TOPIC 9 VECTOR ALGEBRA SCHEMATIC DIAGRAM

Торіс	Concept	Degree of importance	RefrenceNCERT Text Book Edition 2007
(ii)Direction ratio and direction cosines	*	Q 12,13 pg 440	
(iii)Unit vector	* *	Ex 6,8 Pg 436	
(iv)Position vector of a point and	* *	Q 15 Pg 440, Q 11Pg440, Q 16	
collinear vectors		Pg448	
(v)Dot product of two vectors	**	Q6 ,13 Pg445	
(vi)Projection of a vector	* * *	Ex 16 Pg 445	
(vii)Cross product of two vectors	* *	Q 12 Pg458	
(viii)Area of a triangle	*	Q 9 Pg 454	
(ix)Area of a parallelogram	*	Q 10 Pg 455	

SOME IMPORTANT RESULTS/CONCEPTS

* Position vector of point A(x, y, z) = OA = xî + yĵ + zk
* If A(x₁, y₁, z₁) and point B(x₂, y₂, z₂) then
$$\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

* If $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$; $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$
* Unit vector parallel to $\vec{a} = \frac{\vec{a}}{|\vec{a}|}$

* Scalar Product (dot product) between two vectors: $\vec{a} \cdot \vec{b} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} \vec{b} \\ \cos \theta$; θ is angle between the vectors

$$*\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

* If $\vec{a} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ and $\vec{b} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$

* If \vec{a} is perpendicular to \vec{b} then \vec{a} . $\vec{b} = 0$

$$*\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{a} = \left| \stackrel{\rightarrow}{a} \right|^2$$

* Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|}$

* Vector product between two vectors:

 $\vec{a} \times \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta \ \hat{n} \ ; \ \hat{n} \text{ is the normal unit vector which is perpendicular to both } \vec{a} \otimes \vec{b} \\ * \ \hat{n} = \frac{\vec{a} \times \vec{b}}{\left| \vec{a} \times \vec{b} \right|} \\ * \text{ If } \vec{a} \text{ is parallel to } \vec{b} \text{ then } \vec{a} \times \vec{b} = 0 \\ * \text{ Area of triangle (whose sides are given by } \vec{a} \text{ and } \vec{b}) = \frac{1}{2} \left| \vec{a} \times \vec{b} \right| \\ * \text{ Area of parallelogram (whose adjacent sides are given by } \vec{a} \text{ and } \vec{b}) = \left| \vec{a} \times \vec{b} \right|$

* Area of parallelogram (whose diagonals are given by \vec{a} and \vec{b}) = $\frac{1}{2} \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$

ASSIGNMENTS

(i) Vector and scalars, Direction ratio and direction cosines&Unit vector LEVEL I

1. If $\vec{a} = \hat{i} + \hat{j} - 5\hat{k}$ and $\vec{b} = \hat{i} - 4\hat{j} + 3\hat{k}$ find a unit vector parallel to $\vec{a} + \vec{b}$ 2. Write a vector of magnitude 15 units in the direction of vector $\hat{i} - 2\hat{j} + 2\hat{k}$

3. If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$; $\vec{b} = \hat{i} - \hat{j} + \hat{k}$; $\vec{c} = -\hat{i} + \hat{j} + \hat{k}$ find a unit vector in the direction of $\vec{a} + \vec{b} + \vec{c}$

4. Find a unit vector in the direction of the vector $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ [CBSE 2011]

5. Find a vector in the direction of vector $\vec{a} = \hat{i} - 2\hat{j}$, whose magnitude is 7 **LEVEL II**

1. Find a vector of magnitude 5 units, perpendicular to each of the vectors $(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b})$, $(\stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b})$ where

 $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

- 2. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.
- 3. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$

LEVEL – III

- 1. If a line make α,β,γ with the X axis, Y- axis and Z axis respectively, then find the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$
- 2. For what value of p, is $(\hat{i} + \hat{j} + \hat{k}) p$ a unit vector?
- 3. What is the cosine of the angle which the vector $\sqrt{2}\hat{i} + \hat{j} + \hat{k}$ makes with Y-axis
- 4. Write the value of p for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors.

(ii)Position vector of a point and collinear vectors

LEVEL – I

- 1. Find the position vector of the midpoint of the line segment joining the points A($5\hat{i} + 3\hat{j}$) and B($3\hat{i} \hat{j}$).
- 2. In a triangle ABC, the sides AB and BC are represents by vectors $2\hat{i} \hat{j} + 2\hat{k}$,
- $\hat{i} + 3\hat{j} + 5\hat{k}$ respectively. Find the vector representing CA.
- 3. Show that the points (1,0), (6,0), (0,0) are collinear.

$\mathbf{LEVEL} - \mathbf{II}$

1. Write the position vector of a point R which divides the line joining the points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively in the ratio 2 : 1 externally.

2. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are (2 a + b) and (a - 3 b) respectively, externally in the ratio 1:2. Also, show that P is the mid-point of the line segment RQ

(iii) Dot product of two vectors

LEVEL – I

1.Find $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b}$ if $\stackrel{\rightarrow}{a} = 3\hat{i} - \hat{j} + 2\hat{k}$ and $\stackrel{\rightarrow}{b} = 2\hat{i} + 3\hat{j} + 3\hat{k}$.

2.If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$. Then find the angle between \vec{a} and \vec{b} . 3.Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$ [CBSE 2011]

LEVEL – II

1. The dot products of a vector with the vectors $\hat{i} - 3\hat{j}$, $\hat{i} - 2\hat{j}$ and $\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vectors.

2. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}, \overrightarrow{b}| = |\overrightarrow{a} \times \overrightarrow{b}|$, then what is the angle between \overrightarrow{a} and \overrightarrow{b} .

3. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda\vec{b}$ is perpendicular to \vec{c} , find the value of λ .

LEVEL – III

1. If $\overrightarrow{a} \otimes \overrightarrow{b}$ are unit vectors inclined at an angle θ , prove that $\sin \frac{\theta}{2} = \frac{1}{2} |\overrightarrow{a} - \overrightarrow{b}|$.

- 2. If $|\ddot{a} + b| = |\ddot{a} b|$, then find the angle between \vec{a} and \vec{b} .
- 3. For what values of λ , vectors $\vec{a} = 3\hat{i} 2\hat{j} + 4\hat{k}$ and $\vec{a} = \lambda\hat{i} 4\hat{j} + 8\hat{k}$ are (i) Orthogonal (ii) Parallel

4..Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{a})$. $(\vec{x} + \vec{a}) = 15$.

5. If $\vec{a} = 5\hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \mu\hat{k}$, find μ , such that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are orthogonal.

6. Show that the vector $2\hat{i} - \hat{j} + \hat{k}$, $-3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form sides of a right angled triangle.

7.Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 18$. 8. If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular vectors of equal magnitudes, prove that $\vec{a} + \vec{b} + \vec{c}$ is

8. If a, b, c are three mutually perpendicular vectors of equal magnitudes, prove that a + b + c is equally inclined with the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

9. Let \vec{a} , \vec{b} , \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each of them being perpendicular

to the sum of the other two, find $\begin{vmatrix} \vec{a} + \vec{b} + \vec{c} \end{vmatrix}$.

(iv) Projection of a vector

LEVEL – I

1. Find the projection of \vec{a} on \vec{b} if \vec{a} . $\vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$.

2. Write the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$

[CBSE 2011]

3. Find the angle between the vectors \hat{i} -2 \hat{j} + 3 \hat{k} and 3 \hat{i} -2 \hat{j} + \hat{k}

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$

LEVEL – II

1. Three vertices of a triangle are A(0, -1, -2), B(3,1,4) and C(5,7,1). Show that it is a right angled triangle. Also find the other two angles.

2.Show that the angle between any two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$.

3. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non - zero and non - coplanar vectors, prove that $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $-3\overrightarrow{b} + 5\overrightarrow{c}$ and $\overrightarrow{-2a+3b} - 4\overrightarrow{c}$ are also coplanar

LEVEL – III

1.If a unit vector a makes angles π/4, with i, π/3 with j and an acute angle θ with k, then find the component of a and angle θ.
2. If a, b, c are three mutually perpendicular vectors of equal magnitudes, prove that a + b + c is equally inclined with the vectors a, b, c.
3.If with reference to the right handed system of mutually perpendicular unit vectors i, j, and k,

 $\vec{\alpha} = 3\hat{i} - \hat{j}, \ \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$ then express $\vec{\beta}$ in the form of $\vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

4.Show that the points A, B, C with position vectors $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

 $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$ respectively form the vertices of a right angled triangle.

5. If a & b are unit vectors inclined at an angle θ , prove that

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} \begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}$$
 (ii) $\tan \frac{\theta}{2} = \frac{\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}}{\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}}$

(vii)Cross product of two vectors

LEVEL – I

1. If $|\stackrel{\rightarrow}{a}| = 3$, $|\stackrel{\rightarrow}{b}| = 5$ and $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b} = 9$. Find $|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|$ 2. Find $|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|$, if $\stackrel{\rightarrow}{a} = \hat{i} -7\hat{j} + 7\hat{k}$ and $\stackrel{\rightarrow}{b} = 3\hat{i} + 2\hat{j} + 2\hat{k}$

3. Find $|\vec{x}|$, if \vec{p} is a unit vector and , $(\vec{x} - \vec{p}) \cdot (\vec{x} + \vec{p}) = 80$. 4. Find p, if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = \vec{0}$.

LEVEL – II

1. Find λ , if $(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} - \lambda\hat{j} + 7\hat{k}) = \vec{0}$. 2. Show that $(\hat{a} - \hat{b}) \times (\hat{a} + \hat{b}) = 2(\hat{a} \times \hat{b})$ 3. Find the angle between two vectors \hat{a} and \hat{b} if $|\hat{a}| = 3$, $|\hat{b}| = 4$ and $|\hat{a} \times \hat{b}| = 6$.

4.Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\pi/6$, prove that $\vec{a} = \pm 2(\vec{a} \times \vec{b})$.

LEVEL – III

1. Find the value of the following: $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{i} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ 2. Vectors \vec{a} and \vec{b} are such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = \frac{2}{3}$, and $\vec{a} \times \vec{b}$ is a unit vector. Write the angle between \vec{a} and \vec{b} 3. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

4.If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ show that $(\overrightarrow{a} - \overrightarrow{d})$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$, where $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

5. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of a vector parellal and perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

(viii)Area of a triangle & Area of a parallelogram

LEVEL – I

1. Find the area of Parallelogram whose adjacent sides are represented by the vectors

 $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$.

2.If \overrightarrow{a} and \overrightarrow{b} represent the two adjacent sides of a Parallelogram, then write the area of parallelogram in terms of \overrightarrow{a} and \overrightarrow{b} .

3. Find the area of triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as its vertices.

LEVEL – II

1.Show that the area of the Parallelogram having diagonals ($3\hat{i} + \hat{j} - 2\hat{k}$) and

 $(\hat{i} - 3\hat{j} + 4\hat{k})$ is $5\sqrt{3}$ Sq units.

2. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices of a \triangle ABC, show that the area of the \triangle ABC is

 $\frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \end{vmatrix}.$

3.Using Vectors, find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5) [CBSE 2011]

Questions for self evaluation

1. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

2. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$.

3. If |a + b| = |a - b|, then find the angle between [a a and b].

4. Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$, and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5, 8 respectively. Find the vector.

5. Find the components of a vector which is perpendicular to the vectors $\hat{i} + 2\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + 2\hat{k}$.