7. Triangles

Q 1 In figure, OA = OB and OD = OC.

Show that

$$_{\text{(i)}}\,\Delta_{\text{AOD}}\!\cong\!\Delta_{\text{BOC}}$$

$$_{(ii)}$$
 AD \parallel_{BC} .

Marks (2)

Q 2 ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that

$$_{(i)} \Delta_{ABE} \cong \Delta_{ACF}$$

(ii) AB = AC, i.e. ABC is an isosceles triangle.

Marks (2)

Q 3 AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

Marks (2)

Q 4 Triangle *ABC* is an isosceles triangle; *CD* is bisector to the base *AB*. Prove that the altitude, the bisector and the median to the base of triangle *ABC* match.

Marks (2)

Q 5

Triangle ABC is congruent to $A_1B_1C_1$.M and M_1 are the points on sides AB and A_1B_1 such that $AM = A_1M_1$. Prove that $CM = C_1M_1$ and $\angle BMC = \angle B_1M_1C_1$.

Marks (2)

Q 6 ABCD is a parallelogram and BEFC is a square. Show that triangles ABE and DCF are congruent.

Q 7 PQR and QST are two triangles such that

$$\angle_{4} = \angle_{6}$$

$$\angle_{1} = \angle_{3}$$

$$\angle_{4} = \angle_{5}$$

Prove that $\angle R = \angle T$

Marks (2)

Q 8 BD is a line segment. From D two line segments AD and DC are drawn

such that
$$AD = CD$$
, also $\angle 3 = \angle 4$. Prove that segment BD bisects

 \angle_{ABC} .

Marks (2)

Q 9 D is a point on side BC of \triangle ABC such that AD = AC. Show that AB > AD.

Marks (3)

Q 10 P is a point equidistant from two lines I and m intersecting at point A. Show that the line AP bisects the angle between them.

Marks (3)

Q 11 In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.

Marks (3)

Q 12 In \triangle ABC, the bisector AD of \angle A is perpendicular to side BC. Show that AB = AC.

Marks (3)

Q 13 AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that

$$\angle$$
BAD = \angle ABE and \angle EPA = \angle DPB. Show that

$$_{(i)}\,\Delta_{\,\mathrm{DAP}}\,\cong\,\Delta_{\,\,\mathrm{EBP}}$$

(ii) AD = BE

Marks (3)

Q 14 In figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Marks (3)

Q 15 Angles opposite to equal sides of an isosceles triangle are equal.

Marks (3)

Q 16 ABC and DBC are two isosceles triangles on the same base BC. Show that \angle ABD = \angle ACD.

Marks (3)

Q 17 \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that

$$_{(i)} \Delta_{ABD} \cong \Delta_{ACD}$$

$$_{ ext{(ii)}} \Delta_{\text{ABP}} \cong \Delta_{\text{ACP}}$$

Marks (3)

Q 18 AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB.

Marks (4)

Q 19 If D is the mid-point of the hypotenuse AC of a right triangle ABC, prove that BD = (1/2)AC.

Q 20 \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that \angle BCD is a right angle.

Marks (4)

Q 21 Prove that the perimeter of a triangle is greater than the sum of its altitudes.

Marks (4)

Q 22 In Figure, PR>PQ and PS bisects \angle QPR. Prove that \angle PSR> \angle PSQ.

Marks (4)

Q 23 In figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR=(1/2) \angle QPR.

Marks (4)

Q 24 In Figure, \angle B< \angle A and \angle C< \angle D. Show that D<BC.

Most Important Questions

Q 1 In the given figure ABCD is a quadrilateral in which AD = BC and $\angle DBA = \angle CBA$ Prove that

 $_{\text{(i)}}\,\Delta_{\text{ABD}}{\cong}\,\Delta_{\text{BAC}}$

(ii) BD= AC

$$(iii) \angle ABD = \angle BAC$$

Q 2 Line segment AB is parallel to another line segment CD. O is the mid-point of AD. Show that

(i) $\Delta_{\mathrm{AOB}} \cong \Delta_{\mathrm{DOC}}$ (ii) O is also the mid-point of BC.

Q 3 In the given figure it is given that $\angle_{A} = \angle_{C}$ and AB = BC. Prove that $\triangle_{ABD} \cong \triangle_{CBE}$.

Q 4 In \triangle ABC, AB = AC, and the bisectors of angles B and C intersect at point O. Prove that BO=CO and the ray AO is the bisector

of angle BAC. B

Q 5 \triangle ABC and \triangle DBC are two triangles on the same base BC such that AB= AC and DB= DC. Prove that \angle ABD = \angle ACD.

Q 6 Line l is the bisector of an angle \angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of

∠A. Show that

$$_{(i)} \Delta_{APB} \cong \Delta_{AQB}$$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Q 7 P is a point on the bisector of ABC. If the line through P parallel to AB meets BC at Q, prove that the triangle BPQ is isosceles.

Q 8 In two right triangles one side and an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Q 9 AD and BE are respectively altitudes of an isosceles triangle ABC with AC = BC. Prove that AE = BD.

Q 10 If the bisector of the exterior vertical angle of a triangle is parallel to the base. Show that the triangle is isosceles.

Q 11 If E and F are respectively the midpoints of equal sides AB and AC of a triangle ABC, Show that BF = CE.

Q 12 In an isosceles triangle ABC with AB= AC, D and E are points on BC such that BE= CD, show that AD = AE.

Q 13 ABC and DBC are two isosceles triangles on the same base BC. Show that \angle ABD = \angle ACD.

Q 14 ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

- Q 15 ABC is an isosceles triangle with AB = AC. Show that $\angle B = \angle C$.
- Q 16 If BE and CF are equal altitudes of a triangle ABC. Prove that triangle ABC is isosceles.
- Q 17 AD is the altitude of an isosceles triangle in which AB = AC. Show that
- (i) AD bisects BC
- (ii) AD bisects $\angle A$.

Q 18 In the given figure QPR = PQR and M and N are respectively on sides QR and PR of PQR such that QM= PN. Prove that OP= OQ, were O is the point of intersection of PM and QN.

- Q 19 Fill in the blanks:
- (i) Sides opposite to equal angles of a triangle are
- (ii) In an equilateral triangle all angles are and of degree.
- (iii)In right triangles ABC and DEF, if hypotenuse AB = EF and AC = DE, then $\Delta_{ABC} \cong \Delta_{...}$
- (iv)If altitudes CE and BF of a triangle ABC are equal, then AB =...
- (v)In triangle ABC if A = C then AB = ...
- Q 20 State true or False
 - (i) If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.

- (ii) The bisectors of two equal angles of a triangle are equal.
- (iii) If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
- (iv) The two altitudes corresponding to two equal sides of a triangle need not be equal.
- (v) Two right triangles are congruent if hypotenuse and a side of the triangle are respectively equal to the hypotenuse and the side of the other triangle.
- Q 21 Show that in a right angled triangle, the hypotenuse is the longest side.
- Q 22 Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.

Q 23 In the given figure PQR is a triangle and S is any point in its interior, show that SQ + SR < PQ + PR.

Q 24 Prove that the perimeter of a triangle is greater than the sum of the three medians.

Q 25 In the given figure $\angle E > \angle A$ and $\angle C > \angle D$. Prove that AD > EC.

Q 26 In the given figure T is a point on the side QR of \triangle PQR and S is a point such that RT = ST. Prove that PQ + PR > QS.

Q 27 Of all the line segments drawn from a point P to a line m not containing P, let PD be the shortest. If B and C are points on m such that D is the mid-point of BC, prove that PB = PC.

Q 28 In the given figure AC > AB and D is the point on AC such that AB = AD. Prove that BC > CD.

Q 29 In the given figure prove that CD +DA +AB +BC >2AC

- Q 30 Fill in the blanks:
- (i) In a right triangle the hypotenuse is the... side.
- (ii) The sum of three altitudes of a triangle is... than its perimeter.
- (iii) The sum of any two sides is than the third side.
- (iv) If two sides of a triangle are unequal, then the larger side has angle opposite to it.
- (v) If two angles of a triangle are unequal, then the smaller angle has the side opposite to it.