सीकृत कर देता है जो जल अपघटन द्वारा संगत बेन्जैल्डिहाइड बनाता है।


यह अभिक्रिया **ईटार्ड अभिक्रिया** (Etard Reaction) कहलाती है। (ख) क्रोमिक ऑक्साइड के उपयोग से (CrO₃)— टॉलूईन या प्रतिस्थापित टॉलूईन को ऐसीटिक एनहाइड्राइड में क्रोमिक ऑक्साइड के साथ अभिकृत कराने पर बेन्जिलिडीन डाइऐसीटेट प्राप्त होता है। बेन्जिलिडीन डाइऐसीटेट जलीय अम्ल के साथ जल अपघटित होकर संगत बेन्जैल्डिहाइड बनाता है।

(ii) पार्श्व शृंखला के क्लोरीनन के पश्चात् जल अपघटन— टॉल्ईन पार्श्व शृंखला क्लोरीनन द्वारा बेन्जल क्लोराइड देती है, जो जल अपघटन द्वारा बेन्जैल्डिहाइड बनाता है। यह बेन्जैल्डिहाइड के औद्योगिक उत्पादन की विधि है।

(iii)गाटरमान-कॉख अभिक्रिया से— जब बेन्जीन या इसके व्युत्पन्न निर्जल ऐलुमिनियम क्लोराइड या क्यूप्रस क्लोराइड की उपस्थिति में कार्बन मोनोऑक्साइड और हाइड्रोजन क्लोराइड के साथ क्रिया करते हैं, तो बेन्जैल्डिहाइड या प्रतिस्थापित बेन्जैल्डिहाइड प्राप्त होते हैं।

यह अभिक्रिया गाटरमान-कॉख अभिक्रिया (Gatterman-Koch Reaction) कहलाती हैं।

378 रसायन विज्ञान

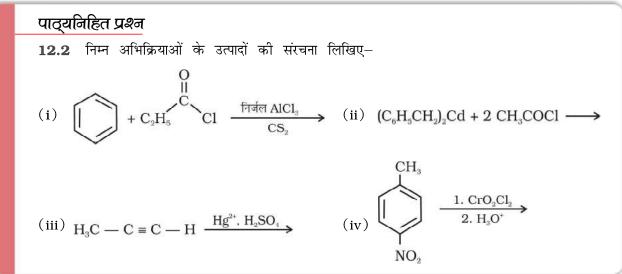
12.2.3 कीटोनों का1. ऐसिल क्लोराइड सेविरचनग्रीन्यार अभिकर्मक तथा कैडमियम क्लोराइड की अभिक्रिया से प्राप्त डाइऐल्किलकैडमियम
की ऐसिल क्लोराइड से अभिक्रिया कराने पर कीटोन प्राप्त होते हैं।

$$2 R - Mg - X + CdCl_{2} \longrightarrow R_{2}Cd + 2Mg(X)Cl$$

$$2 R' - \underset{ij}{C} - Cl + R_{2}Cd \longrightarrow 2 R' - \underset{ij}{C} - R + CdCl_{2}$$

2. नाइट्राइल से

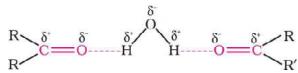
नाइट्राइल व ग्रीन्यार अभिकर्मक की क्रिया से प्राप्त उत्पाद का जल अपघटन कराने से कीटोन प्राप्त होते हैं।


3. बेन्जीन या प्रतिस्थापित बेन्जीन से- निर्जल ऐलुमिनियम क्लोराइड की उपस्थिति में बेन्जीन या प्रतिस्थापित बेन्जीन, अम्ल क्लोराइड के साथ अभिक्रिया कर संगत कीटोन देते हैं। यह अभिक्रिया फ्रीडेल-क्राफ्ट्स ऐसीटिलन अभिक्रिया (Friedal-Craft's Acylation reaction) कहलाती हैं।

$$\bigcirc$$
 + Ar/R - C - Cl $\xrightarrow{fridet} AlCl_3$ \bigcirc Ar/R

उदाहरण 12.1निम्नलिखित रूपांतरणों को करने के लिए अभिकिर्मकों के नाम बताइए–
(i) हेक्सेन-1-ऑल से हेक्सेनैल
(ii) साइक्लोहेक्सेनॉल से साइक्लोहेक्सेनोन
(ii) साइक्लोहेक्सेनॉल से साइक्लोहेक्सेनोन
(v) ऐलिल ऐल्कोहॉल से प्रोपिनैल
(iii)
$$p$$
-फ्लुओरोटॉलुईन से p -फ्लुओरोबेन्जैल्डिहाइड
(vi) ब्यूट-2-ईन से ऐथेनैलहल(i) $C_5H_5NH^+CrO_3Cl^-(PCC)$
(ii) एन्हाइड्स CrO_3
(iii) $CrO_3(CH_3 CO)_2$ की उपस्थिति में /
1. $CrO_2Cl_2 2$. HOH
(iv) डाईआइसोब्युटिलऐलुमिनियमहाइड्राइड (DIBAL-H)

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 379


0

कक्ष ताप पर मेथेनैल गैस के रूप में होती है, एथेनैल एक वाष्पशील द्रव है। अन्य ऐल्डिहाइड एवं कीटोन कक्ष तापक्रम पर द्रव या ठोस होते हैं। ऐल्डिहाइडों व कीटोनों के क्वथनांक समतुल्य आण्विक द्रव्यमान वाले हाइड्रोकार्बनों और ईथरों से अधिक होते हैं। यह ऐल्डिहाइडों एवं कीटोनों में द्विध्रुव – द्विध्रुव आकर्षण के फलस्वरूप उत्पन्न दुर्बल आण्विक संगुणन के कारण होते हैं। इनके क्वथनांक भी समतुल्य आण्विक द्रव्यमान वाले ऐल्कोहॉलों से अंतराआण्विक हाइड्रोजन आबंध अनुपस्थित होने के कारण कम होते हैं। निम्न यौगिकों को, जिनका आण्विक द्रव्यमान 58 और 60 है, क्वथनांकों के बढते क्रम में रखा गया है।

	क्वथनांक (K)	आण्विक द्रव्यमान
n-ब्यूटेन	273	58
मेथॉक्सीएथेन	281	60
प्रोपेनैल	322	58
ऐसीटोन	329	58
प्रोपेन-1-ऑल	370	60

ऐल्डिहाइडों व कीटोनों के निम्नतर सदस्य जैसे मेथेनैल, एथेनैल एवं प्रोपेनोन जल के साथ हाइड्रोजन आबंध बनाने के कारण प्रत्येक अनुपात में जल में मिश्रणीय होते हैं।

परंतु जैसे-जैसे ऐल्किल शृंखला की लंबाई बढ़ती है, इनकी घुलनशीलता तेज़ी से घटती जाती है। सभी ऐल्डिहाइड व कीटोन सभी कार्बनिक विलायकों जैसे— बेन्जीन, ईथर, मेथेनॉल, क्लोरोफॉर्म इत्यादि में सुगमतापूर्वक घुलनशील होते हैं। निम्नतर ऐल्डिहाइड में तीक्ष्ण गंध होती हैं। जैसे-जैसे अणुओं का आकार बढ़ता जाता है गंध कम तीक्ष्ण होती जाती है तथा सुगंध बढ़ती जाती है। वास्तव में प्रकृति में पाए जाने वाले अनेक ऐल्डिहाइडों व कीटोनों का उपयोग सुगंध व सुरुचि कर्मकों के सम्मिश्रण में किया जाता है।

380 रसायन विज्ञान

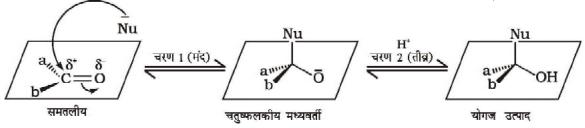
12.3 औतिक कक्ष शूणधर्म ^{एवं}

उदाहरण 12.2	निम्नलिखित यौगिकों को क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए—
	$\mathrm{CH_3CH_2CH_2CHO,\ CH_3CH_2CH_2CH_2OH,\ H_5C_2-O-C_2H_5,\ CH_3CH_2CH_2CH_3}$
हल	यौगिकों के आण्विक द्रव्यमान 72 से 74 के परास में हैं। क्योंकि केवल ब्यूटेन-1-ऑल ही अत्यधिक
	अंतराआण्विक हाइड्रोजन आबंधन के कारण संगुणित द्रव है, इसलिए इसका क्वथनांक सबसे अधिक
	होगा। ब्यूटेनैल, एथॉक्सीएथेन से अधिक ध्रुवीय है अत: ब्यूटेनैल में अंतराआण्विक द्विध्रुव आकर्षण प्रबल
	होता है। n-पेन्टेन में केवल दुर्बल वांडरवाल्स बल होते हैं, अत: दिए गए यौगिकों के क्वथनांक बढ़ते

क्रम में इस प्रकार होंगे—

 $CH_{3}CH_{2}CH_{2}CH_{3} < H_{5}C_{2}-O-C_{2}H_{5} < CH_{3}CH_{2}CH_{2}CHO < CH_{3}CH_{2}CH_{2}CH_{2}OH$

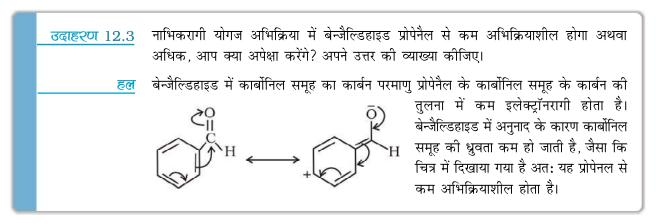
पाठ्यनिहित प्रश्न


- 12.3 निम्नलिखित यौगिकों को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए। $CH_3CHO, CH_3CH_2OH, CH_3OCH_3, CH_3CH_2CH_3$
- 12.4 शसायनिक अभिक्रियाएँ

ऐल्डिहाइड एवं कीटोन, दोनों में कार्बोनिल क्रियात्मक समूह विद्यमान हैं अत: ये एक समान रासायनिक अभिक्रियाएँ प्रदर्शित करते हैं।

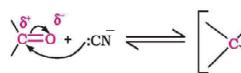
1. नाभिकरागी योगज अभिक्रिया

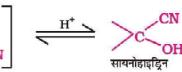
ऐल्कीनों में जैसी इलेक्ट्रॉनरागी योगज अभिक्रियाएँ देखी जाती हैं (देखें एकक 13, कक्षा XI), उसके विपरीत ऐल्डिहाइड व कीटोन नाभिकरागी योगज अभिक्रियाएँ प्रदर्शित करते हैं।


(i) नाभिकरागी योगज अभिक्रियाओं की क्रियाविधि— नाभिकरागी ध्रुवीय कार्बोनिल समूह के इलेक्ट्रॉनरागी कार्बन पर उस दिशा से आक्रमण करता है जो कार्बोनिल कार्बन के sp² संकरित कक्षकों के तल के लगभग लंब पर होती है (चित्र 12.2)। इस प्रक्रिया में कार्बन की संकरण अवस्था sp² से sp³ हो जाती है तथा चतुष्फलकीय ऐल्कॉक्साइड मध्यवर्ती बनता है। यह मध्यवर्ती अभिक्रिया माध्यम से एक प्रोटॉन प्राप्त करके विद्युत् उदासीन उत्पाद देता है। कुल परिणाम कार्बन-ऑक्सीजन द्विक आबंध पर Nu⁻ व H⁺ का योगाज होता है। जैसा चित्र 12.2 में दर्शाया गया है।

चित्र 12.2– कार्बोनिल कार्बन पर नाभिकरागी आक्रमण

(ii) अभिक्रियाशीलता— इलेक्ट्रॉनिक व त्रिविम प्रभावों के कारण नाभिकरागी योगज अभिक्रियाओं में ऐल्डिहाइड कीटोनों की अपेक्षा अधिक अभिक्रियाशील होते हैं। त्रिविम रूप से नाभिकरागी के कार्बोनिल कार्बन तक पहुँचने में कीटोनों में उपस्थित दो सापेक्षिक बड़े प्रतिस्थापी समूह ऐल्डिहाइडों की अपेक्षा अधिक बाधा उत्पन्न करते हैं, जिनमें केवल एक ही ऐसा प्रतिस्थापी उपस्थित होता है। इलेक्ट्रॉनिक रूप से ऐल्डिहाइड कीटोन से ज्यादा क्रियाशील होते हैं, क्योंकि कीटोन में उपस्थित दो ऐल्किल समूह कार्बोनिल कार्बन की इलेक्ट्रॉनरागी प्रकृति को ऐल्डिहाइड की तुलना में कम कर देते हैं।

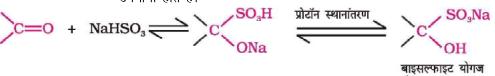

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 381



 (iii) नाभिकरागी योगज और नाभिकरागी योगज-विलोपन अभिक्रियाओं के कुछ महत्वपूर्ण उदाहरण–

(क) हाइड्रोजन सायनाइड (HCN) का संयोजन— ऐल्डिहाइड व कीटोन हाइड्रोजन सायनाइड से (HCN) अभिकृत होकर संगत सायनोहाइड्रिन देते हैं। शुद्ध HCN के साथ यह अभिक्रिया बहुत धीमी होती है; अत: यह क्षार द्वारा उत्प्रेरित की जाती है और जनित सायनाइड आयन प्रबल नाभिकस्नेही (CN-) कार्बोनिल यौगिकों पर संयोजित होकर संगत सायनोहाइड्रिन देते हैं। सायनोहाइडिन उपयोगी संश्लेषित मध्यवर्ती होते हैं।

 $HCN + OH \longrightarrow :CN + H_2O$



चतुष्फलकीय मध्यवर्ती

(ख) सोडियम बाइसल्फाइड का संयोजन— ऐल्डिहाइड एवं कीटोन सोडियम हाइड्रोजन सल्फाइट के साथ संयुक्त होकर योगज उत्पाद देते हैं।

त्रिविमीय प्रभाव के कारण साम्यावस्था की स्थिति अधिकांश ऐल्डिहाइडों के लिए दाईं ओर तथा अधिकतर कीटोनों के लिए बाईं ओर होती है। हाइड्रोजन सल्फाइट योगज उत्पाद जल में अविलेय होता है, जो तनु खनिज अम्लों अथवा क्षार के साथ अभिक्रिया कर पुन: मूल कार्बोनिल यौगिकों में परिवर्तित किया जा सकता है। इसलिए यह ऐल्डिहाइडों के पृथक्करण व परिष्करण के लिए उपयोगी होते हैं।

बाइसल्फाइट योगज यौगिक (क्रिस्टलीय)

- (ग) ग्रिन्यार अभिकर्मकों का संयोजन (देखिए एकक 11, कक्षा XII)
- (घ) ऐल्कोहॉलों का संयोजन— ऐल्डिहाइड, मोनोहाइड्रिक ऐल्कोहॉल की एक तुल्यांक मात्रा के साथ शुष्क हाइड्रोजन क्लोराइड की उपस्थिति में अभिक्रिया कर

<mark>382</mark> रसायन विज्ञान

ऐल्कॉक्सी ऐल्कोहॉल मध्यवर्ती बनाते हैं, जिन्हें हेमीएसीटैल कहते हैं। यह पुन: एक मोल ऐल्कोहॉल से अभिक्रिया कर जैम-डाइऐल्कॉक्सी यौगिक बनाते हैं, जिन्हें ऐसीटैल कहते हैं, जैसा कि नीचे दर्शाया गया है।

कीटोन इन्हीं अभिक्रिया परिस्थितियों में एथिलीन ग्लाइकॉल के साथ अभिक्रिया करके चक्रीय उत्पाद बनाते हैं, जिसे एथिलीन ग्लाइकॉल कीटेल कहते हैं। शुष्क हाइड्रोजन क्लोराइड कार्बोनिल समूह की

ऑक्सीजन को प्रोटॉनीकृत करती है, जिससे कार्बोनिल समूह की इलेक्ट्रॉनरागी प्रवृत्ति बढ़ती है जो एथिलीन ग्लाइकॉल पर नाभिकरागी आक्रमण को सरल बनाती है। ऐसीटैल व कीटेल जलीय खनिज अम्लों के साथ जलअपघटित होकर क्रमश: संगत ऐल्डिहाइड व कीटोन देते हैं।

(च) अमोनिया व इसके व्युत्पन्नों का संयोजन- अमोनिया व इसके व्युत्पन्न H,N-Z

 $+ H_2O$

OR'

 $+ H_2O$

ऐसीटैल

CH.

एथिलीन ग्लाइकॉल कीटेल

जैसे नाभिकरागी ऐल्डिहाइड व कीटोन के कार्बोनिल समूह पर जुड़ते हैं। यह अभिक्रिया उत्क्रमणीय होती है तथा अम्ल से उत्प्रेरित होती है। मध्यवर्ती के द्रुत निर्जलीकरण द्वारा >C=N-Zबनने के कारण साम्यावस्था उत्पाद को बनाने में सहायक होती है।

सारणी 12.2- ऐल्डिहाइडों व कीटोनों (>C=N-Z)- के कुछ N- प्रतिस्थापित व्युत्पन

Z अभिकर्मक का नाम कार्बोनिल व्युत्पन उत्पाद —Н अमोनिया C=NH इमीन प्रस्थिापित इमीन ऐमीन —R C=NR (शिफ क्षारक) ऑक्सिम हाइड्रॉक्सिल एमीन C=N-OH -OHहाइड्रैज़ीन हाइड्रैज़ोन N-NH2 $-NH_2$ फ़ेनिल हाइड्रैज़ीन फेनिलहाइड्रैज़ोन ·HN O_2N O_2N 2,4-डाईनाइट्रोफ़ेनिल 2,4 डाईनाइट्रो-NO₂ फ़ेनिलहाइडैज़ोन हाइड्रैज़ीन (2,4-DNP)* सेमीकार्बेज़ाइड सेमीकार्बेज़ोन NH NH₂ 2,4-DNP व्युत्पन्न पीले, नारंगी या लाल ठोस होते हैं, जो ऐल्डिहाइड व कीटोन के अभिलक्षणन में उपयोगी हैं।

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल <mark>383</mark>

Downloaded from https:// www.studiestoday.com

R-CH

हेमीऐसीटैल

R-CHO

2. अपचयन

- (i) ऐक्लोहॉलों में अपचयन— सोडियम बोरोहाइड्राइड (NaBH₄) अथवा लीथियम ऐलुमिनियम हाइड्राइड (LiAlH₄) या उत्प्रेरकी हाइड्रोजनन द्वारा ऐल्डिहाइड व कीटोन अपचित होकर क्रमश: प्राथमिक तथा द्वितीयक ऐल्कोहॉल देते हैं (एकक II, कक्षा XII)।
- (ii) हाइड्रोकार्बनों में अपचयन— ऐल्डिहाइड एवं कीटोनों का कार्बोनिल समूह अमलगमित जिंक एवं सांद्र हाइड्रॉक्लोरिक अम्ल द्वारा अभिक्रिया से, (क्लीमेन्सन अपचयन) या हाइड्रैजीन के साथ अभिक्रिया करने के बाद, ऐथिलीन ग्लाइकॉल जैसे उच्च क्वथनांक वाले विलायक में सोडियम या पोटैशियम हाइड्रॉक्साइड के साथ गरम करने पर–CH₂ समूह में परिवर्तित हो जाता है (वोल्फ-किश्नर अपचयन)।

$$\sim C \longrightarrow O \xrightarrow{Zn-Hg} CH_2 + H_2O$$
 (क्लीमेंसन अपचयन)

बर्नार्ड टॉलेन्स (1841-1918) गौटिन्गेन विश्वविद्यालय, जर्मनी में रसायन विज्ञान के प्रोफ़ेसर थे।

3. ऑक्सीकरण

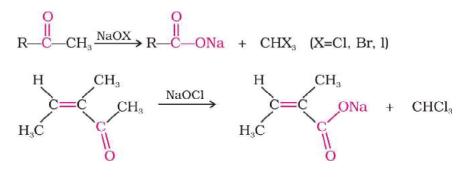
ऑक्सीकरण अभिक्रिया में ऐल्डिहाइड कीटोन से भिन्न व्यवहार करते हैं। ऐल्डिहाइड सामान्य ऑक्सीकारकों— जैसे, नाइट्रिक अम्ल, पोटैशियम परमैंगनेट, पोटैशियम डाइक्रोमेट आदि के द्वारा ऑक्सीकृत होकर कार्बोक्सिलिक अम्ल देते हैं। यहाँ तक की मृदु ऑक्सीकरण कर्मक मुख्यतया टॉलेन अभिकर्मक और फेलिंग विलयन भी ऐल्डिहाइडों को ऑक्सीकृत कर देते हैं।

$$R-CHO \xrightarrow{[O]} R-COOH$$

कीटोनों का ऑक्सीकरण सामान्यत: प्रबल परिस्थितियों, जैसे— प्रबल ऑक्सीकरण कर्मकों और उच्च ताप पर होता है। इनके ऑक्सीकरण में कार्बन-कार्बन आबंध का विदलन होता है, जिससे अनेक कार्बोक्सिलिक अम्लों का मिश्रण प्राप्त होता है। जिनमें कार्बन परमाणुओं की संख्या, मूल कार्बोनिल यौगिक के कार्बन परमाणुओं से कम होती है।

नीचे दिए गए मृदु ऑक्सीकरण कर्मक ऐल्डिहाइडों और कीटोनों में विभेद करने के लिए प्रयुक्त होते हैं-

(i) टॉलेन-परीक्षण– ऐल्डिहाइड को ताज़ा बने अमोनियामय सिल्वर नाइट्रेट विलयन (टॉलेन अभिकर्मक) के साथ गर्म करने पर सिल्वर धातु बनने के कारण चमकदार सिल्वर दर्पण बन जाता है। ऐल्डिहाइड संगत कार्बोक्सिलेट ऋणायन में ऑक्सीकृत हो जाते हैं। यह अभिक्रिया क्षारीय माध्यम में संपन्न होती है।


 $RCHO + 2[Ag(NH_3)_2]^+ + 3 \overline{O}H \longrightarrow RCO\overline{O} + 2Ag + 2H_2O + 4NH_3$

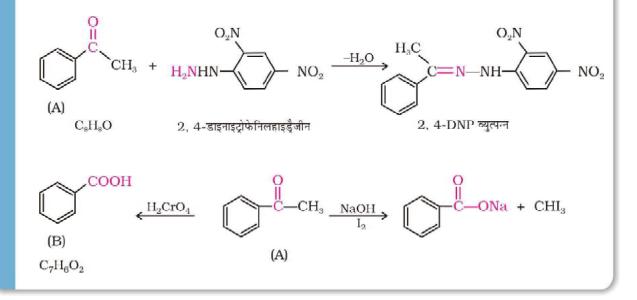
384 रसायन विज्ञान

(ii) फेलिंग-परीक्षण— फेलिंग अभिकर्मक में दो विलयन फेलिंग विलयन A व फेलिंग विलयन B होते हैं। फेलिंग विलयन A जलीय कॉपर सल्फेट तथा फेलिंग विलयन B सोडियम पोटैशियम टार्ट्रेट (रोशेल लवण) होता है। परीक्षण से पूर्व दोनों विलयन समान मात्रा में मिलाए जाते हैं। ऐल्डिहाइड को फेलिंग विलयन के साथ गर्म करने पर लाल– भूरा अवक्षेप प्राप्त होता है। ऐल्डिहाइड संगत कार्बोक्सिलेट ऋणायन में ऑक्सीकृत हो जाते हैं। ऐरोमैटिक ऐल्डिहाइड इस परीक्षण के प्रति प्रतिक्रिया नहीं दर्शाते।

R-CHO + $2Cu^{2*}$ + 5 $\overline{O}H$ → RCO \overline{O} + Cu_2O + $3H_2O$ $\overline{cnen-yt}$ 37 37

(iii) मेथिल कीटोन का हैलोफॉर्म अभिक्रिया द्वारा ऑक्सीकरण— ऐसे कीटोन जिसमें कम से कम एक मेथिल समूह कार्बोनिल कार्बन परमाणु से आबंधित होता है (मेथिल कीटोन), सोडियम हाइपोहैलाइट द्वारा संगत कार्बोक्सिलिक अम्ल के सोडियम लवण में आक्सीकृत हो जाते हैं, जिसमें कार्बोनिल यौगिक की अपेक्षा एक कार्बन परमाणु कम होता है। मेथिल समूह हैलाफार्म में परिवर्तित हो जाता है। यदि अणु में कार्बन-कार्बन द्विकआबंध उपस्थित हो तो वह इस ऑक्सीकरण द्वारा अप्रभावित रहता है।

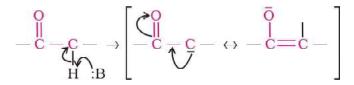
सोडियम हाइपोआयोडॉइट द्वारा आयोडोफॉर्म अभिक्रिया, भी CH₃CO या CH₃CH(OH) समूह की पहचान करने के लिए प्रयुक्त होती है, जो ऑक्सीकरण द्वारा CH₃CO समूह बनाती हैं।


उदाहरण 12.4एक कार्बनिक यौगिक (A) जिसका आण्विक सूत्र C_gH_gO है, 2, 4-डाईनाइट्रोफ़ेनिल हाइड्रैज़ीन
(2, 4 डी.एन.पी.) अभिकर्मक के साथ नारंगी-लाल अवक्षेप प्रदान करता है और सोडियम
हाइड्रॉक्साइड की उपस्थिति में आयोडीन के साथ गर्म करने पर एक पीले रंग का अवक्षेप
बनाता है। यह यौगिक टॉलेन-अभिकर्मक अथवा फेलिंग-विलयन को अपचित नहीं करता
और न ही यह ब्रोमीन जल अथवा बेयर-अभिकर्मक को वर्णविहीन करता है जिसका आण्विक
 सूत्र $C_7H_6O_2$ है। यौगिक (A) व (B) को पहचानिए एवं प्रयुक्त अभिक्रियाओं को समझाइए।

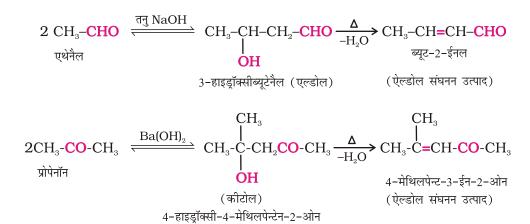
<u>हल</u> यौगिक (A) 2, 4–डी.एन.पी. व्युत्पन्न निर्मित करता है। अत: यह यौगिक कोई ऐल्डिहाइड अथवा कीटोन है। चूँकि यह टॉलेन अभिकर्मक अथवा फेलिंग विलयन को अपचित नहीं करता, इसलिए यौगिक A एक कीटोन ही होना चाहिए। यौगिक A आयोडोफॉर्म परीक्षण देता

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 385

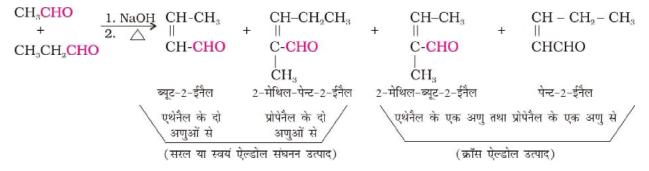
है। अत: यह मेथिल कीटोन ही होना चाहिए। यौगिक (A) का आण्विक सूत्र संकेत देता है कि यह अत्यधिक असंतृप्त है। परंतु फिर भी यह ब्रोमीन जल अथवा बेयर अभिकर्मक को वर्णविहीन नहीं करता। इससे प्रदर्शित होता है कि असंतृप्तता ऐरोमेटिक वलय के कारण है।


यौगिक B एक कीटोन का ऑक्सीकरण उत्पाद है, अत: यह कार्बोक्सिलिक अम्ल होना चाहिए। यौगिक B का आण्विक सूत्र यह दर्शाता है कि यह बेन्ज़ोइक अम्ल होना चाहिए। अत: यौगिक (A) एक मोनोप्रतिस्थापित ऐरोमैटिक मेथिल कीटोन होना चाहिए। यौगिक (A) का आण्विक सूत्र यह दर्शाता है कि यह फेनिलमेथिलकीटोन (ऐसीटोफीनोन) होना चाहिए। अभिक्रियाएं निम्नप्रकार से होंगी–

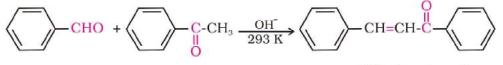
4. α-हाइड्रोजन के कारण होने वाली अभिक्रियाएँ


ऐल्डिहाइड व कीटोन के α- हाइड्रोजन परमाणुओं की अम्लता–ऐल्डिहाइड व कीटोन α-हाइड्रोजन की अम्लता के कारण कई अभिक्रियाएँ देते हैं।

कार्बोनिल यौगिकों के α-हाइड्रोजन परमाणुओं की अम्लता कार्बोनिल समूह के इलेक्ट्रॉन अपनयन कर लेने (खींच लेने) के प्रबल प्रभाव तथा संयुग्मी क्षार के अनुनाद द्वारा स्थायित्व प्राप्त कर लेने के कारण होती है।

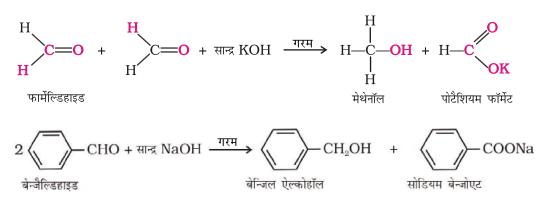

 (i) ऐल्डोल संघनन– जिन ऐल्डिहाइडों व कीटोनों में कम से कम एक α-हाइड्रोजन विद्यमान होती है, वे तनु क्षार के उत्प्रेरक की तरह उपस्थिति में एक अभिक्रिया द्वारा क्रमश: β-हाइड्रॉक्सी ऐल्डिहाइड (एल्डोल) अथवा β-हाइड्रॉक्सी कीटोन (कीटोल) प्रदान करते हैं। इस अभिक्रिया को ऐल्डोल अभिक्रिया कहते हैं।

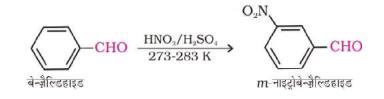
386 रसायन विज्ञान

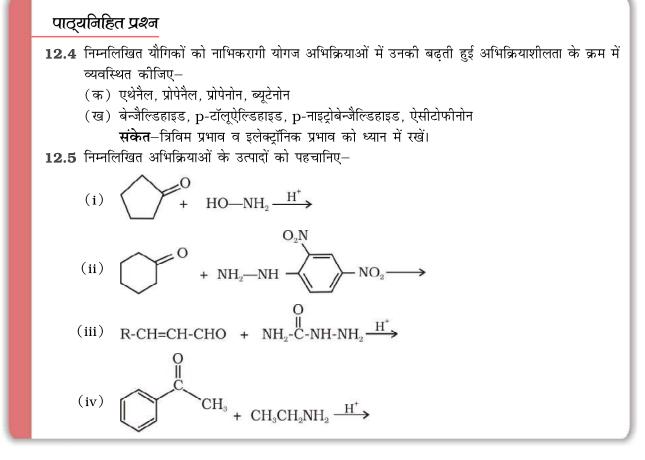


उत्पाद में विद्यमान दो प्रकार्यात्मक समूहों, ऐल्डिहाइड व ऐल्कोहॉल के नामों से ऐल्डोल का नाम व्युत्पन्न होता है। ऐल्डोल व कीटोल आसानी से जल निष्कासित करके α, β -असंतृप्त कार्बोनिल यौगिक देते हैं, जो ऐल्डोल संघनन उत्पाद हैं और यह अभिक्रिया **ऐल्डोल संघनन** कहलाती है। यद्यपि कीटोन, कीटोल (कीटो व ऐल्कोहॉल समूह युक्त यौगिक) निर्मित करते हैं फिर भी उनकी ऐल्डिहाइडों के साथ समानता होने के कारण उनकी अभिक्रिया के लिए भी सामान्य नाम ऐल्डोल संघनन ही प्रयोग किया जाता है–

(ii) क्रॉस ऐल्डोल संघनन– जब दो भिन्न–भिन्न ऐल्डिहाइड और/या कीटोन के मध्य ऐल्डोल संघनन होता है तो उसे क्रॉस ऐल्डोल संघनन कहते हैं। यदि प्रत्येक में α-हाइड्रोजन हो तो ये चार उत्पादों का मिश्रण देते हैं। इसे नीचे एथेनैल व प्रोपेनैल के मिश्रण की ऐल्डोल संघनन अभिक्रिया द्वारा समझाया गया है।


क्रॉस ऐल्डोल संघनन में कीटोन भी एक घटक के रूप में प्रयुक्त हो सकते हैं।


3-डाईफ़्रेनिलप्रोप-2-ईन-1-ओन
 (बेन्ज्रैलएसीटोफीनॉन), मुख्य उत्पाद


- 5. अन्य अभिक्रियाएँ
- (i) कैनिज़ारो अभिक्रिया–ऐल्डिहाइड, जिनमें α-हाइड्रोजन परमाणु नहीं होते सांद्र क्षार की उपस्थिति में गरम करने से स्वऑक्सीकरण व अपचयन (असमानुपातन) की अभिक्रियाएँ प्रदर्शित करते हैं। इस अभिक्रिया में ऐल्डिहाइड का एक अणु ऐल्कोहॉल में अपचित होता है जबकि दुसरा अणू कार्बोक्सिलिक अम्ल के लवण में आक्सीकृत हो जाता है।

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 387

(ii) इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया – ऐरोमेटिक ऐल्डिहाइड व कोटोन उस बेन्जीन वलय पर इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया प्रदर्शित करते हैं, जिसमें कार्बोनिल समूह निष्क्रियक तथा मेटा-निर्देशक होता है।

<mark>388</mark> रसायन विज्ञान

12.5 ऐल्डिहाइडों एवं कीटोनों के उपयोश

रासायनिक उद्योग में ऐल्डिहाइड एवं कीटोन अन्य उत्पादों के संश्लेषण के लिए विलायक, प्रारंभिक पदार्थ और अभिकर्मकों के रूप में प्रयोग किए जाते हैं। फार्मेल्डिहाइड का 40% जलीय विलयन फार्मोलिन के नाम से सुप्रसिद्ध है जो जैविक प्रतिदर्शों के परिरक्षण में तथा बैकालाइट के विरचन में (फ़ीनॉलफार्मेल्डिहाइड रेजिन), यूरिया फार्मेल्डिहाइड सरेस तथा अनेक बहुलक उत्पादों में उपयोग होता है। ऐसीटैल्डिहाइड मुख्यत: ऐसीटिक अम्ल, एथिल ऐसीटेट, वाइनिल एसीटेट बहुलकों एवं औषधों के उत्पादन में प्रारंभिक पदार्थ के रूप में उपयोग किया जाता है। बेन्जैल्डिहाइड का उपयोग सुगंध तथा रंजक उद्योग में किया जाता है। ऐसीटोन और एथिलमेथिल कीटोन सामान्य औद्योगिक विलायक हैं। कई ऐल्डिहाइड एवं कीटोन, जैसे– ब्यूटैरल्डिहाइड, वेनेलिन, ऐसीटोफ्रीनोन, कपूर आदि अपनी सुगंध और सुरुचिकर प्रभाव के लिए सुप्रसिद्ध हैं।

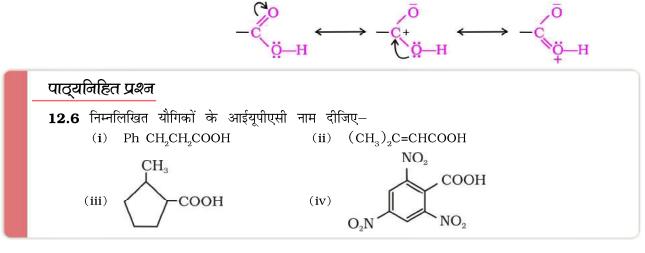
कार्बोक्सिलिक अम्ल

ऐसे कार्बनिक यौगिक जिनमें कार्बोक्सिलिक, –COOH प्रकार्यात्मक समूह उपस्थित होता है कार्बोक्सिलिक अम्ल कहलाते हैं। कार्बोक्सिलिक समूह में *कार्बोनिल* समूह एक *हाइड्रॉक्सिल* समूह के साथ जुड़ा रहता है, अत: इसका नाम *कार्बोक्सिल* है। कार्बोक्सिलिक समूह से संयुक्त ऐल्किल या ऐरिल समूह के आधार पर कार्बोक्सिलिक अम्ल ऐलिफैटिक (RCOOH) अथवा ऐरोमैटिक अम्ल (ArCOOH) होते हैं। प्रकृति में कार्बोक्सिलिक अम्ल अत्यधिक संख्या में पाए जाते हैं। कुछ ऐलिफैटिक कार्बोक्सिलिक अम्लों के उच्च सदस्य (C₁₂-C₁₈), जिन्हें **वसा अम्ल** कहते हैं। प्राकृतिक वसाओं में ग्लिसरॉल के एस्टर के रूप में पाए जाते हैं; अत: कार्बोक्सिलिक अम्ल अन्य महत्वपूर्ण यौगिकों, जैसे– एनहाइड्राइड, एस्टर, एसिड क्लोराइड और ऐमाइडों के संश्लेषण में प्रारंभिक पदार्थ के रूप में प्रयुक्त होते हैं।

12.6 कार्बोकिशलिक शमूह की नामपद्धति व शंश्चना

12.6.1 नामपद्धति

कार्बोक्सिलिक अम्ल प्रकृति से प्रारंभिक दौर में विलगित किए गए यौगिकों में से हैं, अत: इनमें से बहुत से सामान्य नामों से जाने जाते हैं। सामान्य नाम प्राकृतिक स्रोतों के लेटिन अथवा ग्रीक नामों से व्युत्पन्न होते हैं। और अंग्रेज़ी में लिखे नाम के अंत में अनुलग्न (ic) इक ऐसिड लगाते हैं, उदाहरणार्थ– फार्मिक ऐसिड या अम्ल, (HCOOH) सर्वप्रथम लाल चीटियों से (लेटिन-*फार्मिका* का अर्थ चीटियाँ), ऐसीटिक अम्ल सिरके से (लेटिन-*ऐसीटम* का अर्थ सिरका), ब्यूटेरिक अम्ल (CH₃-CH₂-CH₂-COOH) विकृतगंधी मक्खन से (लेटिन-*ब्यूटिरम* का अर्थ मक्खन) प्राप्त किया गया।


आईयूपीएसी (IUPAC) पद्धति में ऐलिफैटिक कार्बोक्सिलिक अम्लों का नामकरण करने के लिए संगत ऐल्केन के अंग्रेज़ी में लिखे नाम के अंत में स्थित (-e) के स्थान पर ओइक (-oic) अनुलग्न लगाया जाता है। कार्बन शृंखला का अंकन करते समय कार्बोक्सिलिक समूह के कार्बन परमाणु को प्रथम संख्या (संख्या 1) प्रदान की जाती है। एक से अधिक कार्बोक्सिलिक समूह युक्त यौगिकों का नाम लिखने के लिए कार्बोक्सिलिक समूह हटाकर बची संगत ऐल्केन की कार्बन शृंखला के कार्बनों का अंकन करते हैं और कार्बोक्सिल समूहों की स्थिति सहित उनकी संख्या गुणात्मक पूर्वलग्न डाइकार्बोक्सिलिक अम्ल, ट्राइकार्बोक्सिलिक अम्ल इत्यादि को ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल <mark>389</mark>

मूल एल्किल शृंखला के नाम के आगे जोड़ दिया जाता है। –COOH समूह की स्थिति गुणात्मक पूर्वलग्न से पहले अरेबिक संख्या में लिख कर दर्शाई जाती है। कुछ कार्बोक्सिलिक अम्लों के सामान्य और आईयूपीएसी नाम सारणी 12.3 में दर्शाए गए हैं।

सारणी 12.3- कुछ कार्बोक्सिलिक अम्लों के नाम एवं संरचना

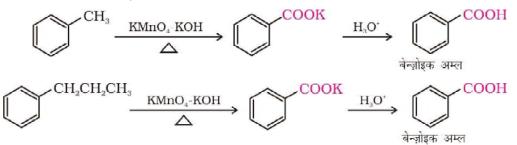
संरचना	सामान्य नाम	आईयूपीएसी नाम
НСООН	फ़ार्मिक अम्ल	मेथेनॉइक अम्ल
CH ₃ COOH	ऐसीटिक अम्ल	एथेनॉइक अम्ल
CH ₃ CH ₂ COOH	प्रोपिओनिक अम्ल	प्रोपेनॉइक अम्ल
CH ₃ -CH ₂ -CH ₂ -COOH	ब्यूटाइरिक अम्ल	ब्यूटेनॉइक अम्ल
(CH ₃) ₂ CHCOOH	आइसोब्यूटाइरिक अम्ल	2-मेथिलप्रोपेनॉइक अम्ल
НООС-СООН	ऑक्सैलिक अम्ल	एथेनडाईओइक अम्ल
HOOC -CH ₂ -COOH	मेलोनिक अम्ल	प्रोपेनडाईओइक अम्ल
HOOC -(CH ₂) ₂ -COOH	सक्सीनिक अम्ल	ब्यूटेनडाइओइक अम्ल
HOOC -(CH ₂) ₃ -COOH	ग्लूटेरिक अम्ल	पेन्टेनडाईओइक अम्ल
HOOC -(CH ₂) ₄ -COOH	एडिपिक अम्ल	हेक्सेनडाईओइक अम्ल
HOOC -CH ₂ -CH(COOH)-CH ₂ -COOH		
	कार्बैलिक अम्ल	
Соон	बेन्ज़ोइक अम्ल	बेन्ज्रीनकार्बोक्सिलिक अम्ल (बेन्ज्रोइक अम्ल)
CH ₂ COOH COOH	फ़्रेनिलऐसीटिक अम्ल	2-फ़ेनिलएथेनोइक अम्ल
Соон	थैलिक अम्ल	बेन्जीन-1, 2-डाइकार्बोक्सिलिक अम्ल

12.6.2 कार्बोक्सिल समूहकार्बोक्सिलिक समूह में कार्बोक्सिल कार्बन से संयुक्त सभी आबंध एक ही तल में होते हैं
तथा एक-दूसरे से 120° के कोण द्वारा विलगित रहते हैं। कार्बोक्सिल कार्बन, कार्बोनिल कार्बन
से निम्नलिखित अनुनादी संरचनाओं के कारण कम इलेक्ट्रानरागी होता है–

390 रसायन विज्ञान

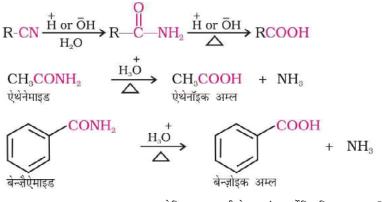
12.7 कार्बोकिशलिक अम्ल बनाने की विधियाँ कार्बोक्सिलिक अम्ल बनाने को कुछ महत्वपूर्ण विधियाँ निम्नलिखित हैं-

1. प्राथमिक ऐल्कोहॉल व ऐल्डिहाइड से


प्राथमिक ऐल्कोहल सामान्य ऑक्सीकरण कर्मकों, जैसे- उदासीन, अम्लीय या क्षारीय माध्यम में पोटैशियम परमैंगनेट अथवा अम्लीय माध्यम में पोटैशियम डाइक्रोमेट और क्रोमियम ट्राइऑक्साइड द्वारा आसानी से कार्बोक्सिल्कि अम्लों में ऑक्सीकृत हो जाते हैं।

RCH₂OH
$$\xrightarrow{1. \text{ and } 4 \text{ KMnO}_4}$$
 RCOOH
2. H₃ $\xrightarrow{+}{0}$ RCOOH
CH₃(CH₂)₈CH₂OH $\xrightarrow{\text{CrO}_3 - \text{H}_2\text{SO}_4}$ CH₃(CH₂)₈COOH
1-stàrice structure structure

मृदु आक्सीकरण कर्मकों के उपयोग से ऐल्डिहाइड द्वारा भी कार्बाक्सिलिक अम्ल प्राप्त किए जाते हैं (खंड 12.4)।


2. ऐल्किल बेन्जीनों से

ऐरोमैटिक कार्बोक्सिलिक अम्ल ऐल्किल बेन्ज़ीनों के क्रोमिक अम्ल अथवा क्षारीय KMnO₄ द्वारा प्रबल ऑक्सीकरण से विरचित किए जा सकते हैं। संपूर्ण पार्श्व शृंखला चाहें किसी भी लंबाई की हो, ऑक्सीकृत होकर कार्बोक्सिल समूह निर्मित करती है। प्राथमिक व द्वितीयक ऐल्किल समूह भी इसी प्रकार से ऑक्सीकृत होते हैं जबकि तृतीयक समूह प्रभावित नहीं होता। उपयुक्त रूप से प्रतिस्थापित ऐल्कीन भी इन ऑक्सीकारकों द्वारा ऑक्सीकृत होकर कार्बोक्सिलिक अम्ल उत्पन्न करती हैं। (देखें एकक 13 कक्षा XI)

3. नाइट्राइल और ऐमाइड से

उत्प्रेरक के रूप में H⁺ या OH⁻ आयनों की उपस्थिति में नाइट्राइल पहले ऐमाइड और फिर अम्लों में जल अपघटित हो जाते हैं। अभिक्रिया को ऐमाइड पद पर रोकने के लिए मृदु अभिक्रिया परिस्थितियाँ प्रयुक्त की जाती है।

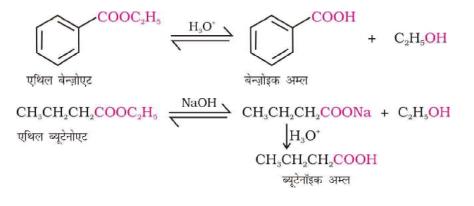
ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 391

4. ग्रीन्यार अभिकर्मक से

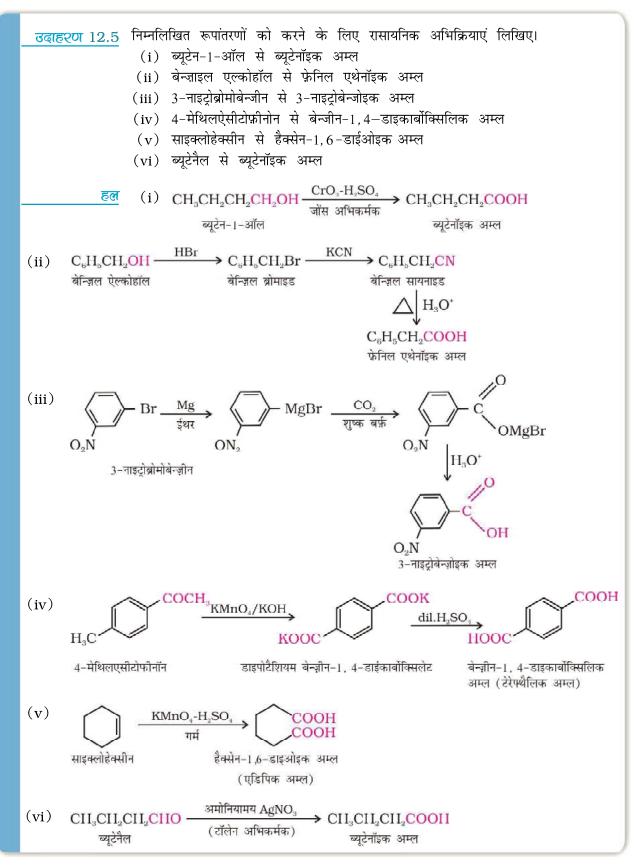
ग्रीन्यार अभिकर्मक कार्बन डाइऑक्साइड (शुष्क बर्फ़) के साथ अभिक्रिया से कार्बोक्सिलिक अम्ल के लवण निर्मित करते हैं, जो खनिज अम्ल द्वारा अम्लन से संगत कार्बोक्सिलिक अम्ल देते हैं।

$$R-Mg-X + O=C=O \xrightarrow{\overline{v_{l}v_{r}}} R - C \xrightarrow{V} O \xrightarrow{H_{3}O^{+}} RCOOH$$

जैसा कि हम जानते हैं; ग्रीन्यार अभिकर्मक एवं ऐल्किल नाइट्राइल ऐल्किल हैलाएडों से fojfpr fd, t kl d r sog (nf k, dd 10] d {kxII)। उपरोक्त विधियाँ (3 तथा 4) ऐल्किल हैलाइडों को संगत कार्बोक्सिलिक अम्लों में परिवर्तित करने में उपयोगी हैं जिसमें ऐल्किल हैलाइड में उपस्थित कार्बन परमाणुओं से एक कार्बन परमाणु अधिक विद्यमान होता है (श्रेणी का अवरोहण)।


5. ऐसिल हैलाइड और एनहाइड्राइड से

ऐसिड क्लोराइड जल द्वारा जलअपघटित होकर कार्बोक्सिलिक अम्ल या जलीय क्षारीय माध्यम में अधिक आसानी से जलअपघटित होकर कार्बोक्सिलेट आयन देते हैं, जो अम्लन द्वारा संगत कार्बोक्सिलिक अम्ल देते हैं। दूसरी ओर ऐसिल एनहाइड्राइड जल द्वारा जलअपघटित होकर संगत अम्ल देते हैं।

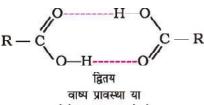

$$\begin{array}{c} H_2O \\ RCOOH + CI \\ \hline H_3O^+ \\ \hline OH/H_2O \\ \hline O$$

6. एस्टर से

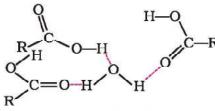
एस्टरों के अम्लीय जल अपघटन से सीधे ही कार्बोक्सिलिक अम्ल प्राप्त होते हैं। जबकि क्षारीय जल अपघटन द्वारा कार्बोक्सिलेट प्राप्त होते हैं, जो अम्लन द्वारा संगत कार्बोक्सिलिक अम्ल देते हैं।

392 रसायन विज्ञान

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 393



12.7	निम्नलिखित	यौगिकों क	ो बेन्ज़ोइक	अम्ल में	कैसे	परिवर्तित	किया ज	। सकता है?


- (i) एथिलबेन्ज़ीन
- (iii) ब्रोमोबेन्ज़ीन
- (ii) ऐसीटोफ़ीनोन
- (iv) फ़ेनिलएथीन (स्टाइरीन)

12.8 भौतिक शुण

ऐलिफैटिक कार्बोक्सिलिक अम्ल की श्रेणी में नौ कार्बन परमाणुओं तक की शृंखला वाले सदस्य सामान्य ताप पर अरुचिकर गंध वाले रंगहीन द्रव होते हैं। इस श्रेणी के उच्च सदस्य मोम जैसे ठोस होते हैं तथा अल्प वाष्पशील एवं व्यावहारिक रूप से गंधहीन होते हैं।

वाष्य प्रावस्था या ऐप्रोटिक विलायकों में

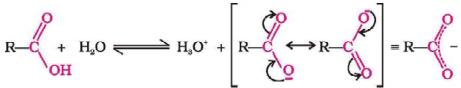
RCOOH व H2O में हाइड्रोजन आबंधन

12.9 शसायनिक अभिक्रियाएँ

12.9.1 अभिक्रियाएँ जिनमें **O-H** आबंध का विदलन होता है ो ठोस होते हैं तथा अल्प वाष्पशील एवं व्यावहारिक रूप से गंधहीन होते हैं। कार्बोक्सिलिक अम्लों के क्वथनांक समतुल्य आण्विक द्रव्यमानों वाले ऐल्डिहाइडों, कीटोनों यहाँ तक कि ऐल्कोहॉलों से भी उच्च होते हैं। कार्बोक्सिलिक अम्लों का यह गुणधर्म उनके अणुओं में परस्पर अधिक व्यापक अंतराआण्विक हाइड्रोजन आबंधन द्वारा संगुणन के कारण उत्पन्न होता है। ये हाइड्रोजन आबंध वाष्प अवस्था में भी पूर्ण रूप से नहीं टूटते। वास्तव में अधिकांश कार्बोक्सिलिक अम्ल वाष्प प्रावस्था एवं ऐप्रोटिक विलायकों में हाइड्रोजन आबंधित द्वितय के रूप में उपस्थित होते हैं।

चार कार्बन परमाणु तक सरल ऐलिफैटिक कार्बोक्सिलिक अम्ल हाइड्रोजन आबंध निर्मित कर सकने के कारण जल में मिश्रणीय होते हैं। कार्बन परमाणुओं की संख्या बढ़ने के साथ विलेयता घटती जाती है। उच्चतर कार्बोक्सिलिक अम्ल हाइड्रोकार्बन शृंखला की जलविरागी अन्योन्यक्रिया बढ़ने के कारण विशेषकर जल में अविलेय होते हैं। बेन्ज़ोइक अम्ल, जो कि सरलतम ऐरोमैटिक कार्बोक्सलिक अम्ल है; ठंडे जल में लगभग अविलेय होता है। कार्बोक्सिलिक अम्ल बेन्ज़ीन, ईथर, ऐल्कोहॉल, इत्यादि, जैसे क्रम ध्रुवीय विलायकों में भी विलेय होते हैं।

कार्बोक्सिलिक अम्लों की रासायनिक अभिक्रियाएँ निम्न प्रकार से वर्गीकृत हैं–


अम्लता

धातु व क्षारों के साथ अभिक्रिया– ऐल्कोहॉलों की तरह कार्बोक्सिलिक अम्ल विद्युत धनी धातुओं के साथ क्रिया करके हाइड्रोजन मुक्त करते हैं तथा फ़ीनॉलों की तरह क्षारों के साथ लवण बनाते हैं। यह दुर्बल क्षारक जैसे कार्बोनेट, हाइड्रोजनकार्बोनेट के साथ अभिक्रिया करके कार्बन डाइऑक्साइड उत्पन्न करते हैं। यह अभिक्रियाएँ यौगिक में उपस्थित कार्बोक्सिलिक समूह को पहचानने के लिए प्रयुक्त की जाती हैं।

2R-COOH + 2Na → 2R-COON^{*}_a + H₂ $\stackrel{}{\text{Hisur analifatted}}$ R-COOH + NaOH → R-COON^{*}_a + H₂O R-COOH + NaHCO₃ → R-COON^{*}_a + H₂O + CO₂

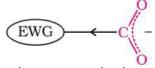
कार्बोक्सिलिक अम्ल जल में वियोजित होकर कार्बोक्सिलेट ऋणायन तथा हाइड्रोनियम आयन देते हैं जो अनुनाद द्वारा स्थायित्व प्राप्त करते हैं।

394 रसायन विज्ञान

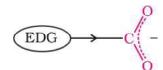
उपरोक्त अभिक्रिया के लिए–

$$K_{eq} = \frac{[H_3O^+] [RCOO^-]}{[H_2O] [RCOOH]} \qquad K_{\alpha} = K_{cq} [H_2O] = \frac{[H_3O^+] [RCOO^-]}{[RCOOH]}$$

यहाँ K_{eq} साम्यावस्था स्थिरांक तथा K_a अम्ल वियोजन स्थिरांक है। सुविधा के लिए अम्लों की सामर्थ्य सामान्यत: K_a मान की बजाय pK_a के मान से इंगित करते हैं। $pK_a = -\log K_a$


हाइड्रोक्लोरिक अम्ल के pK_a का मान -7.0 है, जबकि ट्राइफ्लुओरोऐसीटिक अम्ल (प्रबलतम कार्बोक्सिलिक अम्ल), बेन्जोइक अम्ल तथा ऐसीटिक अम्ल के pK_a के मान क्रमश: 0.23, 4.19 एवं 4.76 होते हैं।

अम्ल का pK_a मान जितना कम होगा अम्ल उतना ही प्रबल होगा (एक उत्तम प्रोटॉन दाता)। प्रबल अम्लों का pK_a मान 1 से कम होता है। मध्यम प्रबल अम्लों के pK_a मान 1 से 5 के मध्य होते हैं। दुर्बल अम्लों के pK_a के मान 5 से 15 के मध्य तथा अधिक दुर्बल अम्लों के pK_a मान 15 से अधिक होते हैं।


कार्बोक्सिलिक अम्ल खनिज अम्लों से दुर्बल होते हैं परंतु ऐल्कोहॉलों एवं अनेक सरल फ़ीनॉलों से (एथेनॉल के ${}_{\mathrm{p}K_a}$ का मान ~16 है तथा फ़ीनॉल का $p{}_{\mathrm{K}_a}$ मान 10 होता है।) प्रबल होते हैं। वास्तव में आपने अब तक जिन कार्बनिक यौगिकों का अध्ययन किया है उनमें कार्बोक्सिलिक अम्ल सर्वाधिक अम्लीय हैं। आपको पहले से ही ज्ञात है कि फ़ीनॉल ऐल्कोहॉल की अपेक्षा क्यों अधिक अम्लीय होते हैं। इसी प्रकार से कार्बोक्सिलिक अम्लों की फ़ीनॉलों की अपेक्षा उच्च अम्लता को समझा जा सकता है। कार्बोक्सिलिक अम्ल का संयुग्मी क्षारक, कार्बोक्सिलेट आयन, दो समान अनुनादी संरचनाओं द्वारा स्थायित्व प्राप्त करता है एवं इसमें ऋणावेश अधिक विद्युत ऋणी ऑक्सीजन परमाणु पर स्थित होते हैं। फ़ीनॉल का संयुग्मी क्षारक एक फीनॉक्साइड आयन होता है, जिसकी अनुनादी संरचनाएं असमान होती हैं तथा इनमें ऋणावेश अल्प विद्युतनऋणी कार्बन परमाणु पर स्थित होता है। इसलिए फीनॉक्साइड आयन में अनुनाद उतना महत्वपूर्ण नहीं है जितना कार्बोक्सिलेट आयन में। कार्बोक्सिलेट आयन का ऋणावेश दो विद्युतऋणी ऑक्सीजन परमाणुओं पर विस्थानित होता है, जबकि फीनॉक्साइड आयन में यह ऋणावेश एक ऑक्सीजन परमाणु तथा कम विद्युतऋणी कार्बन परमाणु पर कम प्रभावशाली ढंग से विस्थानित होता है (एकक 11, कक्षा XII)। फलस्वरूप कार्बोक्सिलेट आयन, फ्रीनॉक्साइड आयन की तुलना में अधिक स्थायित्व प्राप्त होता है। अत: कार्बोक्सिलिक अम्ल फ़ीनॉलों की अपेक्षा अधिक अम्लीय होते हैं।

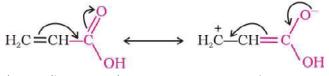
कार्बोक्सिलिक अम्लों की अम्लता पर प्रतिस्थापियों का प्रभाव–प्रतिस्थापी संयुग्मी क्षारक के स्थायित्व को प्रभावित कर सकते हैं, अत: कार्बोक्सिलिक अम्लों की अम्लता को भी प्रभावित करते हैं। इलेक्ट्रॉन अपनयन करने वाले समूह प्रेरणिक और/या अनुनादी प्रभाव द्वारा ऋणावेश को विस्थानित करके संयुग्मी क्षारक को स्थायित्व प्रदान करते हैं और कार्बोक्सिलिक अम्ल की अम्लता बढ़ा देते हैं। इसके विपरीत इलेक्ट्रॉन दाता समूह संयुग्मी क्षारक को अस्थायित्व प्रदान करके अम्लता घटा देते हैं।

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 395

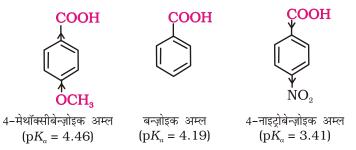
इलेक्ट्रॉन अपनयन करने वाले समूह (EWG) कार्बोक्सिलिक आयन को स्थायीकृत करते हैं जिससे अम्ल की सामर्थ्य बढ जाती है।

इलेक्ट्रॉन दाता समूह (EDG) कार्बोक्सिलेट आयन को अस्थायी बना देते हैं। और अम्ल को दुर्बल कर देते हैं।

निम्नलिखित समूहों का प्रभाव अम्लता बढ़ाने के क्रम में हैं।


 $Ph < I < Br < Cl < F < CN < NO_2 < CF_3$

अत: निम्नलिखित अम्लों को उनकी घटती हुई अम्लता के आधार पर व्यवस्थित किया गया है (pK, मान क्रम पर आधारित)-


$$\label{eq:compared} \begin{split} & CF_3COOH > CCl_3COOH > CHCl_2COOH > NO_2CH_2COOH > N-C-CH_2COOH > \\ & \leftarrow \\ & \leftarrow \\ & FCH_2COOH > ClCH_2COOH > BrCH_2COOH > HCOOH > ClCH_2CH_2COOH > \\ \end{split}$$

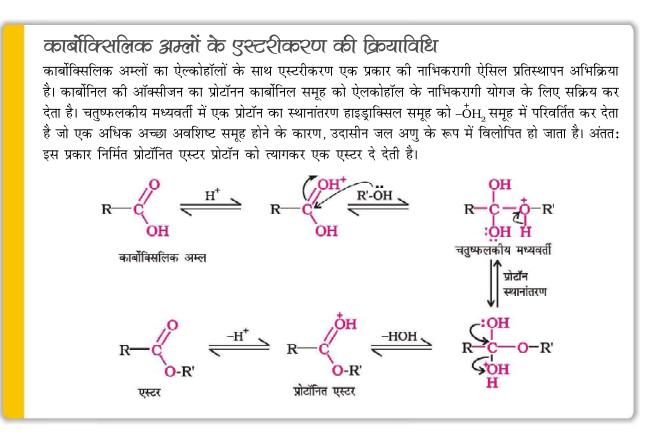
क्रमश:

कार्बोक्सिल समूह पर फ़ेनिल अथवा वाइनिल समूह के सीधे संयुक्त होने से संगत कार्बोक्सिलिक अम्लों की अम्लता बढ़ जाती है, जो नीचे दर्शाए गए अनुनाद प्रभाव के कारण अपेक्षित कमी के विपरीत है।

ऐसा कार्बोनिल समूह से संलग्नित sp² संकरित कार्बन की उच्च विद्युतऋणात्मकता के कारण होता है। ऐरोमैटिक कार्बोक्सिलिक अम्ल की फ़ेनिल वलय पर **इलेक्ट्रॉन अपनयन** करने वाले समूह की उपस्थिति अम्लता को बढ़ाती है जबकि इलेक्ट्रॉन दाता समूह की उपस्थिति अम्लता को बढ़ाती है जबकि इलेक्ट्रॉन दाता समूह की उपस्थिति अम्लता को बढ़ाती है जबकि इलेक्ट्रॉन दाता समूह की

12.9.2 **C–OH** आबंध विदलन संबंधी अभिक्रियाएँ

1. एनहाइड्राइड का विरचन कार्बोक्सिलिक अम्लों खनिज अम्लों जैसे $\rm H_2SO_4$ अथवा $\rm P_2O_5$ के साथ गर्म करने पर संगत एनहाइड्राइड बनते हैं।

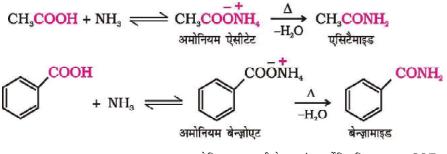


2. एस्टरीकरण

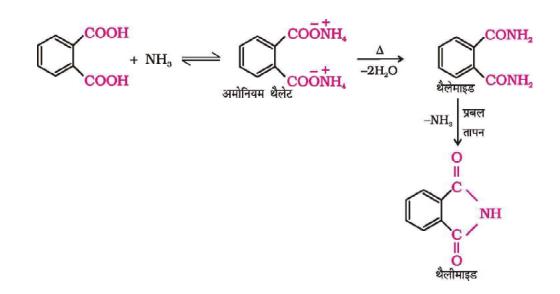
कार्बोक्सिलिक अम्ल ऐल्कोहॉलों अथवा फीनॉलों द्वारा सांद्र सल्फ्यूरिक अम्ल अथवा हाइड्रोजन क्लोराइड गैस जैसे खनिज अम्ल उत्प्रेरकों की उपस्थिति में एस्टर बनाते हैं।

 $RCOOH + R'OH \xrightarrow{H^*} RCOOR' + H_2O$

396 रसायन विज्ञान


3. PCl₅, PCl₃ एवं SOCl₂ के साथ अभिक्रिया

anaifatter a strend an ensure the end of th


 $RCOOH + SOCl_2 \longrightarrow RCOCl + SO_2 + HCl$

4. अमोनिया के साथ अभिक्रिया

कार्बोक्सिलिक अम्ल अमोनिया के साथ अभिक्रिया द्वारा अमोनियम लवण बनते हैं जो अधिक उच्च ताप पर गर्म करने से ऐमाइड बनाते हैं। उदाहरणार्थ–

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 397

12.9.3 कार्बोक्सिलिक समूह **(-COOH)** संबंधी अभिक्रियाएँ

1. अपचयन

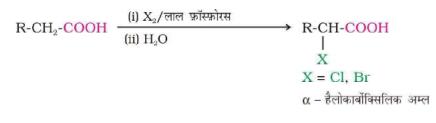
कार्बोक्सिलिक अम्ल लीथियम ऐलुमिनियम हाइड्राइड अथवा डाइबोरेन द्वारा प्राथमिक ऐल्कोहॉलों में अपचित हो जाते हैं। डाइबोरेन, एस्टर, नाइट्रो, हैलो इत्यादि जैसे प्रकार्यात्मक समूहों को सरलतापूर्वक अपचित नहीं करता। सोडियम बोरोहाइड्राइड कार्बोक्सिल समूह को अपचित नहीं करता।

R-COOH
$$(i)$$
 LiAlH₄/ईथर अथवा B₂H₆ → R-CH₂OH
(ii) H₃O⁺

2. विकार्बोक्सिलन

कार्बोक्सिलिक अम्लों के सोडियम लवणों को सोडालाइम (NaOH तथा CaO, 3:1 के अनुपात में) के साथ गरम करने पर कार्बन डाइऑक्साइड निकल जाती है एवं हाइड्रोकार्बन प्राप्त होते हैं। यह अभिक्रिया विकार्बोक्सिलन (Decarboxylation) कहलाती है।

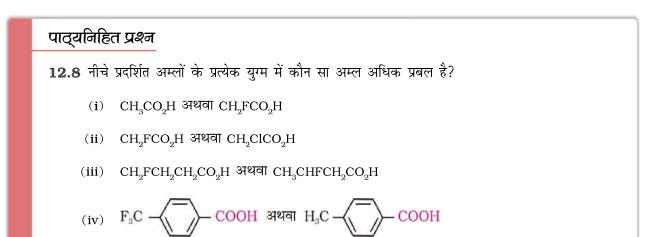
 $R-\frac{\text{NaOH & CaO}}{\text{div}} R-H + Na_2CO_3$


कार्बोक्सिलिक अम्लों के क्षार धातु लवणों के जलीय विलयन का वैद्युतअपघटन द्वारा विकार्बोक्सिलन हो जाता है तथा ऐसे हाइड्रोकार्बन निर्मित होते हैं जिसमें कार्बन परमाणुओं की संख्या, अम्ल के ऐल्किल समूह में उपस्थित कार्बन परमाणुओं की संख्या से दुगुनी होती है। इस अभिक्रिया को कोल्बे वैद्युत्-अपघटन (Kolbe Electrolysis) कहते हैं (एकक 13, कक्षा XI)।

1. हैलोजनन

ऐसे कार्बोक्सिलिक अम्ल जिनमें α-हाइड्रोजन विद्यमान होता है, लाल फ़ॉस्फ़ोरस की अल्प मात्रा की उपस्थिति में क्लोरीन अथवा ब्रोमीन के साथ अभिक्रिया द्वारा α-हैलोकार्बोक्सिलिक अम्ल देते हैं। इस अभिक्रिया को **हेलफोलार्ड जेलिंस्की** अभिक्रिया (Hell-Volhard-Zelinsky Reaction) कहते हैं।


12.9.4 हाइड्रोकार्बन भाग में प्रतिस्थापन अभिक्रियाएँ


398 रसायन विज्ञान

2. वलय प्रतिस्थापन

ऐरोमेटिक कार्बोक्सिलिक अम्ल इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएं प्रदर्शित करते हैं, जिनमें कार्बोक्सिल समूह एक निष्क्रियक एवं *मेटा*-निर्देशी समूह की भाँति व्यवहार करता है। ऐरोमेटिक कार्बोक्सिलिक अम्ल **फ्रीडेल-क्राफ्ट्स (Friedel Crafts)** अभिक्रिया प्रदर्शित नहीं करते। (चूँकि कार्बोक्सिल समूह निष्क्रियक समूह है एवं उत्प्रेरक ऐलुमिनियम क्लोराइड (लूईस अम्ल) कार्बोक्सिल समूह से आबंधित हो जाता है।

12.10 कार्बोकिशलिक अम्लों के उपयोश

मेथेनॉइक अम्ल रबर, वस्त्र, रॅंगाई, चमड़ा एवं इलेक्ट्रोप्लेटिंग उद्योगों में उपयोग में आता है। एथेनॉइक अम्ल विलायक के रूप में तथा खाद्य उद्योगों में सिरके के रूप में उपयोग किया जाता है। **हैक्सेनडाइओइक** अम्ल का उपयोग नाइलोन-6,6 के निर्माण में होता है। बेन्ज़ोइक अम्ल की एस्टरों का उपयोग सुगंध द्रव्यों में होता है। सोडियम बेन्ज़ोएट का उपयोग खाद्य परिरक्षण में होता है। उच्चतर वसीय अम्लों का उपयोग साबुन एवं अपमार्जकों के उत्पादन में किया जाता है।

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 399

સારાંશ

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल, कार्बनिक यौगिकों के कुछ महत्वपूर्ण वर्ग हैं जिनमें कार्बोनिल समूह उपस्थित हैं। ये अत्यधिक ध्रुवीय अणु होते हैं। अत: ये हाइड्रोकार्बनों एवं तुलनीय आण्विक द्रव्यमानों वाले ईथरों जैसे कम ध्रुवीय यौगिकों की तुलना में अधिक ताप पर उबलते हैं। इनके निम्नतर सदस्य जल में अत्यधिक विलेय होते हैं, क्योंकि ये जल के साथ हाइड्रोजन आबंध बना सकते हैं। उच्चतर सदस्य अत्यधिक लंबी जल विरागी कार्बन शृंखला की उपस्थिति के कारण जल में अविलेय होते हैं किंतु सामान्य कार्बनिक विलायकों में विलेय होते हैं। ऐल्डिहाइडों को प्राथमिक ऐल्कोहॉलों के विहाइड्रोजनन या नियंत्रित ऑक्सीकरण अथवा ऐसिल हैलाइडों के नियंत्रित अपचयन द्वारा विरचित किया जा सकता है। ऐरोमेटिक ऐल्डीहाइड भी ऑक्सीकरण द्वारा निम्न प्रकार से बनाए जा सकते हैं।

- 1. ऐसीटिक ऐनहाइड्राइड की उपस्थिति में मेथिल बेन्जीनों के क्रोमिलक्लोराइड अथवा CrO3 द्वारा ऑक्सीकरण से।
- निर्जल ऐलुमिनियम क्लोराइड या क्यूप्रस क्लोराइड की उपस्थिति में ऐरीनो के कार्बनमोनोक्साइँड एवं हाइड्रोक्लोरिक अम्ल द्वारा फार्मिलन।
- 3. बैन्जल क्लोराइड के जलअपघटन द्वारा।

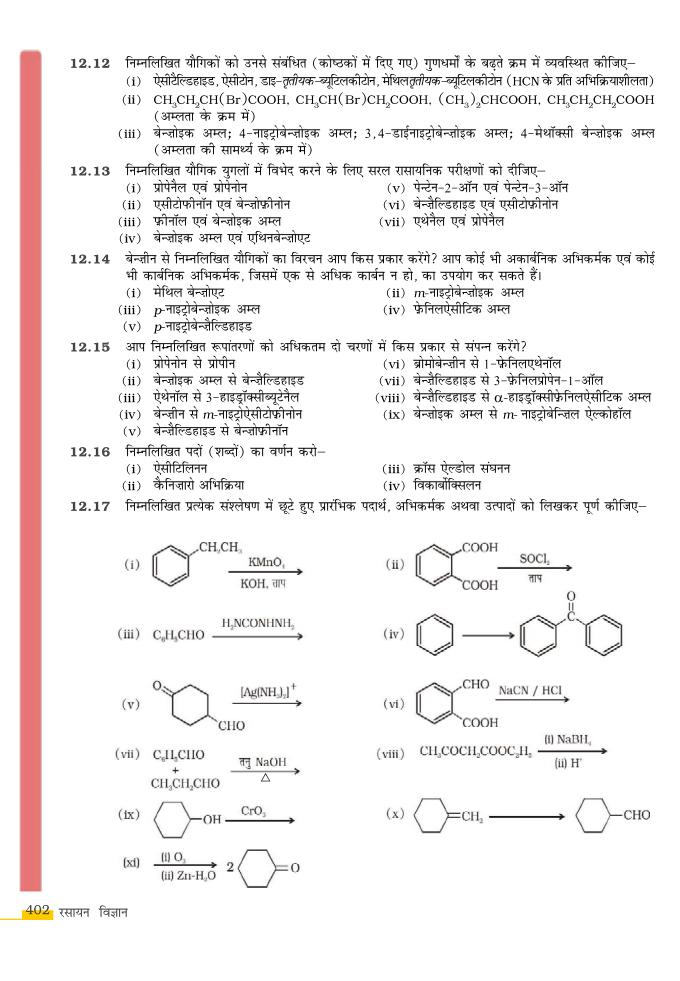
कीटोनों को द्वितीयक ऐल्कोहॉलों के ऑक्सीकरण और ऐल्काइनों के जलयोजन (Hydration) से विरचित किया जाता है। कीटोनों को ऐसिल क्लोराइड की डाइऐल्किल कैडमियम के साथ अभिक्रिया द्वारा भी बनाया जा सकता है। ऐरोमैटिक कीटोनों को विरचित करने की एक अच्छी विधि ऐरोमैटिक हाइड्रोकार्बनों का ऐसिल क्लोराइडों तथा ऐनहाइड्राइडों द्वारा फ्रीडेल क्राफ्ट्स **ऐसिलीनन** है। ऐल्डिहाइड एवं कीटोन दोनों ही ऐल्कीनों के ओजोनन द्वारा विरचित किए जा सकते हैं। ऐल्डिहाइड एवं कीटोन HCN, NaHSO3 ऐल्कोहालों (या डाइऑलों), अमोनिया व्युत्पन्नों और ग्रीन्यार अभिकर्मकों जैसे अनेक नाभिकरागियों (Nucleophiles) के साथ कार्बोनिल समूह पर नाभिकरागी योगज अभिक्रियाएं देते हैं। ऐल्डिहाइड एवं कीटोनों में उपस्थित lpha-हाइड्रोजन अम्लीय होते हैं। अत: कम से कम एक lpha-हाइड्रोजन युक्त ऐल्डिहाइड एवं कीटोन क्षार की उपस्थिति में $\hat{\mathbf{v}}$ ल्डोल संघनन द्वारा क्रमश: lpha-हाइडॉक्सीऐल्डिहाइड (ऐल्डोल) एवं eta-हाइडॉक्सीकीटोन (कीटोल) बनाते हैं। ऐसे ऐल्डिहाइड जिनमें α-हाइड्रोजन नहीं होता है सांद्र क्षार की उपस्थिति में **कैनिज़ारो अभिक्रिया** देते हैं। LiAlH, NaBH, या उत्प्रेरित हाइड्रोजनन से ऐल्डिहाइड एवं कीटोन अपचित होकर ऐल्कोहॉल बनाते हैं। ऐल्डिहाइडों एवं कीटोनों का कार्बोनिल समूह क्लीमेन्सन अपचयन या वोल्फ किश्नर अपचयन द्वारा मेथेलीन समूह में अपचयित हो जाता है। टॉलेन अभिकर्मक एवं फ्रेलिंग विलयन के समान मृदु ऑक्सीकरण अभिकर्मक ऐल्डिहाइडों को आसानी से कार्बोक्सिलिक अम्लों में ऑक्सीकृत कर देते हैं। इन ऑक्सीकरण अभिक्रियाओं का उपयोग ऐल्डिहाइडों एवं कीटोनों में विभेद करने में किया जाता है। कार्बोक्सिलिक अम्लों का विरचन प्राथमिक ऐल्कोहॉलों, ऐल्डिहाइडों एवं ऐल्कीनों के ऑक्सीकरण, नाइटाइलों के जलअपघटन और ग्रीन्यार अभिकर्मकों की कार्बन डाइऑक्साइड द्वारा किया जाता है। ऐरोमैटिक कार्बोक्सिलिक अम्लों को भी पार्श्व श्रृंखला वाले ऐल्किलबेन्ज़ीन के ऑक्सीकरण से विरचित किया जा सकता है। यद्यपि कार्बोक्सिलिक अम्ल खनिज अम्लों की तुलना में बहुत दुर्बल होते हैं, किंतु ऐल्कोहॉलों एवं अधिकतर अतिसरल फ्रीनॉलों से काफी अधिक अम्लीय होते हैं। कार्बोक्सिलिक अम्लों को LiAlH₄ या इससे बेहतर ईथर विलयन में डाइबोरेन द्वारा प्राथमिक ऐल्कोहॉलों में अपचित किया जा सकता है। कार्बोक्सिलिक अम्लों का लाल फॉस्फोरस की उपस्थिति में Cl, या Br, के साथ lpha-हैलोजनन होता है (हेलफोलार्ड जेलिंसकी अभिक्रिया)। मेथेनैल, ऐथेनैल, प्रोपेनोन, बेन्ज्रैल्डिहाइड, फॉर्मिक अम्ल, ऐसीटिक अम्ल, बेन्ज्रोइक अम्ल आदि अनेक कार्बोनिल यौगिक उद्योगों में महत्वपर्ण हैं।

अभ्यास

12.1 निम्नलिखित पदों (शब्दों) से आप क्या समझते हैं? प्रत्येक का एक उदाहरण दीजिए।

- (i) सायनोहाइड्रिन
- (ii) ऐसीटल
- (iii) सेमीकार्बेजोन
- (iv) ऐल्डोल
- . . .

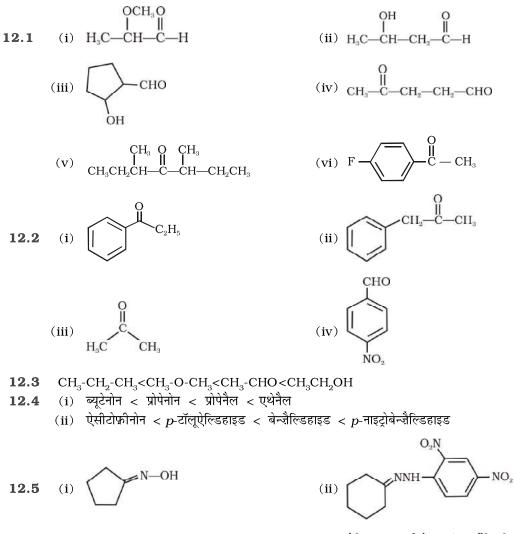
(v) हेमीऐसीटेल (vi) ऑक्सिम

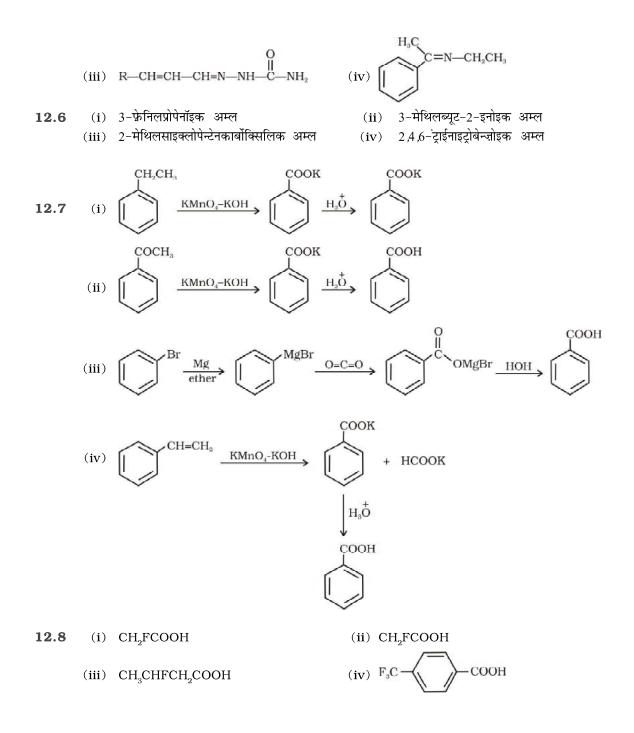

- (VI) आभिसम
- (vii) कीटैल
- (viii) इमीन
 - (ix) 2, 4 DNP व्युत्पन्न
 - (x) शिफ-क्षारक

Downloaded from https:// www.studiestoday.com

400 रसायन विज्ञान

12.2	निम्नलिखित यौगिकों के आईयूपीएसी (IUPAC) नामपद्धति में नाम लिखिए -		
	(i) $CH_3CH(CH_3)CH_2CH_2CHO$ (v) $CH_3CH(CH_3)CH_2C(CH_3)_2COCH_3$		
	(ii) $CH_3CH_2COCH(C_2H_5)CH_2CH_2CI$ (vi) $(CH_3)_3CCH_2COOH$		
	(iii) $CH_3CH=CHCHO$ (vii) $OHCC_6H_4CHO-p$		
	(iv) $CH_3COCH_2COCH_3$		
12.3	निम्नलिखित यौगिकों की संरचना बनाइए।		
	(i) 3-मेथिलब्यूटेनैल (v) 4-क्लोरोपेन्टेन-2-ऑन		
	(ii) p-नाइट्रोप्रोपिओफीनोन (vi) 3-ब्रोमो-4-फेनिल पेन्टेनॉइक अम्ल		
	(iii) p-मेथिलबेन्ज्ञैल्डिहाइड (vii) p,p'-डाईहाइड्रॉक्सीबेन्जोफीनोन		
	(iv) 4-मेथिलपेन्ट-3-ईन-2-ओन (viii) हेक्स-2-ईन-4-आइनोइक अम्ल		
12.4	निम्नलिखित ऐल्डिहाइडों एवं कीटोनों के आईयूपीएसी (IUPAC) नाम लिखिए और जहाँ संभव हो सके साधारण नाम भी		
	दीजिए।		
	(i) $CH_3CO(CH_2)_4CH_3$ (iv) Ph-CH=CH-CHO		
	СНО		
	(ii) $CH_3CH_2CHBrCH_2CH(CH_3)CHO$ (v) $\langle v \rangle$		
	(iii) CH ₃ (CH ₂) ₅ CHO (vi) PhCOPh		
12.5	निम्नलिखित व्युत्पन्नों की संरचना बनाइए–		
	(i) बेन्जेल्डिहाइड का 2,4-डाइनाइट्रोफेनिलहाइड्रेजोन (iv) साइक्लोब्यूटेनोन का सेमीकार्बेजोन		
	(ii) साइक्लोप्रोपेनोन ऑक्सिम (v) हेक्सेन-3-ओन का एथिलीन कीटेल		
	(iii) ऐसीटैल्डिहाइडडाइमेथिलऐसीटैल (vi) फॉर्मेल्डिहाइड का मेथिल हेमीऐसीटेल		
12.6	साइक्लोहेक्सेनकार्बेल्डिहाइड की निम्नलिखित अभिकर्मकों के साथ अभिक्रिया से बनने वाले उत्पादों को पहचानिए–		
	(i) PhMgBr एवं तत्पश्चात् $ m H_{3}O^{+}$ (iv) एथेनॉल का आधिक्य तथा अम्ल		
	(ii) टॉलेन अभिकर्मक (v) ज़िंक अमलगम एवं तनु हाइड्रोक्लोरिक अम्ल		
	(iii) सेमीकार्बेजाइड एवं दुर्बल अम्ल		
12.7	निम्नलिखित में से कौन से यौगिकों में ऐल्डोल संघनन होगा, किनमें कैनिज़ारो अभिक्रिया होगी और किनमें उपरोक्त		
	में से कोई क्रिया नहीं होगी? ऐल्डोल संघनन तथा कैनिज़ारो अभिक्रिया में संभावित उत्पादों की संरचना लिखिए।		
	(i) मेथेनैल (iv) बेन्ज़ोफ़ीनॉन (vii) फेनिलऐसीटैल्डिहाइड		
	(ii) 2-मेथिलपेन्टेनैल (v) साइक्लोहेक्सेनोन (viii) ब्यूटेन-1-ऑल		
	(iii) बेन्ज़ैल्डिहाइड (vi) 1-फेनिलप्रोपेनोन (ix) 2,2-डाइमेथिलब्यूटेनैल		
12.8	एथेनैल को निम्नलिखित यौगिकों में कैसे परिवर्तित करेंगे?		
	(i) ब्यूटेन-1,3-डाईऑल (ii) ब्यूट-2-ईनैल (iii) ब्यूट-2-इनॉइक अम्ल		
12.9	प्रोपेनैल एवं ब्यूटेनैल के एल्डोल संघनन से बनने वाले चार संभावित उत्पादों के नाम एवं संरचना सूत्र लिखिए। प्रत्येक		
	में बताइए कि कौन सा ऐल्डिहाइड नाभिकरागी और कौन सा इलेक्ट्रॉनरागी होगा?		
12.10	एक कार्बनिक यौगिक जिसका अणुसूत्र C ₉ H ₁₀ O है 2,4 DNP व्युत्पन्न बनाता है, टॉलेन अभिकर्मक को अपचित करता		
	है तथा कैनिज़ारो अभिक्रिया देता है। प्रबल ऑक्सीकरण पर वह 1,2-बेन्ज़ीनडाईकार्बोक्सिलिक अम्ल बनाता है। यौगिक		
	को पहचानिए।		
12.11	एक कार्बनिक यौगिक 'क' (आण्विक सूत्र, ${ m C_8H_{16}O_2})$ को तनु सल्फ्यूरिक अम्ल के साथ जलअपघटित करने के		
	उपरांत एक कार्बोक्सिलिक अम्ल 'ख' एवँ एक एल्कोहाँल 'ग' प्राप्त हुई। 'ग' को क्रोमिक अम्ल के साथ ऑक्सीकृत		
	करने पर 'ख' उत्पन्न होता है। 'ग' निर्जलीकरण पर ब्यूट-1-ईन देता है। अभिक्रियाओं में प्रयुक्त होने वाली सभी		
	रासायनिक समीकरणों को लिखिए।		


ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 401


12.18 निम्नलिखित के संभावित कारण दीजिए-

- (i) साइक्लोहेक्सेनोन अच्छी लब्धि में सायनोहाइड्रिन बनाता है। परंतु 2, 2, 6-ट्राइमेथिलसाइक्लोहेक्सेनोन ऐसा नहीं करता।
- (ii) सेमीकार्बोज़ाइड में दो -NH₂ समूह होते हैं, परंतु केवल एक -NH₂ समूह ही सेमीकार्बेज़ोन विरचन में प्रयुक्त होता है।
- (iii) कार्बोक्सिलिक अम्ल एवं ऐल्कोहॉल से, अम्ल उत्प्रेरक की उपस्थिति में एस्टर के विरचन के समय जल अथवा एस्टर जैसे ही निर्मित होता है उसको निकाल दिया जाना चाहिए।
- 12.19 एक कार्बनिक यौगिक में 69.77% कार्बन 11.63% हाइड्रोजन तथा शेष ऑक्सीजन है। यौगिक का आण्विक द्रव्यमान 86 है। यह टॉलेन अभिकर्मक को अपचित नहीं करता परंतु सोडियम हाइड्रोजनसल्फाइट के साथ योगज यौगिक देता है तथा आयोडोफार्म परीक्षण देता है। प्रबल ऑक्सीकरण पर एथेनॉइक तथा प्रोपेनॉइक अम्ल देता है। यौगिक की संभावित संरचना लिखिए।
- 12.20 यद्यपि फ्रीनॉक्साइड आयन की अनुनादी संरचनाएं कार्बोक्सिलेट आयन की तुलना में अधिक है परंतु कार्बोक्सिलिक अम्ल फ्रीनॉल की अपेक्षा प्रबल अम्ल है। क्यों?

कुछ पाठ्यनिहित प्रश्नों के उत्तर

ऐल्डिहाइड, कीटोन एवं कार्बोक्सिलिक अम्ल 403

404 रसायन विज्ञान

उद्देश्य

इस एकक के अध्ययन के पश्चात् आप –

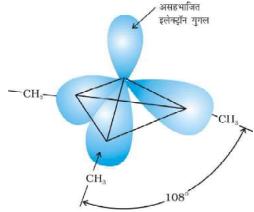
- ऐमीनों की अमोनिया के व्युत्पन्न के रूप में व्याख्या कर सकेंगे, जिसकी संरचना पिरैमिडी होती है;
- ऐमीनों का प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों
 में वर्गीकरण कर सकेंगे;
- ऐमीनों का सामान्य एवं IUPAC पद्धति से नामकरण कर सकेंगे;
- ऐमीनों के विरचन की कुछ महत्वपूर्ण विधियों का वर्णन कर सकेंगे;
- ऐमीनों के गुणों की व्याख्या कर सकेंगे;
- प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों में विभेद कर सकेंगे;
- डाइऐज़ोनियम लवणों के विरचन की विधियों तथा ऐरोमैटिक श्रेणी के यौगिकों के संश्लेषण में, जिनमें ऐज़ोरंजक भी हैं, इनके महत्व का वर्णन कर सकेंगे।

13.1 ऐमीनों की संश्चना

ऐमीनों का मुख्य व्यावसायिक उपयोग औषधियों और तंतुओं के संश्लेषण में मध्यवर्तियों के रूप में होता है।

ऐमीन, अमोनिया अणु से एक अथवा अधिक हाइड्रोजन परमाणुओं के ऐल्किल अथवा ऐरिल समूहों द्वारा विस्थापन से प्राप्त कार्बनिक यौगिकों का एक महत्वपूर्ण वर्ग बनाती हैं। प्रकृति में ये प्रोटीन, विटामिन, ऐल्केलॉइड तथा हॉर्मोनों में पाए जाती हैं। संश्लेषित उदाहरणों में बहुलक, रंजक और औषध सम्मिलित हैं। दो जैव-सक्रिय यौगिक, मुख्यतया – ऐड्रीनलिन और इफेड्रिन, का उपयोग रक्त-चाप बढ़ाने के लिए किया जाता है दोनों में ही द्वितीयक ऐमीनों समूह होता है। एक संश्लेषित यौगिक 'नोवोकेन' का उपयोग दंतचिकित्सा में निश्चेतक के रूप में किया जाता है। प्रसिद्ध प्रतिहिस्टैमिन 'बैनैड्रिल' में भी तृतीयक ऐमीनो समूह उपस्थित है। चतुष्क अमोनियम लवणों का प्रयोग पृष्ठसक्रियक के रूप में होता है। डाइऐजोनियम लवण, रंजकों सहित विभिन्न ऐरोमैटिक यौगिकों को बनाने में मध्यवर्ती होते हैं। इस एकक में आप ऐमीन एवं डाइऐजोनियम लवणों के विषय में विस्तृत जानकारी प्राप्त करेंगे।

I. ऐमीन


ऐमीन को अमोनिया के एक, दो अथवा तीनों हाइड्रोजन परमाणुओं को ऐल्किल और/अथवा ऐरिल समूहों द्वारा विस्थापित कर प्राप्त हुए व्युत्पन्न के रूप में माना जा सकता है।

उदाहरणार्थ—

$$CII_3 - NII_2$$
, $C_6II_5 - NII_2$, $CII_3 - NII - CII_3$, $CII_3 - N - CII_3$

अमोनिया की भौंति, ऐमीन का नाइट्रोजन परमाणु त्रिसंयोजी है एवं इस पर एक असहभाजित इलेक्ट्रॉन युगल है। ऐमीन में नाइट्रोजन के कक्षक sp³ संकरित होते हैं तथा ऐमीन की आकृति पिरैमिडी होती है। नाइट्रोजन के तीनों sp³ संकरित कक्षकों में से प्रत्येक ऐमीन के संगठन के अनुसार हाइड्रोजन अथवा कार्बन के कक्षकों से अतिव्यापन करता है। सभी ऐमीनों में नाइट्रोजन के चौथे कक्षक में एक असहभाजित इलेक्ट्रॉन युगल स्थित रहता है। असहभाजित इलेक्ट्रॉन युगल

की उपस्थिति के कारण C–N–E कोण (जहाँ E = C अथवा H है), 109.5° से कम होता है। उदाहरण के लिए यह कोण ट्राईमेथिलऐमीन में 108° होता है जैसा कि चित्र 13.1 में दर्शाया गया है।

चित्र 13.1-ट्राईमेथिलऐमीन की पिरैमिडी आकृति

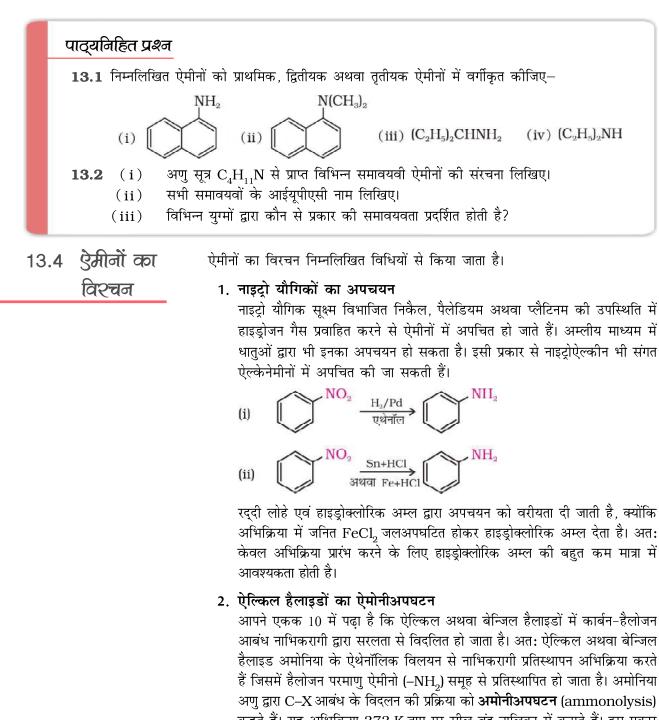
अमोनिया अणु में ऐल्किल अथवा ऐरिल समूहों द्वारा प्रतिस्थापित हाइड्रोजन परमाणुओं की संख्या के आधार पर ऐमीनों का वर्गीकरण, प्राथमिक (1°), द्वितीयक (2°) तथा तृतीयक (3°) में किया जाता है। यदि अमोनिया में एक हाइड्रोजन परमाणु R अथवा Ar से प्रतिस्थापित हो तो हमें प्राथमिक (1°) एमीन R-NH₂ अथवा Ar-NH₂ प्राप्त होती है। यदि अमोनिया के दो हाइड्रोजन परमाणु अथवा R-NH₂ के एक हाइड्रोजन का प्रतिस्थापन अन्य ऐल्किल/ऐरिल (R') समूह से होता है तब आप क्या प्राप्त करेंगे? आपको द्वितीयक एमीन, R-NH-R' प्राप्त होगी। दूसरा एल्किल/ऐरिल समूह समान अथवा भिन्न हो सकता है। एक और हाइड्रोजन परमाणु का विस्थापन ऐल्किल/ऐरिल समूह से होने पर तृतीयक ऐमीन बनती है। यदि सभी ऐल्किल अथवा ऐरिल समूह समान हों तो ऐमीन को 'सरल' तथा भिन्न होने पर 'मिश्रित' कहते हैं।

सामान्य पद्धति में ऐलिफैटिक ऐमीन का नामकरण ऐमीन शब्द में पूर्वलग्न ऐल्किल लगाकर एक शब्द में, यानी ऐल्किलऐमीन के रूप में किया जाता है, जैसे– मेथिलऐमीन। द्वितीयक एवं तृतीयक ऐमीनों में जब दो अथवा अधिक समूह समान होते हैं तब ऐल्किल समूह के नाम से पहले पूर्वलग्न डाइ अथवा ट्राइ का प्रयोग किया जाता है। आईयूपीएसी पद्धति में ऐमीनों का नामकरण **ऐल्केनेमीन** के रूप में होता है। उदाहरणार्थ $CH_3 NH_2$ का नाम मेथेनेमीन है। यदि मुख्य शृंखला में एक से अधिक स्थानों पर ऐमीन समूह उपस्थित हों तब ऐमीन समूहों की स्थिति कार्बन परमाणु की संख्या जिससे ये जुड़े हों, से व्यक्त कर डाइ, ट्राइ आदि उपयुक्त पूर्वलग्न लगाकर निर्दिष्ट की जाती है। हाइड्रोकार्बन भाग का अनुलग्न बनाए रखा जाता है। उदाहरणार्थ– $H_2N-CH_2-CH_2-NH_2$ का नाम एथेन–1, 2–डाइऐमीन है।

द्वितीयक तथा तृतीयक ऐमीन में N को छोटे एल्किल समूह के साथ जोड़कर विस्थापक के रूप में प्रयुक्त करते हैं। उदाहरणार्थ CH₃NH CH₂CH₃ का नाम है N–मेथिलऐथनामीन तथा (CH₃CH₂)₃N का नाम है N, N–डाइएथिलऐथनामीन। अधिक उदाहरण सारणी 13. 1 में दिए हैं। सबसे लम्बी कार्बन श्रुंखला को मुख्य श्रुंखला मानते हैं।

13.2 कींकिश्ण

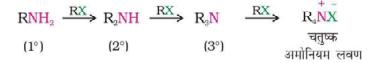
13.3 नामपद्धति


406 रसायन विज्ञान

ऐरिल ऐमीनों में $-NH_2$ समूह बेन्जीन वलय से सीधे जुड़ा रहता है। ऐरिल ऐमीन का सबसे सरल उदाहरण $C_6H_5NH_2$ है। सामान्य पद्धति में इसे ऐनिलीन कहते हैं। यह आइयूपीएसी पद्धति में भी स्वीकार्य नाम है। ऐरिल एमीन का नामकरण करते समय ऐरीन के अंग्रेज़ी में लिखे नाम के अंत में से 'e' अनुलग्न का प्रतिस्थापन एमीन ('amine') शब्द से करते हैं। अत: आइयूपीएसी पद्धति में $C_6H_5-NH_2$ का नाम बेन्जीनेमीन होगा। सारणी 13.1 में कुछ एल्किल एवं ऐरिल ऐमीनों के सामान्य एवं आइयूपीएसी नाम में दिए गए हैं।

सारणी 13.1-कुछ ऐल्किल एवं ऐरिल ऐमीनों की नामपद्धति

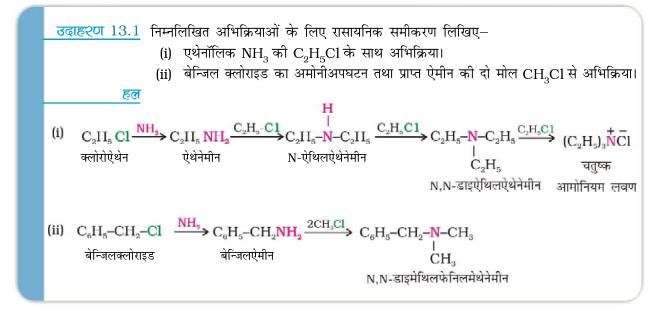
ऐमीन	सामान्य नाम	आइयूपीएसी नाम
$CH_{3-}-CH_2-NH_2$	एथिलऐमीन	ऐथेनेमीन
CH_3 - CH_2 - CH_2 - NH_2	<i>n</i> -प्रोपिलऐमीन	प्रोपेन-1-ऐमीन
$CH_3 - CH - CH_3$ I NH_2	<i>iso</i> - प्रोपिलऐमीन	प्रोपेन-2-ऐमीन
$CH_3 - N - CH_2 - CH_3$ H	ऐथिलमेथिलऐमीन	N-मेथिलएथेनेमीन
$CH_{a} = N = CH_{a}$	ट्राईमेथिलऐमीन	N,N-डाइमेथिलमेथेनेमीन
$C_{2}H_{5} - N - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$ $I - C_{2}H_{5}$	N,N-डाईएथिलब्यूटिलऐमीन	N,N-डाइएथिलब्यूटेन-1-ऐमीन
$NH_2 - CH_2 - CH = CH_2^3$	ऐलिलऐमीन	प्रोप-2-ईन-1-ऐमीन
$\mathrm{NH}_2 - (\mathrm{CH}_2)_6 - \mathrm{NH}_2$	हेक्सामेथिलीन डाइऐमीन	हेक्सेन-1, 6-डाइऐमीन
NH ₂	ऐनिलीन	ऐनिलीन अथवा बेन्जीनेमीन
NH ₂ CH ₃	0-टॉलूडीन	2-मेथिलऐनीलीन
NH ₂ Br	p-ब्रोमोऐनिलीन	4-ब्रोमोबेन्जीनेमीन अथवा -ब्रोमोऐनीलीन
N(CH ₃) ₂	N,N-डाइमेथिलऐनिलीन	N,N-डाइमेथिलबेन्जीनेमीन


ऐमीन <mark>407</mark>

अणु द्वारा C-X आवध के विदलन का प्राक्रयों का अमानाअपयटन (ammonolysis) कहते हैं। यह अभिक्रिया 373 K ताप पर सील बंद नालिका में कराते हैं। इस प्रकार से प्राप्त प्राथमिक ऐमीन नाभिकरागी की तरह व्यवहार करती है और पुन: ऐल्किल हैलाइड से अभिक्रिया करके द्वितीयक एवं तृतीयक एमीन तथा अंतत: चतुष्क अमोनियम लवण बना सकती है।

$$\overrightarrow{NH}_{3} + \overrightarrow{R} - \overrightarrow{X} \longrightarrow \overrightarrow{R} - \overrightarrow{NH}_{3} \overrightarrow{X}$$

= 114 a tı 11 yılı daya yılı daya


408 रसायन विज्ञान

इस अभिक्रिया में हैलाइडों की ऐमीनों से अभिक्रियाशीलता का क्रम RI > RBr > RCl होता है। अमोनियम लवण से मुक्त ऐमीन प्रबल क्षार द्वारा अभिक्रिया से प्राप्त की जा सकती है।

 $R-NH_{3}X + NaOH \longrightarrow R-NH_{2} + H_{2}O + NaX$

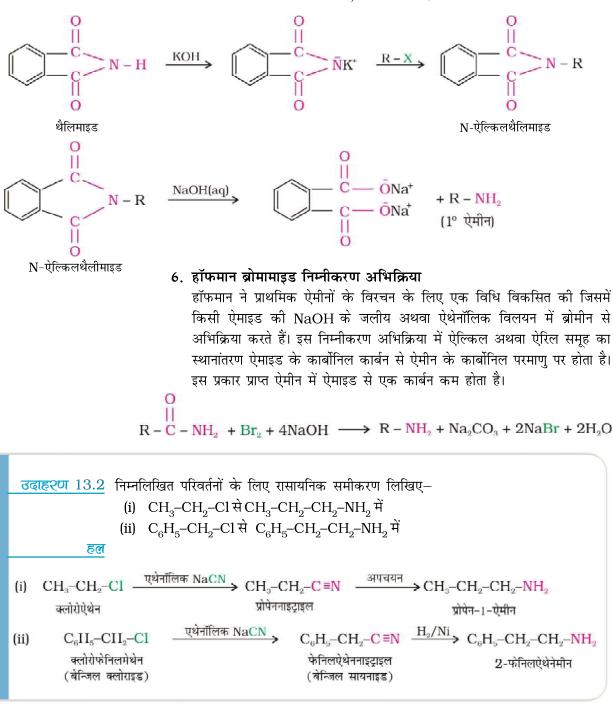
अमोनीअपघटन में यह असुविधा है कि इससे प्राथमिक, द्वितीयक एवं तृतीयक ऐमीन तथा चतुष्क अमोनियम लवण का मिश्रण प्राप्त होता है। यद्यपि अमोनिया आधिक्य में लेने पर प्राप्त मुख्य उत्पाद प्राथमिक ऐमीन हो सकता है।

3. नाइट्राइलों का अपचयन

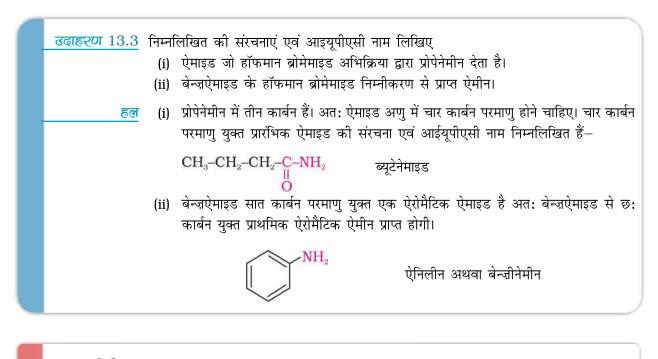
नाइट्राइल लीथियम ऐलुमिनियम हाइड्राइड (LiAlH₄) अथवा उत्प्रेरकी हाइड्रोजनन द्वारा अपचित होकर प्राथमिक ऐमीन बनाते हैं। इस अभिक्रिया का उपयोग ऐमीन श्रेणी के आरोहण (ascent) में, अर्थात् प्रारंभिक ऐमीन से एक अधिक कार्बन वाले ऐमीन के विरचन में किया जाता है।

$$R-C\equiv N \qquad \xrightarrow{H_2/Ni} R-CH_2-NH_2$$

4. ऐमाइडों का अपचयन


ऐमाइड लीथियम ऐलुमिनियम हाइड्राइड द्वारा अपचित होकर ऐमीन देते हैं।

$$\begin{array}{c} \underset{\text{R-C-NH}_{2} \xrightarrow{\text{(i) LiA1H}_{2}}}{\overset{\text{(i) LiA1H}_{2}}{(\text{ii) H}_{2}O}} \text{R-CH}_{2} - \text{NH}_{2} \end{array}$$


ऐमीन <mark>409</mark>

5. गैब्रिएल थैलिमाइड संश्लेषण

गैब्रिएल संश्लेषण का प्रयोग प्राथमिक ऐमीनों के विरचन के लिए किया जाता है। थैलिमाइड ऐथेनॉलिक पोटैशियम हाइड्रॉक्साइड से अभिक्रिया द्वारा थैलिमाइड का पोटैशियम लवण बनाता है जो ऐल्किल हैलाइड के साथ गरम करने के पश्चात् क्षारीय जलअपघटन द्वारा संगत प्राथमिक ऐमीन उत्पन्न करता है। ऐरोमैटिक प्राथमिक ऐमीन इस विधि से नहीं बनाई जा सकतीं क्योंकि ऐरिल हैलाइड थैलिमाइड से प्राप्त ऋणायन के साथ नाभिकरागी प्रतिस्थापन: अभिक्रिया नहीं कर सकते।

410 रसायन विज्ञान

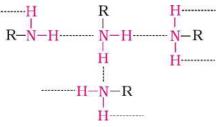
पाठ्यनिहित प्रश्न

- 13.3 आप निम्नलिखित परिवर्तन कैसे करेंगे?
 - (i) बेन्जीन से ऐनिलीन
 - (ii) बेन्जीन से N, N-डाइमेथिलऐनिलीन
 - (iii) Cl-(CH2)4-Cl से हेक्सेन-1, 6-डाइऐमीन

13.5 भौतिक भूणधर्म

निम्नतर ऐलिफैटिक ऐमीन मत्स्य गंध वाली गैसें हैं। तीन अथवा अधिक कार्बन परमाणु वाली प्राथमिक ऐमीन द्रव तथा इससे उच्चतर ऐमीन ठोस हैं। ऐनिलीन तथा अन्य ऐरिलऐमीन प्राय: रंगहीन होती हैं। परंतु भंडारण के दौरान वातावरण द्वारा ऑक्सीकरण होने से रंगीन हो जाती हैं।

निम्नतर ऐलिफैटिक ऐमीन जल में विलेय होती हैं, क्योंकि यह जल के अणुओं के साथ हाइड्रोजन आबंध बना सकती हैं। हालॉंकि, अणुभार में वृद्धि के साथ जलविरागी (Hydrophlic) ऐल्किल भाग बढ़ जाता है अत: जल में विलेयता घटती है। उच्चतर ऐमीन जल में आवश्यक रूप से अविलेय होती हैं। ऐमीन की नाइट्रोजन एवं ऐल्कोहॉल की ऑक्सीजन की विद्युतऋणात्मकता क्रमश: 3.0 एवं 3.5 मानने पर आप ऐमीनों एवं ऐल्कोहलों की जल में विलेयता के पैटर्न की प्रागुक्ति कर सकते हैं। ब्यूटेन-1-ऑल एवं ब्यूटेन-1-ऐमीन में से कौन जल में अधिक विलेय होगा और क्यों? ऐमीन कार्बनिक विलायकों जैसे **ऐल्कोहॉल, ईथर एवं बेन्जीन** में विलेय होती है। आपको याद होगा कि एल्कोहॉल ऐमीन की तुलना में अधिक ध्रुवित होती हैं तथा ऐमीन की तुलना में प्रबल अंतराआण्विक हाइड्रोजन आबंध बनाती हैं।


प्राथमिक एवं द्वितीयक ऐमीनों में एक अणु का नाइट्रोजन परमाणु दूसरे अणु के हाइड्रोजन परमाणु से आबंधित होने के कारण इनमें अंतराआण्विक संघटन होता है। यह अंतराआण्विक संघटन प्राथमिक ऐमीनों में द्वितीयक एमीनों की तुलना में हाइड्रोजन आबंधन के लिए दो हाइड्रोजन परमाणुओं की उपलब्धता के कारण अधिक होता है। तृतीयक ऐमीन में नाइट्रोजन

ऐमीन <mark>411</mark>

पर हाइड्रोजन अणुओं के अभाव के कारण अंतराआण्विक संघटन नहीं होता। अत: समावयवी ऐमीनों के क्वथनांकों का क्रम निम्नलिखित होगा—

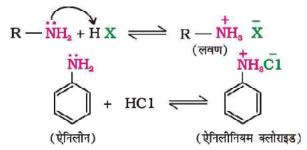
प्राथमिक > द्वितीयक > तृतीयक

प्राथमिक ऐमीन में उपस्थित अंतराआण्विक हाइड्रोजन आबंधन को चित्र 13.2 में दर्शाया गया है।

चित्र 13.2–प्राथमिक ऐमीन में अंतराआण्विक हाइड्रोजन आबंधन

> लगभग समान आण्विक द्रव्यमान वाली ऐमीनों, ऐल्कोहॉलों एवं एल्केनों के क्वथनांक सारणी 13.2 में दर्शाए गए हैं।

सारणी 13.2–लगभग समान आण्विक द्रव्यमान वाली ऐमीनों, ऐल्कोहॉलों एवं एल्केनों के क्वथनांकों की तुलना


क्र. सं.	यौगिक	अणु द्रव्यमान	क्वथनांक (K)
1.	$n-C_4H_9NH_2$	73	350.8
2.	(C ₂ H ₅) ₂ NH	73	329.3
3.	$C_2H_5N(CH_3)_2$	73	310.5
4.	C ₂ H ₅ CH(CH ₃) ₂	72	300.8
5.	n-C ₄ H ₉ OH	74	390.3

13.6 रासायनिक अभिक्रियाएँ

नाइट्रोजन एवं हाइड्रोजन परमाणुओं की विद्युतऋणात्मकता में अंतर तथा नाइट्रोजन परमाणु पर असहभाजित इलेक्ट्रॉन युगल की उपस्थिति ऐमीन को सक्रिय बना देती है। नाइट्रोजन परमाणुओं से जुड़ी हाइड्रोजन परमाणुओं की संख्या भी ऐमीन की अभिक्रिया का पथ निर्धारित करती है। इसलिए प्राथमिक ($-NH_2$), द्वितीयक $\left(\sum N-H\right)$ एवं तृतीयक ऐमीनों $\left(\sum N-\right)$ की बहुत सी अभिक्रियाओं में भिन्नता होती है। इसके अतिरिक्त, असहभाजित इलेक्ट्रॉन युगल की उपस्थिति के कारण ऐमीन नाभिकरागी की तरह व्यवहार करती हैं। ऐमीनों की कुछ अभिक्रियाओं की व्याख्या नीचे दी गई है–

1. ऐमीनों का क्षारकीय गुण

क्षारकीय प्रकृति होने के कारण ऐमीन अम्लों से अभिक्रिया कर लवण बनाती हैं।

412 रसायन विज्ञान

ऐमीन लवण NaOH जैसे क्षार से अभिक्रिया करके पितृ ऐमीन पुनर्जनित करती हैं।

$$RNH_3 X + OH \longrightarrow RNH_2 + H_2O + X$$

ऐमीन लवण जल में विलेय किंतु ईथर जैसे कार्बनिक विलायकों में अविलेय होते हैं। यह अभिक्रिया जल में अविलेय अक्षारकीय कार्बनिक यौगिकों को ऐमीन से पृथक् करने का आधार है।

ऐमीन की खनिज अम्लों से अभिक्रिया द्वारा लवणों का बनना इनकी क्षारकीय प्रकृति को दर्शाता है। ऐमीनों में एक असहभाजित इलेक्ट्रॉन युगल उपस्थित होने के कारण यह **लूईस क्षारक** की भाँति व्यवहार करती है । ऐमीनों के क्षारकीय गुण को उनके K_b एवं pK_b के मान पर विचार करके भलीभाँति व्याख्या की जा सकती है।

$$\mathbf{R} - \mathbf{NH}_{2} + \mathbf{H}_{2}\mathbf{O} \Longrightarrow \mathbf{R} - \mathbf{NH}_{3} + \mathbf{\bar{O}H}$$
$$K = \frac{\left[\mathbf{R} - \mathbf{\bar{N}H}_{3}\right]\left[\mathbf{O}\mathbf{\bar{H}}\right]}{\left[\mathbf{R} - \mathbf{NH}_{2}\right]\left[\mathbf{H}_{2}\mathbf{O}\right]}$$
अथवा $K[\mathbf{H}_{2}\mathbf{O}] = \frac{\left[\mathbf{R} - \mathbf{\bar{N}}\mathbf{H}_{3}\right]\left[\mathbf{\bar{O}H}\right]}{\left[\mathbf{R} - \mathbf{NH}_{2}\right]}$ अथवा $K_{b} = \frac{\left[\mathbf{R} - \mathbf{\bar{N}}\mathbf{H}_{3}\right]\left[\mathbf{\bar{O}H}\right]}{\left[\mathbf{R} - \mathbf{NH}_{2}\right]}$ $pK_{b} = -\log K_{b}$

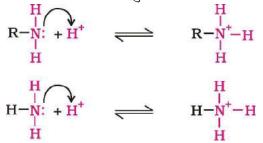
 K_b का मान जितना अधिक होता है अथवा $\mathbf{p}K_b$ का मान जितना कम होता है, क्षारक उतना ही प्रबल होता है। कुछ ऐमीनों के $\mathbf{p}K_b$ मान सारणी 13.3 में दिए गए हैं।

अमोनिया का $\mathbf{p}K_b$ मान 4.75 होता है। ऐलिफैटिक ऐमीन, नाइट्रोजन परमाणु पर ऐल्किल समूहों के +I प्रभाव के कारण अधिक इलेक्ट्रॉन घनत्व होने से अमोनिया से प्रबल क्षारक होते हैं। इनके $\mathbf{p}K_b$ मान 3 से 4.22 के मध्य होते हैं। दूसरी ओर ऐरोमैटिक ऐमीन ऐरिल समूह की इलेक्ट्रॉन खींचने (इलेक्ट्रॉन अपनयन) की प्रकृति के कारण अमोनिया से दुर्बल क्षारक होते हैं।

सारणी 13.3–जलीय प्रावस्था में कुछ ऐमीनों के **pK**, मान

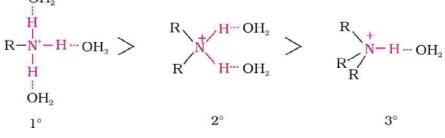
ऐमीन का नाम	$\mathbf{p} \mathbf{K}_{_{\!\!\boldsymbol{b}}}$
मेथेनेमीन	3.38
N-मेथिलमेथेनेमीन	3.27
N,N-डाइमेथिलमेथेनेमीन	4.22
एथेनेमीन	3.29
N-एथिलऐथेनेमीन	3.00
N,N-डाइएथिलऐथेनेमीन	3.25
बेन्जीनऐमीन	9.38
फ़ेनिलमेथेनेमीन	4.70
N-मेथिलऐनिलीन	9.30
N,N-डाइमेथिलऐनिलीन	8.92

ऐमीन <mark>413</mark>


प्रतिस्थापियों के +I अथवा –I प्रभाव के आधार पर ऐमीनों के K_b मान के प्रतिपादन में आपको कुछ विसंगतियाँ मिल सकती हैं। प्रेरणिक प्रभाव के अतिरिक्त कुछ अन्य प्रभाव, जैसे– विलायकयोजन प्रभाव, त्रिविम अवरोधन आदि भी ऐमीन की क्षारकीय सामर्थ्य को प्रभावित करते हैं। इस पर विचार कीजिए। आपको इसका उत्तर निम्नलिखित अनुच्छेदों में मिल जाएगा।

ऐमीनों की संरचना तथा क्षारकता में संबंध

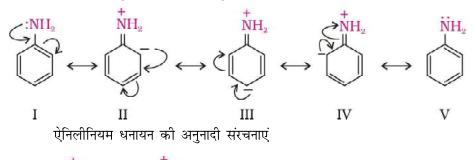
ऐमीनों की क्षारकता इनकी संरचना से संबंधित होती है। ऐमीनों का क्षारकीय गुण अम्ल से प्रोटॉन ग्रहण कर धनायन बनाने की सहजता पर निर्भर करता है, ऐमीन की तुलना में धनायन जितना अधिक स्थायी होता है ऐमीन उतनी ही अधिक क्षारकीय होती है।


(क) ऐल्केनेमीन बनाम अमोनिया

आइए हम ऐल्केनेमीन और अमोनिया की क्षारकता की तुलना करने के लिए इनकी प्रोटॉन से अभिक्रिया की तुलना करें।

इलेक्ट्रॉन मुक्त करने की प्रकृति के कारण ऐल्किल (R) समूह इलेक्ट्रॉन को नाइट्रोजन की ओर धकेलते हैं और इस प्रकार से नाइट्रोजन के असहभाजित इलेक्ट्रॉन युगल की प्रोटॉन से साझेदारी के लिए उपलब्धता को बढ़ा देते हैं। इसके अलावा ऐमीन से प्राप्त हुआ प्रतिस्थापित अमोनियम आयन, एल्किल समूह के +I प्रभाव के कारण आवेश के वितरण द्वारा स्थायित्व प्राप्त करता है। अतः ऐल्किल-ऐमीन अमोनिया से प्रबल क्षारक होते हैं। इसलिए ऐलिफैटिक ऐमीन की क्षारकता इनमें उपस्थित ऐल्किल समूह की संख्या बढ़ने के साथ बढ़नी चाहिए। गैसीय प्रावस्था में यह क्रम बना रहता है। गैसीय प्रावस्था में ऐमीनों की क्षारकता का क्रम अपेक्षित क्रम में होता है जो इस प्रकार है– तृतीयक ऐमीन > द्वितीयक ऐमीन > प्राथमिक ऐमीन > अमोनिया (NH₃)। सारणी 13.3 में दिए गए pK_b के मानों से स्पष्ट होता है कि यह क्रम जलीय प्रावस्था में क्रमानुसार नहीं होता। जलीय प्रावस्था में प्रतिस्थापित अमोनियम धनायनों का स्थायित्व केवल ऐल्किल समूह के इलेक्ट्रॉन मुक्त करने के प्रभाव (+I) पर ही निर्भर नहीं होता, अपितु जल अणुओं द्वारा विलायक योजन पर भी निर्भर करता है। धनायन का आकार जितना बड़ा होता है उसका विलायक योजन उतना ही कम होता है, आयनों के स्थायित्व का क्रम इस प्रकार है–

जल में हाइड्रोजन आबंधन तथा विलायकन द्वारा स्थायित्व के कम होने का क्रम OH2


414 रसायन विज्ञान


प्रतिस्थापित अमोनियम धनायन का स्थायित्व जितना अधिक होता है, संगत ऐमीन का क्षारकीय प्राबल्य उतना ही अधिक होना चाहिए। अत: ऐलिफैटिक एमीनों की क्षारकता का क्रम, प्राथमिक > द्वितीयक > तृतीयक होना चाहिए जो कि प्रेरणिक प्रभाव के विपरीत क्रम है। पुनश्च: जब ऐल्किल समूह– CH_3 की तरह छोटा होता है तो हाइड्रोजन आबंधन में कोई त्रिविम बाधा नहीं होती। यदि ऐल्किल समूह – CH_3 समूह से बड़ा होगा तो हाइड्रोजन आबंधन में त्रिविम बाधा आएगी। इसलिए ऐल्किल समूह की प्रकृति में परिवर्तन, जैसे – CH_3 से – C_2H_5 होने पर क्षारकता सामर्थ्य के क्रम में परिवर्तन हो जाता है। अत: जलीय प्रावस्था में प्रेरणिक प्रभाव, विलायक योजन प्रभाव तथा त्रिविम बाधा का जटिल पारस्परिक प्रभाव क्षारकीय प्राबल्य का निर्धारण करता है। जलीय विलयन में मेथिल और ऐथिल प्रतिस्थापित एमीनों के क्षारकीय प्राबल्य का क्रम इस प्रकार है–

 $(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$ $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

(ख) ऐरिलऐमीन बनाम अमोनिया

ऐनिलीन के pK_b का मान काफ़ी अधिक है। ऐसा क्यों है? ऐसा इसलिए है कि बेन्जीन तथा अन्य ऐरिल ऐमीनों में $-NH_2$ समूह सीधे बेन्जीन वलय से जुड़ा होता है। इससे नाइट्रोजन परमाणु पर उपस्थित असहभाजित इलेक्ट्रॉन युगल, बेन्जीन वलय के साथ संयुग्मन के कारण प्रोटॉनन के लिए कम उपलब्ध होता है। यदि आप ऐनिलीन की विभिन्न संरचनाएं लिखें, तो आप पाएंगे कि ऐनिलीन निम्नलिखित पाँच संरचनाओं का संकर है। दूसरी ओर प्रोटॉन ग्रहण से परिणित ऐनिलीनियम आयन की केवल दो अनुनाद संरचनाएं (केकुले) होती हैं।

हम जानते हैं कि जितनी अधिक अनुनादी संरचनाएं होती हैं स्थायित्व उतना ही अधिक होता है। अत: आप निष्कर्ष निकाल सकते हैं कि ऐनिलीन (पाँच अनुनादी संरचनाएं) ऐनिलीनियम आयन से अधिक स्थायी होती हैं। अत: एनिलीन अथवा अन्य ऐरोमैटिक ऐमीनों की प्रोटोन स्वीकार्यता अथवा क्षारक गुण कम होगा। प्रतिस्थापित ऐनिलीन में यह देखा गया है कि इलेक्ट्रॉन मुक्त करने वाले समूह जैसे –OCH₃, –CH₃, क्षारकीय प्राबल्य में वृद्धि करते हैं जबकि इलेक्ट्रॉन खींचने वाले समूह जैसे –NO₂, –SO₃H, –COOH, –X, इसे कम करते हैं।

ऐमीन <mark>415</mark>

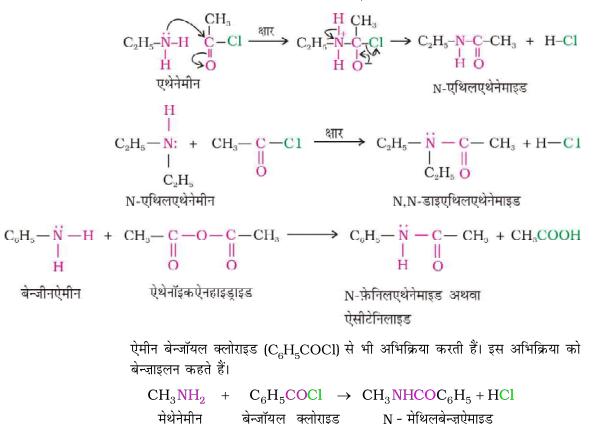
 उदाहरण 13.4
 निम्नलिखित को क्षारकीय प्राबल्य के घटते क्रम में लिखिए–

 $C_6H_5NH_2, C_2H_5NH_2, (C_2H_5)_2NH, NH_3$

 हल

 उपरोक्त ऐमीनों एवं अमोनिया के क्षारकीय प्राबल्य में कमी का क्रम इस प्रकार है–

 $(C_2H_5)_2NH > C_2H_5NH_2 > NH_3 > C_6H_5NH_2$


2. ऐल्किलन

ऐमीन ऐल्किल हैलाइडों के साथ ऐल्किलन अभिक्रिया देती हैं। (देखें कक्षा XII, एकक 10)

3. ऐसिलन

ऐलीफैटिक तथा ऐरोमैटिक प्राथमिक एवं द्वितीयक ऐमीन ऐसिड क्लोराइड, ऐनहाइड्राइड और ऐस्टर से नाभिकरागी प्रतिस्थापन अभिक्रिया करते हैं। यह अभिक्रिया ऐसिलन कहलाती है। आप इस अभिक्रिया को –NH₂ अथवा > N–H समूह में उपस्थित हाइड्रोजन परमाणु का ऐसिल समूह द्वारा प्रतिस्थापन समझ सकते हैं।

ऐसिलन अभिक्रिया से प्राप्त उत्पादों को ऐमाइड कहते हैं। यह अभिक्रिया ऐमीन से अधिक प्रबल क्षारक, जैसे पिरीडीन की उपस्थिति में कराई जाती है जो अभिक्रिया में बने HCl को निकालकर साम्य को दाईं ओर विस्थापित कर देता है।

क्या आप जानते हैं कि ऐमीन तथा कार्बोक्सिलिक अम्ल की अभिक्रिया से प्राप्त उत्पाद क्या होगा? ये कमरे के ताप पर ऐमीन से अभिक्रिया द्वारा लवण बनाते हैं।

416 रसायन विज्ञान

4. कार्बिलऐमीन अभिक्रिया

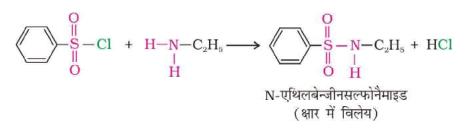
ऐलिफैटिक तथा ऐरोमैटिक प्राथमिक ऐमीन, क्लोरोफ़ार्म और एथेनॉलिक पोटैशियम हाइड्रॉक्साइड के साथ गर्म करने पर दुर्गंधयुक्त पदार्थ आइसोसायनाइड अथवा कर्बिलऐमीन का विरचन करती हैं। द्वितीयक एवं तृतीयक ऐमीन यह अभिक्रिया नहीं दर्शातीं। इस अभिक्रिया को कार्बिलऐमीन अभिक्रिया अथवा आइसोसायनाइड परीक्षण कहते हैं तथा यह प्राथमिक ऐमीनों के परीक्षण में प्रयुक्त होती है।

 $R-NH_2 + CHCl_3 + 3KOH \longrightarrow R-NC + 3KCl + 3H_2O$

- 5. नाइट्रस अम्ल से अभिक्रिया खनिज अम्ल एवं सोडियम नाइट्राइट की अभिक्रिया से स्वस्थान (in situ) बनायी गई तीनों वर्गों की ऐमीन नाइट्रस अम्ल से अलग-अलग तरह से अभिक्रिया करती हैं।
- (क) प्राथमिक ऐलीफैटिक ऐमीन नाइट्रस अम्ल से अभिक्रिया द्वारा ऐलीफैटिक डाइऐज़ोनीयम लवण बनाती हैं जो अस्थायी होने के कारण मात्रात्मकत: नाइट्रोजन निर्मुक्त करती हैं और एल्कोहॉल बनाती हैं। नाइट्रोजन की मात्रात्मकत: निकासी का उपयोग ऐमीनो अम्लों एवं प्रोटीनों के आकलन में किया जाता है।

$$R-NH_2 + HNO_2 \xrightarrow{NaNO_2 + HCl} [R-N_2Cl] \xrightarrow{H_2O} ROH + N_2 + HCl$$

(ख) ऐरोमैटिक ऐमीन नाइट्रस अम्ल से कम ताप (273–268 K) पर अभिक्रिया कर डाइऐज़ोनियम लवण बनाती हैं। यह यौगिकों का एक महत्वपूर्ण वर्ग है जिसका उपयोग विभिन्न प्रकार के ऐरोमैटिक यौगिकों के संश्लेषण में होता है। जिनका वर्णन खंड 13.7 में किया गया है।


$$C_6H_5 - NH_2 \xrightarrow{NaNO_2 + 2HCl} C_6H_5 - \overset{+}{N_2Cl} + NaCl + 2H_2O$$

 \dot{V} frefin \dot{a} -sin-sing \dot{V} -sinf-dual \dot{A} -sing \dot{A} -sing \dot{V} -sing \dot{A} -sin

द्वितीयक और तृतीयक ऐमीन नाइट्रस अम्ल से भिन्न प्रकार से अभिक्रिया करती हैं।

6. ऐरिलसल्फोनिल क्लोराइड से अभिक्रिया

बेन्जीन सल्फोनिल क्लोराइड (C₆H₅SO₂Cl) जिसे **हिन्सबर्ग अभिकर्मक** भी कहते हैं, प्राथमिक और द्वितीयक ऐमीनों से अभिक्रिया करके सल्फोनैमाइड बनाता है।

(क) बेन्जीनसल्फोनिल क्लोराइड और प्राथमिक ऐमीन की अभिक्रिया से N- एथिलबेन्जीन– सल्फोनिल ऐमाइड प्राप्त होते हैं।

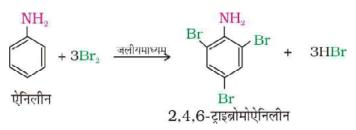
सल्फोनैमाइड की नाइट्रोजन से जुड़ी हाइड्रोजन प्रबल इलेक्ट्रॉन खीचने वाले सल्फोनिल समूह की उपस्थिति के कारण प्रबल अम्लीय होती है। अत: यह क्षार में विलेय होते हैं।

ऐमीन 417

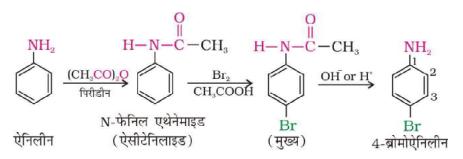
(ख) द्वितीयक ऐमीन की अभिक्रिया से N,N- डाइएथिलबेन्जीनसल्फोनैमाइड बनता है।

$$\begin{array}{c} & & & \\ &$$

N,N-डाइएथिलबेन्जीनसल्फोनैमाइड में कोई भी हाइड्रोजन परमाणु, नाइट्रोजन परमाणु से नहीं जुडा है अत: यह अम्लीय नहीं होता तथा क्षार में अविलेय होता है।


(ग) तृतीयक ऐमीन बेन्जीनसल्फोनिल क्लोराइड से अभिक्रिया नहीं करतीं। विभिन्न वर्गों के ऐमीनों का यह गुण जिसमें वे बेन्जीनसल्फोनिल क्लोराइड से भिन्न-भिन्न प्रकार से अभिक्रिया करती हैं, प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों में विभेद करने एवं इन्हें मिश्रण से पृथक करने में प्रयुक्त होता है। यद्यपि आजकल बेन्जीनसल्फ़ोनिल क्लोराइड के स्थान पर p- टॉलूईनसल्फ़ोनिल क्लोराइड का प्रयोग होता है।

7. इलेक्ट्रॉनरागी प्रतिस्थापन


आपने पहले पढ़ा है कि ऐनिलीन पाँच अनुनादी संरचनाओं का संकर होती है। आप इन संरचनाओं में कौन से स्थान पर सर्वाधिक इलेक्ट्रॉन घनत्व पाते हैं? –NH₂ समूह के संदर्भ से *आर्थो* तथा *पैरा* स्थानों पर अधिक इलेक्ट्रॉन घनत्व के केंद्र बन जाते हैं। अत: –NH₂ समूह *आर्थो* तथा *पैरा* निर्देशक एवं शक्तिशाली सक्रियक समूह है।

(क) ब्रोमीनन

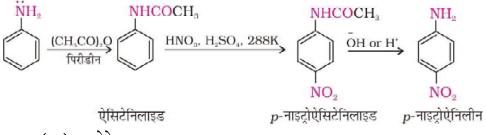
ऐनिलीन कक्ष ताप पर ब्रोमीन जल से अभिक्रिया करके 2, 4, 6 –ट्राईब्रोमोऐनिलीन का सफेद अवक्षेप देती है।

ऐरोमैटिक ऐमीन की इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में मुख्य समस्या इनकी उच्च अभिक्रियाशीलता है। प्रतिस्थापन *आर्थो* तथा *पैरा* दोनों स्थानों पर हो सकता है। यदि हमें ऐनिलिन का एकल प्रतिस्थापी व्युत्पन्न बनाना हो तो -NH₂ समूह के सक्रियण प्रभाव को कैसे नियंत्रित करेंगे? यह –NH₂ समूह को ऐसीटिक ऐनहाइड्राइड ऐसीटिलन द्वारा परिरक्षित करने के बाद वांछित प्रतिस्थापन करके और फिर अंत में प्रतिस्थापित ऐमाइड को प्रतिस्थापित ऐमीन में जलअपघटित करके किया जा सकता है।

418 रसायन विज्ञान

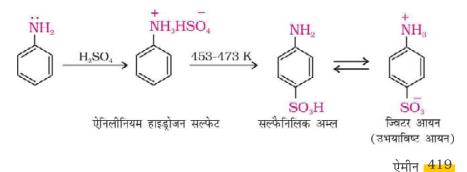

ऐसिटेनिलाइड की नाइट्रोजन पर उपस्थित एकाकी इलेक्ट्रॉन युगल ऑक्सीजन परमाणु से अनुनाद द्वारा अन्योन्यक्रिया करता है। इसे नीचे दर्शाया गया है–

$$>_{N}^{\times C} - CH_{3} \leftrightarrow >_{N}^{\times C} - CH_{3}$$


अत: नाइट्रोजन पर उपस्थित एकाकी इलेक्ट्रॉन युगल अनुनाद द्वारा बेन्जीन वलय को प्रदान करने के लिए कम उपलब्ध होता है। इसलिए -NHCOCH₃ समूह का सक्रियण प्रभाव ऐमीनो समूह से कम होता है।

(ख) नाइट्रोकरण

ऐनिलीन के सीधे नाइट्रोकरण से नाइट्रो व्युत्पन्नों के अतिरिक्त अन्य कोलतारी ऑक्सीकरण उत्पाद भी बनते हैं। इसके अलावा प्रबल अम्लीय माध्यम में ऐनिलीन प्रोटॉन ग्रहण कर ऐनिलीनियम आयन बनाती है जो *मेटा* निर्देशक है। इसी कारण *आर्थो* एवं *पैरा* व्युत्पन्न के अलावा *मेटा* व्युत्पन्न की भी महत्वपूर्ण मात्रा बनती है।



ऐसीटिलन अभिक्रिया द्वारा -NH₂ समूह का परिरक्षण करके नाइट्रोकरण अभिक्रिया को नियंत्रित किया जा सकता है और *पैरा*-नाइट्रो व्युत्पन्न को मुख्य उत्पाद के रूप में प्राप्त किया जा सकता है।

(ग) सल्फोनेशन

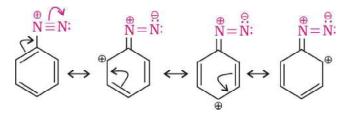
ऐनिलीन सांद्र सल्फ्युरिक अम्ल से अभिक्रिया द्वारा ऐनिलीनियम हाइड्रोजनसल्फेट बनाती है जो सल्फ्यूरिक अम्ल के साथ 453-473K तक गरम करने पर *p*-ऐमीनोबेन्जीन सल्फोनिक अम्ल जिसे सामान्यत: सल्फैनिलिक अम्ल भी कहते हैं, मुख्य उत्पाद के रूप में बनाता है।

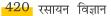
ऐलुमिनियम क्लोराइड के साथ लवण बनाने के कारण ऐनीलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया (ऐल्किलन एवं ऐसीटिलन) नहीं करती। ऐलुमिनियम क्लोराइड एक लूईस अम्ल है जो इस अभिक्रिया में उत्प्रेरक का कार्य करता है। लवण बनने से एनिलीन की नाइट्रोजन धन आवेश प्राप्त कर लेती है और फिर आगे की अभिक्रिया में प्रबल निष्क्रियक समूह की तरह व्यवहार करती है।

पाठ्यनिहित प्रश्न

13.4 निम्नलिखित को उनके बढ़ते हुए क्षारकीय प्रबलता के क्रम में लिखिए–
(i) $ m C_2H_5NH_2, m C_6H_5NH_2$, $ m NH_3, m C_6H_5CH_2NH_2$ तथा ($ m C_2H_5)_2NH$
(ii) $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$, $C_6H_5NH_2$
(iii) CH ₃ NH ₂ , (CH ₃) ₂ NH, (CH ₃) ₃ N, C ₆ H ₅ NH ₂ , C ₆ H ₅ CH ₂ NH ₂
13.5 निम्नलिखित अम्ल-क्षारॅक अभिक्रियाँ को पूर्ण कीर्जिए तथाँ उत्पादों के नाम लिखिए–
(i) $CH_3CH_2CH_2NH_2 + HCl \rightarrow$ (ii) $(C_2H_5)_3N + HCl \rightarrow$
13.6 सोडियम कार्बोनेट विलयन की उपस्थिति में मेथिल आयोडाइड के आधिक्य द्वारा ऐनिलीन के ऐल्किलन
में उत्पन्न होने वाले उत्पादों के लिए अभिक्रिया लिखिए।
13.7 ऐनिलीन की बेन्जॉयल क्लोराइड के साथ रासायनिक अभिक्रिया द्वारा उत्पन्न उत्पादों के नाम लिखिए।
13.8 अणसत C H N से पाज विभिन्न समावयवों की संरचना लिगिए। उन समावयवों के आईयपीएसी नम

13.8 अणुसूत्र C₃H₉N से प्राप्त विभिन्न समावयवों को सरचना लिखिए। उन समावयवों के आईयूपीएसी नाम लिखिए जो नाइट्रस अम्ल के साथ नाइट्रोजन गैस मुक्त करते हैं।


II. डाइऐज़ोनियम लवण


डाइऐज़ोनियम लवणों का सामान्य सूत्र $\mathbf{R}\,\mathbf{N}_{2}\,ar{\mathbf{X}}\,$ होता है। यहाँ $\mathbf{R}\,$ एक ऐरिल समूह है तथा

 $\overline{\mathbf{X}}$ आयन Cl⁻, Br,⁻ HSO₄⁻, BF₄⁻ आदि में से कोई भी हो सकता है। इनका नामकरण करने के लिए जनक हाईड्राकार्बन के नाम में डाइऐज़ोनियम अनुलग्न लगाने के पश्चात् ऋणायन का नाम जैसे क्लोराइड, हाइड्रोजन सल्फेट आदि लिखते हैं। $\overline{\mathbf{N}}_2$ समूह को डाइऐजोनियम समूह कहते हैं। उदाहरण के लिए $\mathbf{C}_6\mathbf{H}_5\mathbf{N}_2\mathbf{C}^{-1}$ को बेन्जीनडाइऐजोनियम

architises तथा $C_6H_5N_2^+HSO_4^-$ को बेन्जीन डाइऐजोनियम हाइड्रोजनसल्फेट कहते हैं।

ऐलिफैटिक प्राथमिक ऐमीन अति अस्थायी ऐल्किल डाइऐज़ोनयम लवण बनाती हैं (खंड 13.6)। ऐरोमैटिक प्राथमिक ऐमीन ऐरीनडाइऐज़ोनियम लवण बनाती हैं जो विलयन में निम्न ताप पर (273-278 K) अल्प समय के लिए स्थायी होते हैं। ऐरीनडाइऐज़ोनियम आयन के स्थायितत्व को अनुनाद के आधार पर समझा जा सकता है।

बेन्जीनडाइऐज़ोनियम क्लोराइड को ऐनिलीन एवं नाइट्रस अम्ल की अभिक्रिया द्वारा 273–278K ताप पर बनाया जाता है। नाइट्रस अम्ल को अभिक्रिया मिश्रण में ही सोडियम नाइट्राइट तथा हाइड्रोक्लोरिक अम्ल की अभिक्रिया से उत्पन्न करते हैं। प्राथमिक ऐरोमैटिक ऐमीन के डाइऐज़ोनियम में परिवर्तन को **डाइऐज़ोकरण** कहते हैं। अस्थायी प्रकृति के कारण डाइऐज़ोनियम लवण का भंडारण नहीं करते और बनते ही तुरंत प्रयोग कर लेते हैं।

 $C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5N_2^+Cl^- + NaCl + 2H_2O$

बेन्जीनडाइऐज़ोनियम क्लोराइड एक रंगहीन क्रिस्टलीय ठोस है। यह जल में विलेय तथा ठंडे में स्थायी है किंतु गरम करने पर जल से अभिक्रिया करता है यह ठोस अवस्था में आसानी से विघटित हो जाता है। बेन्जीन डाइऐज़ोनियमफ्लुओबोरेट जल में अविलेय तथा कक्ष ताप पर स्थायी होता है।

डाइऐज़ोनियम लवणों की अभिक्रियाओं को मुख्य रूप से दो संवर्गों में बाँटा जा सकता है।

- (क) नाइट्रोजन प्रतिस्थायन अभिक्रियाएं तथा (ख) अभिक्रियाएं जिनमें डाइऐज़ोसमूह सुरक्षित (Retention) रहता है।
- (क) नाइट्रोजन प्रतिस्थापन अभिक्रियाएँ

डाइऐज़ोनियम समूह एक उत्तम अवशिष्ट समूह (Leaving group) होने के कारण Cl⁻, Br⁻, l⁻, CN⁻ एवं O_H आदि समूहों द्वारा सरलता से प्रतिस्थापित हो जाता है। ये समूह ऐरोमैटिक वलय से नाइट्रोजन मुक्त करते हैं। बनी हुई नाइट्रोजन अभिक्रिया मिश्रण से गैस के रूप में निकल जाती है।

1. हैलाइड अथवा सायनाइड आयन द्वारा प्रतिस्थापन

बेन्जीन वलय में Cl⁻, Br⁻ तथा CN⁻ नाभिकरागियों को Cu(I) की उपस्थिति में सरलता से प्रवेश कराया जा सकता है। इस अभिक्रिया को **सैन्डमायर अभिक्रिया** कहते हैं।

$$\operatorname{ArN}_{2}^{+}\overline{X} \xrightarrow{\operatorname{Cu}_{2}\operatorname{Cl}_{2}/\operatorname{HCl}} \operatorname{ArCl} + \operatorname{N}_{2} \xrightarrow{\operatorname{Cu}_{2}\operatorname{Br}_{2}/\operatorname{HBr}} \operatorname{ArBr} + \operatorname{N}_{2} \xrightarrow{\operatorname{Cu}_{2}\operatorname{Cu}_{2}\operatorname{Cu}_{2}\operatorname{KCN}} \operatorname{ArBr} + \operatorname{N}_{2} \xrightarrow{\operatorname{Cu}_{2}\operatorname{Cu}_{2}\operatorname{KCN}} \operatorname{ArCN} + \operatorname{N}_{2}$$

दूसरी ओर ताम्रचूर्ण की उपस्थिति में डाइऐज़ोनियम लवण के विलयन की संगत हैलोजन अम्ल से अभिक्रिया द्वारा क्लोरीन अथवा ब्रोमीन को भी बेन्जीन वलय में जोड़ा जा सकता है। इस अभिक्रिया को **गाटरमान अभिक्रिया** कहते हैं।

$$ArN_{2}X \xrightarrow{Cu/HCl} ArCl + N_{2} + CuX$$
$$ArN_{2}X \xrightarrow{Cu/HBI} ArBr + N_{2} + CuX$$

गाटरमान अभिक्रिया को तुलना में सैन्डमायर अभिक्रिया को लब्धि अधिक होती है। 2. आयोडाइड आयन द्वारा प्रतिस्थापन

आयोडीन को सीधे बेन्जीन वलय में सरलता से नहीं जोड़ा जा सकता; किंतु जब डाइऐज़ोनियम लवण के विलयन की अभिक्रिया पोटैशियम आयोडाइड से कराते हैं तो आयोडोबेन्जीन बनती है।

 $ArN_2Cl + KI \longrightarrow ArI + KCl + N_2$

ऐमीन <mark>421</mark>

Downloaded from https:// www.studiestoday.com

13.9 रासायनिक अभिक्रियाएँ

13.8 भौतिक शुण

डाइएजोनियम

विश्चन की विधि

लवणों के

13.7

3. फ्लुओराइड आयन द्वारा प्रतिस्थापन

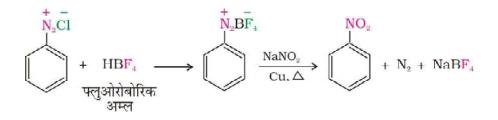
जब ऐरीनडाइऐज़ोनियम क्लोराइड की अभिक्रिया फ्लुओरोबोरिक अम्ल से कराते हैं तो ऐरीन डाइऐज़ोनियम फ्लुओरोबोरेट अवक्षेपित हो जाता है, जो गरम करने पर विघटित होकर ऐरिल फ्लुओराइड देता है।

 $\operatorname{Ar}_{N_2Cl}^+$ + HBF₄ \longrightarrow $\operatorname{Ar} - \overset{+}{N_2BF_4} \overset{-}{\longrightarrow}$ $\operatorname{Ar} - F + BF_3 + N_2$

4. Н द्वारा प्रतिस्थापन

हाइपोफ़ास्फ़ोरस अम्ल (फ़ॉस्फ़िनिक अम्ल) अथवा एथेनॉल जैसे दुर्बल अपचयन कर्मक डाइऐज़ोनियम लवणों को ऐरीनों में अपचित कर देते हैं और स्वयं क्रमश: फ़ोस्फ़ोरस अम्ल अथवा एथेनैल में ऑक्सीकृत हो जाते हैं।

 $ArN_{2}CI + H_{3}PO_{2} + H_{2}O \longrightarrow ArH + N_{2} + H_{3}PO_{3} + HCI$ $ArN_{2}CI + CH_{3}CH_{2}OH \longrightarrow ArH + N_{2} + CH_{3}CHO + HCI$

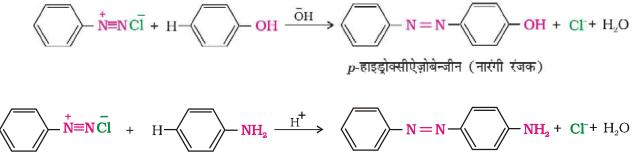

5. हाइड्रॉक्सिल समूह द्वारा प्रतिस्थापन

यदि डाइऐज़ोनियम लवण विलयन का ताप 283K तक बढ़ने दिया जाए तो लवण जलअपघटित होकर फीनॉल देते हैं।

 $ArN_{0}Cl + H_{2}O \longrightarrow ArOH + N_{2} + HCl$

6. -NO2 समूह द्वारा प्रतिस्थापन

जब डाइऐज़ोनियम फलुओरोबोरेट को कॉपर की उपस्थिति में सोडियम नाइट्राइट के जलीय विलयन में गरम किया जाता है, तब डाइऐज़ोनियम समूह, –NO₂ समूह द्वारा प्रतिस्थापित हो जाता है।

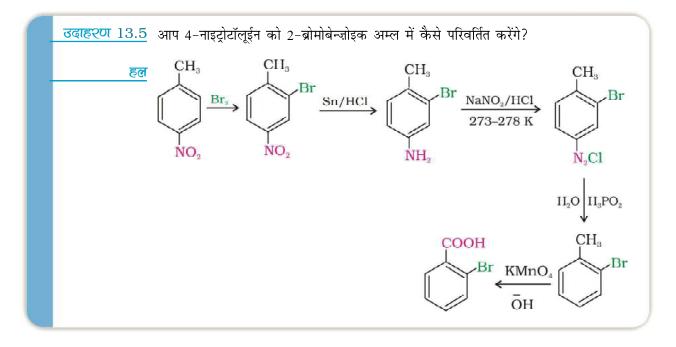


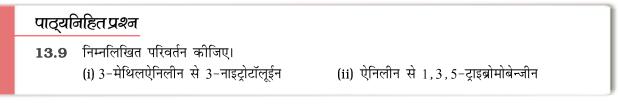
(ख) अभिक्रियाएँ जिनमें डाइएज़ो समूह सुरक्षित रहता है

युग्मन अभिक्रियाएँ

युग्मन अभिक्रिया से प्राप्त ऐज़ो उत्पादों में दोनों ऐरोमैटिक वलयों एवं इन्हें जोड़ने वाले –N=N– आबंध के बीच विस्तारित संयुग्मन होता है। ये यौगिक प्राय: रंगीन होते हैं तथा रंजकों की तरह प्रयोग में आते हैं। बेन्जीन डाइएज़ोनियम क्लोराइड फ़ीनॉल से अभिक्रिया करने पर इसके पैरा स्थान पर युग्मित होकर पैरा हाइड्रोक्सीऐज़ोबेन्जीन बनाता है। इसी प्रकार की अभिक्रिया को **युग्मन अभिक्रिया** कहते हैं। इसी प्रकार से डाइऐज़ोनियम लवण की एनीलीन से अभिक्रिया द्वारा पेराऐमीनोऐजोबेन्जीन बनती है। यह एक इलेक्ट्रॉनरागी अभिक्रिया का उदाहरण है।

422 रसायन विज्ञान


p-ऐमीनोऐज़ोबेन्जीन (पीला रंजक)


उपरोक्त अभिक्रियाओं से यह स्पष्ट है कि डाइऐज़ोनियम लवण बेन्जीन वलय में –F, –Cl, –Br, –I, –CN, –OH, –NO2 आदि समूहों के प्रवेश के लिए उत्तम माध्यमिक हैं।

ऐरिल फ्लुओराइड एवं आयोडाइड को सीधे हैलोजनन द्वारा नहीं बनाया जा सकता। क्लोरोबेन्जीन में क्लोरीन के नाभिकरागी प्रतिस्थापन द्वारा सायनाइड समूह का प्रवेश नहीं कराया जा सकता, किंतु डाइऐज़ोनियम लवण से सायनोबेन्जीन को सरलता से बनाया जा सकता है।

13.10 ऐरोमैटिक योंशिकों के संश्लेषण में डाइऐज़ोलवणों का महत्व

अत: डाइऐज़ो समूह का अन्य समूहों द्वारा प्रतिस्थापन ऐसे ऐरोमैटिक प्रतिस्थापित यौगिकों को बनाने में सहायक है. जो सीधे बेन्जीन अथवा प्रतिस्थापित बेन्जीन से नहीं बनते।

ऐमीन <mark>423</mark>

સારાંશ

ऐमीनों को अमोनिया के हाइड्रोजन परमाणुओं का ऐल्किल अथवा ऐरिल समूहों से प्रतिस्थापित व्युत्पन्न मान सकते हैं। अमोनिया में एक हाइड्रोजन परमाणु के प्रतिस्थापन से प्राप्त संरचना **R-NH**₂ को **प्राथमिक ऐमीन** कहते हैं। **द्वितीयक ऐमीन** को **R-NHR'** अथवा **R**₂NH संरचना से तथा तृतीयक ऐमीनों को **R**₃N, **RNR'R''** अथवा **R**₂NR' संरचना द्वारा प्रदर्शित करते हैं। द्वितीयक एवं तृतीयक ऐमीन को सभी एल्किल समूह समान होने पर सरल ऐमीन तथा भिन्न होने पर मिश्रित ऐमीन कहते हैं। अमोनिया की भाँति तीनों तरह की ऐमीनों में नाइट्रोजन पर एक असहभाजित इलेक्ट्रॉन युगल होता है जिसके कारण ये **लुईस** क्षारक की तरह व्यवहार करती हैं।

एमीन प्राय: नाइट्रो, हैलाइड, ऐमाइड, इमाइड इत्यादि यौगिकों से बनती हैं। ये हाइड्रोजन आबंधन प्रदर्शित करती हैं जिससे इनके भौतिक गुण प्रभावित होते हैं। **ऐल्किल ऐमीन** में इलेक्ट्रॉन त्यागने, त्रिविम, तथा H-आबंधन कारक प्रोटिक विलायक में प्रतिस्थापित अमोनियम धनायन के स्थायित्व अर्थात् क्षारकता को प्रभावित करते हैं। ऐल्किल ऐमीन अमोनिया से प्रबल क्षारक होते हैं। **ऐरोमैटिक अमीन** में इलेक्ट्रॉन विमोचक व अपनयक समूह क्रमश: क्षारकता में वृद्धि एवं ह्रास करते हैं। **ऐनिलीन** अमोनिया से दुर्बल क्षारक है। ऐमीनों की अभिक्रियाएं नाइट्रोजन पर उपस्थित असहभाजित इलेक्ट्रॉन युगल की उपलब्धता द्वारा निर्धारित होती हैं। नाइट्रोजन परमाणु पर उपस्थित हाइड्रोजन परमाणुओं की संख्या का अभिक्रिया के प्रकार तथा प्राप्त उत्पाद की प्रकृति पर प्रभाव प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों की पहचान तथा विभेद के लिए उत्तरदायी है। पेराटॉलूईनसल्फोनिल क्लोराइड प्राथमिक, द्वितीयक एवं तृतीयक एमीनों की पहचान के लिए प्रयोग में लाया जाता है। बेन्जीन वलय में ऐमीनो समूह की उपस्थिति ऐरोमैटिक ऐमीन की अभिक्रियाशीलता को बढ़ा देती है। ऐरोमैटिक ऐमीनों की अभिक्रियाशीलता को ऐसिलन द्वारा निर्यांत्रेत किया जा सकता है। **ऐसिलन** में एमीन की ऐसिल क्लोराइड अथवा ऐसीटिक एनहाइड्राइड से अभिक्रिया करते हैं। **दृाइमेथिलएमीन** जैसी तृतीयक ऐमीन का प्रयोग कीट आकर्षणकर्मक के रूप में किया जाता है।

प्राय: ऐरिलऐमीन से प्राप्त किए जाने वाले **ऐरिलडाइएज़ोनियम** लवण; विभिन्न प्रकार के नाभिकरागियों द्वारा प्रतिस्थापित किए जा सकते हैं जिससे डाइएज़ो समूह के अपचायक निष्कासन द्वारा ऐरिल हैलाइड, सायनाइड, फ़ीनॉल तथा ऐरीन प्राप्त करने की लाभप्रद विधि उपलब्ध होती है। डाइऐज़ोनियम लवण की फ़ीनॉल अथवा ऐरिल ऐमीन के साथ युग्मन अभिक्रिया से **ऐज़ो रंजक** प्राप्त होते हैं।

अभ्यास

- 13.1 निम्नलिखित यौगिकों को प्राथमिक द्वितीयक एवं तृतीयक ऐमीनों में वर्गीकृत कीजिए तथा इनके आइयूपीएसी नाम लिखिए।
 - (i) $(CH_3)_2 CHNH_2$ (ii) $CH_3 (CH_2)_2 NH_2$ (iii) $CH_3 NHCH (CH_3)_2$

(iv) $(CH_3)_3CNH_2$

 $(v) C_6 H_5 NHCH_3$

(vi) $(CH_3CH_2)_2NCH_3$

(vii) m-BrC₆H₄NH₂

13.2 निम्नलिखित युगलों के यौगिकों में विभेद के लिए एक रासायनिक परीक्षण दीजिए-

- (i) मेथिलऐमीन एवं डाइमेथिलऐमीन
- (ii) द्वितीयक एवं तृतीयक ऐमीन
- (iii) ऐथलऐमीन एवं ऐनिलीन
- (iv) ऐनिलीन एवं बेन्जिलऐमीन
- (v) ऐनिलीन एवं N मेथिलऐनिलीन।
- 13.3 निम्नलिखित के कारण बताइए-
 - (i) ऐनिलीन का pK, मेथिलऐमीन की तुलना में अधिक होता है।

424 रसायन विज्ञान

- (ii) ऐथिलऐमीन जल में विलेय है जबकि ऐनिलीन नहीं।
- (iii) मेथिलऐमीन फेरिक क्लोराइड के साथ जल में अभिक्रिया करने पर जलयोजित फेरिक आक्साइड का अवक्षेप देता है।
- (iv) यद्यपि ऐमीनों समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में *आर्थो* एव *पैरा* निर्देशक होता है फिर भी ऐनिलीन नाइटोकरण द्वारा यथेष्ट मात्रा में मेटानाइटोऐनीलीन देती है।
- (v) ऐनिलीन फ़्रिडेल क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करती।
- (vi) ऐरोमैटिक ऐमीनों के डाइऐज़ोनियम लवण ऐलीफैटिक ऐमीनों से प्राप्त लवण से अधिक स्थायी होते हैं।
- (vii) प्राथमिक ऐमीन के संश्लेषण में गैब्रिएल थैलिमाइड संश्लेषण को प्राथमिकता दी जाती है।
- 13.4 निम्नलिखित को क्रम में लिखिए-
 - (i) pK, मान के घटते क्रम में- $C_2H_5NH_2$, $C_6H_5NHCH_3$, $(C_2H_5)_2NH$ एवं $C_6H_5NH_2$
 - क्षारकीय प्राबल्य के घटते क्रम में-(ii) $C_6H_5NH_2$, $C_6H_5N(CH_3)_2$, $(C_2H_5)_2NH$ एवं CH_3NH_2
 - (iii) क्षारकीय प्राबल्य के बढते क्रम में-
 - (क) ऐनिलीन, पैरा-नाइट्रोऐनिलीन, एवं पैरा-टॉलूडीन
 - (\mathbf{a}) C₆H₅NH₂, C₆H₅NHCH₃, C₆H₅CH₂NH₂
 - (iv) गैस अवस्था में घटते हुए क्षारकीय प्राबल्य के क्रम में- $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$ va NH_3
 - (v) क्वथनांक के बढते क्रम में- C_2H_5OH , $(CH_3)_2NH$, $C_2H_5NH_2$

 $C_{6}H_{5}NH_{2}$, $(C_{2}H_{5})_{2}NH$, $C_{2}H_{5}NH_{2}$

- 13.5 इन्हें आप कैसे परिवर्तित करेंगे-
 - (i) एथेनॉइक अम्ल को मेथेनेमीन में
 - (iii) मेथेनॉल को एथेनॉइक अम्ल में
 - (v) एथेनॉइक अम्ल को प्रोपेनॉइक अम्ल में
 - (vii) नाइट्रोमेथेन को डाइमेथिलऐमीन में
- (ii) हैक्सेननाइट्राइल को 1-ऐमीनोपेन्टेन में
- (iv) एथेनेमीन को मेथेनेमीन में
- (vi) मेथेनेमीन को ऐथेनेमीन में
- (viii) प्रोपेनॉइक अम्ल को ऐथेनॉइक अम्ल में?
- 13.6 प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों की पहचान की विधि का वर्णन कीजिए। इन अभिक्रियाओं के रासायनिक समीकरण भी लिखिए।
- 13.7 निम्न पर लघु टिप्पणी लिखिए-
 - (i) कार्बिलऐमीन अभिक्रिया
 - (iii) हॉफमान ब्रोमेमाइड अभिक्रिया
 - (v) अमोनीअपघटन
 - (vii) गैब्रिएल थैलिमाइड संश्लेषण
- 13.8 निम्न परिवर्तन निष्पादित कीजिए-
 - (i) नाइटोबेन्जीन सें बेन्ज़ोइक अम्ल
 - (iii) बेन्ज़ोइक अम्ल से ऐनिलीन
 - (v) बेन्ज़िल क्लोराइड से 2-फ़्रेनिलएथेनेमीन
 - (vii) ऐनिलीन से p-ब्रोमोऐनिलीन
 - (ix) ऐनीलीन से बेन्ज़ाइल ऐल्कोहॉल।

- (ii) डाइऐज़ोकरण
- (vi) ऐसीटिलन
- (ii) बेन्जीन से m-ब्रोमोफीनॉल
- ऐनिलीन से 2, 4, 6-ट्राइब्रोमोफ्लुओरोबेन्ज़ीन (iv)
- क्लोरोबेन्ज़ीन से p-क्लोरोऐनिलीन (vi)
- (viii) बेन्ज़एमाइड से टॉलुईन

ऐमीन <mark>425</mark>

Downloaded from https:// www.studiestoday.com

(iv) युग्मन अभिक्रिया

13.9 निम्न अभिक्रियाओं में A, B, तथा C की संरचना दीजिए-

(i)
$$CH_{3}CH_{2}I \xrightarrow{NaCN} A \xrightarrow{OH^{-}} B \xrightarrow{NaOH+Br_{2}} C$$

(ii) $C_{6}H_{5}N_{2}CI \xrightarrow{CuCN} A \xrightarrow{H_{2}O/H^{+}} B \xrightarrow{NH_{3}} C$
(iii) $CH_{3}CH_{2}Br \xrightarrow{KCN} A \xrightarrow{LiAlH_{4}} B \xrightarrow{HNO_{2}} C$
(iv) $C_{6}H_{5}NO_{2} \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_{2}+HCl} B \xrightarrow{H_{2}O/H^{+}} C$
(v) $CH_{3}COOH \xrightarrow{NH_{3}} A \xrightarrow{NaOBr} B \xrightarrow{NaNO_{2}/HCl} C$
(vi) $C_{6}H_{5}NO_{2} \xrightarrow{Fe/HCl} A \xrightarrow{HNO_{2}} B \xrightarrow{C_{6}H_{5}OH} C$

- 13.10 एक ऐरोमैटिक यौगिक 'A' जलीय अमोनिया के साथ गरम करने पर यौगिक 'B' बनाता है जो Br₂ एवं KOH के साथ गरम करने पर अणु सूत्र C₆H₇N वाला यौगिक 'C' बनाता है। A, B एवं C यौगिकों की संरचना एवं इनके आइयूपीएसी नाम लिखिए।
- 13.11 निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए-
 - (i) $C_6H_5NH_2 + CHCl_3 + (\bar{v}$ ल्कोहॉली) KOH \rightarrow
 - (ii) $C_6H_5N_2Cl + H_3PO_2 + H_2O \rightarrow$
 - (iii) $C_6H_5NH_2 + H_2SO_4$ (सांद्र) \rightarrow
 - (iv) $C_6H_5N_2Cl + C_2H_5OH \rightarrow$
 - (v) $C_6H_5NH_2 + Br_2(aq) \rightarrow$
 - (vi) $C_6H_5NH_2 + (CH_3CO)_2 O \rightarrow$

(vii)
$$C_6H_5N_2Cl \xrightarrow{(i)HBF_4} (ii)NaNO_2/Cu, \Delta \rightarrow$$

13.12 ऐरोमैटिक प्राथमिक ऐमीन को गैब्रिएल थैलिमाइड संश्लेषण से क्यों नहीं बनाया जा सकता?

13.13 ऐलीफैटिक एवं ऐरोमैटिक प्राथमिक ऐमीनों की नाइट्रस अम्ल से अभिक्रिया लिखिए।

- 13.14 निम्नलिखित में प्रत्येक का संभावित कारण बताइए-
 - (i) समतुल्य अणु द्रव्यमान वाले ऐमीनों की अम्लता ऐल्कोहॉलों से कम होती है।
 - (ii) प्राथमिक ऐमीनों का क्वथनांक तृतीयक एमीनों से अधिक होता है।
 - (iii) ऐरोमैटिक ऐमीनों की तुलना में ऐलीफैटिक ऐमीनों प्रबल क्षारक होते हैं।

कुछ पाठ्यनिहित प्रश्नों के उत्तर

 $\begin{aligned} \textbf{13.4} \quad (i) \quad & C_6H_5NH_2 < NH_3 < C_6H_5CH_2NH_2 < C_2H_5NH_2 < (C_2H_5)_2NH \\ & (ii) \quad & C_6H_5NH_2 < C_2H_5NH_2 < (C_2H_5)_3N < (C_2H_5)_2NH \\ & (iii) \quad & C_6H_5NH_2 < C_6H_5CH_2NH_2 < (CH_3)_3N < CH_3NH_2 < (CH_3)_2NH \end{aligned}$

426 रसायन विज्ञान

उद्देश्य

इस एकक के अध्ययन के पश्चात् आप -

- कार्बोहाइड्रेट, प्रोटीन, न्यूक्लीक अम्ल तथा हार्मोन जैसे जैव अणुओं के अभिलाक्षणिक गुण बता सकेंगे।
- कार्बोहाइड्रेट, प्रोटीन, न्यूक्लीक अम्ल तथा विटामिनों का वर्गीकरण उनकी संरचना के आधार पर कर सकेंगे।
- DNA तथा RNA में अंतर स्पष्ट कर पाएंगे।
- जैव तंत्र में इन जैव अणुओं की भूमिका की व्याख्या कर सकेंगे।

यह शरीर की रासायनिक अभिक्रियाओं की सुव्यवस्थित एवं समक्रमिक और समकालिक प्रगति है जो जीवन को प्रेरित करती है।

एक जैव-तंत्र स्वयं वृद्धि करता है, कायम रहता है तथा स्वयं का पुनर्जनन करता है। जैव-तंत्र की सबसे आश्चर्यजनक बात यह है कि यह अजैविक परमाणुओं तथा अणुओं से मिलकर बनता है। जीवित तंत्र में रसायनत: क्या होता है? इसके ज्ञान का अनुसरण जैव रसायन के क्षेत्र के अंतर्गत आता है। जैव-तंत्र अनेक जटिल जैव अणु जैसे कार्बोहाइड्रेट, प्रोटीन, न्यूक्लीक अम्ल, लिपिड आदि से मिलकर बनते हैं। प्रोटीन तथा कार्बोहाइड्रेट हमारे भोजन के आवश्यक अवयव हैं। ये जैव अणु आपस में अन्योन्यक्रिया करते हैं तथा जैव-प्रणाली का आण्विक आधार बनाते हैं। इसके अतिरिक्त कुछ सरल अणु जैसे विटामिन और खनिज लवण भी जीवों की कार्य-प्रणालियों में महत्वपूर्ण भूमिका निभाते हैं। इनमें से कुछ जैव अणुओं की संरचनाएं एवं कार्य प्रणालियों की विवेचना इस एकक में की गई है।

14.1 कार्बोहाइड्रेट

कार्बोहाइड्रेट मुख्यतया पौधों द्वारा उत्पन्न किए जाते हैं तथा प्राकृतिक कार्बनिक यौगिकों का वृहत समूह बनाते हैं। कार्बोहाइड्रेट के कुछ सामान्य उदाहरण इक्षु-शर्करा, ग्लूकोस तथा स्टार्च (मंड) आदि हैं। इनमें से अधिकांश का सामान्य सूत्र $C_x(H_2O)_y$, होता है तथा पहले इन्हें कार्बन के हाइड्रेट माना जाता था जिसके कारण इनका नाम कार्बोहाइड्रेट व्युत्पन्न हुआ। उदाहरणार्थ ग्लूकोस का सूत्र ($C_6H_{12}O_6$) यहाँ दिए सामान्य सूत्र $C_6(H_2O)_6$ के अनुरूप है। परंतु वे सभी यौगिक जो इस सूत्र के अनुरूप हैं, कार्बोहाइड्रेट के रूप में वर्गीकृत नहीं किए जा सकते। जैसे कि ऐसीटिक अम्ल (CH_3COOH) का सूत्र इस सामान्य सूत्र $C_2(H_2O)_2$ में सही बैठता है परंतु यह कार्बोहाइड्रेट नहीं है। इसी प्रकार रैम्नोस ($C_6H_{12}O_5$) एक कार्बोहाइड्रेट है परंतु इस परिभाषा में सही नहीं बैठता। अधिकांश अभिक्रियाएं यह प्रदर्शित करती हैं कि इनमें एक विशिष्ट प्रकार्यात्मक समूह होता है। रसायनिक रूप से, *कार्बोहाइड्रेटों को ध्रुवण घूर्णक पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन अथवा उन यौगिकों की तरह परिभाषित किया जा सकता है जो जलअपघटन के उपरांत इस प्रकार की इकाइयाँ देते हैं।* कुछ कार्बोहाइड्रेटों को जो स्वाद में मीठे होते हैं, *शर्करा* कहते हैं। घरेलू उपयोग में आने वाली सामान्य शर्करा को *सुक्रोस* कहते हैं। जबकि दग्ध में पाए जाने वाली शर्करा को *द्ग्ध–शर्करा*

या *लैक्टोस* कहते हैं। कार्बोहाइड्रेटों को *सैकैराइड* भी कहते हैं [ग्रीक; सैकेरॉन (Sekcharon) का तात्पर्य शर्करा है]।

14.1.1कार्बोहाइड्रेट काकार्बोहाइड्रेटों को जलअपघटन में उनके व्यवहार के आधार पर मुख्यत: निम्नलिखित तीन वर्गों
वर्गीकरणमें वर्गीकृत किया गया है।

- (i) मोनोसैकैराइड– वे कार्बोहाइड्रेट जिसको पॉलिहाइड्राक्सी ऐल्डिहाइड अथवा कीटोन के और अधिक सरल यौगिकों में जल अपघटित नहीं किया जा सकता, मोनोसैकैराइड कहलाते हैं। लगभग 20 मोनोसैकैराइड प्रकृति में ज्ञात हैं। इसके कुछ सामान्य उदाहरण ग्लूकोस, फ्रक्टोज, राइबोस आदि हैं।
- (ii) ओलिगोसैकैराइड— वे कार्बोहाइड्रेट जिनके जलअपघटन से मोनोसैकैराइड की दो से दस तक इकाइयाँ प्राप्त होती हैं, ओलिगोसैकैराइड कहलाते हैं। जलअपघटन से प्राप्त मोनोसैकैराइडों की संख्या के आधार पर इन्हें पुन: डाइसैकैराइड, ट्राइसैकैराइड, टेट्रासैकैराइड आदि में वर्गीकृत किया गया है। इनमें से डाइसैकैराइड प्रमुख हैं। डाइसैकैराइड के जलअपघटन से प्राप्त दो मोनोसैकैराइड इकाइयाँ समान अथवा भिन्न हो सकती हैं। उदाहरणार्थ, सूक्रोस का एक अणु जल अपघटन द्वारा ग्लूकोस व फ्रक्टोज की एक-एक इकाई देता है, जबकि माल्टोस से प्राप्त दोनों इकाइयाँ केवल ग्लूकोस की होती हैं।
- (iii) पॉलिसैकैराइड— वे कार्बोहाइड्रेट जिनके जल अपघटन पर अत्यधिक संख्या में मोनोसैकैराइड इकाइयाँ प्राप्त होती हैं, पॉलिसैकैराइड कहलाते हैं। इसके कुछ प्रमुख उदाहरण स्टार्च, सेलुलोस, ग्लाइकोजन तथा गोंद आदि हैं। पॉलिसैकैराइड स्वाद में मीठे नहीं होते अत: इन्हें अशर्करा भी कहते हैं।

कार्बोहाइड्रेट को अपचायी एवं अनपचायी शर्करा में भी वर्गीकृत किया जा सकता है। उन सभी कार्बोहाइड्रेटों को जो फेलिंग विलयन तथा टॉलेन अभिकर्मक को अपचित कर देते हैं, अपचायी शर्करा कहा जाता है। सभी मोनोसैकैराइड चाहे वे ऐल्डोस हों अथवा कीटोस, अपचायी शर्करा होती है।

14.1.2मोनोसैकैराइडकार्बन परमाणुओं की संख्या एवं प्रकार्यात्मक समूह के आधार पर मोनोसैकैराइड को पुन:
वर्गीकृत किया जा सकता है। यदि मोनोसैकैराइड में ऐल्डिहाइड समूह है तो उसे ऐल्डोस और
यदि उसमें कीटो समूह है तो उसे कीटोस कहते हैं। मोनोसैकैराइड में निहित कार्बन परमाणुओं
की संख्या को भी नाम में सम्मिलित किया जाता है जो कि सारणी 14.1 में दिए गए उदाहरणों
से स्पष्ट है–

सारणा 14.1– गिमिन प्रकार के मागसिकराइड				
कार्बन परमाणु	सामान्य पद	ऐल्डिहाइड	कीटोन	
3	ट्रायोस	ऐल्डोट्रायोस	कीटोट्रायोस	
4	टेट्रोस	ऐल्डोटेट्रोस	कीटोटेट्रोस	
5	पेन्टोस	ऐल्डोपेन्टोस	कीटोपेन्टोस	
6	हैक्सोज	ऐल्डोहैक्सोज	कीटो हैक्सोस	

हेप्टोस

सारणी 14.1– विभिन्न प्रकार के मोनोसैकैराइड

7

14.1.2.1 **ग्लूको**स

ग्लूकोस प्रकृति में मुक्त अथवा संयुक्त अवस्था में मिलता है। यह मीठे फलों तथा शहद में उपस्थित होता है। पके हुए अंगूर में भी बहुत अधिक मात्रा में ग्लूकोस होता है। इसे निम्नानुसार बनाया जा सकता है।

ऐल्डोहैप्टोस

कीटोहैप्टोस

428 रसायन विज्ञान

ग्लूकोस को बनाने की विधियाँ सूक्रोस (इक्षु-शर्करा) से– सूक्रोस को तनु HCl अथवा H₂SO₄ के साथ ऐल्कोहॉलिक विलयन में क्वथन करने पर ग्लूकोस तथा फ्रक्टोज़ समान मात्रा में प्राप्त होते हैं।

 स्टार्च से– औद्योगिक स्तर पर ग्लूकोस को स्टार्च के जल अपघटन से प्राप्त किया जाता है। इसके लिए स्टार्च को तनु H₂SO₄ के साथ 393 K दाब पर क्वथन किया जाता है।

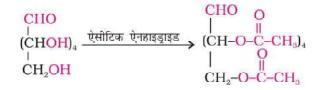
ग्लूकोस की संरचना ग्लूकोस एक ऐल्डोहैक्सोस है तथा इसे डेक्सट्रोस कहते हैं। यह अनेक कार्बोहाइड्रेटों यथा स्टार्च, सेलुलोस आदि का एकलक होता है। यह संभवत: पृथ्वी पर बहुतायत में पाया जाने वाला कार्बनिक यौगिक है। निम्नलिखित प्रमाणों के आधार पर यह संरचना दिए गए चित्र के अनुसार प्रदर्शित की जा सकती है–

CHO (CHOH)₄ (CH₂OH

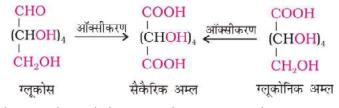
 इसका आण्विक सूत्र C₆H₁₂O₆ पाया गया।
 HI के साथ लंबे समय तक गरम करने पर यह n- हैक्सेन देता है जो यह प्रदर्शित करता है कि सभी छ: कार्बन परमाणु एक ऋजु शृंखला में जुड़े हैं।

$$CHO$$
 $(CHOH)_4$
 HI, Δ
 $CH_3-CH_2-CH_2-CH_2-CH_2-CH_3$
 $(CHOH)_4$
 $(n-\overline{\epsilon})$
 $(n-\overline{\epsilon})$
 $(n-\overline{\epsilon})$

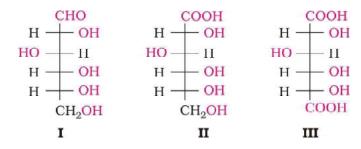
 ग्लूकोस, हाइड्रॉक्सिल ऐमीन के साथ अभिक्रिया करने पर एक ऑक्सिम देता है तथा हाइड्रोजन सायनाइड के एक अणु से संयोग कर सायनोहाइड्रिन देता है। ये अभिक्रियाएं ग्लूकोस में कार्बोनिल समूह (>C = O) की उपस्थिति की पुष्टि करती हैं।


CHO │ (CHOH)₄ →	CH=N–OH (CH <mark>OH</mark>)₄	CHO I (CHOH) ₄ <u> </u>	HCN >	$CH < OH (CHOH)_4$
CH₂OH	CH ₂ OH	CH ₂ OH		CH ₂ OH

 ग्लूकोस ब्रोमीन जल जैसे दुर्बल ऑक्सीकरण कर्मक द्वारा ऑक्सीकरण से छ: कार्बन परमाणुयुक्त कार्बोक्सिलिक अम्ल (ग्लूकोनिक अम्ल) देता है। यह सिद्ध करता है कि ग्लूकोस का कार्बोनिल समूह ऐल्डिहाइड समूह के रूप में उपस्थित है।

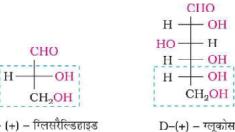

CHO		СООН
(CHOH) ₄	$\xrightarrow{\operatorname{Br}_2}$ जल	(CHOH) ₄
CH ₂ OH		CH ₂ OH
		ग्लूकोनिक अम्ल

 ग्लूकोस के ऐसीटिक ऐनहाइड्राइड द्वारा ऐसीटिलन से ग्लूकोस पेन्टाऐसीटेट बनाता है जो ग्लूकोस में पाँच –OH समूहों की उपस्थिति की पुष्टि करता है। चूँकि ग्लूकोस स्थायी यौगिक है, अत: पाँच –OH समूह भिन्न-भिन्न कार्बन परमाणु से जुड़े होने चाहिए।


जैव-अणु <mark>429</mark>

 ग्लूकोस तथा ग्लूकोनिक अम्ल दोनों ही नाइट्रिक अम्ल द्वारा ऑक्सीकरण से एक डाइकार्बोक्सिलिक अम्ल, सैकैरिक अम्ल बनाते हैं। यह ग्लूकोस में प्राथमिक ऐल्कोहॉलिक समूह की उपस्थिति को दर्शाता है।

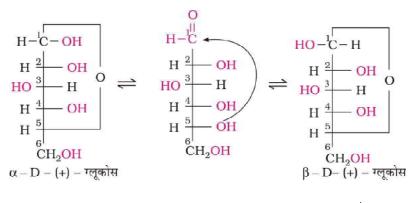
बहुत से अन्य अनेक गुणों के अध्ययन के उपरांत फिशर ने विभिन्न –OH समूहों की सही दिक्–स्थान व्यवस्था को दर्शाया। इसका सही विन्यास संरचना I द्वारा निरूपित होता है। ग्लूकोनिक अम्ल को संरचना II तथा सैकेरिक अम्ल को संरचना III द्वारा निरूपित करते हैं।


ग्लूकोस को सही रूप में D(+)– ग्लूकोस नाम देते हैं। ग्लूकोस के नाम से पहले लिखा 'D' इसके विन्यास को निरूपित करता है जबकि '(+)' अणु की दक्षिण ध्रुवण घूर्णकता को निरूपित करता है। यह स्मरणीय है कि 'D' व 'L' का, यौगिक की ध्रुवण घूर्णकता से कोई संबंध नहीं है एवं इनका शब्द 'd' तथा 'l' से भी कोई संबंध नहीं है (एकक–10 देखें) 'D' व 'L' संकेत चिह्नों का अर्थ नीचे दिया गया है।

किसी यौगिक के नाम से पहले लिखे अक्षर D a L उसके किसी विशेष यौगिक के त्रिविम समावयवी के किसी अन्य यौगिक जिसका विन्यास ज्ञात हो के आपेक्षिक विन्यास को प्रदर्शित करते हैं। कार्बोहाइड्रेटों में यह संबंध ग्लिसरैल्डिहाइड के किसी विशेष समावयवी से दर्शाया जाता है। ग्लिसरैल्डिहाइड में एक असममित कार्बन परमाणु होता है तथा इसके दो प्रतिबिंब रूप होते हैं जिन्हें निम्न प्रकार से दर्शाया जा सकता है—

430 रसायन विज्ञान

ग्लिसरैलिडहाइड के (+) समावयवी का विन्यास 'D' होता है (इसका अर्थ है कि जब हम विशेष नियमों का अनुसरण करते हुए, जिन्हें आप आगे की कक्षाओं में पढ़ेंगे, इसकी संरचना कागज पर लिखते हैं तो संरचना में –OH समूह दाहिनी ओर होता है। वे सभी यौगिक जिनका सहसंबंध रासायनिक रूप से ग्लिसरैल्डिहाइड के D (+) समावयवी से स्थापित किया जा सकता है, D-विन्यास वाले कहलाते हैं। जबकि वे जिनका सहसंबंध ग्लिसरैल्डिहाइड

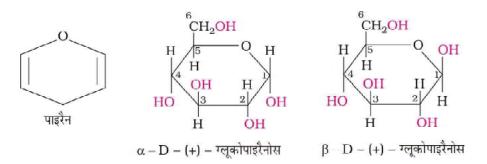

के L(-) समावयवी से स्थापित किया जा सकता है L-विन्यास वाले कहलाते हैं। आप संरचना में देख सकते हैं कि L(–) समावयवी में –OH समूह बायीं ओर है। किसी मोनोसैकैराइड के विन्यास के निर्धारण के लिए इसके सबसे नीचे वाले असममित कार्बन परमाणु (जैसा कि नीचे दर्शाया गया है) की तुलना करते हैं जैसे कि (+) ग्लूकोस में सबसे नीचे वाले असममित कार्बन परमाणु में —OH समूह दाईं ओर है जिसकी तुलना D (+) ग्लिसरैल्डिाहाइड से की जा सकती है अत: (+) ग्लूकोस का विन्यास D निर्धारित किया जाता है। ग्लूकोस के अन्य असममित कार्बनों

पर इस तुलना में ध्यान नहीं देते। इस तुलना के लिए संरचना को इस प्रकार लिखा जाता है कि सर्वाधिक ऑक्सीकृत कार्बन परमाणु (यहाँ – CHO) शीर्ष पर रहे।

संरचना I ग्लूकोस के अधिकांश गुणों को स्पष्ट करती है परंतु निम्नलिखित अभिक्रियाएं एवं तथ्य इस संरचना द्वारा स्पष्ट नहीं होते।

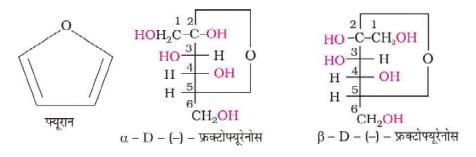
- 1. ऐल्डिहाइड समूह उपस्थित होते हुए भी ग्लूकोस शिफ-परीक्षण नहीं देता एवं यह NaHSO, के साथ हाइड्रोजन सल्फाइड योगज उत्पाद नहीं बनाता।
- 2. ग्लूकोस का पेन्टाऐसीटेट, हाइड्रॉक्सिलऐमीन के साथ अभिक्रिया नहीं करता जो मुक्त —CHO समूह की अनुपस्थिति को इंगित करता है।
- ग्लूकोस दो भिन्न क्रिस्टलीय रूपों में पाया जाता है जिन्हें α तथा β कहते हैं। ग्लूकोस 3. का α रूप (गलनांक 419 K) इसके सांद्र विलयन से 303 K ताप पर क्रिस्टलीकरण द्वारा प्राप्त किया जाता है जबकि ग्लुकोस का β रूप (गलनांक 423 K) 371 K पर ग्लूकोस के गरम एवं संतृप्त विलयन से इसके क्रिस्टलीकरण से प्राप्त किया जाता है।

ग्लूकोस की विवृत श्रुंखला संरचना (I) द्वारा उपरोक्त व्यवहार को नहीं समझाया जा सकता। यह सुझाव दिया गया कि —OH समूहों में से एक, —CHO समूह से योगज द्वारा चक्रीय हैमीऐसीटैल संरचना बनाता है। यह पाया गया कि ग्लूकोस एक छ: सदस्यीय वलय बनाता है जिसमें C-5 पर उपस्थित —OH समूह वलय निर्माण करता है। यह —CHO समूह की अनुपस्थिति एवं ग्लूकोस के निम्नानुसार दर्शाए गए दो रूपों के अस्तित्व को समझाता है। ये दोनों चक्रीय रूप ग्लुकोस की विवृत श्रुंखला के साथ साम्य में रहते हैं।



D- (+) - ग्लिसरैल्डिहाइड

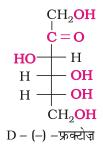
ग्लूकोस की चक्रीय संरचना


ग्लूकोस के दोनों चक्रीय हैमीऐसीटैल रूपों में भिन्नता केवल C_1 पर उपस्थित हाइड्रॉक्सिल समूह के विन्यास में होती है। इसे ऐनोमरी कार्बन (चक्रीकरण से पूर्व ऐल्डीहाइड कार्बन) कहते हैं। ऐसे समावयवी अर्थात α तथा β रूपों को **ऐनोमर** कहते हैं। पाइरैन से समानता के होने के कारण ग्लूकोस की छ: सदस्यीय वलय वाली संरचना को **पाइरैनोस संरचना** (α या β) कहते हैं। पाइरैन एक ऑक्सीजन तथा पाँच कार्बन परमाणुयुक्त चक्रीय सरंचना है। ग्लूकोस की चक्रीय संरचना को अधिक सही रूप में नीचे दी गई **हावर्थ संरचना** द्वारा निरूपित किया जा सकता है।

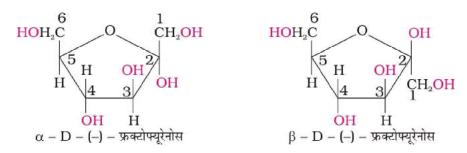
फ्रक्टोज़ एक महत्वपूर्ण कीटोहैक्सोस है। यह डाइसैकैराइड, सूक्रोस के जलअपघटन पर ग्लूकोस के साथ प्राप्त होता है। फ्रक्टोज़ एक प्राकृतिक मोनोसैकैराइड है जो कि फलों एवं सब्ज़ियों में पाया जाता है। शुद्ध अवस्था में मधुरक के रूप में प्रयोग होता है।

फ्रक्टोज़ का अणुसूत्र भी $C_6H_{12}O_6$ होता है। इसकी रासायनिक अभिक्रियाओं के आधार पर यह पाया गया कि फ्रक्टोस में कार्बन संख्या 2 पर एक कीटोनिक समूह है तथा ग्लूकोस के समान छ: कार्बन परमाणुओं की एक ऋजु शृंखला है। यह D- श्रेणी से संबंधित है तथा वामु ध्रुवण घूर्णक यौगिक है। इसे उपयुक्त रूप से D-(–) फ्रक्टोज़ लिखा जा सकता है। यहाँ इसकी विवृत श्रृंखला संरचना दी गई है।

यह भी दो चक्रीय संरचनाओं में उपस्थित रहता है जो C₅ पर उपस्थित –OH तथा (> C=0) के योगज से प्राप्त होती है। इस प्रकार पाँच सदस्यीय वलय बनती है तथा फ्यूरान से समानता के कारण इसे **फ्यूरेनोस** कहा जाता है। फ्यूरान एक पाँच सदस्यीय वलय संरचना है जिसमें एक ऑक्सीजन परमाणु तथा चार कार्बन परमाणु होते हैं।



फ्रक्टोज़ के दोनों ऐनोमर की चक्रीय संरचना को हावर्थ संरचनाओं द्वारा निम्न प्रकार से निरूपित किया जाता है—

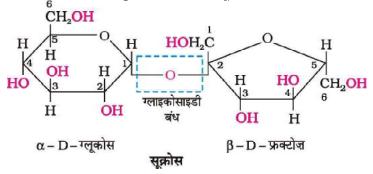

14.1.2.2 फ्रक्टोज़ /_____

(फल शर्करा)

फ्रक्टोज़ की संरचना

432 रसायन विज्ञान

14.1.3 डाइसैकैराइड

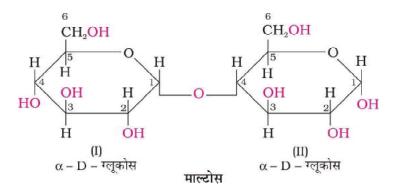

हम पहले पढ़ चुके हैं कि डाइसैकैराइडों का तनु अम्ल अथवा एन्जाइम की उपस्थिति में जलअपघटन द्वारा समान अथवा असमान मोनोसैकैराइडों के दो अणु देते हैं। दोनों मोनोसैकैराइड इकाइयाँ, जल के एक अणु के निष्कासन के उपरांत बने ऑक्साइड बंध द्वारा जुड़ी रहती हैं। i jek kpo&} kjk nkseksks && bd kb; kæabl i økj o&v kcåk d ksrenişकोसाइडी बंध कहते हैं।

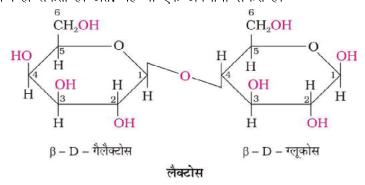
यदि डाइसैकैराइड में मोनोसैकैराइडों के अपचायी समूह जैसे ऐल्डिहाइड अथवा कीटोन आर्बोधित हों तो वह अनअपचायी शर्करा होती है। उदाहरणार्थ सूक्रोस। दूसरी ओर यदि शर्करा में ये प्रकार्यात्मक समूह मुक्त हों तो यह **अपचायी शर्करा** कहलाती है। उदाहरणार्थ– माल्टोस तथा लेक्टोस।

 सूक्रोस – सूक्रोस एक सामान्य डाइसैकैराइड है जो जलअपघटन पर सममोलर (equimolar) मात्रा में D-(+)-ग्लूकोस तथा D-(-) फ्रक्टोज देता है।

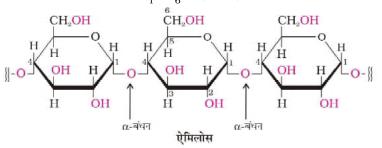
$$C_{12} H_{22} O_{11} + H_2 O \longrightarrow C_6 H_{12} O_6 + C_6 H_{12} O_6$$

सूक्रोस D-(+)-ग्लूकोस D-(-)-फ्रक्टोज

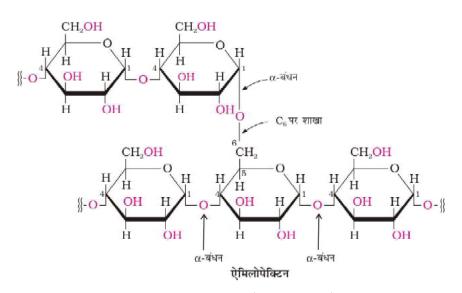

ये दोनों मोनोसैकैराइड इकाइयाँ α –D–ग्लूकोस के C_1 तथा β –D–फ्रक्टोज़ के C_2 के मध्य ग्लाइकोसाइडी बंध द्वारा जुड़ी रहती हैं। चूँकि ग्लूकोस तथा फ्रक्टोज़ का अपचायक समूह ग्लाइकोसाइडी बंध निर्माण में प्रयुक्त होता है अत: सूक्रोस एक अनअपचायी शर्करा है।


सूक्रोस दक्षिण ध्रुवण घूर्णक होती है। लेकिन जल अपघटन के उपरांत दक्षिण ध्रुवण घूर्णक ग्लूकोस तथा वामु घ्रुवण घूर्णक फ्रक्टोज़ देता है। चूंकि फ्रक्टोज़ के वामु ध्रुवण घूर्णन का मान (– 92.4°), ग्लूकोस के दक्षिण ध्रुवण घूर्णन (+ 52.5°), से अधिक होता है। अत: जलअपघटन पर सूक्रोस के घूर्णन के चिह्न में परिवर्तन दक्षिण (+) से वाम (–) में हो जाता है तथा उत्पाद को **अपवृत शर्करा** कहा जाता है।

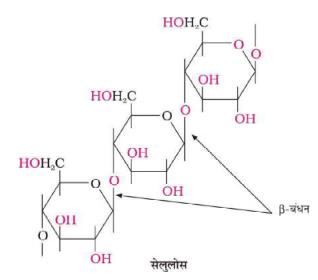
II माल्टोस— एक अन्य डाइसैकैराइड माल्टोस α -D-ग्लूकोस की दो इकाइयों से निर्मित होता है जिसमें एक ग्लूकोस इकाई का C_1 दूसरी ग्लूकोस इकाई के C_4 के साथ जुड़ा रहता है विलयन में ग्लूकोस की दूसरी इकाई का C_1 मुक्त ऐल्डिहाइड समूह देता है। यह अपचायक गुण दर्शाता है अत: यह एक अपचायी शर्करा है।


जैव-अणु 433

III *लैक्टोस*– लैक्टोस दुग्ध में उपस्थित होने के कारण सामान्यत: दुग्ध शर्करा भी कहलाती है। यह $eta_{-}[D]$ -गैलैक्टोस तथा $eta_{-}[D]$ -ग्लूकोस से निर्मित होती है। गैलैक्टोस के $\mathrm{C_{1}}$ तथा ग्लूकोस के C_4 के मध्य बंध होता है। मुक्त एल्डिहाइड ग्लूकोस इकाई के $C{-}1$ पर उत्पन्न हो सकता है। अत: यह भी एक अपचायी शर्करा है।



- पॉलिसैकैराइड पॉलिसैकैराइड में असंख्य मोनोसैकैराइड इकाइयाँ ग्लाइकोसाइडी बंध द्वारा संयुक्त रहती हैं। यह प्रकृति में सर्वाधिक पाए जाने वाले कार्बोहाइड्रेट हैं। यह मुख्यत: भोजन संग्रहण तथा संरचना निर्माण का कार्य करते हैं।
 - स्टार्च
 – स्टार्च पौधों में मुख्य संग्रहित पॉलिसैकैराइड है। यह मनुष्यों के लिए आहार का मुख्य स्रोत है। दाल, जड़, कंद तथा कुछ सब्ज़ियों में स्टार्च प्रचुर मात्रा में मिलता है। यह α–ग्लूकोस का बहुलक है तथा दो घटकों **ऐमिलोस** तथा **ऐमिलोपेक्टिन** से मिलकर बनता है। ऐमिलोस जल में घुलनशील अवयव है तथा यह स्टार्च का 15-20% भाग निर्मित करता है। रासायनिक रूप से ऐमिलोस 200-1000 α-D-(+)-ग्लूकोस इकाइयों की अशाखित शृंखला होती है जो आपस में ${f C}_1-{f C}_4$ ग्लाइकोसाइडी बंध द्वारा जुड़ी रहती हैं। ऐमिलोपेक्टिन जल में अविलेय होती है तथा यह स्टार्च का 80-85% भाग बनाती हैं। यह $lpha ext{-}\mathbf{D} ext{-}$ ग्लूकोस इकाइयों की शाखित शृंखला होती है, जिसमें $\mathbf{C}_1 ext{-}\mathbf{C}_4$ ग्लाइकोसाइडी बंध होते हैं। जबकि शाखन C1- C6ग्लाइकोसाइडी बंध द्वारा होता है।



14.1.4

434 रसायन विज्ञान

II. सेलुलोस– सेलुलोस विशिष्ट रूप से केवल पौधों में मिलता है तथा यह वनस्पति जगत में प्रचुरता में उपलब्ध कार्बनिक पदार्थ है। यह पौधों की कोशिकाओं की कोशिका भित्ति का प्रधान अवयव है। सेलुलोस, β -D-ग्लूकोस से बनी ऋजु शृंखला युक्त पॉलिसैकैराइड है जिसमें एक ग्लूकोस इकाई के C_1 तथा दूसरी ग्लूकोस इकाई के C_4 के मध्य ग्लाइकोसाइडी बंध बनता है।

III. ग्लाइकोजन – प्राणी शरीर में कार्बोहाइड्रेट, ग्लाइकोजन के रूप में संग्रहित रहता है। चूँकि इसकी संरचना ऐमिलोपेक्टिन के समान होती है, अत: इसे प्राणी स्टार्च भी कहा जाता है एवं यह ऐमिलोपेक्टिन से अधिक शाखित होता है। यह यकृत, मांसपेशियों तथा मस्तिष्क में उपस्थित रहता है। जब शरीर को ग्लूकोस की आवश्यकता होती है, एन्जाइम, ग्लाइकोजन को ग्लूकोस में तोड़ देते हैं। ग्लाइकोजन यीस्ट तथा कवक में भी मिलता है।

कार्बोहाइड्रेट पौधों तथा प्राणियों में जीवन के लिए आवश्यक होते हैं। ये हमारे भोजन का प्रमुख भाग होते हैं। चिकित्सा की आयुर्वेद प्रणाली में ऊर्जा में तात्कालिक स्रोत के रूप में वैद्यों द्वारा शहद का उपयोग किया जाता रहा है। कार्बोहाइड्रेट अण् वनस्पतियों में स्टार्च के रूप में एवं

14.1.5 कार्बोहाइड्रेटों का महत्व

जैव-अणु 435

जंतुओं में ग्लाइकोजन के रूप में संचित होते हैं। जीवाणुओं एवं पौधों की कोशिका भित्ति सेलुलोस की बनी होती है। लकड़ी के रूप में प्राप्त सेलुलोस से हम फ़र्नीचर आदि बनाते हैं तथा सूती रेशों के रूप में प्राप्त सेलुलोस से हमारे वस्त्र बनते हैं। अनेक प्रमुख उद्योगों जैसे वस्त्र, कागज, प्रलाक्ष (लैकर), निसवन (मद्यनिर्माण) उद्योग इत्यादि के लिए इनसे कच्चा माल उपलब्ध होता है।

न्युक्लीक अम्ल में दो ऐल्डोपेन्टोस यथा D-राइबोस तथा 2-डीऑक्सीराइबोस उपस्थित होती हैं। जैव-तंत्र में कार्बोहाइड्रेट अनेक प्रोटीनों तथा लिपिडों के साथ संयुक्तावस्था में मिलते हैं।

पाद्यनिहित प्रश्न	
14.1 ग्लूकोस तथा सूक्रोस जल में विलेय हैं जबकि साइक्लोहैक्सेन अथवा बेन्ज्रीन (सामान्य छ: सदस्यीय	
वलय युक्त यौगिक) जल में अविलेय होते हैं। समझाइए।	
14.2 लैक्टोस के जलअपघटन से किन उत्पादों के बनने की अपेक्षा करते हैं?	
14.3 D-ग्लूकोस के पेन्टाऐसीटेट में आप ऐल्डिहाइड समूह की अनुपस्थिति को कैसे समझाएंगे?	

14.2 ਸ਼ੇਟਿੀਜ	प्रोटीन जीव जगत में सर्वाधिक पाए जाने वाले जैव अणु हैं। प्रोटीन के प्रमुख स्रोत दूध, पनीर दालें, मूँगफली, मछली तथा मांस आदि हैं। यह शरीर के प्रत्येक भाग में उपस्थित होते हैं तथा जीवन का मूलभूत संरचनात्मक एवं क्रियात्मक आधार बनाते हैं। यह शरीर की वृद्धि, एवं अनुरक्षण के लिए भी आवश्यक होते हैं। प्रोटीन शब्द की व्युत्पत्ति ग्रीक शब्द 'प्रोटियोस' से हुई है जिसका अर्थ प्राथमिक अथवा अतिमहत्वपूर्ण होता है। सभी प्रोटीन α–ऐमीनो अम्लों के बहुलक होते हैं।
14.2.1 ऐमीनो अम्ल R—CH—COOH । <u>NH</u> 2 α-ऐमीनो अम्ल (R = पार्श्व शृंखला)	ऐमीनो अम्ल में ऐमीनो (-NH ₂) तथा कार्बोक्सिल (-COOH) प्रकार्यात्मक समूह उपस्थित होते हैं। कार्बोक्सिल समूह के संदर्भ में ऐमीनो समूह की आपेक्षिक स्थितियों के आधार पर ऐमीनो अम्लों को α, β, γ, δ आदि में वर्गीकृत किया जा सकता है। प्रोटीन के जलअपघटन से केवल α- ऐमीनो अम्ल ही प्राप्त होते हैं। इनमें अन्य प्रकार्यात्मक समूह भी उपस्थित हो सकते हैं। सभी ऐमीनो अम्लों के रूढ़ नाम हैं जो इन यौगिकों के गुण अथवा इनके स्रोत को प्रदर्शित करते हैं। ग्लाइसीन को उसका नाम मीठे स्वाद के कारण दिया गया है। ग्रीक भाषा में <i>ग्लाइकोस</i> (<i>glykos</i>) का अर्थ मीठा होता है तथा टाइरोसीन सर्वप्रथम पनीर से प्राप्त किया गया था (ग्रीक भाषा में <i>टाइरोस</i> (tyros) का अर्थ पनीर है)। प्रत्येक ऐमीनो अम्ल को साधारणत: एक तीन अक्षर प्रतीक द्वारा प्रदर्शित किया जाता है। कभी-कभी एक अक्षर प्रतीक का उपयोग भी किया जाता है। सामान्यत: उपलब्ध-ऐमीनो अम्लों की संरचनाएं एवं उनके 3-अक्षर व 1-अक्षर प्रतीक सारणी 14.2 में दिए गए हैं।
14.2.2 ऐमीनो अम्लों का वर्गीकरण	ऐमीनो अम्लों को उनके अणुओं में उपस्थित ऐमीनो तथा कार्बोक्सिल समूहों की आपेक्षिक संख्या के आधार पर अम्लीय, क्षारकीय अथवा उदासीन वर्गों में वर्गीकृत किया गया है। ऐमीनो तथा कार्बोक्सिल समूहों की समान संख्या ऐमीनो अम्ल की प्रकृति को उदासीन बनाती है। कार्बोक्सिल समूहों की अपेक्षा ऐमीनो समूहों को संख्या अधिक होने पर यह क्षारकीय तथा कार्बोक्सिल समूहों की संख्या ऐमीनो समूहों की संख्या से अधिक होने पर यह क्षारकीय तथा कार्बोक्सिल समूहों की संख्या ऐमीनो समूहों की संख्या से अधिक होने पर यह क्षारकीय तथा कार्बोक्सिल समूहों की संख्या ऐमीनो समूहों की संख्या से अधिक होने पर यह अम्लीय होते हैं जो ऐमीनो अम्ल शरीर में संश्लेषित हो सकते हैं उन्हें अनावश्यक ऐमीनो अम्ल कहते हैं जबकि वे ऐमीनो अम्ल जो शरीर में संश्लेषित नहीं हो सकते तथा जिनको भोजन में लेना आवश्यक है, आवश्यक ऐमीनो अम्ल कहलाते हैं (सारणी 14.2 में तारक द्वारा चिह्नि)।

<mark>436</mark> रसायन विज्ञान

$egin{array}{c} { m COOH} & { m COOH} & { m H_2N+H} & { m H_2N+H} & { m R} & { m R} \end{array}$			+H
ऐमीनो अम्ल का नाम	पार्श्व शृंखला R का विशिष्ट लक्षण	3-अक्षर प्रतीक	एक अक्षर कोड
 ग्लाइसीन ऐलानिन वैलीन* ल्यूसीन* आइसोल्यूसीन* 	H - CH_3 $(H_3C)_2CH$ - $(H_3C)_2CH$ - CH_2 - H_3C - CH_2 - CH -	Gly Ala Val Leu Ile	G A V L I
6. आर्जिनीन*	CH ₃ HN=C-NH-(CH ₂) ₃ - I NH ₂	Arg	R
7. लाइसीन* 8. ग्लूटैमिक अम्ल 9. ऐस्पार्टिक अम्ल	H_2 N-(CH ₂) ₄ - HOOC-CH ₂ -CH ₂ - HOOC-CH ₂ -	Lys Glu Asp	K E D
10. ग्लूटेमीन	$\begin{array}{c} O\\ II\\ H_2N\text{-}C\text{-}CH_2\text{-}CH_2\text{-}\\ \\ O\\ II \end{array}$	Gln	g
11. ऐस्पेराजीन 12. थ्रिऑनीन* 13. सेरीन	H2N-C-CH2- H3C-CHOH- HO-CH2-	Asn Thr Ser	N T S
14. सिस्टीन 15. मेथाइओनिन* 16. फ़ेनिल-ऐलानिन* 17. टाइरोसीन	$HS-CH_{2}-$ $H_{3}C-S-CH_{2}-CH_{2}-$ $C_{6}H_{5}-CH_{2}-$ (w) HO, C, H, CH	Cys Met Phe	C M F
17. टाइरासान 18. ट्रिप्टोफेन*	$(p) \text{HO-C}_6\text{H}_4\text{-CH}_2\text{-}$	Tyr Trp	Y W
19. हिस्टिडीन*	H ₂ C NH	His	н
20. प्रोलीन	HN - H HN - H CH_2	Pro	Р

* आवश्यक एमीनो अम्ल, a = संपूर्ण संरचना

ऐमीनो अम्ल सामान्यत: रंगहीन क्रिसलीय ठोस होते हैं। ये जल-विलेय तथा उच्च गलनांकी ठोस होते हैं जो सामान्य ऐमीनो तथा कार्बोक्सिलिक अम्लों की भाँति व्यवहार नहीं करते, अपितु लवणों की भाँति गुण दर्शाते हैं। इसका कारण एक ही अणु में अम्लीय

> (कार्बोक्सिल समूह) तथा क्षारकीय (ऐमीनो समूह) समूहों की उपस्थिति है। जलीय विलयन में कार्बोक्सिल समूह एक प्रोटॉन मुक्त कर सकता है जबकि ऐमीनो समूह एक प्रोटॉन ग्रहण कर सकता है जिसके फलस्वरूप एक द्विध्रवीय आयन बनता है जिसे ज़्विटर आयन अथवा उभयाविष्ट आयन कहते हैं। यह उदासीन होता है परंतु इसमें धनावेश तथा ऋणावेश दोनों ही उपस्थित हैं।

-<u>C</u>-O R−CH−C−O−H ₹ \rightarrow R-CH-NHa :NH2 (ज्विटर आयन)

> उभयाविष्ट आयनिक रूप में ऐमीनो अम्ल उभयधर्मी प्रकृति दर्शाते हैं। तथा वे अम्लों एवं क्षारकों दोनों के साथ अभिक्रिया करते हैं।

> ग्लाइसीन के अतिरिक्त अन्य सभी प्रकृति में उपलब्ध ऐमीनो अम्ल ध्रुवण घूर्णक होते हैं क्योंकि इनमें lpha-कार्बन परमाण् असममित होता है। ये 'D' तथा 'L' दोनों रूपों में पाए जाते हैं। अधिकांश प्राकृतिक ऐमीनो अम्लों का विन्यास 'L' होता है। L-ऐमीनो अम्लों को –NH, समूह को बाईं ओर लिखकर प्रदर्शित किया जाता है।

> बनता है अतः इसे डाइपेप्टाइड कहते हैं। उदाहरणार्थ, जब ग्लाइसीन का कार्बोक्सिल समूह,

प्रोटीनों की आप पहले पढ़ चुके हैं कि प्रोटीन α–ऐमीनो अम्लों के बहुलक होते हैं जो आपस में **पेप्टाइड** आबंध अथवा पेप्टाइड बंध द्वारा जुड़े रहते हैं। रासायनिक रूप से पेप्टाइड आबंध, – COOH समूह तथा –NH, समूह के मध्य बना एक आबंध होता है। दो एक जैसे अथवा भिन्न ऐमीनो अम्लों के अणुओं के मध्य अभिक्रिया एक अणु के ऐमीनो समूह तथा दूसरे अणु के कार्बोक्सिल समूह के मध्य संयोग से होती है। जिसके फलस्वरूप एक जल का अणु मुक्त होता है तथा पेप्टाइड आबंध –CO–NH– बनता है। चूँकि उत्पाद दो ऐमीनो अम्लों के द्वारा

$$\begin{array}{c|c} H_2N-CH_2-COOH + H_2N-CH-COOH \\ & -H_2O \end{array} \begin{array}{c} I \\ CH_3 \\ H_2N-CH_2-CO-NH \\ -CH-COOH \\ I \\ CH_3 \end{array}$$

ग्लाइसिलएलनीन (Gly-Ala)

ऐलानीन के ऐमीनो समूह के साथ संयोग करता है तो हमें एक डाइपेप्टाइड, ग्लाइसिलऐलेनीन प्राप्त होता है।

यदि तीसरा ऐमीनो अम्ल. डाइपेप्टाइड से संयोग करता है तो उत्पाद ट्राइपेप्टाइड कहलाता है। एक ट्राइपेप्टाइड में तीन ऐमीनो अम्ल होते हैं जो दो पेप्टाइड बंधों द्वारा संयुक्त रहते हैं। इसी प्रकार से जब चार, पाँच, अथवा छ: एमीनो अम्ल आपस में जुड़ते हैं तो परिणामी उत्पादों को टेटापेप्टाइड. पेन्टापेप्टाइड अथवा हैक्सापेप्टाइड कहते हैं। जब ऐमीनो अम्लों की संख्या दस से अधिक होती है तो उत्पाद पॉलिपेप्टाइड

कहलाते हैं। एक पॉलिपेप्टाइड जिसमें 100 से अधिक ऐमीनो अम्ल अवशेष होते हैं तथा जिनका आण्विक द्रव्यमान $10,000 \ {f u}$ से अधिक होता है, **प्रोटीन** कहलाता है। यद्यपि, प्रोटीन तथा पॉलिपेप्टाइड में यह विभेद अधिक सुस्पष्ट नहीं है। कम ऐमीनों अम्ल वाले पॉलिपेप्टाइडों को भी प्रोटीन कहने की संभावना होती है यदि उनमें प्रोटीन जैसा सुस्पष्ट संरूपण हो जैसा कि इन्सुलिन में होता है जिसमें 51 ऐमीनो अम्ल होते हैं।

आण्विक आकृति के आधार पर प्रोटीनों को दो वर्गों में वर्गीकृत किया जा सकता है—

(अ) रेशेदार प्रोटीन

जब पॉलिपेप्टाइड शृंखलाएं समानांतर होती हैं तथा हाइड्रोजन एवं डाइसल्फाइड आबंधों द्वारा संयुक्त रहती हैं तो रेशासम (रेशे जैसी) संरचना बनती है। इस प्रकार के प्रोटीन

438 रसायन विज्ञान

14.2.3 संरचना

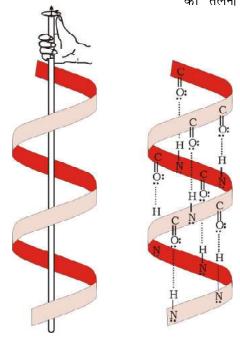
सामान्यतः जल में अविलेय होते हैं। कुछ सामान्य उदाहरण किरेटिन (बाल, ऊन तथा रेशम में उपस्थित) तथा मायोसिन (मांसपेशियों में उपस्थित) आदि हैं।

(ब) गोलिकाकार प्रोटीन

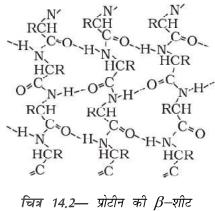
जब पॉलिपेप्टाइड की शृंखलाएं कुंडली बनाकर गोलाकृति प्राप्त कर लेती हैं तो ऐसी संरचनाएं प्राप्त होती हैं ये सामान्यत: जल में विलेय होती है। इन्सुलिन तथा ऐल्बूमिन इनके सामान्य उदाहरण हैं।

प्रोटीनों की संरचना एवं आकृति का अध्ययन चार भिन्न स्तरों पर किया जा सकता है। प्राथमिक, द्वितीयक, तृतीयक एवं चतुष्क संरचनाएं तथा प्रत्येक स्तर पूर्व की तलना में जटिल होती हैं।

> (i) प्रोटीन की प्राथमिक संरचना- प्रोटीनों में एक अथवा अनेक पॉलिपेप्टाइड शृंखलाएं उपस्थित हो सकती हैं। किसी प्रोटीन के प्रत्येक पॉलिपेप्टाइड में ऐमीनो अम्ल एक विशिष्ट क्रम में संयुक्त होते हैं। ऐमीनो अम्लों का यह विशिष्ट क्रम प्रोटीनों की प्राथमिक संरचना बनाता है। प्राथमिक संरचना में किसी भी प्रकार का परिवर्तन अर्थात् ऐमीनो अम्लों के क्रम में परिवर्तन से भिन्न प्रोटीन उत्पन्न होते हैं।


> (ii) प्रोटीनों की द्वितीयक संरचना– किसी प्रोटीन की द्वितीयक संरचना का संबंध उस आकृति से है जिसमें पॉलिपेप्टाइड शृंखला विद्यमान होती है। यह दो भिन्न प्रकार की संरचनाओं में विद्यमान होती हैं– α–हेलिक्स

> तथा β–प्लीटेड शीट संरचना। ये संरचनाएं पेप्टाइड आबंध के — C— तथा –NH– समूह के मध्य हाइड्रोजन बंध के कारण पॉलिपेप्टाइड की मुख्य शृंखला के नियमित कुंडलन में उत्पन्न होती हैं। α–हेलिक्स संरचना एक ऐसी संरचना है जिसमें पॉलिपेप्टाइड शृंखला में सभी संभव हाइड्रोजन आबंध बन सकते हैं। इसमें पॉलिपेप्टाइड शृंखला दक्षिणावर्ती पेंच के समान मुड़ी रहती है फलस्वरूप प्रत्येक ऐमीनो अम्ल अवशिष्ट का –NH समूह, कुंडली के अगले मोड़ पर स्थित >C=O समूह के साथ हाइड्रोजन आबंध बनाता है जैसा कि चित्र 14.1 में दर्शाया गया है।


> β–संरचना में सभी पॉलिपेप्टाइड शृंखलाएं लगभग अधिकतम विस्तार तक खिंची रहकर एक दूसरे के पार्श्व में स्थित होती हैं तथा आपस में अंतराआण्विक हाइड्रोजन आबंध द्वारा जुड़ी रहती हैं। यह संरचना वस्त्रों में प्लीट के समान होती है अत: इसको β–प्लीटेड शीट कहते हैं।

> (iii) प्रोटीन की तृतीयक संरचना— प्रोटीन की तृतीयक संरचना पॉलिपेप्टाइड शृंखलाओं के समग्र वलन, अर्थात् द्वितीयक संरचना के और अधिक वलन (लिपटना) को प्रदर्शित करती है। इससे दो प्रमुख आण्विक आकृतियाँ बनती हैं— रेशेदार तथा गोलिकाकार। प्रमुख बल जो प्रोटीन की 2° तथा 3° संरचनाओं को स्थायित्व प्रदान करते हैं वे हैं— हाइड्रोजन आबंध, डाइसल्फाइड बंध, वान्डर वाल तथा स्थिर विद्युत आकर्षण बल।

> > जैव-अणु <mark>439</mark>

चित्र 14.1— प्रोटीन की α -कुण्डलिनि संरचना

संरचना

14.2.4

(iv) प्रोटीन की चतुष्क संरचना– कुछ प्रोटीन दो या दो से अधिक पॉलिपेटाइड शृंखलाओं से बने होते हैं जिन्हें उप-इकाई कहते हैं। इन उप-इकाइयों की परस्पर दिक्-स्थान व्यवस्था को चतुष्क संरचना कहते हैं। इन चारो संरचनाओं का चित्रात्मक निरूपण चित्र 14.3 में दिया गया है जिसमें प्रत्येक रंगीन गेंद, एक ऐमीनो अम्ल को निरूपित करती है।

प्रोटीन का जैविक निकाय में पाई जाने वाली विशेष त्रिविमा संरचना तथा जैविक सक्रियता वाले प्रोटीन, प्राकृत प्रोटीन कहलाता है। जब प्राकृत प्रोटीन में भौतिक परिवर्तन करते हैं, जैसे– ताप में परिवर्तन अथवा रासायनिक परिवर्तन करते हैं जैसे, pH में परिवर्तन आदि किया जाता है तो हाइड्रोजन आबंधों में अस्तव्यस्तता उत्पन्न हो जाती है। जिसके कारण गोलिका (ग्लोक्यूल) खुल जाती है तथा हैलिक्स अकुंडलित हो जाती है तथा प्रोटीन अपनी जैविक सक्रियता को खो देता है। इसे प्रोटीन का विकृतीकरण कहते हैं। विकृतीकरण के दौरान 2° तथा 3° संरचनाएं नष्ट हो जाती हैं परंतु 1° संरचना अप्रभावित रहती है। उबालने पर अंडे की सफ़्रेदी का स्कंदन विकृतीकरण का एक सामान्य उदाहरण है। एक अन्य उदाहरण दही का जमना है। जो दूध में उपस्थित बैक्टीरिया द्वारा लेक्टिक अम्ल उत्पन्न होने के कारण होता है।

चित्र 14.3- प्रोटीन की संरचनाओं का चित्रात्मक निरूपण (चतुष्क संरचना में प्राथमिक तृतीयक द्वितीयक चतुष्क दो प्रकार की दो उप इकाइयाँ) संरचना संरचना संरचना संरचना (a) प्राथमिक संरचना (b) द्वितीयक संरचना (c) तृतीयक संरचना (d) चतुष्क संरचना चित्र 14.4 - हीमोग्लोबिन की प्राथमिक, द्वितीयक, R समूह N C तृतीयक एवं चतुष्क संरचनाएं ΒH 00 हीम समह 440 रसायन विज्ञान

पाठ्यनिहित प्रश्न

- 14.4 ऐमीनो अम्लों के गलनांक एवं जल में विलेयता सामान्यत: संगत हैलो अम्लों की तुलना में अधिक होती है। समझाइए।
- 14.5 अंडे को उबालने पर उसमें उपस्थित जल कहाँ चला जाता है?
- 14.3 एन्जाइम जीवधारियों में होने वाली विभिन्न रासायनिक अभिक्रियाओं में समन्वयन के कारण ही जीवन संभव है। इसका एक उदाहरणार्थ है भोजन का पाचन, उपयुक्त अणुओं का अवशोषण तथा अंतत: ऊर्जा का उत्पादन। इस प्रक्रम में अभिक्रियाएं एक अनुक्रम होती हैं तथा ये सभी अभिक्रियाएं शरीर में मध्यम परिस्थितियों में सम्पन्न होती हैं। यह कुछ जैव उत्प्रेरकों की सहायता से होता है जिन्हें एन्जाइम कहते हैं। लगभग सभी एन्जाइम गोलिकाकार प्रोटीन होते हैं। एन्जाइम किसी विशेष अभिक्रिया अथवा विशेष क्रियाधार के लिए विशिष्ट होते हैं। इनका नामकरण सामान्यतया उस यौगिक अथवा यौगिकों के वर्ग पर आधारित होता है जिस पर ये कार्य करते हैं। उदाहरणार्थ, उस एन्जाइम का नाम **माल्टेस** है जो **माल्टोस** के ग्लूकोस में जलअपघटन को उत्प्रेरित करता है।

$$\begin{array}{c} C_{12} H_{22} O_{11} \xrightarrow{\text{HIREZH}} 2 C_6 H_{12} O_6 \\ (\text{HIREZH}) & (\text{7}\text{regahlet}) \end{array}$$

कभी-कभी एन्जाइम का नाम उस अभिक्रिया के आधार पर दिया जाता है जिसमें इनका उपयोग होता है। उदाहरणार्थ, जो एन्जाइम एक क्रियाधार का ऑक्सीकरण उत्प्रेरित करते हैं तथा साथ ही दूसरे क्रियाधार का अपचयन उन्हें **आक्सिडोरिडक्टेस** नाम दिया जाता है। एन्जाइम के नाम के अंत में **ऐस** (-ase) आता है।

- 14.3.1एन्जाइम क्रिया
किसी अभिक्रिया की प्रगति के लिए एन्जाइम की बहुत कम मात्रा की आवश्यकता होती है।
रासायनिक उत्प्रेरक की क्रिया के समान कहा जाता है कि एन्जाइम, संक्रियण ऊर्जा के
परिमाण को कम कर देते हैं। उदाहरणार्थ, सूक्रोस के अम्लीय जलअपघटन के लिए संक्रियण
ऊर्जा 6.22 kJ mol⁻¹ है जबकि सूक्रेस एन्जाइम क्रिया की क्रियाविधि एकक-5 में वर्णित
की गई है।
 - 14.4 विटामिन ऐसा देखा गया है कि हमारे भोजन में कुछ कार्बनिक यौगिकों की आवश्यकता सूक्ष्म मात्रा में होती है परंतु उनकी कमी के कारण विशेष रोग हो जाते हैं। इन यौगिकों को विटामिन कहते हैं। अधिकांश विटामिनों का संश्लेषण हमारे शरीर द्वारा नहीं किया जा सकता लेकिन पौधे लगभग सभी विटामिनों का संश्लेषण कर सकते हैं, अतः इन्हें आवश्यक आहार कारक माना गया है। यद्यपि आहारनली के बैक्टीरिया हमारे लिए आवश्यक कुछ विटामिनों को उत्पन्न कर सकते हैं। सामान्यतः हमारे आहार में सभी विटामिन उपलब्ध रहते हैं। विभिन्न विटामिन भिन्न श्रेणियों से संबंधित होते हैं, अतः इन्हें संरचना के आधार पर परिभाषित करना कठिन है। इन्हें सामान्यतः इस प्रकार विचारित किया जाता है कि ये विशिष्ट जैविक क्रियाओं के संपन्न होने के लिए हमारे आहार में आवश्यक वे कार्बनिक पदार्थ हैं जिनसे जीव की इष्टतम वृद्धि एवं स्वास्थ्य का सामान्य रखरखाव होता है। विटामिनों को A, B, C, D, आदि अक्षरों के द्वारा निर्दिष्ट किया जाता है इनमें से कुछ को पुनः उपवर्गों उदाहरणार्थ B₁, B₂,

जैव-अणु 441

 $B_6, B_{12},$ आदि में नाम दिया गया है। विटामिन का आधिक्य भी हानिकारक होता है, अत: चिकित्सक के परामर्श के बिना विटामिन की गोली नहीं लेनी चाहिए।

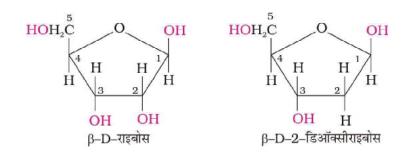
विटामिन (vitamine) दो शब्दों– विटल (vital) + ऐमीन (amine) से जुड़कर बना है; क्योंकि प्रारंभ में पहचाने गए यौगिकों में ऐमीनो समूह था। लेकिन बाद के कार्यों से प्रदर्शित हुआ कि इनमें से अधिकांश में ऐमीनो समूह नहीं होता, अत: अंग्रेजी में लिखे शब्द का अंतिम अक्षर 'e' हटा दिया गया तथा वर्तमान में विटामिन (vitamin) शब्द का उपयोग किया जाता है।

14.4.1विटामिनों का
जल तथा वसा में विलेयता के आधार पर विटामिनों को दो समूहों में वर्गीकृत किया गया है
–
वर्गीकरणवर्गीकरण(i) वसा विलेय विटामिन– इस वर्ग में उन विटामिनों को रखा गया है जो वसा तथा तेल
में विलेय होते हैं परंतु जल में अविलेय। ये विटामिन A, D, E तथा K हैं। ये यकृत तथा
ऐडिपोस (वसा संग्रहित करने वाला) ऊतक में संग्रहित रहते हैं।
(ii) जल में विलेय विटामिन– B वर्ग के विटामिन तथा विटामिन C जल में विलेय
होते हैं अत: इन्हें एक साथ इस वर्ग में रखा गया है। जल में विलेय विटामिनों
की पूर्ति हमारे आहार में नियमित रूप से होनी चाहिए क्योंकि ये आसानी से मूत्र
के साथ उत्सर्जित हो जाते हैं तथा इन्हें हमारे शरीर में (विटामिन B₁₂ के अतिरिक्त)

कुछ प्रमुख विटामिन, उनके स्रोत तथा उनकी कमी के कारण उत्पन्न होने वाले रोगों को सारणी 14.3 में दर्शाया गया है।

सारणी 14.3— कुछ प्रमुख विटामिन, उनके स्रोत तथा उनकी कमी से जनित रोग

संचित नहीं किया जा सकता है।


क्रम संख्या	विटामिन का नाम	स्र्रोत	हीनता जनित रोग
1.	विटामिन А	मछली के यकृत का तेल,	ज़िॲरॉफ्थैल्मिया (आँख के कॉर्निया का
2.	विटामिन $\operatorname{B}_1($ थायेमीन $)$	गाजर, मक्खन तथा दूध खमीर, दूध, हरी सब्जियाँ, दालें वृद्धि में मंदता)	कठोरीकरण), रात्रि अंधता बेरी-बेरी, (भूख का कम लगना,
3.	विटामिन $\mathrm{B}_2^{}\left(\mathrm{राइबोफ्लेविन} ight)$	रूख, अंडे की सफ़ेदी, यकृत, गुर्दा	ओष्ठ विदरण यानी कीलोसिस (मुँह व होठों के किनारों पर दरारें पड़ना) पाचन क्रिया में अव्यवस्था तथा त्वचा में
4.	विटामिन $\mathrm{B}_6^-(\mathrm{full})$	खमीर, दूध, अंड-पीत, दालें चना	जलन की अनुभूति होना।) मरोड़ पड़ना (convulsions)
5.	विटामिन B ₁₂	मांस, मछली, अंडा, दही	प्रणाशी रक्ताल्पता (Pernicious anaemia) RBC में हीमोग्लोबिन की कमी
6.	विटामिन C (ऐस्कॉर्बिक अम्ल)	निंबुवंशीय (सिट्रस) फल, आँवला तथा हरे पत्ते वाली सब्ज़ियाँ	स्कर्वी (मसूड़ों से रक्त बहना)
7.	विटामिन D	सूर्य के प्रकाश में उद्भासन (exposure) मछली, अंडे का पीतक	रिकेट्स (बच्चों में अस्थि विकृतता) तथा ऑस्टियोमेलेशिया या अस्थिमृदुता (वयस्कों में जोड़ों में दर्द तथा अस्थिमृदुता)
8.	विटामिन E	सब्ज़ियों के तेल उदाहरणार्थ गेहूँ अंकुर तेल, सूर्यमुखी का तेल आदि	जात्वनृदुआ) RBC की भुरभुरेपन में वृद्धि तथा मांसपेशियों की कमज़ोरी
9.	विटामिन K	अकुर तल, सूचमुखा का तल आप हरे पत्ते वाली सब्ज़ियाँ	मासपारायां का कमशारा रक्त के थक्का जमने के समय में वृद्धि

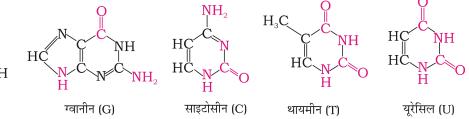
442 रसायन विज्ञान

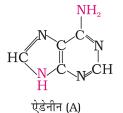
14.5 न्यूक्लीक अम्ल

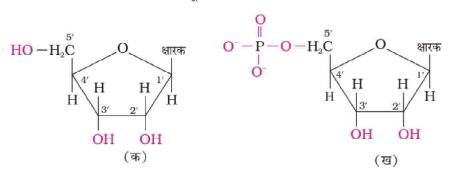
प्रत्येक प्रजाति को हर एक पीढ़ी कई प्रकार से अपने पूर्वजों के सदृश्य होती है। ये विशिष्ट गुण एक पीढ़ी से दूसरी तक किस प्रकार संचरित होते हैं? यह पाया गया है कि जीवित कोशिका का नाभिक इन जन्मजात गुणों, के लिए उत्तरदायी हैं, जिसे **आनुवांशिकता** भी कहते हैं। कोशिका के नाभिक में उपस्थित वे कण जो आनुवांशिकता के लिए उत्तरदायी होते हैं, क्रोमोसोम कहलाते हैं। ये प्रोटीन तथा अन्य प्रकार के जैव अणु से मिलकर बने होते हैं, जिन्हें न्यूक्लीक अम्ल कहते हैं। न्यूक्लीक अम्ल मुख्यत: दो प्रकार के होते हैं डिऑक्सीराइबोस न्यूक्लीक अम्ल (DNA) तथा राइबोसन्यूक्लीक अम्ल (RNA)। चूँकि न्यूक्लीक अम्ल न्यूक्लिओटाइडों की लंबी शृंखला वाले बहुलक होते हैं अत: इन्हें पॉलिन्यूक्लिओटाइड भी कहते हैं।

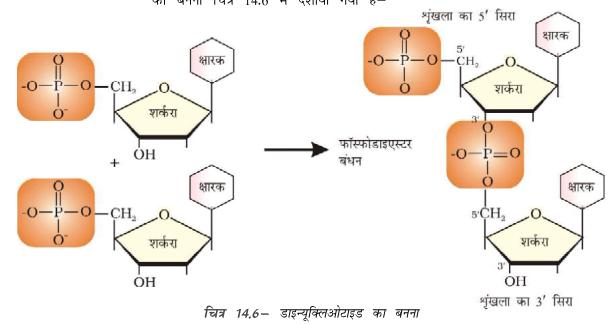
14.5.1 न्यूक्लीक अम्लों का रासायनिक संघटन DNA (अथवा RNA) के पूर्ण जलअपघटन से एक पेन्टोस शर्करा, फ़ास्फ़ोरिक अम्ल तथा नाइट्रोजन युक्त विषमचक्रीय यौगिक (जिन्हें क्षारक कहते हैं) प्राप्त होते हैं। DNA अणु में शर्करा अर्धांश इकाई β-D-2-डिऑक्सीराइबोस होती है जबकि RNA में यह β-D-राइबोस होती है।

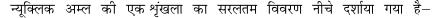
जेम्स डेवे वाटसन

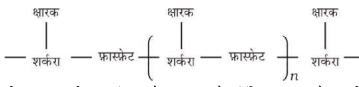

डॉ. वाटसन का जन्म शिकागो के इलिनॉयस में वर्ष 1928 में हुआ था। इन्होंने 1950 में प्राणिविज्ञान में इंडियाना विश्वविद्यालय से पीएच.डी. की उपाधि प्राप्त की। उनकी सर्वाधिक ख्याति DNA की संरचना निर्धारित करने के कारण हुई जिसके लिए उन्हें 1962 में शरीर क्रिया विज्ञान तथा औषध क्षेत्र में फ्रांसिस क्रिक तथा मॉरिस विल्किस के साथ संयुक्त रूप से नोबेल पुरस्कार से सम्मानित किया गया। उन्होंने प्रस्तावित किया कि DNA अणु द्विकुंडलित आकृति ग्रहण करता है जो वास्तव में एक परिष्कृत एवं सरल संरचना है। इसकी तुलना थोड़ी सी मरोड़ी


गई सीढ़ी से की जा सकती है जिसकी पार्श्व छड़ें (रेलिंग) एकांतर क्रम में बंधित फॉस्फेट तथा डीऑक्सीराइबोस शर्करा की इकाइयों द्वारा निर्मित होती हैं जबकि उनके बीच के डंडे प्यूरीन/ पिरिमिडीन क्षारक युगलों द्वारा बनते हैं। इस शोध कार्य ने वास्तव में **अणुजैविकी** के विकास की नींव रखी। न्यूक्लिओटाइड क्षारकों के पूरक युगलों से यह स्पष्ट हो जाता है कि किस प्रकार जनक DNA की समरूप प्रतिलिपियाँ दो संतति कोशिकाओं में पहुँचती हैं। इस शोध ने जीवविज्ञान के क्षेत्र में क्रांति ला दी जिसके फलस्वरूप आधुनिक पुनर्योगज DNA तकनीक का विकास हो सका।


DNA में चार क्षारक यथा ऐडेनीन (A), ग्वानीन (G), साइटोसीन (C) तथा थायमीन (T) होते हैं। RNA में भी चार क्षारक होते हैं प्रथम तीन क्षारक DNA के समान हैं परंतु चतुर्थ क्षारक यूरेसिल (U) होता है।


किसी क्षारक के शर्करा की 1' स्थिति पर जुड़ने से निर्मित इकाई को **न्यूक्लिओसाइड** कहते हैं। क्षारक से विभेद करने के लिए शर्करा के कार्बनों को 1', 2', 3' आदि से अंकित किया जाता है (चित्र 14.5 क)। जब न्यूक्लिओसाइड शर्करा अर्धांश में 5'-स्थिति से बंधता है तो हमें न्यूक्लिओटाइड प्राप्त होता है।


14.5.2 न्यूक्लीक अम्ल की संरचना



चित्र 14.5— (क) एक न्यूक्लिओसाइड तथा (ख) एक न्यूक्लिओटाइड की संरचना न्यूक्लिओटाइड आपस में फ़ॉस्फ़ोडाइएस्टर बंधन द्वारा संयुक्त होते हैं जो पेन्टोस शर्करा के 5' तथा 3' कार्बनों के मध्य स्थित होते हैं। एक प्रारूपिक डाइन्यूक्लिओटाइड का बनना चित्र 14.6 में दर्शाया गया है–

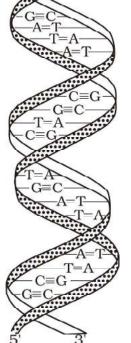
444 रसायन विज्ञान

न्युक्लीक अम्ल की एक शुंखला के अनुक्रम से संबंधित सूचना को इसकी प्राथमिक संरचना कहते हैं। न्यूक्लीक अम्लों की द्वितीयक संरचना भी होती है। जेम्स वाटसन तथा फ्रांसिस क्रिक ने DNA की द्विकुंडलनी संरचना दी (चित्र 14.7)। न्यूक्लीक अम्ल की दो शृंखलाएं आपस में कुंडलित रहती हैं तथा क्षारक युगलों के मध्य हाइड्रोजन आबंध द्वारा आपस में जुड़ी रहती हैं। दोनों रज्जुक एक-दूसरे की पूरक होती हैं क्योंकि क्षारकों के विशिष्ट युगलों के मध्य हाइड़ोजन आबंध बनते हैं। ऐडेनीन, थायेमीन के साथ हाइड्रोजन आबंध बनाता है जबकि साइटोसीन, ग्वानीन के साथ हाइड़ोजन आबंध बनाता है।

RNA की द्वितीयक संरचना में कुंडली केवल एक रज्जुक की बनी होती है जो कभी-कभी वे स्वयं को मोड़ कर द्विकुंडलीय संरचना बना लेती हैं। RNA अणु तीन प्रकार के होते हैं तथा ये भिन्न क्रियाएं संपादित करते हैं। इनके नाम **संदेशवाहक RNA** (m-RNA) राइबोसोमल RNA (r-RNA) तथा अंतरण RNA (t-RNA) है।

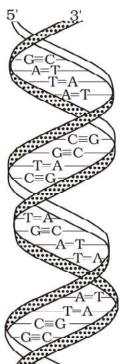
डी.एन.ए. आनुवांशिकता का रासायनिक आधार है तथा इसे आनुवांशिक सूचनाओं के संग्राहक की तरह जाना जाता है। डी.एन.ए. लाखों वर्षों से किसी जीव की विभिन्न प्रजातियों की पहचान बनाए रखने के लिए विशिष्ट रूप से जिम्मेदार है। कोशिका विभाजन के समय एक DNA अणु स्वप्रतिकरण (Self Replication) में सक्षम होता है तथा पुत्री कोशिका में समान DNA रज्जूक का अंतरण होता है।

न्यूक्लिक अम्ल का दूसरा महत्वपूर्ण कार्य, कोशिका में प्रोटीन का संश्लेषण है। वास्तव में कोशिका में प्रोटीन का संश्लेषण विभिन्न RNA अणुओं द्वारा होता है। परंतु किसी विशेष प्रोटीन के संश्लेषण का संदेश DNA में उपस्थित होता है।


हरगोबिंद खुराना

डॉ. हरगोबिंद खुराना का जन्म 1922 में हुआ था। उन्होंने पंजाब विश्वविद्यालय, लाहौर से एम.एससी की डिग्री प्राप्त की। उन्होंने प्रोफ़ेसर व्लादिमिर प्रेलॉग के साथ कार्य किया जिन्होंने खुराना के विचारों तथा दर्शन को विज्ञान कर्म तथा प्रयत्न की ओर आमुख किया। 1949 में भारत में कुछ समय ठहरने के पश्चात खुराना वापस इंग्लैंड चले गए तथा वहाँ उन्होंने प्रोफ़ेसर जी.डब्ल्यू. केनर तथा ए.आर. टॉड के साथ

कार्य किया। कैंब्रिज, इंग्लैंड में कार्य करते समय उनकी रुचि प्रोटीनों तथा न्यूक्लीक अम्लों में हुई। 1968 में डॉ. खुराना को आनुवांशिक कोड ज्ञात करने के लिए मार्शल निरेनवर्ग तथा रॉबर्ट हॉली के साथ संयुक्त रूप से औषध तथा भौतिक चिकित्सा क्षेत्र में नोबेल पुरस्कार प्राप्त हुआ।



चित्र 14.7– डी.एन.ए. की द्विकुंडलनी संरचना

जैव-अणु 445

Downloaded from https:// www.studiestoday.com

न्यूक्लीक अम्ल 14.5.3 के जैविक कार्य

डीएनए अंगुलि छापन (DNA Fingerprinting)

यह ज्ञात है कि प्रत्येक जीव के अद्वितीय अंगुलि छाप होते हैं। ये अंगुलि के शीर्ष पर होते हैं तथा इन्हें लंबे समय तक व्यक्ति की पहचान निर्धारित करने के लिए काम में लाया जाता रहा, लेकिन इन्हें शल्य चिकित्सा के द्वारा परिवर्तित किया जा सकता है। किसी व्यक्ति में DNA के क्षारकों का अनुक्रम अद्वितीय होता है तथा इसको ज्ञात करना DNA अंगुली छाप कहलाता है। यह प्रत्येक कोशिका के लिए समान होता है तथा इसे किसी भी इलाज द्वारा परिवर्तित नहीं किया जा सकता। DNA अंगुली छाप का उपयोग आजकल– (i) विधि संबंधी प्रयोगशाला में अपराधी की पहचान करने में होता है। (ii) किसी व्यक्ति की पैतृकता को निर्धारित करने में होता है।

(iii) किसी दुर्घटना में मृतक के शरीर की पहचान करने के लिए बच्चों अथवा जनक के DNA की तुलना करके किया जाता है, तथा

(iv) जैव विकास के पुनर्लेखन में किसी प्रजाति समूह की पहचान में होता है।

14.6 हार्मोन

हॉर्मोन वह अणु होते हैं जो कोशिकाओं के मध्य संदेशवाहक का कार्य करते हैं। यह शरीर में अंत:-म्रावी ग्रंथियों में बनते हैं और सीधे ही रक्त धारा में प्रवाहित कर दिए जाते हैं, जो इन्हें कार्य स्थल तक पहुँचा देती है।

रासायनिक प्रकृति के अनुसार इनमें से कुछ स्टेरॉयड होते हैं, उदाहरणार्थ, एस्ट्रोजन और ऐन्ड्रोजन; इन्सुलिन और एन्डोर्फिन जैसे कुछ हॉर्मोन पॉलिपेप्टाइड होते हैं तथा कुछ अन्य ऐमीनो अम्लों के व्युत्पन्न होते हैं, उदाहरणार्थ एपिनेफरिन एवं नॉरएपिनेफरिन।

शरीर में हॉर्मोनों के अनेक कार्य हैं। यह शरीर में जैविक क्रियाकलाप में संतुलन बनाए रखने में सहायक होते हैं। रक्त में ग्लूकोस की मात्रा को सीमित रखने में इन्सुलिन की भूमिका इसका उदाहरण है। रक्त में ग्लूकोस की मात्रा तेजी से बढ़ने पर इन्सुलिन निकलने लगती है। दूसरी ओर हार्मोन ग्लूकागॉन की प्रवृत्ति रक्त में ग्लूकोस की मात्रा बढ़ाने की होती है। एक साथ ये दोनों हॉर्मोन रक्त में ग्लूकोस की मात्रा नियंत्रित करते हैं। एपिनेफरिन और नॉरएपिनेफरिन बाह्य उद्दीपक की ओर प्रतिक्रिया में मध्यस्थता करते हैं। एपिनेफरिन और नॉरएपिनेफरिन बाह्य उद्दीपक की ओर प्रतिक्रिया में मध्यस्थता करते हैं। वृद्धि-हॉर्मोन और जनन-हॉर्मोन वृद्धि तथा विकास में भूमिका निभाते हैं। थायराइड ग्रंथी में बनने वाली थायरॉक्सिन, ऐमीनो अम्ल टायरोसिन का आयोडीन युक्त व्युत्पन्न होती है। थायरॉक्सिन की मात्रा असामान्य रूप से कम होने पर अवअवटुता (हाइपोथायराइडिज्म) हो जाती है जो अकर्मण्यता और मोटापे से अभिलक्षणित होती है। थायरॉक्सिन की बढ़ी हुई मात्रा से अतिअवटुता (हाइपरथयरॉयडिज्म) हो जाती है। आहार में आयोडीन की कमी अवअवटुता और थायराइड ग्रन्थि के बढ़ने का कारण बन सकती है। अधिकतर इस स्थिति को खाने वाले नमक में सोडियम आयोडाइड मिलाकर (आयोडाइज्ड सॉल्ट) नियंत्रित किया जाता है।

स्टेरॉयड हॉमोंन ऐड्रीनल कॉर्टेक्स और गोनैड ग्रन्थियों (पुरुषों में वृषण और स्त्रियों में डिम्बग्रन्थि) में बनते हैं। ऐड्रीनल कॉर्टेक्स से निकलने वाले हॉर्मोन शरीरिक कार्यकलापों में बहुत महत्वपूर्ण भूमिका निभाते हैं। उदाहरणार्थ ग्लूकोकॉर्टिकायड कार्बोहाइड्रेट उपापचय को नियंत्रित करते हैं, जलन उत्पन्न करने वाली अभिक्रियाओं को घटाते हैं एवं तनाव के प्रति प्रतिक्रिया में भी सम्मिलित होते हैं। मिनरैलोकॉर्टिकॉयड गुर्दों से उत्सर्जित होने वाले जल और लवण के स्तर को नियंत्रित करते हैं। यदि ऐड्रिनल कॉर्टेक्स ठीक से कार्य न करें तो इसके परिणामस्वरूप ऐडीसन्सडिजीज हो सकती है जिसके अभिलक्षण हैं हाइपोग्लाइसीमिया, दुर्बलता और तनाव के प्रति संवेदनशीलता की संभावना बढ़ना। यदि ग्लूकोकॉर्टिकॉयड और मिनरैलोकॉर्टिकायड से इलाज न हो तो यह रोग घातक हो सकता है। गोनैडों से निकलने वाले

446 रसायन विज्ञान

हॉर्मोन गौण यौन लक्षणों के लिए उत्तरदायी होते हैं। टेस्टोस्टीरॉन पुरुषों के लक्षण जैसे-आवाज़ में भारीपन, चेहरे पर बाल और सामान्य शारीरिक बनावट के लिए उत्तरदायी होता है। एस्ट्राडाइऑल महिलाओं का प्रमुख हॉर्मोन है। यह महिलाओं में गौण यौन लक्षणों के लिए उत्तरदायी होता है और रजोधर्म के नियंत्रण में भागीदार होता है। प्रोजेस्टीरॉन, निषेचित अंडे की स्थापना के लिए गर्भाशय को उपयुक्त बनाता है।

पाठ्यनिहित प्रश्न

- 14.6 हमारे शरीर में विटामिन C संचित क्यों नहीं होता?
- 14.7 यदि DNA के थायेमीन युक्त न्यूक्लिओटाइड का जलअपघटन किया जाए तो कौन-कौन से उत्पाद बनेंगे?
- 14.8 जब RNA का जलअपघटन किया जाता है तो प्राप्त क्षारकों की मात्राओं के मध्य कोई संबंध नहीं होता। यह तथ्य RNA की संरचना के विषय में क्या संकेत देता है?

સારાંશ

कार्बोडाइड्रेट, ध्रुवण घूर्णक पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन, अथवा वे अणु होते हैं, जिनके जल अपघटन पर इस प्रकार की इकाइयाँ प्राप्त होती हैं। इन्हें मुख्य रूप से तीन समूहों में वर्गीकृत किया गया है– मोनोसैकैराइड, डाइसैकैराइड, पॉलिसैकैराइड। ग्लूकोस जो कि स्तनधारियों के लिए ऊर्जा का प्रमुख स्रोत है, स्टार्च के पाचन से प्राप्त होता है। मोनोसैकेराइड, ग्लाकोसिडिक बंध द्वारा जुड़कर डाइसैकेराइड तथा पॉलिसैकेराइड बनाते हैं।

प्रोटीन लगभग बीस विभिन्न α–ऐमीनो अम्लों के बहुलक हैं जो पेप्टाइड आबंधों द्वारा जुड़े रहते हैं। दस ऐमीनो अम्लों को आवश्यक ऐमीनो अम्ल कहते हैं क्योंकि ये हमारे शरीर में निर्मित नहीं होते। अत: ये आहार द्वारा उप्लब्ध होने चाहिए। प्रोटीन जीवधारी में विभिन्न संरचनात्मक एवं गतिज क्रियाओं को संपादित करते हैं। उन प्रोटीनों को जिनमें केवल α–ऐनीमो अम्ल होते हैं, सामान्य प्रोटीन कहा जाता है। pH अथवा ताप में परिवर्तन करने पर प्रोटीनों की द्वितीयक एवं तृतीयक संरचनाएं विकृत हो जाती हैं तथा वह अपने कार्य संपादित नहीं कर पातीं। इसे प्रोटीन का विकृतीकरण कहते हैं। एन्जाइम जैव उत्प्रेरक होते हैं जो जैव तंत्र में अभिक्रियाओं की गति में वृद्धि करते हैं। ये अपने कार्यों में अति विशिष्ट एवं अति वरणात्मक होते हैं रासायनिक रूप से सभी एन्जाइम प्रोटीन हैं।

विटामिन आहार में आवश्यक सहायक भोज्य कारक हैं। इन्हें वसा विलेय (A, D, E तथा K) तथा जल विलेय (B-समूह तथा C) में वर्गीकृत किया गया है। विटामिनों की कमी से अनेक रोग हो जाते हैं।

न्यूक्लीक अम्ल, न्यूक्लिओटाइडों के बहुलक हैं जो एक क्षारक, एक पेन्टोस शर्करा तथा एक फ़ास्फ़ेट अर्धांश से मिलकर बनता है। न्यूक्लीक अम्ल जनक से संतति में गुणों के स्थानांतरण के लिए जिम्मेदार होते हैं। न्यूक्लिक अम्ल दो प्रकार के होते हैं– DNA तथा RNA। इनमें से DNA में पाँच कार्बन परमाणु वाला शर्करा अणु होता है जिसे 2-डीऑक्सीराइबोस कहते हैं, जबकि RNA में राइबोस शर्करा होती है। DNA तथा RNA दोनों में ऐडेनीन, ग्वानीन तथा साइटोसीन क्षारक होते हैं। चतुर्थ क्षारक DNA में थायमीन तथा RNA में यूरेसिल होता है। DNA की संरचना द्विरज्जुक द्विकुंडलनी है जबकि RNA की संरचना एक रज्जुक कुंडलनी होती है। DNA आनुवांशिकता का रासायनिक आधार होता है। तथा इनमें किसी कोशिका में प्रोटीन संश्लेषण का कोडित संदेश होता है RNA तीन प्रकार के होते हैं। — mRNA, r-RNA तथा t-RNA, जो कि वास्तव में कोशिका में प्रोटीन का संश्लेषण करते हैं।

जैव-अणु <mark>447</mark>

अभ्यास

14.1	मोनोसैकैराइड क्या होते हैं?		
14.2	अपचायी शर्करा क्या होती है?		
14.3	पौधों में कार्बोहाइड्रेटों के दो मुख्य कार्यों को लिखिए।		
14.4	निम्नलिखित को मोनोसैकैराइड तथा डाइसैकैराइड में वर्गीकृत कीजिए– राइबोस, 2-डीऑक्सीराइबोस, माल्टोस, गैलैक्टोस, फ्रक्टोज़ तथा लैक्टोस		
14.5	ग्लाइकोसाइडी बंध से आप क्या समझते हैं?		
14.6	ग्लाइकोजन क्या होता है तथा ये स्टार्च से किस प्रकार भिन्न है?		
14.7	(अ) सूक्रोस तथा (ब) लैक्टोस के जलअपघटन से कौन से उत्पाद प्राप्त होते हैं?		
14.8	स्टार्च तथा सेलुलोस में मुख्य संरचनात्मक अंतर क्या है?		
14.9	क्या होता है जब D-ग्लूकोस की अभिक्रिया निम्नलिखित अभिकर्मकों से करते हैं?		
	(i) HI (ii) ब्रोमीन जल (iii) HNO ₃		
14.10	ग्लूकोस की उन अभिक्रियाओं का वर्णन कीजिए जो इसकी विवृतशृंखला संरचना के द्वारा नहीं समझाई जा सकतीं।		
14.11	आवश्यक तथा अनावश्यक ऐमीनो अम्ल क्या होते हैं? प्रत्येक प्रकार के दो उदाहरण दीजिए।		
14.12	प्रोटीन के संदर्भ में निम्नलिखित को परिभाषित कीजिए–		
	(i) पेप्टाइड बंध (ii) प्राथमिक संरचना (iii) विकृतीकरण		
	प्रोटीन की द्वितीयक संरचना के सामान्य प्रकार क्या हैं?		
	प्रोटीन की α-हैलिक्स संरचना के स्थायीकरण में कौन से आबंध सहायक होते हैं?		
	रेशेदार तथा गोलिकाकार (globular) प्रोटीन को विभेदित कीजिए।		
	ऐमीनो अम्लों की उभयधर्मी प्रकृति को आप कैसे समझाएंगे?		
	एन्जाइम क्या होते हैं?		
	प्रोटीन की संरचना पर विकृतीकरण का क्या प्रभाव होता है?		
14.19	विटामिनों को किस प्रकार वर्गीकृत किया गया है? रक्त के थक्के जमने के लिए जिम्मेदार विटामिन का नाम दीजिए।		
14.20	विटामिन A व C हमारे लिए आवश्यक क्यों हैं? उनके महत्वपूर्ण स्रोत दीजिए।		
14.21	न्यूक्लीक अम्ल क्या होते हैं? इनके दो महत्वपूर्ण कार्य लिखिए।		
14.22	न्यूक्लिओसाइड तथा न्यूक्लीओटाइड में क्या अंतर होता है?		
	DNA के दो रज्जुक समान नहीं होते, अपितु एक दूसरे के पूरक होते हैं। समझाइए।		
14.24	DNA तथा RNA में महत्वपूर्ण संरचनात्मक एवं क्रियात्मक अंतर लिखिए।		
14.25	कोशिका में पाए जाने वाले विभिन्न प्रकार के RNA कौन से हैं?		

448 रसायन विज्ञान

उद्देश्य

इस एकक के अध्ययन के पश्चात् आप-

- पारिभाषिक शब्दों–एकलक, बहुलक और बहुलकन को समझा सकेंगे तथा उनके महत्त्व को समझेंगे;
- बहुलकों की विभिन्न श्रेणियों के बीच विभेद कर सकेंगे तथा विभिन्न प्रकार के बहुलकन प्रक्रमों में अंतर समझेंगे;
- एकल तथा द्विक्रियात्मक एकलक अणुओं से बहुलक के बनने का महत्व समझेंगे;
- कुछ संश्लिष्ट बहुलकों के विरचन और गुणों का वर्णन कर सकेंगे।
- दैनिक जीवन में बहुलकों के महत्व को समझ सकेंगे।

पॉलिपेप्टाइड बनाने में प्रकृति द्वारा सहबहुलकन का उपयोग होता है, जिसमें विभिन्न प्रकार के 20 तक ऐमीनो अम्ल पाए जाते हैं। रसायनज्ञ अब भी इसमें काफ़ी पीछे हैं।

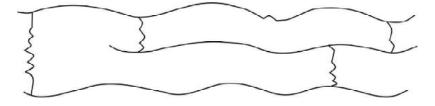
बहुलकों की खोज और उनके विभिन्न अनुप्रयोगों के बिना क्या आप सोच सकते हैं कि दैनिक जीवन आसान और रंगीन हो पाता? बहुलकों का उपयोग प्लास्टिक की बाल्टियों, कपों, तश्तरियों, बच्चों के खिलौनों, पैकेज में प्रयुक्त होने वाले थैलों, संश्लेषित (सिंथेटिक) वस्त्र सामग्रियों, स्वचालित वाहनों के टायरों, गियरों और सीलों, विद्युतरोधी पदार्थों और मशीन के कलपुर्जों के औद्योगिक निर्माण ने दैनिक जीवन और साथ ही औद्योगिक जगत में संपूर्ण क्रांति ला दी है। वस्तुतः बहुलक चार मुख्य उद्योगों; जैसे—प्लास्टिक, प्रत्यास्थ बहुलकों, रेशों और प्रलेपों (पेंट्स) व वार्निशों के लिए मुख्य आधार हैं।

'बहुलक' (पॉलिमर) शब्द की उत्पत्ति दो ग्रीक शब्दों '*पॉली*' अर्थात् अनेक और '*मर*' अर्थात् इकाई अथवा भाग से हुई है। बहुलकों के बहुत बृहत् अणु की तरह परिभाषित किया जा सकता है जिनका द्रव्यमान अतिउच्च (10³-10⁷u) होता है। इन्हें **बृहदणु** भी कहा जाता है, जो कि पुनरावृत्त संरचनात्मक इकाइयों के बृहत पैमाने पर जुड़ने से बनते हैं। पुनरावृत्त संरचनात्मक इकाइयाँ कुछ सरल और क्रियाशील अणुओं से प्राप्त होती हैं जो एकलक कहलाती हैं। यह इकाइयाँ एक-दूसरे के साथ सहसंयोजक बंधों द्वारा जुड़ी होती हैं। बहुलकों के संबंधित एकलकों से विरचन के प्रक्रम को **बहुलकन** कहते हैं। एथीन का पॉलिथीन में रूपांतरण और **हैक्सामेथिलीनडाइऐमीन** तथा **ऐडिपिक अम्ल** की अन्योन्यक्रिया से नाइलॉन 6,6 का विरचन दो विभिन्न प्रकार की बहुलकन अभिक्रियाओं के उदाहरण हैं।

(i)
$$nCH_2 = CH_2 \xrightarrow{aggerssim} n \{CH_2 - CH_2\} \longrightarrow \{CH_2 - CH_2\}_n$$

velter year years the second sec

15.1	बहुलकों का वर्श	किश्ण विशिष्ट महत्त्वों के आधार पर बहुलकों को कई प्रकार से वर्गीकृत कर सकते हैं। बहुलकों के कुछ सामान्य वर्गीकरण निम्नलिखित हैं–
15,1,1	स्रोत पर	इस प्रकार के वर्गीकरण में तीन उपसंवर्ग हैं।
	आधारित	1. प्राकृतिक बहुलक
	वर्गीकरण	यह बहुलक पादपों तथा जंतुओं में पाए जाते हैं। उदाहरण के लिए प्रोटीन, सेलुलोस, स्टार्च, कुछ रेज़िन और रबर।
		2. अर्ध-संश्लेषित बहुलक सेलुलोस व्युत्पन्न जैसे सेलुलोस ऐसीटेट (रेयॉन) और सेलुलोस नाइट्रेट आदि इस उपसंवर्ग के साधारण उदाहरण हैं।
		3. संश्लेषित बहुलक विभिन्न प्रकार के संश्लेषित बहुलक जैसे प्लास्टिक (पॉलिथीन), संश्लेषित रेशे (नाइलॉन 6,6) और संश्लेषित रबर (ब्यूना-S) मानवनिर्मित बहुलकों के उदाहरण हैं, जो विस्तृत रूप से दैनिक जीवन एवं उद्योगों में प्रयुक्त होते हैं।
15.1.2	संरचना पर	संरचना के आधार पर बहुलक तीन विभिन्न प्रकार के होते हैं।
	आधारित	1. रैखिक बहुलक
	बहुलकों का वर्गीकरण	इन बहुलकों में लंबी और रेखीय शृंखलाएं होती हैं। उच्च घनत्व पॉलिथीन, पॉलीवाइनिल क्लोराइड आदि इसके उदाहरण हैं। इन्हें निम्नानुसार निरूपित करते हैं–

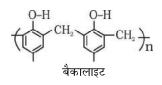

2. शाखित शृंखला बहुलक

इन बहुलकों में रेखीय शृंखलाओं में कुछ शाखाएं होती हैं। उदाहरण – निम्न घनत्व पॉलिथीन। इन्हें निम्न प्रकार से चित्रित करते हैं–

3. तिर्यकबंधित अथवा जालक्रम बहुलक

यह साधारणत: द्विक्रियात्मक और त्रिक्रियात्मक समूहों वाले एकलकों से बनते हैं तथा विभिन्न रेखीय बहुलकशृंखलाओं के बीच प्रबल सहसंयोजक बंध होते हैं। उदाहरणार्थ– बैकेलाइट, मेलैमीन आदि। इन बहुलकों को व्यवस्थात्मक रूप में निम्न प्रकार से प्रदर्शित करते हैं–

बहुलकों को बहुलकन की विधि के आधार पर भी दो उपसमूहों में वर्गीकृत किया के 15.1.3 बहुलकन जा सकता है। प्रकार के अनुसार 1. योगज बहुलक वर्गीकरण योगज बहुलक द्वि अथवा त्रि-आबंध युक्त एकलक अणुओं के पुनरावृत योग से बनते हैं, उदाहरणार्थ–एथीन से पॉलिथीन और प्रोपीन से पॉलिप्रोपीन का विरचन। एक ही प्रकार की एकलक स्पीशीज़ के बहुलकन से बनने वाले योगज बहुलकों को समबहुलक कहा जाता है, उदाहरण–पॉलिथीन; $n \operatorname{CH}_2 = \operatorname{CH}_2 \longrightarrow -(\operatorname{CH}_2 - \operatorname{CH}_2)_n$ समबहुलक पॉलिथीन एथीन और दो भिन्न प्रकार के एकलकों के योगात्मक बहुलकन से बनने वाले बहुलकों को **सहबहुलक** कहा जाता है, उदाहरण - ब्यूना-S, ब्यूना-N आदि C₆H₅ स्टाइरीन ब्यूटाडाईन - स्टाइरीन सहबहुलक 1, 3-ब्यूटाडाईन (ब्यूना - S) 2. संघनन बहलक संघनन बहुलक दो भिन्न द्विक्रियात्मक अथवा त्रिक्रियात्मक एकलक इकाइयों के बीच पुनरावृत्त संघनन अभिक्रिया द्वारा बनते हैं। इन बहुलकन अभिक्रियाओं में लघु अणुओं जैसे जल, ऐल्कोहॉल, हाइड्रोजन क्लोराइड आदि का निराकरण होता है। इसके उदाहरण हैं– टैरिलीन (डेक्रॉन), नाइलॉन-6,6, नाइलॉन 6 आदि। उदाहरण के लिए हैक्सामेथिलीन-डाइऐमीन और ऐडिपिक अम्ल के एक साथ संघनन द्वारा नाइलॉन-6,6 का विरचन होता है। n H₂N (CH₂)₆NH₂ + n HOOC (CH₂)₄ COOH $\rightarrow - \left[\mathrm{NH}(\mathrm{CH}_{2})_{6} \mathrm{NHCO}(\mathrm{CH}_{2})_{4} \mathrm{CO} \right]_{n} + \mathrm{n} \mathrm{H}_{2} \mathrm{O}$ नाइलॉन 6, 6 $+CH_2-CH(C_6H_5)+$ एक समबहुलक है या सहबहुलक? उदाहरण 15.1 यह एक समबहुलक है और जिससे यह प्राप्त होता है वह एकलक स्टाइरीन, हल


C₆H₅CH=CH₂ है।

15.1.4आणिवक बलों
विभिन्न क्षेत्रों में बहुलकों के अनेक अनुप्रयोग उनके यांत्रिक गुणों जैसे तनन सामर्थ्य,
के आधार पर
प्रत्यास्थता, चर्मलता आदि पर निर्भर करते हैं। यह यांत्रिक गुण अंतराआण्विक बलों
द्वार्गीकरणवर्गीकरणद्वारा नियंत्रित होते हैं, उदाहरणार्थ— बहुलक में उपस्थित वान्डरवाल्स बल और हाइड्रोजन
बंध। यह बल बहुलक शृंखलाओं को भी बंधित करते हैं। इस संवर्ग के बहुलकों
को उनमें उपस्थित अंतराआण्विक बलों
को उनमें उपस्थित अंतराआण्विक बलों के परिमाण के आधार पर निम्न चार उपसमूहों
में वर्गीकृत किया जाता है–

 प्रत्यास्थ बहुलक यह प्रत्यास्थ गुण युक्त रबर के समान ठोस होते हैं। इन प्रत्यास्थ बहुलकों में बहुलक

बहुलक <mark>451</mark>

 $\left(\begin{array}{c} \operatorname{CH}_2-\operatorname{C=CH-CH}_2 \\ I \\ \operatorname{Cl} \\ \operatorname{Fisilt} \end{array}\right)$

15.1.5 वृद्धि बहुलकन के आधार पर वर्गीकरण की शृंखलाएं आपस में दुर्बल अंतराआण्विक बलों द्वारा जुड़ी रहती हैं। यह दुर्बल बंधन बल बहुलक को तानित होने देते हैं। शृंखलाओं के बीच कुछ 'तिर्यकबंध' भी होते हैं जो इस बल के निर्मुक्त होने के बाद बहुलक को संकर्ष कर प्रारंभिक स्थान पर लाने में सहायक होते हैं जैसा वल्कनीकृत रबर में होता है। ब्यूना-S, ब्यूना-N और निओप्रीन आदि इसके उदाहरण हैं।

2. रेशे

रेशे एक प्रकार से धागे बनाने वाले ठोस हैं जिनकी तनन सामर्थ्य और मापांक उच्च होते हैं। इन अभिलक्षणों का संबंध प्रबल अंतराआण्विक बलों जैसे हाइड्रोजन बंध से है। इन प्रबल बलों के कारण शृंखलाएं निविड संकुलित हो जाती हैं और इस प्रकार से क्रिस्टलीय प्रकृति प्रदान करती हैं। पॉलीऐमाइड (नाइलॉन 6,6), पॉलीएस्टर (टैरीलीन) आदि इनके उदाहरण हैं।

3. तापसुघट्य बहुलक

यह रेखीय अथवा किंचित शाखित लंबी शृंखला के अणु होते हैं जो बार-बार गरम करने से मृदुल और ठंडा करने से कठोर हो सकने में समर्थ हैं। इन बहुलकों के अंतराआण्विक आकर्षण बल प्रत्यास्थ बहुलकों और रेशों के मध्यवर्ती होते हैं। पॉलिथीन, पॉलिस्टाइरीन, पॉलिवाइनिल आदि कुछ सामान्य तापसुघट्य हैं।

4. तापदृढ़ बहुलक

यह बहुलक तिर्यक बद्ध अथवा अत्यधिक शाखित अणु होते हैं जो साँचों में तापन से विस्तीर्ण तिर्यकबंध हो जाते हैं और दोबारा दुर्गलनीय बन जाते हैं। इनका दोबारा उपयोग नहीं किया जा सकता। कुछ सामान्य उदाहरण, बैकालाइट, यूरिया-फॉर्मेल्डीहाइड रेजिन आदि हैं।

आजकल योगज और संघनन बहुलकों को उनके विरचन में बहुलकन क्रियाविधि के प्रकार के आधार पर शृंखला वृद्धि बहुलक और पद वृद्धि बहुलक भी कहा जाता है।

पाठ्यनिहित प्रश्न

15.1 बहुलक क्या होते हैं?15.2 संरचना के आधार पर बहुलकों का वर्गीकरण कैसे किया जाता है?

15.2 बहुलकन के प्रकार

15.2.1 योगात्मक बहुलकन अथवा शृंखला वृद्धि बहुलकन दो प्रमुख प्रकार की बहुलकन अभिक्रियाएं हैं यानी कि योगज अथवा शृंखला वृद्धि बहुलकन और संघनन अथवा पदश: वृद्धि बहुलकन।

इस प्रकार के बहुलकन में बहुलक एक ही प्रकार के एकलक अथवा भिन्न एकलकों के अणुओं के परस्पर योग से मिलकर बनते हैं। प्रयुक्त होने वाले एकलक असंतृप्त यौगिक होते हैं, जैसे– ऐल्कीन, ऐल्केडाइईन और उनके व्युत्पन्न। बहुलकन की इस विधि में शृंखला की लंबाई बढ़ना अथवा शृंखला वृद्धि किसी मुक्त मूलक अथवा आयनिक स्पीशीज़ के बनने से होती है। तथापि, मुक्त मूलक नियंत्रित योगज अथवा शृंखला वृद्धि बहुलकन सबसे सामान्य विधि है।

<mark>452</mark> रसायन विज्ञान

1. मुक्त मूलक क्रियाविधि

विभिन्न प्रकार की ऐल्कीन अथवा डाइईन और उनके व्युत्पन्नों का बहुलकन मुक्त मूलक जनक जैसे बेन्ज़ॉयल परॉक्साइड, ऐसीटिल परॉक्साइड, तृतीयक-ब्यूटिल परॉक्साइड आदि प्रारंभक (उत्प्रेरक) की उपस्थिति में होते हैं। उदाहरण के लिए, एथीन का पॉलिथीन में बहुलकन, तापन अथवा बेन्ज़ॉयल परॉक्साइड प्रारंभक की अल्प मात्रा के साथ मिश्रण को प्रकाश में खुला छोड़ने पर होता है। प्रक्रिया परॉक्साइड द्वारा बनने वाले फ़ेनिल मुक्त मूलक के एथीन द्विक्-आबंध पर योग से प्रारंभ होती है एवं इस प्रकार एक नया और अधिक बड़ा मुक्त मूलक जनित होता है। इस चरण को **शृंखला प्रारंभन पद** कहते हैं। जब यह मूलक एथीन के दूसरे अणु के साथ अभिक्रिया करता है तब दूसरा और अधिक बड़े आकार का मूलक बनता है। नए और अधिक बड़े मूलकों द्वारा इस अनुक्रम की पुनरावृत्ति अभिक्रिया को अग्र दिशा में ले जाती हैं और इस चरण को **शृंखला संचरण पद** कहते हैं। अंतिम रूप से किसी अवस्था पर इस प्रकार बनने वाला उत्पाद मूलक किसी अन्य मूलक के साथ अभिक्रिया द्वारा बहुलकित उत्पाद बनाता है। इस चरण को **शृंखला समापन पद** कहते हैं। चरणों के अनुक्रम को निम्न प्रकार से प्रदर्शित किया जा सकता है–

शृंखला प्रारंभक पद

$$C_{6}H_{5}-C-O-O-C-C_{6}H_{5} \longrightarrow 2C_{6}H_{5}-C-O \longrightarrow 2\overset{\circ}{C_{6}}H_{5}$$

 $a = s i a r$

शृंखला संचरण पद

$$C_{6}H_{5}-CH_{2}-\dot{C}H_{2}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-CH_{2}-CH_{2}-\dot{C}H_{2}$$

$$\downarrow$$

$$C_{6}H_{5}+(CH_{2}-CH_{2})+CH_{2}-\dot{C}H_{2}$$

शृंखला समापन पद

दीर्घ शृंखला के समापन के लिए ये मुक्त मूलक विभिन्न प्रकार से संयोजित होकर पॉलिथीन बनाते हैं। शृंखला समापन की एक विधि नीचे दिखाई गई है–

$$C_{e}H_{5} + CH_{2} - CH_{2} + CH_{2} + CH_{2} - CH_{2} + CH_{2} + CH_{2} - CH_{2} + CH_{2}$$

और 350 से 570 K ताप पर डाइऑक्सीजन अथवा परॉक्साइड प्रारंभक (उत्प्रेरक) की लेशमात्र उपस्थिति में एथीन के बहुलकन द्वारा प्राप्त किया

बहुलक <mark>453</mark>

जाता है। मुक्त मूलक योगज और H-परमाणु अपाहरण से प्राप्त अल्प घनत्व पॉलिथीन (LDP) की संरचना अत्यधिक शाखित होती है।

अल्प घनत्व पॉलिथीन रसायनत: अक्रिय और कठोर परंतु लचीली और विद्युत की अल्प चालक होती है। अत: इसका उपयोग विद्युत वाहक तारों के विद्युतरोधन और निष्पीडन बोतलों, खिलौनों और लचीले पाइपों के निर्माण के लिए किया जाता है।

(ii) उच्च घनत्व पॉलिथीन - यह एथीन के किसी हाइड्रोकार्बन विलायक में ट्राईएथिलएलुमिनियम और टाइटेनियम टेट्राक्लोराइड (त्सीग्लर-नट्टा उत्प्रेरक) जैसे उत्प्रेरकों की उपस्थिति में, 333 K से 343 K ताप और 6-7 वायुमंडलीय दाब पर बहुलकन करने से प्राप्त होती है। इस प्रकार निर्मित उच्च घनत्व पॉलिथीन (HDP) में रेखीय अणु होते हैं तथा इसका घनत्व निविडसंकुलन के कारण उच्च होता है। यह भी रासायनिक रूप से अक्रिय अधिक कठोर और दृढ़ होती है। यह बाल्टियों, कूड़ादानों, बोतलों, पाइपों आदि के निर्माण में प्रयुक्त होती है।

(ख) पॉलिटेट्राफ्लुओरोएथीन (टेफलॉन)

टेफलॉन, टेट्राफ्लुओरोएथीन को मुक्त मूलक अथवा परसल्फेट उत्प्रेरक के साथ उच्च दाब पर गर्म करके उत्पादित की जाती है। यह रासायनिक रूप से अक्रिय और संक्षारक अभिकर्मकों द्वारा आक्रमण के प्रति प्रतिरोधी है। इसको तेल सीलों और गैस्केटों को बनाने में और न चिपकने वाली (नॉन-स्टिक) सतह से लेपित बरतनों में उपयोग किया जाता है।

$$n \operatorname{CF}_{2} = \operatorname{CF}_{2} \xrightarrow{3 \operatorname{cd} \operatorname{tra}} \xrightarrow{} \left\{ \operatorname{CF}_{2} - \operatorname{CF}_{2} \right\}_{n}$$

$$\stackrel{2}{\operatorname{czyteg}} \operatorname{dil} \operatorname{$$

(ग) पॉलिऐक्रिलोनाइट्राइल

ऐक्रिलोनाइट्राइल के परॉक्साइड उत्प्रेरक की उपस्थिति में योगज बहुलकन से पॉलिऐक्रिलोनाइट्राइल बनता है।

n CII₂ = CIICN
$$\xrightarrow{\text{aggeas}}_{\text{utiatuss 3cdta}} \xrightarrow{\text{CN}}_{\text{I}}$$

 $\stackrel{\text{I}}{\xrightarrow{}}_{\text{utiatuss 3cdta}} \xrightarrow{\text{CN}}_{\text{I}}$

पॉलिऐक्रिलोनाइट्राइल का उपयोग ऊन के प्रतिस्थापी के रूप में औद्योगिक रेशे जैसे ऑरलॉन अथवा ऐक्रिलन बनाने में किया जाता है।

इस प्रकार के बहुलकन में सामान्यत: दो द्विक्रियात्मक एकलकों की पुनरावृत्त संघनन अभिक्रिया होती है। इन बहुसंघनन अभिक्रियाओं के परिणामस्वरूप सरल अणुओं– जैसे जल, ऐल्कोहॉल आदि जैसे सरल अणुओं का ह्रास हो सकता है और उच्च आण्विक द्रव्यमान वाले संघनन बहुलक बनते हैं।

इन अभिक्रियाओं में प्रत्येक पद का उत्पाद भी एक द्विक्रियात्मक स्पीशीज़ होती है और संघनन का अनुक्रम चलता रहता है। चूँकि, प्रत्येक पद में एक भिन्न प्रकार्यात्मक समूह युक्त स्पीशीज निर्मित होती है और यह एक दूसरे पर निर्भर नहीं करते अत: इस प्रक्रिया को पदश: वृद्धि बहुलकन भी कहा जाता है।

इम्पेरिया के जी. नट्टा और जर्मनी के कार्ल त्सीग्लर ने 1963 में त्सीग्लर-नट्टा उत्प्रेरक विकसित करने के लिए नोबेल पुरस्कार प्राप्त किया

टेफलॉन आवरण का 300°C या अधिक ताप पर क्षरण हो जाता है।

एक्रिलिक रेशे धब्बों, रसायनों, कीटो एवं कवक के प्रति अच्छी प्रतिरोधक हैं।

15.2.2 संघनन बहुलकन अथवा पदशः वृद्धि बहुलकन

<mark>454</mark> रसायन विज्ञान

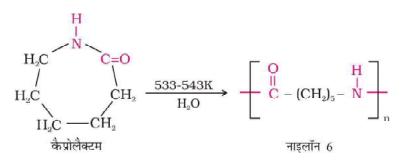
एथिलीन ग्लाइकोल और टेरेफ्थैलिक अम्ल की अन्योन्यक्रिया से टेरिलीन अथवा डेक्रॉन का बनना इस प्रकार के बहुलकन का एक उदाहरण है। n $HOH_2C - CH_2OH + n HOOC \longrightarrow COOH \longrightarrow - OCH_2 - CH_2 - O - C \longrightarrow C$

एथिलीन ग्लाइकोल (एथेन-1, 2-डाइऑल) टेरेफ्थैलिक अम्ल (बेन्जीन-1, 4-डाइकार्बोक्सिलिक अम्ल)

टेरिलीन अथवा डेक्रॉन

कुछ महत्वपूर्ण संघनन बहुलकन अभिक्रियाओं का वर्णन नीचे दिया गया है, जो उपस्थित बंधक इकाइयों द्वारा अभिलक्षणित होती हैं–

1. पॉलिएमाइड

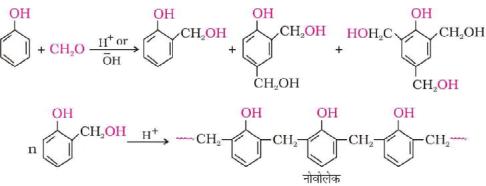

ऐमाइड बंध युक्त बहुलक संश्लिष्ट रेशे के महत्वपूर्ण उदाहरण हैं, इन्हें नाइलॉन कहा जाता है। इनके विरचन की सामान्य विधि में डाइऐमीनों का डाइकार्बोक्सिलिक अम्लों के साथ तथा ऐमीनो अम्लों और उनके लैक्टमों का भी संघनन बहुलकन होता है।

नाइलॉनों का विरचन

(i) नाइलॉन 6,6 - इसका विरचन हैक्सामेथिलीनडाइऐमीन एवं ऐडिपिक अम्ल के उच्च दाब और उच्च ताप पर संघनन द्वारा किया जाता है। नाइलॉन 6,6 का उपयोग शीटों, ब्रशों के शुकों (bristles) और वस्त्र उद्योग में किया जाता है।

$$n \operatorname{HOOC}(\operatorname{CH}_2)_4 \operatorname{COOH} + n \operatorname{H}_2 \operatorname{N} (\operatorname{CH}_2)_6 \operatorname{NH}_2 \xrightarrow{553K} \left\{ \begin{array}{c} H & H & O \\ 1 & \parallel \\ 3 \overline{\operatorname{ver}} & \mathfrak{q} \ \mathfrak{q} \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H & O \\ N - (\operatorname{CH}_2)_6 - \operatorname{N} - \operatorname{C}(\operatorname{CH}_2)_4 - \operatorname{C} \\ \Pi & \mathfrak{q} \ \mathfrak{q} \end{array} \right\}_n$$

(ii) नाइलॉन 6 - यह कैप्रोलैक्टम को जल के साथ उच्च ताप पर गरम करके प्राप्त किया जाता है। नाइलॉन 6 का उपयोग टायर की डोरियों, वस्त्रों और रस्सियों के निर्माण में किया जाता है।

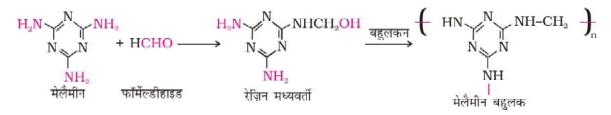

2. पॉलिएस्टर

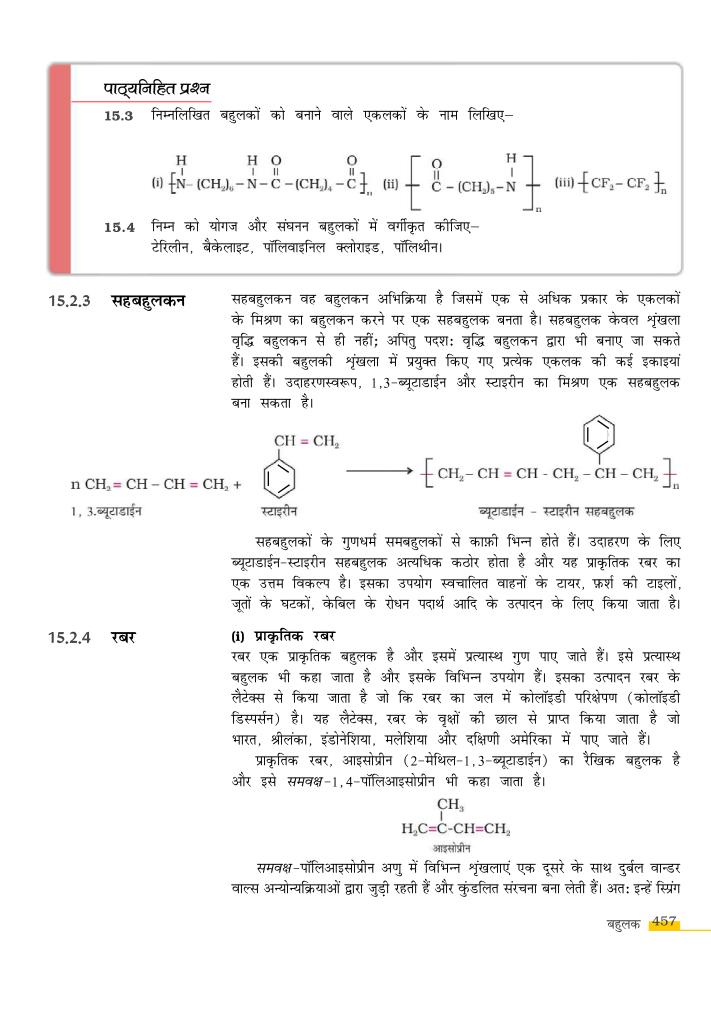
यह द्विकार्बोक्सिलिक अम्लों और डाइऑल के बहुसंघनन उत्पाद हैं। पॉलिएस्टर का सर्वज्ञात उदाहरण डेक्रॉन अथवा टेरिलीन हैं। यह एथिलीन ग्लाइकोल और टेरेफ्थैलिक अम्ल के मिश्रण को 420 K से 460 K ताप तक ज़िंक ऐसीटेट-एन्टिमनी ट्राइऑक्साइड उत्प्रेरक की उपस्थिति में गरम करने पर, पहले दी गई अभिक्रिया की तरह ही निर्मित होता है।

बहुलक <mark>455</mark>

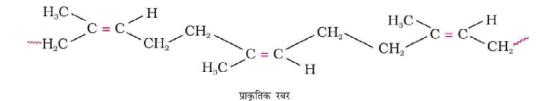
डेक्रॉन रेशा (टेरिलीन) क्रीजरोधी है और इसका उपयोग सूती तथा ऊनी रेशे के साथ सम्मिश्रण करने में तथा सुरक्षा शिरस्त्राणों (Helmets) आदि में कॉॅंच प्रबलन पदार्थों की तरह भी होता है।

3. फ्रीनॉल-फॉर्मेल्डीहाइड बहुलक (बैकेलाइट और संबंधित बहुलक) फ़ीनॉल फॉर्मेल्डीहाइड बहुलक सर्वाधिक पुराने संश्लिष्ट बहुलक हैं। यह फ़ीनॉल की अम्ल अथवा क्षार उत्प्रेरक की उपस्थिति में फॉर्मेल्डीहाइड के साथ संघनन अभिक्रिया द्वारा प्राप्त होते हैं। अभिक्रिया का आरंभ o- और/अथवा p-हाइड्रॉक्सीमेथिलफ़ीनॉल व्युत्पन्नों के विरचन से होता है, जो पुन: फ़ीनॉल के साथ अभिक्रिया करके ऐसे यौगिक बनाते हैं जिनमें आपस में -CH₂ समूहों के माध्यम से जुड़ी वलय होती हैं। प्रारंभिक उत्पाद एक रैखिक उत्पाद हो सकता है जैसे– नोवोलेक, जिसका उपयोग प्रलेपों में होता है।


फॉर्मेल्डीहाइड के साथ गरम करने पर नोवोलेक तिर्यक बंधन निर्मित करके एक दुर्गलनीय ठोस बनाता है जिसे **बैकालाइट** कहते हैं। इसका उपयोग कंघियों, फ़ोनोग्राफ़ रेकॉर्ड अभिलेखों, वैद्युत स्विचों और विभिन्न बरतनों के हत्थे बनाने में किया जाता है।


बैकेलाइट

4. मेलैमीन-फॉर्मेल्डीहाइड बहुलक


यह मेलैमीन और फॉर्मेल्डीहाइड के संघनन बहुलकन द्वारा प्राप्त होता है। इसका उपयोग अभंजनीय बर्तनों (crockey) के निर्माण में किया जाता है।

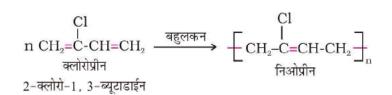
456 रसायन विज्ञान

की तरह खींचा जा सकता है और यह प्रत्यास्थ गुण प्रदर्शित करती हैं।

रबर का वल्कनीकरण – प्राकृतिक रबर उच्च ताप (>335K) पर नरम और निम्न ताप (<283K) पर भंगुर हो जाता है एवं उच्च जल अवशोषण क्षमता प्रदर्शित करता है। यह अध्रुवीय विलायकों में घुलनशील है और ऑक्सीकरण कर्मकों के आक्रमण के प्रति प्रतिरोधी नहीं है। इन भौतिक गुणों में सुधार के लिए वल्कनीकरण की प्रक्रिया की जाती है। इस प्रक्रिया में अपरिष्कृत रबर को सल्फर और उपयुक्त योगजों के साथ 373K to 415K के ताप परास के मध्य गरम किया जाता है। वल्कनीकरण से, द्विबंधों की अभिक्रियाशील स्थितियों पर सल्फर तिर्यक बंध बनाता है और इस प्रकार रबर कठोर हो जाता है।

टायर बनाने के लिए प्रयुक्त होने वाली रबर के उत्पादन में 5% सल्फर का उपयोग तिर्यक बंधक के रूप में किया जाता है। वल्कनीकृत रबर के अणुओं की संभावित संरचनाओं को निम्नप्रकार से दिखाया जा सकता है।

$$\begin{array}{c} CH_{3} & CH_{3} \\ ---CH_{2} - C & -CH - CH_{2} \\ S & S \\ ---CH_{2} - C & -CH - CH_{2} \\ ---CH_{2} - C & -CH - CH_{2} \\ ---CH_{3} \end{array} \qquad \begin{array}{c} CH_{3} \\ ---CH_{3} \\ ---CH_{2} - C \\ --CH_{3} \\ ---CH_{3} \end{array} \qquad \begin{array}{c} CH_{3} \\ ---CH_{3} \\ -$$


2. संश्लेषित रबर

संश्लेषित रबर वल्कनीकृत रबर की तरह का बहुलक है, जो अपनी लंबाई से दुगुने तक खींचे जा सकते हैं। तथापि, जैसे ही बाह्य तनन बल निर्मुक्त होता है तो यह तुरंत अपनी मूल आकृति एवं आकार में लौट आता है इस प्रकार, संश्लेषित रबर या तो 1,3 ब्यूटाडाईन के व्युत्पन्नों के सहबहुलक हैं अथवा 1,3 ब्यूटाडाईन के या इसके व्युत्पन्नों के अन्य असंतृप्त एकलकों के साथ सहबहुलक हैं।

संश्लेषित रबर का विरचन

1. निओप्रीन

निओप्रीन अथवा पॉलिक्लोरोप्रीन, क्लोरोप्रीन के मुक्त मूलक बहुलकन द्वारा बनता है।

<mark>458</mark> रसायन विज्ञान

इसमें वनस्पति और खनिज तेल के प्रति उत्कृष्ट प्रतिरोध होता है। इसका उपयोग वाहक पट्टे, गैस्केट और हौज़ों के बनाने में किया जाता है। 2. ब्यूना-N - आप खंड 15.1.3 में ब्यूना-S के बारे में पहले ही पढ़ चुके हैं। ब्यूना-N 1,3-ब्यूटाडाईन और ऐक्रिलोनाइट्राइल के परॉक्साइड उत्प्रेरक की उपस्थिति में सहबहुलकन से प्राप्त होता है।

	CN	CN
n CH ₂ =CH–CH=C	$H_2 + nCH_2 = CH -$	$\xrightarrow{\text{Hgaggensor}} \left\{ \begin{array}{c} CH_2 - CH = CH - CH_2 - CH_2 - CH_2 \\ \end{array} \right\}_n$
1. 3-ब्यूटाडाईन	ऐक्रिलोनाइट्राइल	ब्यूना-N

यह पेट्रोल, स्नेहक तेल और कार्बनिक विलायकों के प्रति प्रतिरोधी है। इसका उपयोग तेल-सील और टंकी के लिए अस्तर आदि बनाने में किया जाता है।

पाठ्यनिहित प्रश्न

15.5 ब्यूना-N और ब्यूना-S के मध्य अंतर समझाइए।
15.6 निम्न बहुलकों को उनके अंतराआण्विक बलों के बढ़ते क्रम में व्यवस्थित कीजिए।
(i) नाइलॉन-6,6, ब्यूना-S, पॉलिथीन
(ii) नाइलॉन-6, निओप्रीन, पॉलिवाइनिल क्लोराइड

15.3 बहुलकों का आण्विक द्रव्यमान बहुलकों के गुण उनके आण्विक द्रव्यमान, आकार और संरचना से घनिष्ठ रूप से संबंधित होते हैं। बहुलक शृंखला की लंबाई उनके संश्लेषण के दौरान अभिक्रिया मिश्रण में एकलकों की उपलब्धता पर निर्भर करती है। इस प्रकार, बहुलक प्रतिदर्श में विभिन्न लंबाई की शृंखलाएं उपस्थित होती हैं। इसलिए इनका आण्विक द्रव्यमान सदैव एक औसत के रूप में व्यक्त किया जाता है। बहुलकों के आण्विक द्रव्यमान को रासायनिक और भौतिक विधियों द्वारा ज्ञात किया जा सकता है।

 15.4
 जैव–

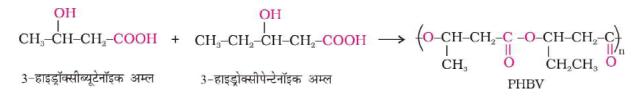
 जिठ्ठावीक्ट्णीय
 अनेक बहुलक पर्यावरणी निम्ननीकरण प्रक्रमों के प्रति सर्वथा प्रतिरोधी होते हैं और इस प्रकार

 विठ्ठावीकट्णीय
 यह बहुलक ठोस अपशिष्ट द्रव्यों के संचयन के लिए उत्तरदायी होते हैं। इन ठोस अपशिष्टों से गंभीर पर्यावरणीय समस्याएं उत्पन्न होती हैं और यह काफ़ी लंबे समय तक अनिम्ननीकृत

 बहुलक
 अनेक बहुलक ठोस अपशिष्ट द्रव्यों के संचयन के लिए उत्तरदायी होते हैं। इन ठोस अपशिष्टों से गंभीर पर्यावरणीय समस्याएं उत्पन्न होती हैं और यह काफ़ी लंबे समय तक अनिम्ननीकृत

 कहुलक
 रूप में पड़े रहते हैं। सामान्य जानकारी और बहुलक ठोस अपशिष्टों द्वारा उत्पन्न समस्याओं को ध्यान में रखते हुए कुछ नए जैवनिम्ननीय संशिलष्ट बहुलकों को अभिकल्पित और विकसित किया गया है। इन बहुलकों में उपविश्व प्रकार्यात्मक समुहों के

सदूश प्रकार्यात्मक समूह पाए जाते हैं।


े ऐलिफ़्रैटिक पॉलिएस्टर जैवनिम्ननीय बहुलकों का एक महत्त्वपूर्ण वर्ग हैं। कुछ महत्त्वपूर्ण उदाहरण निम्नलिखित हैं –

(1) पॉलि β-हाइड्रॉक्सीब्यूटिरेट - को-β-हाइड्रॉक्सी वैलेरेट **(PHBV)** –

यह 3-हाइड्रॉक्सीब्यूटेनॉइक अम्ल और 3-हाइड्रॉक्सीपेन्टेनॉइक अम्ल के सहबहुलकन से प्राप्त होता है। PHBV का उपयोग विशिष्ट पैकेजिंग, अस्थियों में प्रयुक्त युक्तियों और

बहुलक <mark>459</mark>

औषधों के नियंत्रित मोचन में भी होता है। पर्यावरण में PHVB का जीवाण्विक निम्ननीकरण हो जाता है।

(2) नाइलॉन 2 – नाइलॉन 6

यह ग्लाइसिन (H_2N-CH_2-COOH) और ऐमीनोकैप्रोइक अम्ल (H_2N (CH_2)₅ COOH) का एकांतर पॉलिऐमाइड सहबहुलक है और जैवनिम्ननीय है। क्या आप इस सहबहुलक की संरचना लिख सकते हैं?

15.5 व्यापारिक महत्त्व के कुछ बहुलक पहले से विवेचित बहुलकों के अतिरिक्त, व्यापारिक दृष्टि से महत्त्वपूर्ण कुछ अन्य बहुलकों को उनकी संरचनाओं एवं उपयोगों सहित सारणी 15.1 में दिया गया है।

सारणी 15.1— व्यापारिक महत्त्व के कुछ अन्य बहुलक

पॉलिमर का नाम	एकलक	संरचना	उपयोग
पॉलिप्रोपीन	प्रोपीन	CH ₃ CH ₂ -CH	रस्सियाँ, खिलौने, पाइप, रेशे आदि बनाने में
पॉलिस्टाइरीन	स्टाइरीन	$(CH_2-CH)^{C_6H_5}_n$	विद्युतरोधी के रूप में, वस्तुओं को लपेटने के लिए, खिलौने, रेडियो और टेलिविज्ञन कैबिनिट बनाने में।
पॉलिवाइनिल क्लोराइड	वाइनिल क्लोराइड	$(Cl_1 - CH_2 - CH)_n$	बरसातियाँ, बैग, वाइनिल फ़र्श और पाइप बनाने में
यूरिया-फॉर्मेल्डीहाइड रेजिन	(क) यूरिया (ख) फॉर्मेल्डीहाइड	+ NH-CO-NH-CH ₂ $+$	न टूटने वाले कप और पटलित चादरें बनाने में।
ग्लिप्टल	(क) एथिलीन ग्लाइकॉल (ख) थैलिक अम्ल	+ OCH ₂ -CH ₂ OOC CO $+$	प्रलेप और प्रलाक्ष बनाने में
बैकेलाइट	(क) फ़ीनॉल (ख) फॉर्मेल्डीहाइड	$\mathbf{H}_{\mathbf{C}}^{\mathbf{O}-\mathbf{H}} \overset{\mathbf{O}-\mathbf{H}}{\overset{\mathbf{O}-\mathbf{H}}}{\overset{\mathbf{O}-\mathbf{H}}}}{\overset{\mathbf{O}-\mathbf{H}}}{\overset{\mathbf{O}-\mathbf{H}}}{\overset{\mathbf{O}-}}}{\overset{\mathbf{O}-\mathbf{H}$	कंघियाँ, वैद्युत स्विचों, बर्तनों के हत्थे और कंप्यूटर डिस्क बनाने में।

460 रसायन विज्ञान

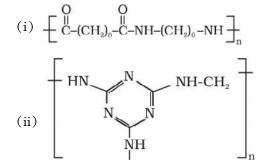
સારાંશ

बहुलकों को उच्च आण्विक द्रव्यमान युक्त **वृहदणु** की तरह परिभाषित किया जाता है, जिनमें संगत **एकलकों** से व्युत्पन्न पुनरावृत्त संरचनात्मक इकाइयाँ पाई जाती हैं। यह बहुलक प्राकृतिक अथवा संश्लेषित उत्पत्ति के हो सकते हैं और विभिन्न प्रकार से वर्गीकृत किए जा सकते हैं।

कार्बनिक परॉक्साइड प्रारंभक की उपस्थिति में, ऐल्कीन और उनके व्युत्पन्नों का **योगज बहुलकन** अथवा शृंखला वृद्धि बहुलकन, मुक्त मूलक क्रियाविधि द्वारा संपन्न होता है। पॉलिथीन, टेफ्लॉन और ऑरलॉन आदि उचित एल्कीन अथवा उसके व्युत्पन्नों के योगज बहुलकन से बनते हैं। संघनन बहुलकन अभिक्रियाएं -NH₂, -OH और -COOH जैसे दो अथवा अधिक प्रकार्यात्मक समूहों युक्त एकलकों की अन्योन्यक्रिया द्वारा प्रदर्शित की जाती है। यह बहुलकन कुछ सरल अणुओं जैसे H₂O, CH₃OH आदि के निराकरण द्वारा संपन्न होता है। फॉर्मेल्डीहाइड, फ़ीनॉल और मेलैमीन के साथ अभिकृत होकर संगत संघनन बहुलक उत्पाद बनाता है। संघनन बहुलकन पदश: आगे बढ़ता है और इसे पदश: वृद्धि बहुलकन भी कहा जाता है। नाइलॉन, बैकालाइट और डेक्रॉन संघनन बहुलकों के कुछ महत्वपूर्ण उदाहरण हैं। तथापि दो असंतृप्त एकलकों का मिश्रण सहबहुलकन प्रदर्शित करता है और एक सहबहुलक बनाता है जिसमें प्रत्येक एकलक की बहुगुणित इकाइयाँ होती हैं। प्राकृतिक रबर *सिस*-1,4-पॉलिआइसोप्रीन है और इसे सल्फर के साथ वल्कनीकरण प्रक्रिया द्वारा अधिक कठोर बनाया जा सकता है। संघलष्ट रबर साधारणत: एल्कीन और 1, 3-ब्यूटाडाईन व्युत्पन्नों के सहबहुलकन से प्राप्त किए जाते हैं।

संश्लिष्ट बहुलकीय अपशिष्टों से स्थितिज पर्यावरणीय संकट को देखते हुए कुछ **जैवनिम्ननीय बहुलकों** जैसे PHBV और नाइलॉन 2– नाइलॉन 6 का विकल्प के रूप में विकास किया गया है।

अभ्यास


15.1	बहुलक और एकलक पदों की व्याख्या कीजिए।
15.2	प्राकृतिक और संश्लिष्ट बहुलक क्या हैं? प्रत्येक के दो उदाहरण दीजिए।
15.3	समबहुलक और सहबहुलक पदों (शब्दों) में विभेद कर प्रत्येक का एक उदाहरण दीजिए।
15.4	एकलक की प्रकार्यात्मकता को आप किस प्रकार समझाएंगे?
15.5	बहुलकन पद (शब्द) को परिभाषित कीजिए।
15.6	(NH-CHR-CO) _n एक समबहुलक है या सहबहुलक?
15.7	आण्विक बलों के आधार पर बहुलक किन संवर्गों में वर्गीकृत किए जाते हैं?
15.8	संकलन और संघनन बहुलकन के मध्य आप किस प्रकार विभेद करेंगे।
15.9	सहबहुलकन पद (शब्द) की व्याख्या कीजिए और दो उदाहरण दीजिए।
15.10	एथीन के बहुलकन के लिए मुक्त मूलक क्रियाविधि लिखिए।
15.11	तापसुघट्य और तापदृढ़ बहुलकों को प्रत्येक के दो उदाहरण के साथ परिभाषित कीजिए।
15.12	निम्न बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलक लिखिए–
	(i) पॉलिवाइनिल क्लोराइड (ii) टेफ्लॉन (iii) बैकालाइट
15.13	मुक्त मूलक योगज बहुलकन में प्रयुक्त एक सामान्य प्रारंभक का नाम और संरचना लिखिए।
15.14	रबर अणुओं में द्विबंधों की उपस्थिति किस प्रकार उनकी संरचना और क्रियाशीलता को प्रभावित करती है?
15.15	रबर के वल्कनीकरण के मुख्य उद्देश्य की विवेचना कीजिए।

बहुलक <mark>461</mark>

15.16 नाइलॉन-6 और नाइलॉन-6,6 में पुनरावृत एकलक इकाइयाँ क्या हैं?

15.17 निम्नलिखित बहुलकों के एकलकों का नाम और संरचना लिखिए।

- (i) ब्यूना-S (ii) ब्यूना-N (iii) डेक्रॉन (iv) निओप्रीन
- 15.18 निम्नलिखित बहुलक संरचनाओं के एकलक की पहचान कीजिए-

15.19 एथिलीन ग्लाइकॉल और टेरेफ्थैलिक अम्ल से डेक्रॉन किस प्रकार प्राप्त किया जाता है?

15.20 जैवनिम्ननीय बहुलक क्या हैं? एक जैवनिम्ननीय ऐलिफ़ैटिक पॉलिएस्टर का उदाहरण दीजिए।

कुछ पाठ्यनिहित प्रश्नों के उत्तर

- 15.1 बहुलक उच्च आण्विक द्रव्यमान वाले पदार्थ होते हैं जिनमें बृहत् संख्या में पुनरावृत्त संचनात्मक इकाइयाँ पाई जाती हैं। इन्हें बृहदणु भी कहा जाता है। बहुलकों के कुछ उदाहरण पॉलिथीन, बैकालाइट, रबर, नाइलॉन-6, 6 आदि हैं।
- 15.2 संरचना के आधार पर, बहुलकों को निम्न प्रकार से वर्गीकृत किया जाता है -
 - (i) रेखीय बहुलक जैसे पॉलिथीन, पॉलिवाइनिल क्लोराइड आदि।
 - (ii) शाखित शृंखला बहुलक जैसे निम्न घनत्व पॉलिथीन।
 - (iii) तिर्यक बद्ध बहुलक जैसे बैकालाइट, मेलैमीन आदि।
- 15.3 (i) हैक्सामेथिलीनडाइऐमीन और ऐडिपिक अम्ल
 - (ii) कैप्रोलैक्टम
 - (iii) टेट्राफ्लुओरोएथीन
- 15.4 योगज बहुलक पॉलिवाइनिल क्लोराइड, पॉलिथीन संघनन बहुलक टेरिलीन, बैकालाइट
- 15.5 ब्यूना-N; 1, 3-ब्यूटाडाईन और ऐक्रिलोनाइट्राइल का सहबहुलक है और ब्यूना-S; 1,3- ब्यूटाडाईन और स्टाइरीन का सहबहुलक है।
- 15.6 अंतराआण्विक बलों के बढ़ते क्रम में-
 - (i) ब्यूना-S; पॉलिथीन, नाइलॉन-6,6
 - (ii) निओप्रीन, पॉलिवाइनिल क्लोराइड, नाइलॉन-6

जीवंत अवबोध से गूढ़ विचारों की ओर तथा इससे व्यावहारिकता की ओर बी.आई. लेनीन

अब तक आप रसायन के मूल सिद्धांत जान चुके हैं और स्पष्ट अनुभव कर चुके हैं कि रसायन मानव जीवन के हर क्षेत्र को प्रभावित करता है। रसायन के सिद्धांतों का उपयोग मानव जाति के हितों के लिए किया गया है। सफ़ाई के विषय में सोचें – साबुन, अपमार्जक, घरेलू निरंजक, मंजन इत्यादि आपके ध्यान में आएंगे। सुंदर वस्त्रों की तरफ़ देखें – तुरंत कपड़ों के धागों के रसायन और उन्हें रंगीन बनाने वाले रसायन आपके मस्तिष्क में उभरेंगे। खाद्य पदार्थ – फिर अनेक रसायन. जिनके विषय में आप पिछले एकक में पढ चुके हैं. आपके मस्तिष्क में उभरेंगे। शिथिलता और रोग अवश्य ही हमें औषधों का ध्यान दिलाते हैं – फिर से रसायन! विस्फोटक, ईंधन, रॉकेट नोदक, भवन-निर्माण .एवं विद्युत-उपकरण सामग्री इत्यादि सभी रसायन हैं। रसायन विज्ञान ने हमारे जीवन को इतना अधिक प्रभावित किया है कि हमें यह अनुभूति तक नहीं होती कि हम स्वयं खुबसुरत रासायनिक कृति हैं और हमारी सभी गतिविधियों का संचालन रसायनों द्वारा होता है। इस एकक में हम रसायन विज्ञान के उपयोग तीन महत्वपूर्ण और रोचक क्षेत्रों, अर्थात् – औषधों, खाद्य पदार्थों तथा परिमार्जकों में जानेंगे।

औषध कम अणु द्रव्यमान (~100-500u) की रसायन होती हैं। यह औषध तथा बृहत्आण्विक (macromolecular) लक्ष्यों से अन्योन्यक्रिया करके जैव उनका प्रतिक्रिया उत्पन्न करती हैं। जब जैव प्रतिक्रिया चिकित्सीय और लाभदायक वर्शीकश्ण होती है, तब इन रसायनों को औषध कहते हैं और इनका उपयोग रोगों के निदान, निवारण और उपचार के लिए किया जाता है। यदि अनुशंसित मात्रा से अधिक मात्रा का उपयोग किया जाए तो अधिकांश औषध प्रभावकारी विष होती हैं। रसायनों के चिकित्सीय उपयोग को रसायनचिकित्सा कहते हैं।

- औषध का विभिन्न मापदंडों के अनुसार निम्न प्रकार से वर्गीकरण कर सकते हैं– 16.1.1 औषध का
 - वर्गीकरण (क) भेषजगुणविज्ञानीय (फार्माकोलोजिकल) प्रभाव के आधार पर यह वर्गीकरण भेषजगुणविज्ञानीय प्रभाव पर आधारित है। यह चिकित्सकों के लिए उपयोगी है: क्योंकि यह उन्हें किसी विशेष उपचार के लिए उपलब्ध पुरी

इस एकक के अध्ययन के पश्चात आप -

- दैनिक जीवन में रसायन के महत्व की कल्पना कर सकेंगे:
- 'रसायन चिकित्सा' शब्द की व्याख्या कर सकेंगे:
- औषधियों के वर्गीकरण के आधार का वर्णन कर • सकेंगे:
- एन्जाइम एवं ग्राही की औषध-लक्ष्य अन्योन्यक्रिया • की व्याख्या कर सकेंगे:
- व्याख्या कर सकेंगे कि विभिन्न प्रकार के औषध शरीर में किस प्रकार कार्य करती हैं;
- कृत्रिम मधुरकों एवं खाद्य पदार्थ परिरक्षकों के विषय में जानेंगे;
- परिमार्जकों के रसायन पर विचार-विमर्श कर सकेंगे।

16.1

औषध-श्रेणी देता है। उदाहरणार्थ– पीड़ाहारियों (एनैलजेसिक) का पीड़ानाशक असर होता है, पूतिरोधी (एन्टीसेप्टिक) सूक्ष्म जीवों को नष्ट करते हैं अथवा उनकी वृद्धि को रोकते हैं।

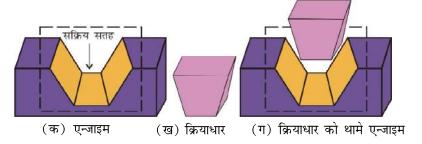
(ख) औषध के प्रभाव पर आधारित

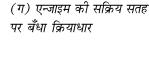
यह किसी विशेष जैवरासायनिक प्रक्रम पर औषध के प्रभाव पर आधारित होता है। उदाहरण के लिए, हिस्टैमिन यौगिक, जो कि शरीर में शोथ उत्पन्न करता है उसके प्रभाव को सभी प्रतिहिस्टैमिन कम करते हैं। हिस्टैमिन के प्रभाव को कई प्रकार से कम किया जा सकता है। आप इसके विषय में खंड 16.3.2 में पढ़ेंगे।

(ग) रासायनिक संरचना पर आधारित

यह औषध की रासायनिक संरचना पर आधारित है। इस प्रकार से वर्गीकृत औषध समान संरचनात्मक विशेषताओं की भागीदार होती हैं और प्राय: इनमें समान भेषजगुणविज्ञानीय क्रियाशीलता होती है। उदाहरण के लिए सल्फोनैमाइडों द्वारा प्रदर्शित समान संरचनात्मक विशेषताएं दिए गए चित्र में देखें।

(घ) लक्ष्य-अणुओं पर आधारित


औषध साधारणतया जैवअणुओं, जैसे–कार्बोहाइड्रेट, लिपिड, प्रोटीन और न्यूक्लीक अम्लों से अन्योन्यक्रिया करती हैं। जिन्हें **लक्ष्य-अणु** अथवा **औषध-लक्ष्य** कहते हैं। समान संरचनात्मक विशेषताओं वाली औषधों की लक्ष्यों पर क्रियाविधि समान हो सकती है। लक्ष्य-अणुओं पर आधारित वर्गीकरण औषध रसायनज्ञों के लिए सबसे अधिक उपयोगी होता है।


जैविक वृहदणु शरीर में विभिन्न कार्य करते हैं। उदाहरण के लिए, जैव उत्प्रेरक का कार्य करने वाले प्रोटीनों को **एन्जाइम** कहते हैं, जो प्रोटीन शरीर की संचार व्यवस्था में निर्णायक होते हैं उन्हें **ग्राही** कहते हैं। वाहक प्रोटीन ध्रुवीय अणुओं को कोशिका-कला के आर-पार ले जाते हैं। न्यूक्लीक अम्लों में कोशिका की सांकेतिक अनुवांशिक जानकारी होती है। लिपिड और कार्बोहाइड्रेट कोशिका-कला की संरचना का हिस्सा हैं। हम औषध-लक्ष्य अन्योन्य क्रिया का वर्णन एन्जाइम एवं ग्राही के उदाहरण द्वारा करेंगे।

(क) एन्जाइम का उत्प्रेरक कार्य

औषध तथा एन्जाइम के मध्य अन्योन्यक्रिया को समझने के लिए यह जानना आवश्यक है कि एन्जाइम अभिक्रिया का उत्प्रेरण कैसे करते हैं (खंड 5.2.4)। उत्प्रेरक क्रिया में एन्जाइम दो प्रमुख कार्य करते हैं–

(i) एन्जाइम का पहला कार्य क्रियाधार (सबस्ट्रेट) को रासायनिक अभिक्रिया के लिए थामे रखना है। एन्जाइम की सक्रिय सतह क्रियाधार अणु को उपयुक्त स्थिति में थामे रखती है, जिससे इस पर अभिक्रियक द्वारा प्रभावकारी आक्रमण हो सके। क्रियाधार एन्जाइम की सक्रिय सतह पर विभिन्न प्रकार की अन्योन्यक्रियाओं द्वारा बॅंधते हैं, जैसे आयनिक आबंध, हाइड्रोजन आबंध, वान्डरवाल्स अन्योन्यक्रिया या द्विध्रव-द्विध्रव बल (चित्र 16.1)।

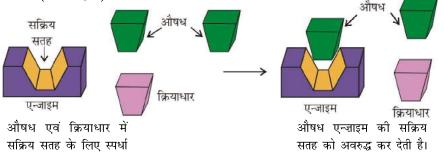
चित्र 16.1— (क) एन्जाइम की सक्रिय सतह (ख) क्रियाधार

H₂N-S-NHR

सल्फोनैमाइडों की संरचनात्मक विशेषताएं

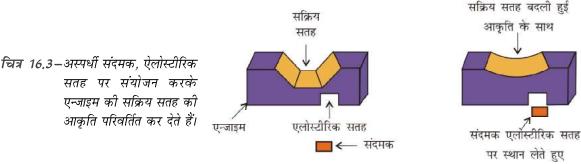
16.2 औषध-लक्ष्य अन्योन्यक्रिया

16.2.1 एन्जाइम औषध लक्ष्य की तरह


 (ii) एन्जाइम का दूसरा कार्य क्रियाधार पर आक्रमण करके रासायनिक अभिक्रिया करने के लिए प्रकार्यात्मक समूह उपलब्ध करवाना है, जो क्रियाधार पर आक्रमण करके रासायनिक अभिक्रिया करेगा।

(ख) औषध-एन्जाइम अन्योन्यक्रिया

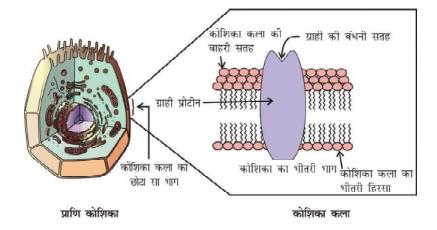
औषध, एन्जाइम की उपरोक्त गतिविधियों में से किसी में भी अवरोध उत्पन्न करती हैं। ये एन्जाइम की बंधनी सतह को अवरुद्ध कर सकती हैं और क्रियाधार के आबंधन में रुकावट डाल सकती हैं अथवा ये एन्जाइम के उत्प्रेरक कार्य में अवरोध उत्पन्न कर सकती हैं, ऐसी औषधों को **एन्जाइम संदमक** कहते हैं।


औषध, एन्जाइम की सक्रिय सतह पर क्रियाधार के संयोजन में दो प्रकार से अवरोध उत्पन्न कर सकती हैं–

(i) औषध एन्जाइम की सक्रिय सतह पर संयोजन के लिए वास्तविक क्रियाधार से स्पर्धा करती हैं। ऐसी औषधों को स्पर्धी संदमक (कॉम्पिटीटिव इनहिबिटर्स) कहते हैं (चित्र 16.2)।

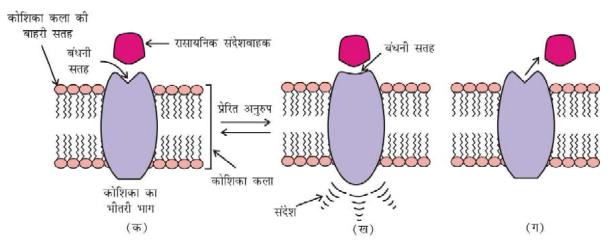
चित्र 16.2–औषध एवं क्रियाधार सक्रिय सतह के लिए स्पर्धा करते हुए

(ii) कुछ औषध एन्जाइम की सक्रिय सतह पर संयोजन नहीं करतीं। यह एन्जाइम की भिन्न सतह पर संयोजन करती हैं जिसे ऐलोस्टीरिक सतह कहते हैं। इस प्रकार संदमक के ऐलोस्टीरिक सतह पर संयोजन से सक्रिय सतह की आकृति इस प्रकार परिवर्तित हो जाती है कि क्रियाधार इसे पहचान नहीं सकता (चित्र 16.3)।


पर स्थान लत हुए यदि एन्जाइम तथा संदमक के बीच बना आबंध मज़बूत सहसंयोजी आबंध हो और आसानी से तोड़ा न जा सके, तो एन्ज़ाइम स्थायी रूप से अवरुद्ध हो जाता है। तब शरीर

एन्जाइम-संदमक संकुल को निम्नीकृत कर देता है और नया एन्जाइम बनाता है।

ग्राही, शरीर की संचार व्यवस्था के निर्णायक प्रोटीन होते हैं। इनमें अधिकतर कोशिका-कला में स्थित होते हैं (चित्र 16.4)। ग्राही प्रोटीन कोशिका-कला में इस प्रकार स्थित होते हैं कि उनका छोटा सा सक्रिय सतह वाला भाग कोशिका-कला के बाहरी क्षेत्र में खुलता है (चित्र 16.4)।


16.2.2 ग्राही, औषध लक्ष्य की तरह

दैनिक जीवन में रसायन 465

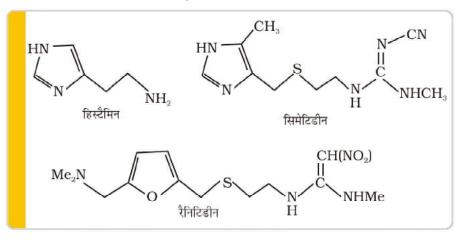
चित्र 16.4—कोशिका कला में स्थित ग्राही प्रोटीन। ग्राही की सक्रिय सतह कोशिका के बाहरी क्षेत्र में खुलती है।

शरीर में दो तंत्र कोशिकाओं और तंत्र कोशिकाओं एवं पेशी के मध्य संदेश का संचार कुछ रसायनों द्वारा होता है। यह रसायन, जिन्हें **रासायनिक संदेशवाहक** कहते हैं, ग्राही प्रोटीन की बंधनी सतह पर ग्रहण किए जाते हैं। संदेशवाहक को समायोजित करने के लिए ग्राही के आकार में बदलाव आ जाता है। इससे संदेश कोशिका में पहुँच जाता है। इस प्रकार रासायनिक संदेशवाहक बिना कोशिका में प्रवेश किए, संदेश को कोशिका के भीतर पहुँचा देते हैं (चित्र 16.5)।

चित्र 16.5—(क)ग्राही रासायनिक संवाहक ग्रहण करते हुए (ख) संदेशवाहक के संयोजन से ग्राही का आकार परिवर्तन (ग) संदेशवाहक के निकलने के पश्चात् ग्राही का यथावत आकार

शरीर में अत्यधिक संख्या में अनेक प्रकार के ग्राही होते हैं जो अलग-अलग रासायनिक संदेशवाहकों से अन्योन्य क्रिया कर सकते हैं। यह ग्राही रासायनिक संवाहकों में से एक के मुकाबले दूसरे के प्रति चयनात्मकता दिखलाते हैं; क्योंकि इनकी बंधनी सतहों के आकार, संरचना, और ऐमीनो अम्ल संघटन अलग-अलग होते हैं।

जो औषध ग्राही की सतह पर आबंधित होकर इसके प्राकृतिक कार्य में अवरोध उत्पन्न करती हैं वह **विरोधी** कहलाती हैं। यह संदेश अवरुद्ध करने के लिए लाभकारी होती हैं। दूसरे प्रकार की औषध वे हैं जो प्राकृत संदेशवाहक की नकल करके ग्राही को सक्रिय कर देती हैं, इन्हें **ऐगोनिस्ट** कहते हैं। यह प्राकृत रासायनिक संदेशवाहक की कमी होने पर लाभदायक होती हैं।

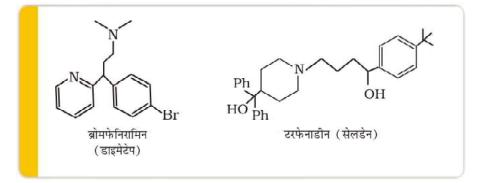

466 रसायन विज्ञान

16.3 विभिन्न वर्शों की औषधों के चिकित्सीय प्रभाव इस खंड में हम कुछ वर्गों की औषधों के चिकित्सीय प्रभावों पर विचार विमर्श करेंगे।

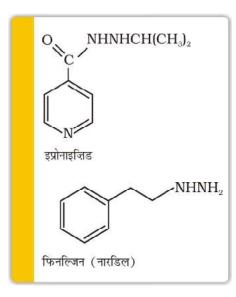
16.3.1प्रति-अम्लआमाशय में अम्ल का अत्यधिक उत्पादन उत्तेजना एवं पीड़ा देता है। गंभीर अवस्था में
आमाशय में घाव हो जाते हैं। 1970 तक अम्लता का उपचार केवल सोडियम हॉइड्रोजनकार्बोनेट
या ऐलुमिनियम और मैग्नीशियम हाइड्रॉक्साइड द्वारा किया जाता था; परंतु अत्यधिक सोडियम
हाइड्रोजन कार्बोनेट आमाशय को क्षारीय कर देता है तथा अधिक अम्ल उत्पादन को प्रेरित
करता है। धात्विक हाइड्रॉक्साइड बेहतर उपचार हैं; क्योंकि अघुलनशील होने के कारण यह
pH को उदासीनता से आगे नहीं बढ़ने देते। दोनों ही उपचार केवल रोग के लक्षणों को
नियंत्रित करते हैं, कारण को नहीं। इसलिए पहले इन धातु लवणों से रोगी का उपचार आसान
नहीं होता था। अग्रगत अवस्था में अल्सर (व्रण) के प्राणघातक होने के कारण इसका
एकमात्र उपचार आमाशय के रोगग्रस्त हिस्से को निकाल देना था।

अतिअम्लता के उपचार में मुख्य परिवर्तन उस खोज के बाद हुआ; जिसके अनुसार रसायन हिस्टैमिन, आमाशय में पेप्सिन के निकलने को उद्दीपित करता है। आमाशय की दीवार में स्थित ग्राही के साथ हिस्टैमिन की अन्योन्यक्रिया रोकने के लिए औषध सिमेटिडीन अभिकल्प (डिजाइन) की गई।

इसके कारण कम अम्ल निकलता था। इस औषध का महत्व इतना अधिक था कि जब तक रैनिटिडीन (जैनटेक) की खोज नहीं हुई; यह संसार में सबसे अधिक बिकने वाली औषध थी।


16.3.2 प्रतिहिस्टैमिन

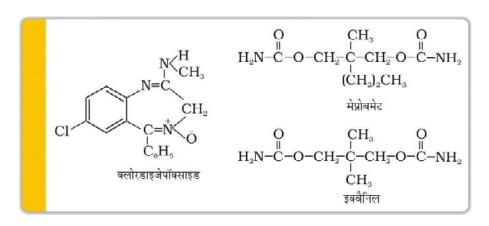
हिस्टैमिन एक शक्तिशाली वाहिकाविस्फारक (वैसोडाइलेटर) है। इसके विविध कार्य हैं। यह श्वसनिकाओं (ब्रोन्किओल) और आहार नली की चिकनी पेशियों को संकुचित करती है तथा दूसरी पेशियों, जैसे रुधिर वाहिकाओं की दीवारों को नरम करती है। जुकाम के कारण होने वाले नासिका संकुलन और पराग के कारण होने वाली ऐलर्जी का कारण भी हिस्टैमिन ही होती है।


संश्लिष्ट (सिंथेटिक) औषध, **ब्रोमफेनिरामिन (डाइमेटेप)** और **टरफेनाडीन (सेलडेन)**, प्रतिहिस्टैमिन का कार्य करती हैं। यह हिस्टैमिन के साथ ग्राही की उस बंधनी सतह के लिए, प्रतिस्पर्द्धा करती हैं जिस पर हिस्टैमिन अपना प्रभाव डालती है और इस प्रकार हिस्टैमिन के प्राकृतिक कार्य में बाधा डालती हैं।

अब प्रश्न यह उठता है कि उपरोक्त प्रतिहिस्टैमिन आमाशय के अम्ल स्रवण पर प्रभाव क्यों नहीं डालती? कारण यह है कि प्रति-एलर्जी और प्रति-अम्ल औषध अलग-अलग ग्राहियों पर कार्य करती हैं।

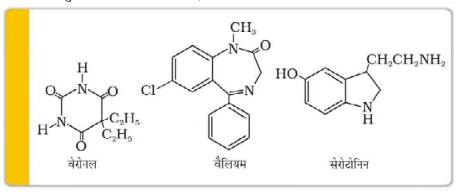
दैनिक जीवन में रसायन <mark>467</mark>

16.3.3 तंत्रकीय सक्रिय औषध



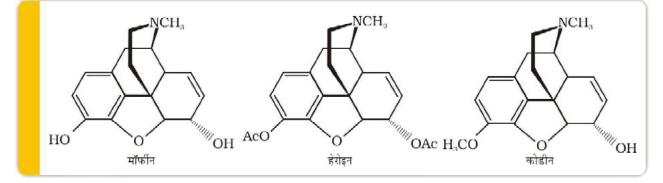

प्रशांतक और पीड़ाहारी तंत्रकीय सक्रिय औषध हैं। यह तंत्रिका से ग्राही तक संदेश वहन करने वाली प्रक्रिया को प्रभावित करती हैं।

(क) प्रशांतक


प्रशांतक रासायनिक यौगिकों का वह वर्ग है जिनका उपयोग तनाव तथा छोटी या बड़ी मानसिक बीमारियों में किया जाता है। यह अच्छा होने की भावना को अभिप्रेरित करके चिंता, तनाव, क्षोभ अथवा उत्तेजना से मुक्ति देते हैं। ये नींद की गोलियों का आवश्यक घटक होते हैं। प्रशांतक विभिन्न प्रकार के होते हैं। ये अलग–अलग क्रिया–विधियों से कार्य करते हैं। जैसे की नॉरएड्रीनेलिन एक तंत्रिकीय संचारक (न्यूरोट्रान्समिटर) है जो मनोदशा परिवर्तन में भूमिका निभाती है। यदि किसी कारण से नॉरएड्रीनेलिन का स्तर (मात्रा) कम हो तो संकेत भेजने की क्रिया धीमी पड़ जाती है तथा व्यक्ति अवसादग्रस्त हो जाता है। ऐसी स्थिति में **प्रतिअवसादक** औषधों की आवश्यकता पड़ती है। ये औषध नॉरएड्रीनेलिन का निम्नीकरण उत्प्रेरित करने वाले एन्जाइम को संदमित करती हैं। यदि एन्ज़ाइम संदमित हो जाता है तो यह महत्वपूर्ण तंत्रकीय संचारक धीरे–धीरे उपापचयित (मेटाबोलाइज़) होता है और अपने ग्राही को लंबे समय तक सक्रिय कर सकता है, अत: अवसाद के असर का प्रतिकार कर सकता है। इप्रोनाइजिड और फिनल्जिन ऐसी दो औषध हैं।

कुछ प्रशांतक, यथा, क्लोरडाइजेपॉक्साइड और मेप्रोबमेट तनाव दूर करने के लिए अपेक्षाकृत मंद प्रशांतक हैं। इक्वैनिल का प्रयोग अवसाद और अतितनाव के नियंत्रण के लिए किया जाता है।

बार्बिट्यूरिक अम्ल के व्युत्पन्न जैसे वेरोनल ऐमीटल, नेम्बुटल, ल्यूमिनल और सेकोनल, प्रशांतकों का महत्वपूर्ण वर्ग बनाते हैं। इन्हें बार्बिट्यूरेट कहते हैं। बार्बिट्यूरेट निद्राजनक होते हैं अर्थात् इनके प्रयोग से नींद आती है। प्रशांतकों के रूप में उपयोग किए जाने वाले कुछ अन्य पदार्थ वैलियम एवं सेरोटोनिन हैं।


(ख) पीड़ाहारी

पीड़ाहारी दर्द को बिना चेतना-क्षीणता, मनो-संभ्रम, असमन्वय या पक्षाघात अथवा तंत्रिका तंत्र में अन्य कोई बाधा उत्पन्न किए, कम अथवा समाप्त करते हैं। इन्हें निम्न प्रकार से वर्गीकृत करते हैं।

- (i) अस्वापक¹ (अनासक्त² या नॉन एडिक्टिव) पीड़ाहारी
- (ii) स्वापक³ (नारकोटिक) औषध

(i) अस्वापक (नॉन नारकोटिक) पीड़ाहारी- ऐस्पिरिन तथा पैरसिटामॉल अस्वापक वर्ग के पीड़ाहारी हैं। ऐस्पिरिन अति-प्रचलित उदाहरण है। ऐस्पिरिन प्रोस्टाग्लैंडिन नामक रसायनों, जो कि ऊतक में प्रदाह उत्पन्न करते हैं, के संश्लेषण को संदमित करती है। यह औषध, कंकाल की पीड़ा, जैसे कि संधिशोथ (आर्थ्राइटिस) के कारण होने वाली पीड़ा में आराम देने में प्रभावी होती हैं। इनके और भी कई प्रभाव होते हैं; जैसे ज्वर कम करना (ऐन्टीपायरेटिक) और बिम्बाणु स्कंदन को रोकना। रक्त के थक्के न बनने देने के प्रभाव के कारण ऐस्पिरिन का उपयोग दिल के दौरे को रोकने में भी होता है।

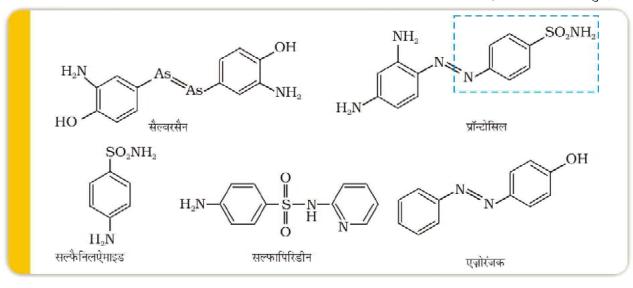
(ii) स्वापक (नारकोटिक ऐनेल्जेसिक) पीड़ाहारी–मॉर्फीन और इसके कई सजात, जब औषधीय मात्रा में दिए जाते हैं तो पीड़ा से मुक्ति देते हैं और नींद लाते हैं। विषैली मात्रा में यह भावशून्यता, सम्मूर्च्छा, मरोड़ और अंत में मृत्युकारक होते हैं। मॉर्फीन स्वापकों

- * 1 अस्वापक = Non-narcotic
 - 2 अनासकत = Non addictive (जिसकी आदत न पड़े)

3 स्वापक = Norcotic (जो नींद और बेहोशी उत्पन्न करते हैं)

दैनिक जीवन में रसायन **469**

को कभी-कभी अहिफेनी (ओपिएट्स) भी कहा जाता है; क्योंकि यह पोस्त (ओपियम पौपी) से प्राप्त होते हैं।


यह पीड़ाहारी, मुख्यत: शल्यक्रिया (ऑपरेशन) के बाद होने वाली पीड़ा, हृदय शूल, अंतिम अवस्था के कैंसर की पीड़ा और प्रसव पीड़ा में आराम देने के लिए प्रयुक्त किए जाते हैं।

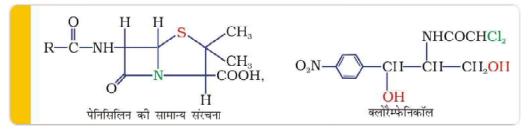
16.3.4 प्रतिसूक्ष्मजैविकमनुष्यों तथा जीवों में रोग विभिन्न सूक्ष्मजीवों, जैसे–जीवाणु, वायरस, कवक और अन्य
परजीवियों द्वारा उत्पन्न हो सकते हैं। प्रतिसूक्ष्मजैविकों की प्रवृत्ति चयनित करके जीवाणु
(प्रतिजीवाणु), कवक (प्रतिकवक), वायरस (प्रतिवायरस), या परजीवियों (प्रतिपरजीवी)
का विनाश करने की / वृद्धि रोकने की अथवा सूक्ष्मजीवियों के परजीवी प्रभाव को रोकने
की होती है। प्रतिजैविक (एन्टिबॉयोटिक), प्रतिरोधी और संक्रमणहारी प्रतिसूक्ष्मजैविक
औषधियाँ होती हैं।

(क) प्रतिजैविक (एन्टिबॉयोटिक)

प्रतिजैविक औषध मानव तथा जीवों के लिए कम विषैली होने के कारण संक्रमण में उपचार के लिए प्रयुक्त की जाती हैं। प्रारंभ में प्रतिजैविकों को सूक्ष्मजीवों (जीवाणु, कवक तथा फफूँँदी) द्वारा उत्पन्न ऐसे रसायनों के वर्ग में रखा गया था जो अन्य सूक्ष्मजीवों की वृद्धि को रोकते हैं अथवा उनका पूर्णत: विनाश करते हैं। संश्लेषण विधियों के विकास ने कुछ ऐसे रसायनों के संश्लेषण में सहायता दी है जिनकी खोज मूलत: सूक्ष्मजीवों के उत्पाद की तरह हुई थी। इसके अतिरिक्त कुछ पूर्णत: संश्लेषित यौगिक भी प्रतिजीवाणु होते हैं, इसलिए, प्रतिजैविक की परिभाषा अब बदल गई है। अब प्रतिजैविक, पूर्ण अथवा आंशिक रूप से रासायनिक संश्लेषण द्वारा प्राप्त उन पदार्थों को कहा जाता है जो कम सांद्रता में सूक्ष्मजीवों के उपापचयी प्रक्रमों में अवरोध उत्पन्न करके उनकी वृद्धि को रोकते हैं अथवा उनका विनाश करते हैं।

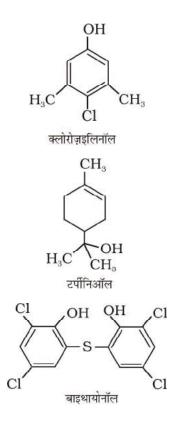
उन्नीसवीं सदी में ऐसे रसायनों की खोज प्रारंभ हुई जो आक्रमणकारी जीवों पर तो प्रतिकूल असर डालें; परंतु परपोषी (होस्ट) पर नहीं। जर्मन जीवविज्ञानी *पॉल एर्लिश* इस धारणा के प्रवर्तक थे। उन्होंने सिफलिस के इलाज के लिए कम विषैले पदार्थ तैयार करने के उद्देश्य से आर्सेनिक आधारित संरचनाओं की जाँच की। उन्होंने औषध आर्सफेनेमीन बनाई जिसे सैल्वरसैन के नाम से जाना जाता है। *पॉल एर्लिश* को इस खोज के लिए 1908 में चिकित्सा विज्ञान का नोबेल पुरस्कार प्राप्त हुआ। यह सिफलिस के उपचार के लिए खोजा गया प्रथम प्रभावी उपचार था। यद्यपि सैल्वरसैन मानव के लिए विषैली होती है परंतु इसका

470 रसायन विज्ञान

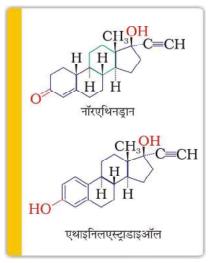

प्रभाव स्पाइरोकीट जीवाणु पर, जो कि सिफलिस उत्पन्न करता है, मनुष्यों की अपेक्षा कहीं अधिक होता है। इसी समय एर्लिश एज़ोरंजकों पर भी कार्य कर रहे थे। उन्होंने देखा कि सैल्वरसैन और एज़ोरंजकों की संरचना में समानता है। आर्सफेनेमीन में उपस्थित –As = As– बंध एज़ोरंजकों में उपस्थित –N = N– बंध से इस मायने में मिलता–जुलता है कि इसमें नाइट्रोजन के स्थान पर आर्सेनिक उपस्थित है। उन्होंने यह भी देखा कि रंजक ऊतकों को चयनित रूप से रॅंगते हैं। अत: एर्लिश ने ऐसे यौगिकों की खोज प्रारंभ की जो संरचना में एज़ोरंजकों से मिलते हों और जीवाणुओं पर चयनित रूप से बंधित हों। सन् 1932 में उन्हें प्रथम प्रभावी प्रतिजीवाणु, **प्रॉन्टोसिल**, को बनाने में सफलता प्राप्त हुई जो कि संरचना में सैल्वरसैन से मिलता है। जल्दी ही यह खोज लिया गया कि शरीर में प्रॉन्टोसिल एक यौगिक **सल्फैनिल ऐमाइड** में बदल जाती है जो वास्तविक असरकारक यौगिक है। इस प्रकार सल्फा औषधों की खोज हुई। कई सल्फोनैमाइड अनुरूप संश्लेषित किए गए। इनमें से एक अत्यधिक प्रभावकारी है–सल्फापिरिडीन।

सल्फोनैमाइडों की सफलता के उपरांत भी प्रतिजीवाणु चिकित्सा में वास्तविक क्रांति 1929 में एलेक्ज़ेन्डर फ्लेमिंग की पेनिसिलियम कवक में प्रतिजीवाणु खोज से प्रारंभ हुई। पृथक्करण और शोधन करके चिकित्सीय परीक्षण के लिए पर्याप्त मात्रा में पदार्थ एकत्र करने में तेरह वर्ष लगे।

प्रतिजीवाणुओं का सूक्ष्मजीवों पर नाशक (साइडल) अथवा निरोधक (स्टैटिक) प्रभाव होता है। दोनों प्रकार के प्रतिजीवाणुओं के कुछ उदाहरण निम्नलिखित हैं–


जीवाणुनाशी	जीवाणु निरोधी
पेनिसिलिन	एरिथ्रोमाइसिन
ऐमीनोग्लाइकोसाइड	टेट्रासाइक्लीन
ऑफ्लोक्सासिन	क्लोरैम्फेनिकॉल

जीवाणु अथवा अन्य सूक्ष्मजीवियों के उस परास (रेंज) को जिस पर किसी प्रतिजीवाणु का प्रभाव होता है, उस प्रतिजीवाणु के क्रिया स्पेक्ट्रम की तरह अभिव्यक्त करते हैं। जो प्रतिजीवाणु ग्रैम-ग्राही (ग्रैम पॉज़िटिव) और ग्रैम-अग्राही (ग्रैम नेगेटिव) दोनों प्रकार के जीवाणुओं के विस्तृत परास का विनाश करते हैं, अथवा निरोध करते हैं, **विस्तृत स्पेक्ट्रम** (ब्राड स्पेक्ट्रम) प्रतिजीवाणु कहलाते हैं। जो प्रधानत: ग्रैम-ग्राही अथवा ग्रैम-अग्राही जीवाणुओं के विरुद्ध प्रभावी होते हैं वे संकीर्ण स्पेक्ट्रम (नैरोस्पेट्रम) प्रतिजीवाणु हैं। यदि केवल एक जीव अथवा रोग पर प्रभावी हों तो उनका उल्लेख सीमित स्पेक्ट्रम प्रतिजीवाणु की तरह होता है। पेनिसिलिन-जी का स्पेक्ट्रम संकीर्ण होता है। ऐम्पिसिलिन और ऐमोक्सिसिलिन, पेनिसिलिन के संश्लिष्ट रूपांतर हैं। इनका स्पेक्ट्रम विस्तृत है। पेनिसिलिन देने से पूर्व रोगी की पेनिसिलिन के प्रति संवेदनशीलता (ऐलर्जी) का परीक्षण करना अति आवश्यक होता है। भारतवर्ष में पेनिसिलिन का उत्पादन पिम्परी में हिन्दुस्तान ऐंटीबॉयोटिक्स द्वारा तथा निजी औद्योगिक क्षेत्र में होता है।



एच. डब्ल्यू. फ्लोरी एवं एलेक्ज़ेन्डर फ्लेमिंग ने 1945 में स्वतंत्र रूप से पेनिसिलिन के विकास के लिए संयुक्त रूप से नोबेल पुरस्कार प्राप्त किया।

दैनिक जीवन में रसायन $\frac{471}{}$

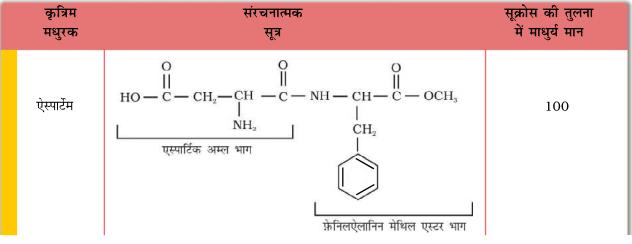
16.3.5 प्रतिजननक्षमता औषध

क्लोरेंम्फेनिकॉल जो 1947 में पृथक किया गया एक विस्तृत स्पेक्ट्रम वाला प्रतिजीवाणु है। यह जठरांत्र क्षेत्र में अतिशीघ्र अवशोषित हो जाता है। अत: इसे टाइफाइड, पेचिश, तीव्र ज्वर, कुछ मूत्र संक्रमणों, तानिका-शोथ (मेनिनजाइट्इस) तथा न्यूमोनिया जैसे रोगों में खिलाया जाता है। वेंकोमाइसिन और ऑफ्लोक्सासिन अन्य महत्वपूर्ण विस्तृत स्पेक्ट्रम प्रतिजीवाणु हैं। प्रतिजीवाणु डिसिडेजिरिन को कैंसर कोशिकाओं के कुछ प्रभेदों के प्रति अविषालु माना जाता है।

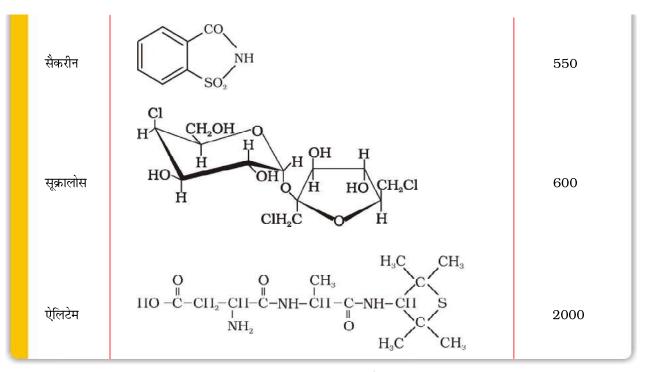
(ख) पूतिरोधी तथा विसंक्रामी (रोगाणुनाशी)

पूतिरोधी तथा विसंक्रामी भी ऐसे रसायन होते हैं जो या तो सूक्ष्मजीवों का विनाश करते हैं अथवा उनकी वृद्धि को रोकते हैं।

पूतिरोधियों को सजीव ऊतकों, जैसे – घाव, चोट, व्रण (अल्सर) और रोगग्रस्त त्वचा की सतह पर लगाया जाता है। फ़्यूरासिन (Furacine) सोफ्रामाइसिन (Soframicine) इत्यादि इनके उदाहरण हैं। इन्हें प्रतिजीवाणुओं की तरह खाया नहीं जाता। साधारणत: प्रयुक्त किया जाने वाला पूतिरोधी डेटॉल (Dettol) क्लोरोज़ाइलिनॉल (Chloroxylenol) तथा टर्पीनिऑल (Terpineol) का मिश्रण होता है। बाइथायोनॉल (Bithionol) को साबुन में पूतिरोधी गुणधर्म प्रदान करने के लिए मिलाया जाता है (यौगिक को बाइथायानैल भी कहते हैं)। आयोडीन एक प्रबल पूतिरोधी है। इसका ऐल्कोहॉल-जल मिश्रण में 2-3 प्रतिशत घोल आयोडीन का टिंक्चर कहलाता है। इसे घाव पर लगाते हैं। आयोडोफ़ार्म भी घावों पर पूतिरोधी की तरह प्रयुक्त किया जाता है। बोरिक अम्ल का तनू जलीय विलयन आँखों के लिए दुर्बल पूतिरोधी होता है।


विसंक्रामियों (डिसइन्फेक्टेंट) का प्रयोग निर्जीव वस्तुओं, जैसे – फ़र्श, नालियों और यंत्रों इत्यादि पर किया जाता है। सांद्रता परिवर्तन से वही पदार्थ पूतिरोधी अथवा विसंक्रामी का कार्य कर सकता है। उदाहरण के लिए फ़ीनॉल का 0.2 प्रतिशत विलयन पूतिरोधी होता है जबकि इसका एक प्रतिशत विलयन विसंक्रामी होता है।

क्लोरीन की 0.2 से 0.4 भाग प्रति दस लाख भाग (ppm, parts per million) जल में सांद्रता तथा अत्यधिक कम सांद्रता में सल्फरडाइऑक्साइड विसंक्रामी का कार्य करती है।


प्रतिजीवाणु क्रांति ने मनुष्य को दीर्घ एवं स्वस्थ जीवन प्रदान किया है। जीवन की संभावना लगभग दुगुनी हो गई है। अधिक जनसंख्या ने भोजन, संसाधन, पर्यावरण तथा बेरोज़गारी इत्यादि विषयों से संबंधित अनेक समस्याएं उत्पन्न की हैं। इन समस्याओं पर नियंत्रण के लिए जनसंख्या नियंत्रण की आवश्यकता है। इसने परिवार नियोजन की धारणा को प्रोत्साहन दिया है। प्रतिजननक्षमता औषध इस दिशा में उपयोगी हैं। जनन नियंत्रण गोलियों में आवश्यक रूप से संशिलष्ट एस्ट्रोजन एवं प्रोजेस्टेरोन व्युत्पन्नों का मिश्रण होता है। दोनों ही यौगिक हार्मोन होते हैं। यह ज्ञात है कि प्रोजेस्टेरोन अंडोत्सर्ग को निरोधित करता है। संश्लेषित प्रोजेस्टेरोन व्युत्पन्न प्राकृतिक प्रोजेस्टेरोन से अधिक प्रभावशाली होते हैं। **नॉरएथिनड्रान** संशिलष्ट प्रोजेस्टेरोन व्युत्पन्न का एक उदाहरण है जो व्यापक रूप से जनन नियंत्रण गोलियों में प्रयुक्त होता है। **एथाइनिलएस्ट्राडाइऑल** (**नोवएस्ट्रॉल**) एक एस्ट्रोजन व्युत्पन्न है जो प्रोजेस्टेरोन व्युत्पन्न के साथ जनन नियंत्रण गोलियों में प्रयुक्त होता है।

472 रसायन विज्ञान

परामर्श लिए इनकी	को चिकित्सक नींद लाने वाली गोलियाँ लेने का परामर्श देते हैं, परंतु बिना चिकित्सक से खुराक लेना उचित क्यों नहीं है? आधार पर वक्तव्य, 'रैनिटिडीन प्रति-अम्ल है', दिया गया है?
16.4 भोजन में २सायन	खाद्य पदार्थों में रसायन मिलाने के कारण हैं – (क) उनका परिरक्षण, (ख) आकर्षण बढ़ाना तथा (ग) पौष्टिक गुणवत्ता में संवर्धन करना। खाद्य पदार्थों में मिलाए जाने वाले खाद्य योज्यों के प्रमुख वर्ग निम्नलिखित हैं-
16.4.1 कृत्रिम मधुरक	 (i) खाद्य रंजक (ii) सुरुचिक एवं मधुरक (iii) वसा इमल्सीकारक तथा स्थायीकारक (iv) आटा सुधारक – बासीपन रोकने वाले तथा विरंजक (v) आटा सुधारक – बासीपन रोकने वाले तथा विरंजक (v) प्रतिऑक्सीकारक (vi) परिक्षक (vii) पोषणज संपूरक जैसे खनिज, विटामिन तथा ऐमीनो अम्ल वर्ग (vii) के अतिरिक्त किसी भी योज्य (additive) का पोषणज महत्त्व नहीं है। इन्हें या तो भंडारित खाद्य पदार्थ की सुरक्षा अवधि बढ़ाने अथवा शोभा बढ़ाने के उद्देश्य से मिलाया जाता है। इस खंड में हम केवल मधुरकों और परिरक्षकों की विवेचना करेंगे। प्राकृत मधुरक जैसे– सूक्रोस, ग्रहण की गई कैलोरी बढ़ाते हैं; इसलिए बहुत से लोग कृत्रिम मधुरक प्रयोग करना अधिक पसंद करते हैं। ऑर्थोसल्फोबेन्जीमाइड, जिसे सैकरीन भी कहते हैं, प्रथम लोकप्रिय कृत्रिम मधुरक है। यह 1879 से खोज के समय से ही मधुरक की तरह प्रयोग में लाया जाता रहा है। यह सूक्रोस (Cane Sugar) से लगभग 550 गुना अधिक मीठी होती है। यह शरीर से अपरिवर्तित रूप में ही मूत्र के साथ उत्सर्जित हो जाती है। यह सेवन के पश्चात्र पूर्णत: अक्रिय और अहानिकारक प्रतीत होती है। इसका प्रयोग मधुमेह के रोगियों एवं उन व्यक्तियों के लिए जिन्हें कैलोरी अंतर्ग्रहण पर नियंत्रण की आवश्यकता है, अत्यधिक महत्वपूर्ण है। बाजार में आमतौर पर बिकने वाले कुछ कृत्रिम मधुरक सारणी 16.1 में दिए गए हैं।
सारणी 16.1– कृत्रिम मधुरक	

दैनिक जीवन में रसायन ⁴⁷³

ऐस्पार्टेम सबसे अधिक सफल और व्यापक रूप से उपयोग में आने वाला कृत्रिम मधुरक है। यह सूक्रोस के मुकाबले लगभग 100 गुना अधिक मीठा होता है। यह एस्पार्टिक अम्ल तथा फेनिलऐलानिन से बने डाइपेप्टाइड की मेथिल एस्टर है। इसका उपयोग केवल ठंडे खाद्य पदार्थों और पेय पदार्थों तक ही सीमित है; क्योंकि यह खाना पकाने के तापमान पर अस्थायी होता है।

ऐलिटेम अधिक प्रबल मधुरक है, यद्यपि यह ऐस्पार्टेम से अधिक स्थायी होता है, परंतु इसका प्रयोग करते समय मिठास नियंत्रित करना कठिन होता है।

सूक्रालोस, सूक्रोस का ट्राइक्लोरो व्युत्पन्न है। इसका रूप-रंग और स्वाद शर्करा जैसा होता है। यह खाना पकाने के तापमान पर स्थायी होता है। यह कैलोरी नहीं देता।

- 16.4.2 खाद्य परिरक्षकखाद्य परिरक्षक खाद्य पदार्थों को सूक्ष्मजीवों की वृद्धि के कारण होने वाली खराबी से बचाते
हैं। खाने का नमक, चीनी, वनस्पति तेल तथा सोडियम बेन्ज़ोएट, C6H5COONa सामान्य
रूप से उपयोग में आने वाले परिरक्षक हैं। सोडियम बेन्ज़ोएट सीमित मात्रा में प्रयोग में लाया
जाता है तथा यह शरीर में उपापचयित हो जाता है। सॉर्बिक अम्ल तथा प्रोपेनॉइक अम्ल के
लवण भी परिरक्षकों के रूप में प्रयुक्त होते हैं।
- 16.4.3 प्रतिऑक्सीकारकयह महत्वपूर्ण और आवश्यक खाद्य योज्य होते हैं। यह खाद्य पदार्थ पर ऑक्सीजन की क्रिया
धीमी करके खाद्य परिरक्षण में सहायता करते हैं। ऑक्सीजन के प्रति इनकी क्रिया उस खाद्य
पदार्थ की अपेक्षा अधिक होती है, जिसका यह परिरक्षण करते हैं। ब्युटाइलेटेड हाइड्रॉक्सी
टॉलुईन (BHT) और ब्यूटाइलेटेड हाइड्रॉक्सी ऐनिसोल (BHA) दो ऐसे प्रतिऑक्सीकारक हैं।
मक्खन में BHA मिलाने के बाद इसके सुरक्षित भण्डारण का समय महीनों से बढ़कर वर्षों
तक पहुँँच जाता है।

कभी-कभी अधिक प्रभावी बनाने के लिए BHT और BHA के साथ साइट्रिक अम्ल भी मिलाया जाता है।

सल्फर डाइऑक्साइड और सल्फाइट अंगूरी शराब, बियर, शर्करा चाशनी, छिले-कटे अथवा सूखे फल और सब्जियों के परिरक्षण के लिए उपयोगी प्रतिऑक्सीकारक हैं।

474 रसायन विज्ञान

पाठ्यनिहित प्रश्न

16.3 हमें कृत्रिम मधुरकों की आवश्यकता क्यों पड़ती है?

16.5 शोधन अभिकर्मक इस खंड में हम **अपमार्जकों** के विषय में जानेंगे। दो प्रकार के अपमार्जक शोधन अभिकर्मक की तरह प्रयुक्त होते हैं। यह साबुन और संश्लेषित अपमार्जक हैं। यह जल के शोधन गुण को सुधारते हैं। यह वसा के निष्कासन में सहायता करते हैं जो कि कपड़ों और त्वचा के साथ दूसरे पदार्थों को चिपका देती है।

16.5.1 साबुन (प्रावे अपमार्जक हैं। सफ़ाई के लिए प्रयोग में आने वाले साबुन दीर्घ शृंखला वाले वसा–अम्लों, जैसे कि स्टिऐरिक, ओलीक तथा पामिटिक अम्लों के सोडियम अथवा पोटैशियम लवण होते हैं। सोडियम लवण वाले साबुन वसा को (वसा अम्लों की ग्लिसरिल एस्टर) सोडियम हाइड्रॉक्साइड के जलीय विलयन के साथ गर्म करके बनाए जाते हैं। इस अभिक्रिया को **साबुनीकरण** कहते हैं।

Q			
$CH_2 - O - C_{17}H_{35}$			$CH_2 - OH$
O O			1
$CH - O - \ddot{C} - C_{17}H_{35} +$	· 3NaOH →	3C17H35COONa	+ CH - OH
0			1
$CH_2 - O - C - C_{17}H_{35}$			$CH_2 - OH$
स्टिऐरिक अम्ल	सोडियम	सोडियम	ग्लिसरॉल
की ग्लिसरिल एस्टर (वसा)	हाइड्रॉक्साइड	स्टिपेरेट	(या ग्लिसरीन)

इस अभिक्रिया में वसा अम्लों की एस्टर जल-अपघटित हो जाती है और प्राप्त हुआ साबुन कोलॉइडी अवस्था में रहता है। इसे विलयन में सोडियम क्लोराइड डालकर अवक्षेपित कर लिया जाता है। साबुन निकाल लेने के पश्चात ग्लिसरॉल बचे हुए विलयन में रह जाता है जिसे प्रभाजी आसवन के द्वारा प्राप्त किया जा सकता है। केवल सोडियम और पोटैशियम साबुन ही पानी में घुलनशील होते हैं और सफ़ाई के लिए प्रयुक्त होते हैं। सामान्यत: सोडियम साबुनों की तुलना में पोटैशियम साबुन त्वचा के लिए कोमल होते हैं। इन्हें सोडियम हाइड्रॉक्साइड के स्थान पर पोटैशियम हाइड्रॉक्साइड का विलयन प्रयोग करके बनाया जा सकता है।

साबुन के प्रकार

बुनियादी तौर से साबुन वसा अथवा तेल को उपयुक्त घुलनशील हाइड्रॉक्साइड के साथ उबाल कर बनाए जाते हैं। अलग–अलग कच्चा माल उपयोग करके भिन्नता लाई जाती है।

प्रसाधन साबुन उत्तम प्रकार के वसा एवं तेलों से बनाए जाते हैं तथा क्षार के आधिक्य को निकालने का ध्यान रखा जाता है। इन्हें अधिक आकर्षक बनाने के लिए रंग और सुगंध डाले जाते हैं।

पानी में तैरने वाले साबुन बनाने के लिए उनके कड़ा होने से पहले वायु के छोटे बुलबुले विस्पंदित किए जाते हैं।

पारदर्शी साबुन, साबुन को एथेनॉल में घोलकर और फिर विलायक के आधिक्य को वाष्पित करके बनाए जाते हैं।

औषध साबुनों में औषधीय गुण वाले पदार्थ डाले जाते हैं। कुछ साबुनों में गंधहारक पदार्थ डाले जाते हैं। *दाढ़ी बनाने के साबुन* को जल्दी सूखने से बचाने के लिए इनमें ग्लिसरॉल होता है। इन्हें बनाते समय रोजिन नामक गोंद डाली जाती है। इससे सोडियम रोजिनेट बनता है, जो

दैनिक जीवन में रसायन <mark>475</mark>

अच्छी तरह झाग बनाता है। *धुलाई के साबुनों* में सोडियम रोज़िनेट, सोडियम सिलिकेट, बोरेक्स और सोडियम कार्बोनेट जैसे पूरक डाले जाते हैं।

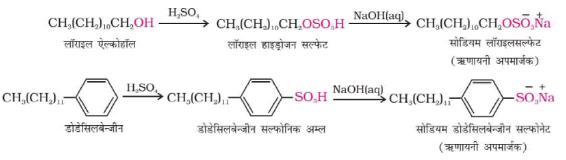
साबुन की छीलन बनाने के लिए पिघले हुए साबुन की परत ठंडे सिलिंडर पर चढ़ाकर उसे टूटे हुए टुकड़ों में खुरच लिया जाता है। *दानेदार साबुन* सूखे हुए छोटे-छोटे साबुन के बुलबुले होते हैं। *साबुन के पाउडर* तथा *मार्जन साबुनों* में कुछ साबुन, मार्जक (अपघर्षी) जैसे कि झामक चूर्ण (powdered pumice) या बारीक रेत तथा सोडियम कार्बोनेट और ट्राइसोडियम फ़ॉसफ़ेट जैसे बिल्डर होते हैं। बिल्डर साबुन की क्रियाशीलता बढ़ाते हैं। साबुन की शोधन क्रिया की विवेचना एकक 5 में की जा चुकी है।

साबुन कठोर जल में कार्य क्यों नहीं करते?

कठोर जल में कैल्सियम तथा मैग्नीशियम के आयन होते हैं। यह आयन सोडियम अथवा पोटैशियम साबुन को कठोर जल में घोलने पर क्रमश: अघुलनशील कैल्सियम और मैग्नीशियम साबुन में परिवर्तित कर देते हैं।

$2C_{17}H_{35}COONa$ +	CaCl ₂	→ 2NaCl +	$(C_{17}H_{35}COO)_2Ca$
साबुन	कैल्सियम क्लोराइड (कठोर जल में)	सोडियम साबुन	अघुलनशील कैल्सियम स्टिऐरेट (कैल्सियम साबुन)

यह अघुलनशील साबुन मलफेन (Scum) की तरह पानी से अलग हो जाते हैं और शोधन अभिकर्मक के कार्य के लिए बेकार होते हैं। वास्तव में यह अच्छी धुलाई में रुकावट डालते हैं; क्योंकि यह अवक्षेप कपड़ों के रेशों पर चिपचिपे पदार्थ की तरह चिपक जाता है। कठोर जल से धुले बाल इस चिपचिपे पदार्थ के कारण कांतिहीन लगते हैं। कठोर जल और साबुन से धुले कपड़ों में इस चिपचिपे पदार्थ के कारण रंजक एक समान रूप से अवशोषित नहीं होता।

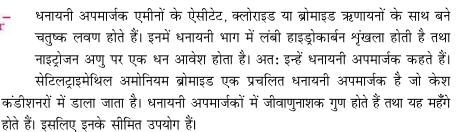

संश्लिष्ट अपमार्जक वह शोधन अभिकर्मक हैं जिनमें साबुन के सभी गुण होते हैं, परंतु जो वास्तव में साबुन नहीं होते। यह मृदु एवं कठोर, दोनों प्रकार के जल में उपयोग किए जा सकते हैं, क्योंकि यह कठोर जल में भी झाग बनाते हैं। कुछ अपमार्जक तो बर्फ़ीले जल में भी झाग देते हैं।

संश्लिष्ट अपमार्जकों को तीन वर्गों में बाँटा गया है-

(i) ऋणायनी (ii) धनायनी तथा (iii) अनायनिक

(i) ऋणायनी अपमार्जक

ऋणायनी अपमार्जक लंबी शृंखला वाले ऐल्कोहॉलों अथवा हाड्रोकार्बनों के सल्फोनेटित व्युत्पन्न होते हैं। दीर्घ शृंखला वाली ऐल्कोहॉलों को सांद्र सल्फ्यूरिक अम्ल से अभिक्रिया कराने से ऐल्किल हाइड्रोजन सल्फेट बनते हैं जिन्हें क्षार से उदासीन करने पर ऋणायनी अपमार्जक बनते हैं। इसी प्रकार से ऐल्किल बेन्जीन सल्फ़ोनेट, ऐल्किलबेन्जीन सल्फ़ोनिक अम्लों को क्षार द्वारा उदासीन करने से प्राप्त होते हैं।


476 रसायन विज्ञान

16.5.2 संशिलष्ट

अपमार्जक

ऋणायनी अपमार्जकों में अणु का ऋणायनी भाग शोधन क्रिया में शामिल होता है। ऐल्किल बेन्जीन सल्फ़ोनेटों के सोडियम लवण ऋणायनी अपमार्जकों के महत्त्वपूर्ण वर्ग हैं। यह अधिकतर घरेलू उपयोग में आते हैं। ऋणायनी अपमार्जक दंतमंजन में भी इस्तेमाल किए जाते हैं।

(ii) धनायनी अपमार्जक

(iii) अनायनिक अपमार्जक

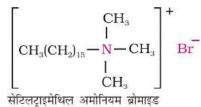
अनायनिक अपमार्जकों की संरचना में कोई आयन नहीं होता। एक ऐसा अपमार्जक स्टीऐरिक अम्ल तथा पॉलीएथिलीन ग्लाइकॉल की अभिक्रिया से बनता है।

 $\begin{array}{c} \mathrm{CH}_{3}(\mathrm{CH}_{2})_{16}\mathrm{COOH} + \mathrm{HO}(\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O})_{n}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} & \xrightarrow{-\mathrm{H}_{2}\mathrm{O}} \mathrm{CH}_{3}(\mathrm{CH}_{2})_{16}\mathrm{COO}(\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O})_{n}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} \\ & \\ \overline{\mathrm{td}} \mathrm{td} \mathrm{td}$

बर्तन धोने के उपयोग में आने वाले द्रव अपमार्जक अनायनिक प्रकार के होते हैं। इस प्रकार के अपमार्जकों की शोधन क्रियाविधि भी वही होती है जो साबुनों की होती है। यह भी तेल तथा वसा को मिसेल बनाकर निष्काषित करते हैं।

संश्लेषित अपमार्जकों के उपयोग में प्रमुख समस्या यह उत्पन्न होती है कि यदि इनमें हाइड्रोकार्बन शृंखला अधिक शाखित हो तो जीवाणु इन्हें आसानी से निम्ननीकृत नहीं कर सकते। निम्ननीकरण धीमा होने के कारण यह एकत्र होते जाते हैं। अपमार्जक युक्त बहि:स्रावी नदी, तालाब इत्यादि में पहुँच जाते हैं। यह पानी में मल-जल प्रबंधन के बाद भी बने रहते हैं तथा नदी तालाब तथा झरनों में झाग उत्पन्न करते हैं तथा उनका पानी प्रदूषित हो जाता है।

आजकल हाइड्रोकार्बन शृंखला में शाखन को नियंत्रित किया जाता है और इसे निम्नतम रखा जाता है। अशाखी शृंखलाएं सरलतापूर्वक जैव निम्ननीकृत हो सकती हैं, अत: प्रदूषण से बचाव हो जाता है।


पाठ्यनिहित प्रश्न

16.4 ग्लिसरिल ओलिएट तथा ग्लिसरिल पामिटेट से सोडियम साबुन बनाने के लिए रासायनिक समीकरण लिखिए। इनके संरचनात्मक सूत्र नीचे दिए गए हैं–

(i) $(C_{15}H_{31}COO)_{3}C_{3}H_{5}$ – गिलसरिल पामिटेट (ii) $(C_{17}H_{32}COO)_{3}C_{3}H_{5}$ – गिलसरिल ओलिएट **16.5** निम्न प्रकार के अनायनिक अपमार्जक, द्रव अपमार्जकों, इमल्सीकारकों और क्लेदन कारकों (Wetting agents) में उपस्थित होते हैं। अण में जलरागी तथा जलविरागी हिस्सों को दर्शाइए। अण में उपस्थित प्रकार्यात्मक समह

$$C_0H_{10}$$
 \longrightarrow $O(CH_2CH_2O)_xCH_2CH_2OH$
(x = 5 to 10)

दैनिक जीवन में रसायन 477

સારાંશ

रसायन आवश्यक रूप से मानवता की बेहतरी के लिए पदार्थों का अध्ययन एवं नए पदार्थों के विकास का अध्ययन है। **औषध** ऐसी रासायनिक कर्मक होती है जो मानव उपोपचय को प्रभावित करती हैं और रुग्णता से मुक्ति दिलाती हैं। यदि अनुशांसित मात्रा से अधिक मात्रा में ली जाएं तो इनका प्रभाव विषकारक हो सकता है। उपचार के लिए रसायनों का प्रयोग रसायन चिकित्सा कहलाता है। औषध साधारणतया जैव वृहदणुओं जैसे कार्बोहाइड्रेट, प्रोटीन, लिपिड तथा न्यूक्लीक अम्लों से अन्योन्य क्रिया करती हैं। इन जैवअणुओं को औषध-लक्ष्य कहते हैं। औषध विशेष लक्ष्यों से अन्योन्यक्रिया के लिए अभिकल्पित की जाती हैं जिससे इनके द्वारा दूसरे लक्ष्यों पर पार्श्व-प्रभाव की संभावना न्यूनतम हो। इससे पार्श्व प्रभाव (Side effect) न्यूनतम हो जाता है तथा औषध का प्रभाव स्थानीकृत रहता है। औषध रसायन सूक्ष्म जीवियों के रोकथाम/विनाश, विभिन्न संक्रामक रोगों से शरीर की सुरक्षा, मानसिक तनाव इत्यादि से मुक्ति पर केंद्रित होता है। इस प्रकार से पीड़ाहारी, प्रतिजैविक, पूतिरोधी, संक्रमणहारी, प्रतिअम्ल तथा प्रशांतक औषध विशेष उद्देश्य के लिए प्रयुक्त होती हैं। जनसंख्या नियंत्रण के लिए प्रतिजनन क्षमता औषध भी हमारे जीवन में प्रमुख हो गई हैं।

खाद्य योज्य, जैसे– परिरक्षक, मधुरक, सुरुचिकर, प्रतिऑक्सीकारक, खाद्य रंजक तथा पोषणज संपूरक भोज्य पदार्थों को आकर्षक और रुचिकर बनाने एवं पोषणज महत्व बढ़ाने के लिए मिलाए जाते हैं। परिरक्षकों को सूक्ष्म जीवों की वृद्धि रोकने के लिए मिलाया जाता है। संश्लेशित मधुरक उन लोगों के द्वारा प्रयोग में लाए जाते हैं; जिन्हें कैलोरी अंतर्ग्रहण पर नियंत्रण की आवश्यकता है या जो मधुमेह से पीड़ित हैं और सूक्रोस खाने से बचना चाहते हैं।

आजकल अपमार्जक बहुत प्रचलित हैं एवं उन्हें साबुन की अपेक्षा अधिक वरीयता दी जाती है; क्योंकि वह कठोर जल में भी कार्य करते हैं। संश्लेषित अपमार्जकों को तीन प्रमुख वर्गों में बाँटा जा सकता है– ऋणायनी, धनआयनी और अनायनिक और प्रत्येक वर्ग के विशिष्ट उपयोग होते हैं। सीधी हाइड्रोकार्बन शृंखला वाले अपमार्जकों को शाखित-शृंखला वाले अपमार्जकों की अपेक्षा वरीयता दी जाती है; क्योंकि बाद वाले जैव-निम्ननीकृत नहीं होते एवं पर्यावरण प्रदुषित करते हैं।

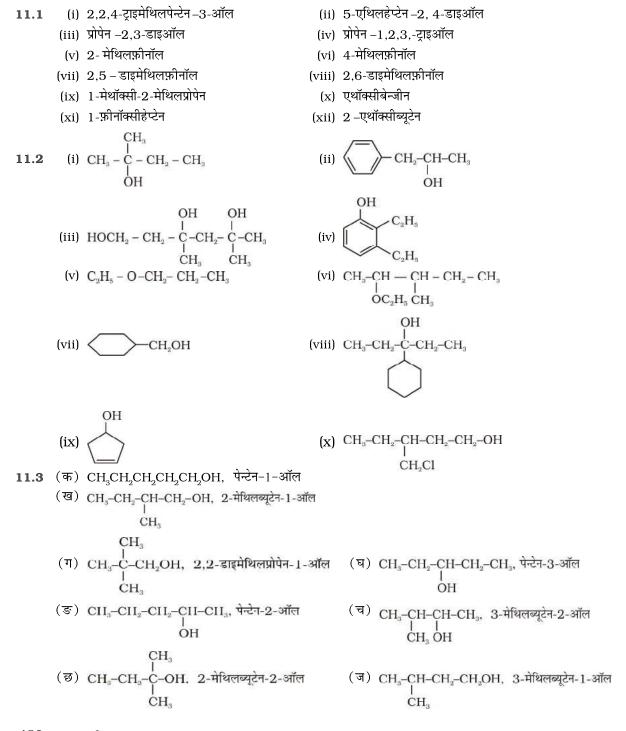
अभ्यास

- 16.1 हमें औषधों को विभिन्न प्रकार से वर्गीकृत करने की आवश्यकता क्यों है ?
- 16.2 औषध रसायन के पारिभाषिक शब्द, लक्ष्य-अणु अथवा औषध-लक्ष्य को समझाइए।
- 16.3 उन वृहदअणुओं के नाम लिखिए जिन्हें औषध-लक्ष्य चुना जाता है।
- 16.4 बिना डॉक्टर से परामर्श लिए दवाइयाँ क्यों नहीं लेनी चाहिए?
- 16.5 'रसायन चिकित्सा' शब्द की परिभाषा दीजिए।
- 16.6 एन्जाइम की सतह पर औषध को थामने के लिए कौन से बल कार्य करते हैं?
- 16.7 प्रतिअम्ल एवं प्रति-एलर्जी औषध हिस्टैमिन के कार्य में बाधा डालती हैं परंतु यह एक-दूसरे के कार्य में बाधक क्यों नहीं होतीं?
- 16.8 नॉरएड्रिनेलिन का कम स्तर अवसाद का कारण होता है। इस समस्या के निदान के लिए किस प्रकार की औषध की आवश्यकता होती है? दो औषधों के नाम लिखिए।
- 16.9 'वृहद-स्पेक्ट्रम जीवाणुनाशी' शब्द से आप क्या समझते हैं? समझाइए।
- 16.10 पूतिरोधी तथा संक्रमणहारी किस प्रकार से भिन्न हैं? प्रत्येक का एक उदाहरण दीजिए।
- 16.11 सिमेटिडीन तथा रैनिटिडीन सोडियम हाइड्रोजनकार्बोनेट अथवा मैग्नीशियम या ऐलुमिनियम हाइड्रॉक्साइड की तुलना में श्रेष्ठ प्रति अम्ल क्यों हैं?
- 16.12 एक ऐसे पदार्थ का उदाहरण दीजिए जिसे पूतिरोधी तथा संक्रमणहारी, दोनों प्रकार से प्रयोग किया जा सकता है।

478 रसायन विज्ञान

- 16.13 डेटॉल के प्रमुख संघटक कौन से हैं?
- 16.14 आयोडीन का टिंक्चर क्या होता है? इसके क्या उपयोग हैं?
- 16.15 खाद्य पदार्थ परिरक्षक क्या होते हैं?
- 16.16 एस्पार्टेम का प्रयोग केवल ठंडे खाद्य एवं पेय पदार्थों तक सीमित क्यों हैं?
- 16.17 कृत्रिम मधुरक क्या हैं? दो उदाहरण दीजिए।
- 16.18 मधुमेह के रोगियों के लिए मिठाई बनाने के लिए उपयोग में लाए जाने वाले मधुरकों के क्या नाम है?
- 16.19 ऐलिटेम को कृत्रिम मधुरक की तरह उपयोग में लाने पर क्या समस्याएं होती हैं?
- 16.20 साबुनों की अपेक्षा संश्लेषित अपमार्जक किस प्रकार से श्रेष्ठ हैं?
- 16.21 निम्नलिखित शब्दों को उपयुक्त उदाहरणों द्वारा समझाइए-
 - (क) धनात्मक अपमार्जक (ख) ऋणात्मक अपमार्जक (ग) अनायनिक अपमार्जक
- 16.22 जैव-निम्ननीकृत होने वाले और जैव-निम्ननीकृत न होने वाले अपमार्जक क्या हैं? प्रत्येक का एक उदाहरण दीजिए।
- 16.23 साबुन कठोर जल में कार्य क्यों नहीं करता?
- 16.24 क्या आप साबुन तथा संश्लेषित अपमार्जकों का प्रयोग जल की कठोरता जानने के लिए कर सकते हैं?
- 16.25 साबुन की शोधन क्रिया समझाइए।
- 16.26 यदि जल में कैल्सियम हाइड्रोजनकार्बोनेट घुला हो तो आप कपडे़ धोने के लिए साबुन एवं संश्लेषित अपमार्जकों में से किसका प्रयोग करेंगे?
- 16.27 निम्नलिखित यौगिकों में जलरागी एवं जलविरागी भाग दर्शाइए।
 - (क) CH₃(CH₂)₁₀CH₂OSO₃Na
 - (ख) CH₃(CH₂)₁₅ N(CH₃)₃Br
 - (π) CH₃(CH₂)₁₆COO(CH₂CH₂O)_nCH₂CH₂OH

कुछ पाठ्यनिहित प्रश्नों के उत्तर


- 16.1 अधिकतर औषध अनुशंसित मात्रा से अधिक मात्रा में लेने पर हानिकारक प्रभाव डालती हैं तथा विष का कार्य करती हैं इसलिए, औषध लेने से पहले किसी चिकित्सक से परामर्श अवश्य लेना चाहिए।
- 16.2 यह वक्तव्य भेषजगुणविज्ञानीय आधार पर वर्गीकरण की ओर संकेत करता है, क्योंकि कोई भी औषध जो अम्ल के आधिक्य का प्रतिकार करेगी, प्रति अम्ल कहलाएगी।

16.5
$$C_{9}H_{19}$$
 $O(CH_{2}CH_{2}O)_{x}CH_{2}CH_{2}OH$

जलविरागी या अधुवीय हिस्सा जलरागी या धुवीय हिस्सा

कुछ अभ्यासार्थ प्रश्नों के उत्तर

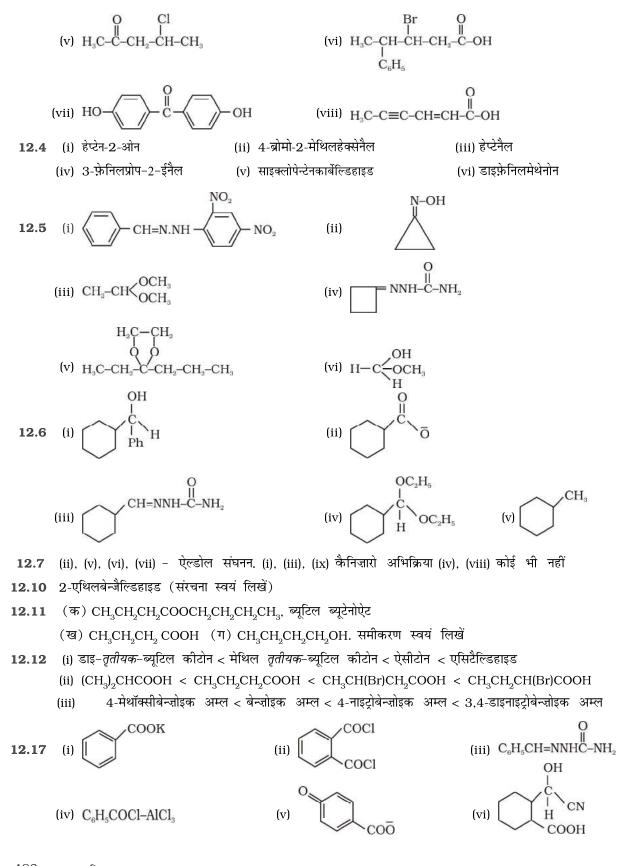
एकक 11

480 रसायन विज्ञान

11.4 प्रोपेनॉल में हाइड्रोजन आबंधन 11.5 जल एवं ऐल्कोहॉल अणुओं के बीच आबंधन। 11.8 o-नाइट्रोफ़ीनॉल अंतराआण्विक हाइड्रोजन आबंधन के कारण भाप में वाष्पशील है। 11.12 संकेतः सल्फोनेशन के पश्चात नाभिकरागी प्रतिस्थापन करें। CH=CH₂ CH(OH)CH 11.13 (i) 📔 (ii) $(H_2Cl + NaOH \longrightarrow (H_2O)$ CH₂OH NaCl (iii) $CH_3(CH_2)_4Cl + NaOH \longrightarrow CH_3(CH_2)_4OH + NaCl$ 11.14 (i) सोडियम तथा (ii) सोडियम हाइड्रॉक्साइड के साथ अभिक्रिया 11.15 नाइट्रो समूह की इलेक्ट्रॉन खींचने की प्रवृत्ति और मेथॉक्सी समूह की इलेक्ट्रॉन विमोचक प्रवृत्ति के कारण 11.20 (i) प्रोपीन का जलयोजन (ii) बेन्जिल क्लोराइड के -Cl का तनु NaOH के उपयोग द्वारा नाभिकरागी प्रतिस्थापन (iii) $C_2H_5MgBr + HCHO \rightarrow C_2H_5CH_2OMgBr \xrightarrow{H_2O} C_2H_5CH_2OH$ (iv) $CH_3MgBr + CH_3COCH_3 \longrightarrow CH_3 \xrightarrow{I} CH_3 \xrightarrow{H_2O} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{H_2O} CH_3 \xrightarrow{I} CH_3 \xrightarrow{I} CH_3$ 11.23 (i) 1-एथॉक्सी-2-मेथिलप्रोपेन (ii) 2-क्लोरो-1-मेथॉक्सीएथेन (iii) 4-नाइट्रोऐनिसॉल (iv) 1-मेथाक्सीप्रोपेन (v) 1-एथाक्सी-4,4-डाइमेथिलसाइक्लोहेक्सेन (vi) एथॉक्सीबेन्जीन एकक 12

12.2 (i) 4-मेथिलपेन्टेनैल

(iii) ब्यूट-2-इनैल


- (v) 3,3,5-ट्राइमेथिलहेक्सेन-2-ओन
- (vii) बेन्जीन –1,4-डाइकार्बेल्डिहाइड

~ - - -

12.3 (i)
$$H_3C-CH-CH_2-C-H$$

- (ii) 6-क्लोरो-4-एथिलहेक्सेन-3-ओन
- (iv) पेन्टेन-2,4-डाइओन
- (vi) 3,3-डाइमेथिलब्यूटेनॉइक अम्ल

कुछ अभ्यासार्थ प्रश्नों के उत्तर 481

482 रसायन विज्ञान

v

(vii) C₆H₅CH=C-CHO + अन्य उत्पाद (viii) CH₃CH(OH)CH₂COOC₂H₅ (ix) < ĊH. (x) 1. BH₃; 2. H_2O_2/OH ; 3. PCC (xi)

12.19 यौगिक मेथिल कीटोन है और इसकी संरचना होगी- CH₃COCH₂CH₂CH₃

एकक 13

- 13.1 (i) 1-मेथिलएथिलऐमीन
 - (iii) N-मेथिल-2-मेथिलएथिलऐमीन
 - (v) N-मेथिलबेन्जेनेमीन या N-मेथिलऐनिलीन
 - (vii) 3-ब्रोमोऐनिलीन या 3-ब्रोमोबेन्जेनेमीन
- **13.4** (i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_2H_5NH_2 < (C_2H_5)_2NH$
 - (ii) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$
 - (iii) (a) p -नाइट्रोऐनिलीन < ऐनिलीन < p-टॉलूडील
 - (b) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$
 - (iv) $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$ (v) $(CH_3)_2NH < C_2H_5NH_2 < C_2H_5OH$
 - (vi) $C_{6}H_{5}NH_{2} < (C_{2}H_{5})_{2}NH < C_{2}H_{5}NH_{2}$

एकक 15

- 15.1 (i) बहुलक उच्च आण्विक द्रव्यमान वाला बृहदणु है जिसमें एकलक से व्युत्पित पुनरावृत्त संरचनात्मक इकाइयाँ पाई जाती है।
 - (il) एकलक एक सरल अणु है जो बहुलकीकृत होने में सक्षम है और इससे संगत बहुलक बनता है।
- 15.2 (i) प्राकृतिक बहुलक उच्च आण्विक द्रव्यमान वाले बृहदणु हैं और यह पादपों और जंतुओं में पाए जाते हैं। प्रोटीन और न्युक्लीक अम्ल इसके उदाहरण हैं।
 - (ii) संश्लिष्ट बहुलक मानव निर्मित उच्च आण्विक द्रव्यमान वाले बृहदणु हैं। संश्लिष्ट प्लास्टिक, रेशे और रबर इसके अंतर्गत आते हैं। दो विशिष्ट उदाहरण पॉलिथीन और डेक्रॉन हैं।
- प्रकार्यात्मकता एकलक में आबंधी स्थितियों की संख्या है। 15.4
- एक अथवा अधिक एकलकों की सहसंयोजक बंधों द्वारा पुनरावृत्त संरचनात्मक इकाइयों के एक साथ शृंखलित 15.5 होने से बनने वाले उच्च आण्विक द्रव्यमान वाले बहुलक बनने की प्रक्रिया बहुलकन है।
- चूँकि (NH-CHR-CO), इकाई एकल एकलक इकाई से प्राप्त होती हैं इसलिए यह एक समबहुलक है। 15.6
- विभिन्न बहुलकों की शृंखलाओं के मध्य उपस्थित आण्विक बलों के आधार पर बहुलकों का वर्गीकरण 15.7 निम्न प्रकार से दिया गया है।
 - (i) प्रत्यास्थ बहुलक (ii) रेशे (iii) तापसुघट्य बहुलक और (iv) तापदूढ़ बहुलक
- योगज बहुलकन में समान अथवा भिन्न एकलक अणु एक साथ जुड़ कर बृहत् बहुलक अणु बनाते हैं। 15.8 संघनन वह प्रक्रिया है जिसमें दो अथवा अधिक प्रकार के द्विक्रियात्मक अणु संघनन अभिक्रियाओं की शृंखला द्वारा कुछ सरल अणुओं के विलोपन से बहुलक बनाते हैं।
- सहबहुलकीकरण वह प्रक्रिया है जिसमें एक से अधिक प्रकार की एकलक स्पीशीज़ का बहुलकन किया 15.9 जाता है। सहबहुलक में प्रत्येक एकलक की अनेक इकाइयाँ होती हैं। 1,3-ब्यूटाडाईन तथा स्टाइरीन और 1,3-ब्यूटाडाईन एवं ऐक्रिलोनाइट्राइल के सहबहुलक इसके उदाहरण हैं।

कुछ अभ्यासार्थ प्रश्नों के उत्तर 483

- (ii) प्रोपेन-1-ऐमीन
- (vi) N-एथिल-N-मेथिलएथेनेमीन
- (iv) 2-मेथिलप्रोपेन-2-ऐमीन

$$\begin{array}{c} O & O \\ C_{e}H_{5}-C-O & O \\ \hline O & 0 \\ C_{e}H_{5}-C-O & O \\ \hline O & 0 \\$$

- 15.11 तापसुघट्य बहुलक को बार-बार तापन द्वारा मृदुलित और शीतलन द्वारा कठोर बनाया जा सकता है। अत: इसे बार-बार उपयोग किया जा सकता है। पॉलिथीन और पॉलिप्रोपिलीन आदि इसके उदाहरण हैं। तापदृढ़ बहुलक स्थायी रूप से दृढ़ रहने वाला बहुलक है। यह साँचे में ढालने की प्रक्रिया में कठोर हो जाता है तथा जम जाता है और पुन: मृदुलित भी नहीं किया जा सकता। बैकालाइट और मेलैमीन-फॉर्मेल्डीहाइड बहुलक इसके उदाहरण हैं।
- 15.12 (i) पॉलिवाइनिल क्लोराइड का एकलक $CH_2 = CH CI$ (वाइनिल क्लोराइड) है। (ii) टेफ्लॉन का एकलक $CF_2 = CF_2$ (टेट्राफ्लुओरोएथिलीन) है। (iii) बैकालाइट के बनने में प्रयुक्त होने वाले एकलक HCHO(फॉर्मेल्डीहाइड) और $C_{\rho}H_{\gamma}OH$ (फ़ीनॉल) हैं।
- 15.14 संरचना की दृष्टि से प्राकृतिक रबर एक रेखीय सिस-1,4-पॉलिआइसोप्रीन है। इस बहुलक में द्विआंबध आइसोप्रीन इकाइयों के C₂ और C₃ के मध्य स्थित होते हैं। द्विआबंध का सिस अभिविन्यास दुर्बल अंतराआण्विक बलों द्वारा प्रभावी आकर्षण के लिए शृंखलाओं को समीप नही आने देता। अत: प्राकृतिक रबर की कुंडलित संरचना होती है और यह प्रत्यास्थता प्रदर्शित करता है।
- 15.16 नाइलॉन-6 की पुनरावृत एकलक इकाई [NH(CH₂)5-CO] है। नाइलॉन-6,6 बहुलक की पुनरावृत एकलक इकाई दो एकलकों हैक्सामेथिलीनडाइऐमीन और ऐडिपिक अम्ल से व्युत्पित होती है।

 $[NH-(CH_2)_6-NH-CO-(CH_2)_4-CO]$

15.17 एकलकों के नाम और संरचानाएं

बहुलक	एकलकों के नाम	एकलकों की संरचनाएं
(i) ब्यूना-S	1,3-ब्यूटाडाईन	$\mathrm{CH}_{2}\text{=}\mathrm{CH}\text{-}\mathrm{CH}\text{=}\mathrm{CH}_{2}$
	स्टाइरीन	$C_6H_5CH=CH_2$
(ii) ब्यूना-N	1,3-ब्यूटाडाईन	$\mathrm{CH}_{2}\text{=}\mathrm{CH}\text{-}\mathrm{CH}\text{=}\mathrm{CH}_{2}$
	ऐक्रिलोनाइट्राइल	CH ₂ =CHCN
		Çl
(iii) निओप्रीन	क्लोरोप्रीन	$CH_2 = C - CH = CH_2$
(iv) डेक्रॉन	एथिलीनग्लाइकॉल	OHCH ₂ -CH ₂ OH
	टैरीथैलिक अम्ल	соон-Соон

484 रसायन विज्ञान

15.18 बहुलक बनाने वाले एकलक हैं -

(i) डेकेनडाइऑइक अम्ल (HOOC(CH $_2$) $_8$ COOH) और हैक्सामेथिलीन डाइऐमीन H $_2$ N(CH $_2$) $_6$ NH $_2$

15.19 डेक्रॉन बनाने के लिए निम्नलिखित समीकरण है -

 $n \operatorname{HOCH_2CH_2OH} + n\operatorname{HOOC} \longrightarrow \operatorname{COOH} \longrightarrow \left(\operatorname{O-CH_2CH_2O-CO} \longrightarrow \operatorname{CO} \right)_n$ ұludin venişanie zivelife жес isanie

कुछ अभ्यासार्थ प्रश्नों के उत्तर 485

तकनीकी-शब्दसूची

शब्द	पृष्ट	. सं.	शब्द		पृष्ठ सं.
	अ		उभयाविष्ट आयन/	Zwitter ion	438
अंतरण-RNA	Transfer - RNA	445	ज्विटर आयन		
अंतराआणिवक हाइड्रोजन	Intermolecular	357	उभदंती नाभिकरागी	Ambident nucleoph	niles 315
आबंधन	bonding			ए	
अतिअम्लता	Hyperacidity	467	एकआण्विक नाभिकरागी	Substitution nucle	ophilic
अनायनिक अपमार्जक	Non-ionic detergents	477	प्रतिस्थापन	unimolecular	317
ऋणायनी अपमार्जक	Anionic detergents	476	एकाइरल	Achiral	320
अपचायी शर्करा	Reducing sugars	433	एन्जाइम	Enzymes	441
अपमार्जक	Detergents	475	एन्जाइम का उत्प्रेरक कार्य	Catalytic action of	
अपवृत्त शर्करा	Invert sugar	433		enzymes	441
अमोनीअपघटन	Ammonolysis	408	एन्जाइम संदमक	Enzyme inhibitors	465
अर्ध संश्लेषित बहुलक	Semi - synthetic	450	एमीन	Amines	405
	polymers		एस्टर	Esters	346, 353
अल्प घनत्व पॉलिथीन	Low density polythene	453	एस्टरीकरण	Esterification	353
असममित कार्बन	Asymmetric carbon	320		ऐ	
अस्वापक पीड़ाहारी	Non-narcotic analgesics	469	ऐज़ोरंजक	Azo dyes	423
	आ		ऐनहाइड्राइड	Anhydrides	392
आंतरआणिवक हाइड्रोजन	Intramolecular bonding	357	ऐनोमर	Anomers	432
आबंधन			ऐन्टीपायरेटिक	Antipyretic	469
आइसोल्यूसीन	Isoleucine	437	ऐमिलोस	Amylose	434
आक्सिडोरिडक्टेस	Oxidoreductase	441	ऐमिलोपेक्टिन	Amylopectin	435
आण्विक असममितता	Molecular asymmetry	319	ऐमीनो अम्ल	Amino acids	436
आर्जिनीन	Arginine	437	ऐरिलऐमीन	Arylamines	407, 415
	इ, ई, उ		ऐरिल हैलाइड	Aryl halides	305
इलेक्ट्रॉन अपनयक समूह	Electron withdrawing	000	ऐरोमैटिक प्रतिस्थापन	Aromatic	356, 365
	group	396		substitution	
इलेक्ट्रॉनरागी ऐरोमैटिक प्रतिस्थापन	Electrophilic aromatic	, 365	ऐरोमैटिक वलय	Aromatic ring	339
प्रारास्यापन इलेक्ट्रॉन दाता समूह		, 305	ऐलानिन	Alanine	437
इलक्ट्रॉन पोती समूह (इलेक्ट्रॉन विमोचक समूह)	Electron donating group	396	ऐलिलिक ऐल्कोहॉल	Allylic alcohols	339
इलेक्ट्रॉनरागी प्रतिस्थापन	Electrophilic substitution		ऐलिलिक हैलाइड	Allylic halides	304
	Licea opinite Substituti	310	ऐलोस्टीरिक सतह	Allosteric site	465
ईटार्ड अभिक्रिया	Etard reaction	378	ऐल्काइन	Alkynes	377
ईथर	Ethers 338, 340	, 342	ऐल्किलन	Alkylation	416, 420
उच्च घनत्व पॉलिथीन	High density polythene	454	ऐल्किलबेन्जीन	Alkylbenzenes	391

ऐल्किल हैलाइड	Alkyl halides 303	, 304	
ऐल्कीन	Alkenes	309	गार
ऐल्केनएमीन	Alkanamines	415	गार
ऐल्कोहॉल	Alcohols	338	गैलि
ऐल्कोहॉलों की अम्लता	Acidity of alcohols	351	गाः संइ
ऐल्डीहाइड	Aldehydes	372	गो
ऐल्डोल अभिक्रिया	Aldol reaction	386	ग्ल
ऐल्डोल संघनन	Aldol condensation	386	ग्ल
ऐल्डोपेन्टोस	Aldopentose	428	ग्ल
ऐसिलन	Acylation	416	ग्लू
ऐस्पार्टिक अम्ल	Aspartic acid	437	ग्लू
ऐस्पेराजीन	Asparagine	437	ग्लू
ऐस्पिरिन	Aspirin	469	ग्लू
	ओ, औ		गिर
ओलिगोसैकैराइड	Oligosaccharides	428	ग्रा
औषध	Drugs	463	ग्रीग
औषध	Medicines	463	
औषध-एन्जाइम	Drug - enzyme		चद्र
अन्योन्यक्रिया	interaction	465	ত
औषध-लक्ष्य अन्योन्यक्रिया	Drug - target interaction	464	जा
औषध साबुन	Medicated soaps	475	जी
	क		जी
काइरलता	Chirality 319	, 320	र्जो १
कार्बधात्विक यौगिक	Organo-metallic compounds	324	जैव जैव
कार्बोकैटायन	_	, 323	
कार्बोक्सिलिक अम्ल	Carboxylic acids	372	टाइ
कार्बिलऐमीन अभिक्रिया	Carbylamine reaction	417	टॉर
कार्बोहाइड्रेट	Carbohydrates	427	टेप
कीटोन	Ketones	472	टेगि
कैनिज़ारो अभिक्रिया	Cannizzaro reaction	387	ट्राइ
कोल्बे अभिक्रिया	Kolbe's reaction	358	ਟ੍ਰਿਾ
कोल्बे वैद्युत अपघटन	Kolbe electrolysis	398	डा
क्यूमीन	Cumene	348	डाः
क्लीमेन्सन अपचयन	Clemmensen reduction	384	डा
क्रॉस ऐल्डोल संघनन	Cross aldol		डि
कृत्रिम मधुरक	condensation	387	6
	Artificial sweetening		डि

	ग	
ााटरमान अभिक्रिया	Gatterman reaction	
॥टरमान आमाक्रथा ॥टरमान-कॉख अभिक्रिया	Gatterman -	
	Koch reaction	378
ब्रिएल थैलिमाइड	Gabriel phthalimide	
नंश्लेषण	synthesis	410
ोलिकाकार प्रोटीन	Globular proteins	439
लाइकोजन	Glycogen	436
लाइकोसाइडी बंध	Glycosidic linkage	434
लाइसीन	Glycine	437
लूकोनिक अम्ल	Gluconic acid	430
लूकोस	Glucose	428
लूटेमीन	Glutamine	437
लूटैमिक अम्ल	Glutamic acid	437
ग्लसरैल्डीहाइड	Glyceraldehyde	430
ग्रही	Receptors	464
ग्रीन्यार अभिकर्मक	Grignard reagent	324
	च∕ज	
वक्रीय संरचना	Cyclic structure	431
जल में विलेय विटामिन	Water soluble vitamins	442
गलक्रम बहुलक	Network polymers	450
जीवाणुनाशी	Bactericidal	471
नीवाणु निरोधी	Bacteriostatic	471
नेमिनल हैलाइड	Geminal halides	306
जैवअण <u>ु</u>	Biomolecules	427
जैवनिम्ननीय बहुलक	Biodegradable polymers	459
	ट <i>,</i> ड	
गइरोसीन	Tyrosine	437
गॅलेन परीक्षण	Tollens' test	384
टेफलॉन	Teflon	454
रेरिलीन (पॉलिएस्टर)	Terylene	452
ग़इसैकेरा इड	Trisaccharides	428
ट्रेप्टोफेन	Tryptophan	437
डाइऐज़ोकरण	Diazotisation	421
डाइऐज़ोनियम लवण	Diazonium salt	420
डाइसैकेराइड	Disaccharides 428,	433
डऑक्सीराइबोस	Deoxyribose	436
डेऑक्सीराइबोन्यूक्लीक अम्ल	Deoxyribonucleic acid	443
डी.डी.टी	DDT	331

तकनीकी-शब्दसूची <mark>487</mark>

त*,थ,द,*घ

तापदृढ़ बहुलक	Thermosetting polymers	452
तापसुघट्य बहुलक	Thermoplastic polymers	452
तिर्यकबंधित अथवा	Cross linked polymers	
जालक्रम बहुलक		450
त्सीग्लर-नट्टा उत्प्रेरक	Ziegler - Natta catalyst	454
त्रिविम केंद्र	Stereo centre	319
थ्रिऑनीन	Threonine	437
दक्षिण ध्रुवण घूर्णक	Dextrorotatory 319,	321
दाढ़ी बनाने के साबुन	Shaving soaps	475
द्विआण्विक नाभिकरागी प्रतिस्थापन	Substitution nucleophili bimolecular	ic 315
धनायनी अपमार्जक	Cationic detergents	477
धुलाई के साबुन	Laundry soaps	476
ध्रुवण अघूर्णक	Optically inactive	314
ध्रुवण समावयवता	Optical isomerism	319
ध्रुवता	Polarity	380
	न	
नाइट्रोकरण	Nitration	419
नाइलॉन-2	Nylon-2	460
नाइलॉन 6, 6	Nylon 6, 6	455
नाइलॉन 6	Nylon 6	455
नाभिकरागी प्रतिस्थापन	Nucleophilic substitution 314,	325
निओप्रीन	Neoprene	458
नोदक/प्रणोदक	Propellants	331
नोवोलेक	Novolac	456
न्यूक्लिओटाइड	Nucleotides	444
न्यूक्लिओसाइड	Nucleosides	444
न्यूक्लीक अम्ल	Nucleic acids	443
	प	
परिरक्षक	Preservatives	474
पाइरैनोस संरचना	Pyranose structure	432
पायसीकारक	Emulsifiers	473
पॉलिएमाइड	Polyamides	455
पॉलिएस्टर	Polyesters	455
पॉलिऐक्रिलोनाइट्राइल	Polyacrylonitrile	454
पॉलिथीन	Polythene	453

\sim 11		
पॉलिसैकेराइड 	5	, 434
पॉलिहाइड्रिक यौगिक 	Polyhydric compounds	339
पारदर्शी साबुन	Transparent soaps	475
पी.एच.बी.वी	PHBV	459
पीड़ाहारी	Analgesics	469
पूतिरोधी	Antiseptics	472
पेप्टाइड आबंध	Peptide bond	439
पेप्टाइड बंध	Peptide linkage	439
प्रतिअम्ल	Antacids	467
प्रतिअवसादक औषध	Antidepressant drugs	468
प्रतिजननक्षमता औषध	Antifertility drugs	472
प्रतिजैविक	Antibiotics	470
प्रतिबिंबरूप	Enantiomers	321
प्रति सूक्ष्मजैविक (औषध)	Antimicrobial (drugs)	470
प्रतिहिस्टैमिन	Antihistamines	467
प्रत्यास्थ बहुलक	Elastomers	451
प्रशांतक	Tranquilizers	468
प्रसाधन साबुन	Toilet soaps	475
प्राकृतिक रबर	Natural rubber	457
प्राकृतिक बहुलक	Natural polymers	451
प्राणि मंड (स्टार्च)	Animal starch	435
प्रोटिक विलायक	Protic solvents	317
प्रोटीन	Proteins	436
प्रोटीन का विकृतीकरण	Denaturation of protein	440
प्रोटीनों की संरचना	Structure of proteins	438
प्रोलीन	Proline	437
	দ	
फिटिग अभिक्रिया	Fittig reaction	329
फिंकेल्स्टाइन अभिक्रिया	Finkelstein reaction	310
फ़ीनॉल	Phenols	338
फ़ीनॉलों की अम्लता	Acidity of phenols	352
फ़ेलिंग परीक्षण	Fehling's test	385
फ़ेनिल–ऐलानिन	Phenylalanine	437
फ्यूरेनोस	Furanose	432
फ्रक्टोज़ या फलशर्करा	Fructose	432
फ़्रीडेल-क्राफ्ट्स अभिक्रिया	Friedel-Crafts	
· · · · · · · · · · · · · · · · · · ·	reaction	379
फ्रेऑन प्रशीतक	Freon refrigerant	331

488 रसायन विज्ञान

	অ		रोज़ेनमुंड अपचयन	Rosenmund reduction	377
बहुलक	Polymers	449	रोशेल लवण	Rochelle salt	377
बहुलकन	Polymerisation	449		ल	
बार्बिट्यूरेट	Barbiturates	469	लक्ष्य-अणु	Molecular targets	455
बेन्जिलिक ऐल्कोहॉल	Benzylic alcohols	339	लाइसीन	Lysine	429
बेन्जिलिक हैलाइड	Benzylic halides 304	, 318	लूइस क्षारक	Lewis bases	405
बेयर-अभिकर्मक	Baeyers' reagent	377	लैक्टोस, दुग्धशर्करा	Lactose 425	5, 426
बैकेलाइट	Bakelite	456	ल्यूकास परीक्षण	Lucas test	346
ब्यूना−N	Buna - N	459	ल्यूसीन	Leucine	429
ब्यूना−S	Buna - S 450, 451	, 452		व	
	भ		वलय प्रतिस्थापन	Ring substitution	391
मंड, स्टार्च	Starch	428	वल्कनीकरण	Vulcanisation	449
मधुरक	Sweeteners	473	वसा अम्ल, वसीय अम्ल	Fatty acids	381
मार्कोनी कॉफ नियम	Markovnikov's rule 337		वसा में विलेय विटामिन	Fat soluble vitamins	433
मार्जन साबुन	Scouring soaps	476	वाइनिल ऐल्कोहॉल	Vinylic alcohol	332
माल्टोस (यवशर्करा)	Maltose	433	वाइनिलक हैलाइड	Vinylic halides	297
		400 309	वान्डरवाल्स बल	Van der waal forces	304
मुक्त मूलक सन्त प्रत्य कि समिति	Free radical		वामावर्ती/वामु ध्रुवण घूर्णक	Laevorotatory	311
मुक्त मूलक क्रियाविधि	Free radical mechanism		विकृतीकरण	Denaturation	352
मेथाइओनिन	Methionine	437	विटामिन		3, 434
मेलैमीन फार्मेल्डिहाइड ———	Melamine - formaldehy		विन्यास का प्रतिलोमन	Inversion of	
बहुलक	polymer	456	(प्रतीपन)	configuration	308
मोनोसैकैराइड	Monosaccharides	428	विलियम्सन संश्लेषण	Williamson synthesis	353
योगज बहुलक	य, र Addition polymers	451	विलोपन अभिक्रिया	Elimination reaction	315
योगोत्पाद	Adduct		विषमचक्रीय (हेट्रोसाइक्लिक यौगिक) Heterocyclic compounds	435
रबर	Rubber	457	वागपः विस्तुत स्पेक्ट्म प्रतिजीवाण्	Broad spectrum	400
रपर रसायन चिकित्सा	Chemotherapy	463	ાવસ્પૃત સ્વવડ્રન પ્રાતગાવાગુ	antibiotics	462
राइबोस	Ribose	443	विहाइड्रोजनन	Dehydrogenation	347
राइबोसोमल-RNA	Ribosomal - RNA	445	वुर्ट्ज अभिक्रिया	Wurtz reaction	317
राइमर-टीमन अभिक्रिया	Reimer - Tiemann	110	वुर्ट्स-फिटिग अभिक्रिया	Wurtz-Fittig reaction	322
	reaction	359	वैलीन	Valine	429
रासायनिक संदेशवाहक	Chemical messengers	466	वैसोडाइलेटर या वाहिका	Vasodilator	
रेज़िन	Resins	460	विस्फारक		458
रेशे	Fibres	452	वोल्फ-किश्नर अपचयन	Wolff - Kishner	
रेशेदार प्रोटीन	Fibrous proteins	438		reduction	376
रेसिमिक मिश्रण	Racemic mixture	322	णाविन शांतन्त्र जनजन	श Branchad chain	450
रेसिमीकरण	Racemisation	322	शाखित शृंखला) बहुलक	Branched chain polymers	450
रैखिक बहुलक	Linear polymers	450	शोधन अभिकर्मक	Cleansing agents	475
	FF				

तकनीकी-शब्दसूची <mark>489</mark>

c .		
शृंखला संचरण पद	Chain propagating step	453
शृंखला समापन पद	Chain terminating step	453
	स	
संकीर्ण स्पेक्ट्रम प्रतिजीवाणु	Narrow spectrum	
	antibiotics	471
संक्रमणहारी/विसंक्रामी	Disinfectants	472
संदेशवाहक RNA	Messenger - RNA	445
संनिधि डाइब्रोमाइड	Vicinal diobromide	310
संनिधि/विसनल हैलाइड	Vicinal halides	306
संघनन बहुलकन	Condensation polymers	454
संरचना-क्षारकता संबंध	Structure - basicity	
	relationship	414
संश्लेषित रबर	Synthetic rubber	458
संश्लेषित/संशिलष्ट	Synthetic detergents	
अपमार्जक		476
संश्लेषित बहुलक	Synthetic polymers	450
सक्रिय सतह	Active site	464
सल्फोनेशन	Sulphonation	419
सहबहुलक	Copolymers	451
सहबहुलकन	Copolymerisation	457
साबुन	Soaps	475
साबुनीकरण	Saponification	475
सिस्टीन	Cysteine	437

शृंखला प्रारंभक पद Chain initiating step 444

सीमित स्पेक्ट्रम प्रतिजीवाणु	Limited spectrum antibiotics	471
सूक्रोस	Sucrose	433
सेरीन	Serine	437
सेलुलोस	Cellulose	435
सैन्डमायर अभिक्रिया	Sandmayer's reaction 310), 421
सैल्वरसैन	Salvarsan	470
स्कंदन	Coagulation	440
स्टीफैन अभिक्रिया	Stephen reaction	377
स्पर्धी संदमक	Competitive inhibitors	465
स्वार्ट्स अभिक्रिया	Swarts reaction	310
	ह	
हाइड्रोबोरोनन	Hydroboration	345
हॉफमान ब्रोमेमाइड	Hoffmann bromamide	
निम्नीकरण अभिक्रिया	reaction	410
हिस्टिडीन	Histidine	437
हिस्टैमिन	Histamines	467
हिन्सबर्ग अभिकर्मक	Hinsberg's reagent	417
हेमीऐसीटैल	Hemiacetal	383
हेल-फोलार्ड-जेलिंस्की	Hell - Volhard Zelinsky	
अभिक्रिया	reaction	398
हॉवर्थ संरचनाएं	Haworth structures	432
हैलोएरीन	Haloarene 303	3, 347
हैलोफार्म अभिक्रिया	Haloform reaction	385
हैलोऐल्केन	Haloalkane	303

490 रसायन विज्ञान