Downloaded from www.studiestoday.com

D.A.V PUBLIC SCHOOL, KURUKSHETRA SUMMER VACATION ASSIGNMENT CLASS XI SUBJECT – MATHEMATICS

Q:-1 Find the number of non zero integral solutions of the equation $|1-i|^x = 2^x$.

Q: -2 $\,$ Find the value of i^n+i^n+1+i^n+2+i^n+3,n $\, \ensuremath{\mathbb{Z}} \,$ N.

Q:-3 Express in a+ib form of

$$\left[\left(\frac{1}{3} + i \frac{7}{3} \right) + \left(4 + i \frac{1}{3} \right) - \left(-\frac{4}{3} + i \right) \right]$$

Q:-4 Find the value of x which satisfy the equation.

$$a^2x^2-2a^3x+a^4+a^4+c^2=0$$

Q:-5 Solve -12x>30 when x is an integer.

Q:-6 Find sum of odd integers from 1 to 2001.

Q:-7 Find the 20th term of $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \dots$

Q:-8 Evaluate : $\sum_{k=1}^{11} (2+3^k)$

Q:9 find sum to infinity in

$$\frac{-3}{4}$$
, $\frac{3}{16}$, $\frac{-3}{64}$,

Q10. If P (n) is the statement " n^3+n is divisible by 3". Is P (4) is true?

Q11. If α and β are different complex Numbers with $|\beta|=1$ then find $\left[\frac{\beta-\alpha}{1-\alpha\,\beta}\right]$

Q 12.If (a+ib) (c+id) (e+if) (g+ih) = A+iBthen show that

$$(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = A^2+B^2$$

Downloaded from www.studiestoday.com

Q13. Reduce $\left(\left(\frac{1}{1-4i} - \frac{2}{1+i}\right)\left(\frac{3-4i}{5+i}\right)\right)$ to the standard form.

Q 14.Solve
$$x^2 + \left(\frac{ax}{x+a}\right)^2 = 3a^2, x \neq -a$$

Q 15. Solve
$$\frac{1}{p+q+x} = \frac{1}{p} + \frac{1}{q} + \frac{1}{x}$$

Q 16. Solve the following system of inequations:

$$\frac{x}{2x+1} \ge \frac{1}{4}, \frac{6x}{4x-1} < \frac{1}{2}$$

 $\ensuremath{\mathbf{Q}}$ 17. Solve the following system of inequalities :

$$\frac{4x+3}{2x-5}$$
 < 6, $x \neq \frac{5}{2}$

Q 18.Solve :
$$\frac{|x|-1}{|x|-2} \ge 0$$
, $x \in R$, $x \ne \pm 2$

Q19. Find the solution set of the following system of linear inequationsgraphically:

$$2x + 3y - 12 \ge 0$$

$$2x - y + 2 \ge 0$$

$$3x - 4y + 12 \ge 0$$

$$X \le 4$$
, $y \ge 2$

Q 20. Using P.M.I, prove that for all $n \in N$.

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} = \frac{2n}{n+1}$$

Downloaded from www.studiestoday.com

Q21. Using P.M.I prove that

$$7^{2n} + 2^{3n-3} * 3^{n-1}$$

is divisible by 25 for all $n \in N$.

Q22. The ratio of the A.M and G.M between two positive number a and b is m:n show that

a:b =
$$(m + \sqrt{m^2 - n^2})$$
: $(m - \sqrt{m^2 - n^2})$

- Q 23. If a,b,c are in A.P. b,c,d are in G.P. and $\frac{1}{c'd'e}$ are in A.P. prove that a,c,e are in G.P.
- Q 24. Find the sum of the series up to n terms.

$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \cdots$$

Q 25. Let S be sum, P be product and R the sum of the reciprocals of n terms in a G.P.

prove that $P^2R^n = S^n$