-	Downloaded Iroi
	Studies Today.com

	COMBINATION	
Q.36)	4 cards out of 52 cards are chosen. Find no. of ways in which :	
Sol.36)	1. 4 cards are chosen:-	
,	(i) 4 cards out of 52 cards can be chosen in = ${}^{52}C_4$ ways = $\frac{52!}{4!48!}$ = 270725 ans.	
	2. 4 cards out of same suit:	
	(i) There are 4 suits	
	Diamond Club Heart Spade	
	(13) (13) (13)	
	(ii) No. of ways of selecting, 4 diamonds out of 13 diamond cards = ${}^{13}C_4$	
	(iii) Similarly, ¹³ C ₄ ways for selecting 4 spade, 4 clubs & 4 heart	
	(iv) : required no. of ways of selection = ${}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4 = 4 \times {}^{13}C_4 = 2860$ ans.	
	3. 4 cards belong to 4 different suits	
	(i) We have to select 1 card from each suit	
	(ii) 1 diamond out of 13 diamonds can be selected in = ${}^{13}C_1$ ways	
	(iii) Similarly, ¹³ C ₁ is the no. of ways of selecting 1 club, 1 heart & 1 spade	
	(iv) : required no. of selection = 13C1 x 13C1x13C1x13C1 = 13 x 13 x 13 x 13 =	
	$(13)^4 = 28561$ ans.	
	4. All are face cards	
	(i) There are 12 face cards (4J, 4Q, 4K)\4 face cards out of 12 face cards can be	
	selected in ${}^{12}C_4$ ways = $\frac{12!}{4!8!}$ = 495 ans.	
	5. Two are red & two are black:	
	(i) Red cards = 26 , black cards = 26	
	(ii) 2 red cards out of 26 red cards can be selected in = ${}^{26}C_2$ ways	
	(iii) 2 black cards out of 26 can be selected in = ${}^{26}C_2$ ways	
	(iv) Required no. of selections = ${}^{26}C_2 \times {}^{26}C_2 = \frac{26!}{2!24!} \times \frac{26!}{2!24!} = 325 \times 325 = 105625$ ans.	
	6. 4 cards are of same colour:-	
	(i) 2 cases: either they all are red & all are black	
	(ii) 4 red cards out of 26 red cards can be selected in = ${}^{26}C_4$ ways	
	(iii) 4 black cards out of 26 black cards can be selected in ²⁶ C ₄ ways	
	(iv) : required no. of ways of selection = ${}^{26}C_4 + {}^{26}C_4 = \frac{26!}{4!22!} + \frac{26!}{4!22!} = 14950 + 14950$	
	= 29900 ans.	
Q.37)	A group consisting of 4 girls & 7 boys. In how many way 5 members are selected such	
	that the team consists:	
Sol.37)	1. No girls	
	(i) Since no girl are to be selected, the remaining 5 are to selected from 7 boys	
	(ii) Which can be selected in = ${}^{7}C_{5}$ ways = ${}^{7}C_{5}$ = ${}^{7}C_{2}$ = $\frac{7 \times 6}{2}$ = 21 ans.	
	2. At least 3 boys	
	Three cases:	
	(7) (4)	
	B G	
	3 2	
	Case: 1) colocting 2 hove % 2 girls which can be colocted in = 7g x 4g years = 25 x 6 =	
	Case: 1) selecting 3 boys & 2 girls which can be selected in = $7c_3x \ 4c_2$ ways = 35 x 6 = 210	
	Case: 2) selecting 4 boys & 1 girl which can be selected in $7c_3x + 4c_2$ ways = 35 x 4 = 180	
	Case: 3) selecting 5 boys & no girl which can selected in $7c_3x + 4c_2$ ways = 33 x 4 = 180 Case: 3) selecting 5 boys & no girl which can selected in = $7c_5x + 4c_0$ ways = 21 x 1 = 21	
	$\therefore \text{ required no. of ways of selection} = 210 + 180 + 21 = 411 \text{ ans.}$	
	220 / 200 / 22 / 224	

3.	At	most	2	boy	s:
----	----	------	---	-----	----

(7)	(4)
В	G
2	3
1	4

Case:1) selecting 2 boys & 3 girls which can be selected in = $7c_2x + 4c_3$ ways = 21 x 4 = 84

Case: 4) selecting 1 boy 4 girls which can be selected in $7c_1x + 4c_4$ ways = $7 \times 1 = 7$ \therefore required no. of ways of selection = 84 + 7 = 91 ans.

4. At least 1 boy & 1 girl

(7)	(4)
В	G
1	4
2	3
3	2
4	1

Case:1) selecting 1 boy 4 girls which can be selected in = $7c_1x$ $4c_4$ ways = 7x 1 = 7

Case:2) selecting 2 boys 3 girls which can be selected in = $7c_2x$ $4c_3$ ways = 21×4 = 84

Case:3) selecting 3 boys & 2 girls which can be selected in = $7c_3x$ $4c_2$ ways = 35 x 6 = 210

Case:4) selecting 4 boys & 1 girl which can be selected in $7c_4x$ $4c_1$ ways = 35 x 4 = 180

 \therefore required no. of ways of selection = case:1 + case:2 + case:3 + case:4 = 7 + 84 + 210 = 180 = 481 ans.

5. At most 1 girl is chosen

(7)	(4)
В	G
4	1
5	0

Case:1) selecting 4 boys & 1 girl which can be selected in = $4c_1 \times 7c_4$ ways = $4 \times 35 = 180$

Case:2) selecting NO girl & 5 boys which can be selected in = $4c_6 \times 7c_5$ ways = $1 \times 21 = 21$

- \therefore required no. of ways of selections = 180 + 21 = 201
 - 6. A particular boy & a particular girl is always chosen:-
 - (i) Let the particular boy is A girl is B
 - (ii) They are selected only in 1 way (as they are always selected)
 - (iii) Now we have to select 3 persons from the remaining 11 persons
 - (iv) Which can be selected in = $11C_3$ ways = 165 ans.

Q.38) A polygon has n sides. Find the number of diagonals?

Sol.38)

- (i) A polygon having n sides has n vertices
- (ii) Total number of lines that can be drawn using n vertices (points) = ${}^{n}C_{2}$
- (iii) Then ⁿC₂ lines also contain n- sides
- (iv) : the number of diagonals ${}^{n}C_{2} n = \frac{n(n-1)}{2} n = \frac{n^{2} n 2n}{2} = \frac{n^{2} 3n}{2}$ ans.

Q.39) Sol.39)

- A polygon has 44 diagonals. Find the number of sides?
 - (i) We know that the total no. of diagonals having n-sides = $\frac{n^2-3n}{2}$ (from q.38)
 - (ii) Given: no. of diagonals 44
- $\therefore \frac{n^2 3n}{2} = 44$

Studies Today	
Studies loudy.co	m

	7	
	$\Rightarrow n^2 - 3n - 88 = 0$	
	\Rightarrow (n-11) (n+8) = 0	
	⇒ n = 11	
	\Rightarrow n = -8 (no. of sides can never be –n)	
	∴ there are 11 sides in the polygon	
Q.40)	There are 10 points in a plane, out of which 4 points are collinear. Find no. of straight	
	lines & no. of triangles?	
Sol.40)	1. Total no. of straight lines using 10 points = $10c_2$	
	(i) No. of straight line using 4 points = $4c_2$	
	(ii) But 4 collinear points, when join pair wise gives only 1 straight line	
	(iii) \therefore required no. of straight lines = $10c_2 - 4c_2 + 1 = 45-6+1=40$ ans.	
	2. Total no. of triangles using 10 points = $10c_3$	
	(i) No. of triangles using 4 points = $4c_3$	
	(ii) But 4 collinear points cannot form a triangle	
	(iii) \therefore required no. of triangles = $10_3 - 4c_3 = 120 - 4 = 116$ ans.	
Q.41)	There are 'm' no. of horizontal parallel lines & 'n' no. of vertical parallel lines. How	
	many no. of parallelogram can be formed?	
Sol.41)	(i) To form a parallelogram, we require two horizontal lines & two vertical lines	
	(ii) Now two horizontal lines out of 'm horizontal' lines can be selected in =	
	mc_2 ways	
	(iii) Two vertical lines out of 'n vertical' lines can be selected in = $nc_{2 ways}$	
	(iv) \therefore the required no. of triangles = $mc_2 \times nc_2$	
Q.42)	From a class of 25 students, 10 are to be chosen for a party. There are 3 students who	
	decide that either all of them will join or none of them will join. In how many ways can	
	they be chosen?	
Sol.42)	There are two cases	
	Case:1) three particular students join the party:-	
	(i) Now we have to select 7 student from the remaining 22 students	
	(ii) Which can be selected in ²² C ₇ ways	
	Case:2) three particular students do not join the party:-	
	(i) Now we have to choose 10 students from the remaining 22 students	
	(ii) Which can be selected in = $^{22}C_{10}$ ways	
	\therefore required no. of ways of selection = case:1 + case:2 = ${}^{22}C_7 + {}^{22}C_{10}$	
	$=\frac{22!}{7!15!}+\frac{22!}{10!12!}=817190$ ans.	
Q.43)	A boy has 3 library tickets and 8 books of his interest in the library of these 8 books; he	
, ,	does not want to borrow chemistry part 2, unless chemistry part 1 is also borrowed. In	
	how many ways can he choose the three books?	
Sol.43)	There are 2 cases:-	
,	Case:1) when chemistry part 1 is borrowed :-	
	(i) Now, he has to select 2 books out of the remaining 7 books	
	(ii) Which can be selected in = $7c_2$ ways	
	Case:2) when chemistry part 1 is not borrowed:-	
	(i) Then, he does not want to borrow chemistry part 2	
	(ii) Now, he has to select 3 books out of the remaining 6 books	
	(iii) Which can be selected in $6c_{3 ways}$	
	\therefore required no. of ways of selection = case:1 + case:2	
	$=7c_2 + 6c_3 = 21 + 20 = 41$ ans.	
Q.44)	A box contains 5 red balls & 5 black balls. In how many ways 6 balls be selected such	
	that:	
Sol.44)	There are exactly 2 red balls	
	2. At least 3 red balls	

Bommoadod not
Studies Today.com

	3. At least 2 red balls	
	4. At least 2 balls from each colour	
	5. No. of black balls & no. of white balls are equal	
	6. Red balls are in majority	
Q.45)	If $2n_{C_3}$: n_{C_3} = 11:1, find n?	
Sol.45)	We have, $\frac{2n_{C_3}}{n_{C_3}} = \frac{11}{1}$	
	n_{C_3} 1	
	$\Rightarrow \frac{\frac{(21)!}{3!(2n-3)!}-11}{\left(2n-3\right)!} = \frac{11}{n!}$	
	$\Rightarrow \frac{\frac{(2n)!}{3!(2n-3)!}}{\frac{n!}{3!(n-2)!}} = \frac{11}{1} \dots \left\{ n_{C_3} = \frac{n!}{r!(n-r)!} \right\}$	
	$\Rightarrow \frac{(2n)!(n-3)!}{(2n-3)!n!} = 11$	
	(2n-3)!n! $(2n)(2n-1)(2n-2)!(n-2)!$	
	$\Rightarrow \frac{(2n)(2n-1)(2n-2)(2n-3)!(n-3)!}{(2n-3)!(n-1)(n-2)(n-3)!} = 11$	
	$\Rightarrow \frac{2(2n-1)(2n-2)}{(n-1)(n-2)} = 11$	
	(n-1)(n-2) = 11	
	$\Rightarrow \frac{4(2n-1)(n-1)}{(n-1)(n-2)} = 11$	
	$\Rightarrow 8n - 4 = 11n - 22$	
	⇒ 3x = 18	
Q.46)	If $2n_{C_3}$: n_{C_2} = 44:3, find n?	
Sol.46)		n
		=
	20	6
	an studies to one	
	die	
	S	