Downloaded from www.studiestoday.com

CHAPTER - 4

PRINCIPLE OF MATHEMATICAL INDUCTION

KEY POINTS

- Induction and deduction are two basic processes of reasoning.
- Deduction is the application of a general case to a particular case. In contrast to deduction, induction is process of reasoning from particular to general.
- Principle of Mathematical Induction :

Let P(n) be any statement involving natural number n such that

- (i) P(1) is true, and
- (ii) If P(k) is true implies that P(k +1) is also true for some natural number k

then P(n) is true $\forall n \in N$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

Using the principle of mathematical induction prove the following for all $n\,\in\,N$:

1.
$$3.6 + 6.9 + 9.12 + \dots + 3n (3n + 3) = 3n(n + 1)(n + 2)$$

2.
$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)---\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1}$$

- 3. $n^2 + n$ is an even natural number.
- 4. 2^{3n} -1 is divisible by 7
- 5. 3²ⁿ when divided by 8 leaves the remainder 1.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- 6. $4^n + 15n 1$ is divisible by 9
- 7. $n^3 + (n + 1)^3 + (n + 2)^3$ is a multiple of 9.
- 8. x^{2n-1} -1 is divisible by x 1, $x \ne 1$
- 9. $3^n > n$
- 10. If x and y are any two distinct integers then $x^n y^n$ is divisible by (x y)
- 11. $n < 2^n$
- 12. $a + (a + d) + (a + 2d) + \dots + [a + (n-1)d] = \frac{n}{2} [2a + (n-1)d]$
- 13. $3x + 6x + 9x + \dots$ to n terms $= \frac{3}{2} n (n + 1) x$
- 14. $11^{n+2} + 12^{2n+1}$ is divisible by 133.