CH. 7: CONGRUENCE OF TRIANGLES

- 1. If \triangle ABC \cong \triangle DEF, \angle A = 100° and \angle B = 45° then \angle F = ______
- 2. ABCD is a rhombus. AC is a diagonal
 - i) Show three pairs of equal parts giving reasons, in Δ ABC and Δ ADC.
 - ii) Is \triangle ABC \cong \triangle ADC ? Give reason.
 - iii) Is \angle BAC = \angle DAC? Give reason.

- 3. ABC is an isosceles triangle with AB = BC and AD \perp BC.
 - In \triangle ABD and \triangle ACD
 - i) Show three pairs of equal parts giving reasons.
 - ii) Is \triangle ADB \cong \triangle ADC ? Give reason.
 - iii) Is \angle BAD = \angle CAD? Give reason.

- 4. In the figure PQ and XY bisect each other at O.
 - i) Show three pairs of equal parts in Δ POX and Δ QOY
 - ii) Is \triangle POX \cong \triangle QOY Give reasons
 - iii) Is $\angle X = \angle Y$? Give reasons

Page **2** of **7**

5. In the figure, O is the midpoint of BC and $\angle B = 90^{\circ}$, $\angle C = 90^{\circ}$ By using ASA Congruence rule B

Show that \triangle AOB \cong \triangle DOC

- 6. ABCD is a rectangle. AC is a diagonal (Draw a figure). By using SSS Congruence rule Show that Δ ABC \cong Δ CDA
- 7. In the figure AD \perp BC . D is the midpoint of BC Using SAS Congruence rule show that B

 $_{\Delta \ ABD} \cong _{\Delta \ ACD}$

Is AB = AC? Why?

8. Given the figure,

Prove that Δ ABC $\stackrel{\sim}{=}$ Δ RQP

If
$$\angle A = 30^{\circ}$$
, $\angle R = 30^{\circ}$

